
354 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Cheetah: A High-Speed Programmable
Load-Balancer Framework With Guaranteed

Per-Connection-Consistency
Tom Barbette , Erfan Wu, Dejan Kostić , Gerald Q. Maguire, Jr. , Life Fellow, IEEE,

Panagiotis Papadimitratos , and Marco Chiesa , Fellow, IEEE

Abstract— Large service providers use load balancers to dis-
patch millions of incoming connections per second towards thou-
sands of servers. There are two basic yet critical requirements for
a load balancer: uniform load distribution of the incoming connec-
tions across the servers, which requires to support advanced load
balancing mechanisms, and per-connection-consistency (PCC), i.e,
the ability to map packets belonging to the same connection
to the same server even in the presence of changes in the
number of active servers and load balancers. Yet, simultaneously
meeting these requirements has been an elusive goal. Today’s load
balancers minimize PCC violations at the price of non-uniform
load distribution. This paper presents CHEETAH, a load balancer
that supports advanced load balancing mechanisms and PCC
while being scalable, memory efficient, fast at processing packets,
and offers comparable resilience to clogging attacks as with
today’s load balancers. The CHEETAH LB design guarantees PCC
for any realizable server selection load balancing mechanism and
can be deployed in both stateless and stateful manners, depending
on operational needs. We implemented CHEETAH on both a
software and a Tofino-based hardware switch. Our evaluation
shows that a stateless version of CHEETAH guarantees PCC, has
negligible packet processing overheads, and can support load
balancing mechanisms that reduce the flow completion time by
a factor of 2 − 3×.

Index Terms— Cloud networks, layer 4 load balancing, P4,
programmable networks, stateful classification, stateless load
balancing, per-connection-consistency, TCP, QUIC.

I. INTRODUCTION

THE vast majority of services deployed in a datacenter
need load balancers (LBs) to spread incoming connec-

tion requests over the set of servers running these services.
As almost half of the traffic in a datacenter must be handled

Manuscript received November 15, 2020; revised June 12, 2021 and
August 1, 2021; accepted September 6, 2021; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor P. Giaccone. Date of publication
September 29, 2021; date of current version February 17, 2022. This work
was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 Research and Innovation Program under Grant 770889.
The work of Panagiotis Papadimitratos was supported in part by KAW Acad-
emy Fellowship and in part by SSF Framework Grant (Project SURPRISE).
The work of Marco Chiesa was supported by KTH Digital Futures. This paper
is an extended version of the work that first appeared with title “A High-
Speed Load-Balancer Design with Guaranteed Per-Connection-Consistency”
at Usenix NSDI 2020. (Corresponding author: Marco Chiesa.)

The authors are with the Department of Computer Science, KTH Royal
Institute of Technology, 11428 Stockholm, Sweden (e-mail: barbette@kth.se;
mchiesa@kth.se).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3113370, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3113370

by a LB [2], the inability to uniformly distribute connections
across servers has expensive consequences for datacenter and
service operators. The most common, yet cost-ineffective, way
of dealing with imbalances while meeting stringent Service-
Level-Agreements (SLAs) is to over-provision [3].

Existing LBs rely on a simple hash computation on the
connection identifier to distribute incoming traffic among the
servers [2]–[8]. Recent measurements on Google’s production
traffic showed that hash-based LBs may suffer from load
imbalances of up to 30% [3].

A natural question is: Why do existing LBs not use
more sophisticated load balancing mechanisms, e.g, weighted
round robin [9], “power of two choices” [10], or least
loaded server? The answer lies in the extreme dynamicity
of cloud environments. Services and LBs “must be designed
to gracefully withstand traffic surges of hundreds of times
their usual loads, as well as DDoS attacks” [7]. This means
that the number of servers and LBs used to provide a
service can quickly change over time. Guaranteeing that
packets belonging to existing connections are routed to the
correct server despite dynamic reconfigurations requires per-
connection-consistency (PCC) [11] and has been the focus
of many previous works [2]–[7], [11] given its challenging
design. When only the number of LBs change, hash-based load
balancing mechanisms guarantee PCC as packets reach the
correct server even when sent to a different LB [5], [7]. To deal
with changes in the numbers of servers, existing LBs either
store the “connection-to-server” mapping [2]–[4], [11] or let
the servers reroute packets that were misrouted [5], [7]. In both
cases, a hash function helps mitigate PCC violations, though
it cannot completely avoid them (more details in Sect. II).
To summarize, existing LBs cannot uniformly distribute con-
nections across the servers as they rely on hash functions to
mitigate (but not avoid) PCC violations.

This paper presents the design and evaluation of CHEETAH,
a LB with the following properties:

• dynamicity, the number of LBs and servers can increase
or decrease depending on the actual load;

• per-connection-consistency (PCC), packets belonging to
the same connection are forwarded to the same server;

• uniform load distribution, by supporting advanced load
balancing mechanisms that efficiently utilize the servers;

• efficient packet processing, the LB should have minimal
impact on communication latency; and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1269-2190
https://orcid.org/0000-0002-3267-5374
https://orcid.org/0000-0002-9675-9729
https://orcid.org/0000-0002-6066-746X
https://orcid.org/0000-0002-1256-1070


BARBETTE et al.: CHEETAH: HIGH-SPEED PROGRAMMABLE LB FRAMEWORK 355

• resilience, it should be hard for a client to “clog” the LB
and the servers with spurious traffic.

CHEETAH takes a different approach than existing LBs,
as CHEETAH stores information about the connection map-
pings into the connections themselves. More specifically, when
a CHEETAH LB receives the first packet of a connection,
it encodes the selected server’s identifier into a cookie that
is permanently added to all the packet headers exchanged
within this connection. Unlike prior work, which relies on
hash computations to mitigate PCC violations, the design of
CHEETAH completely decouples the load balancing logic from
PCC support. This in turn allows an operator to guarantee PCC
regardless of the “connection-to-server” mapping produced by
the chosen load balancing logic. The goal of this paper is not
the design of a novel load balancing mechanism for uniformly
spreading the load but rather the design of CHEETAH as
a building block to support PCC for any realizable load
balancing mechanisms without violating PCC. There are two
challenges that need to be addressed to leverage cookies in
an LB. First, we cannot expose the identity of a server to the
external users. To make CHEETAH resilient to attacks, we gen-
erate “opaque” cookies that can be processed fast and can only
be interpreted by the LB; therefore, server identifiers are never
exposed to the user, thus thwarting resource exhaustion and
selective targeting of servers. The second challenge is how
to support the semantic of stateful LBs, which may still be
needed for storing statistics about the incoming connections,
in an efficient way that is amenable to implementation on
high-speed networking switches (e.g, Tofino switch [12]).

We present two different implementations of CHEETAH,
a stateless and a stateful version. Our stateless and stateful
CHEETAH LBs carefully encode the connection-to-servers
mappings into the packet headers so as to guarantee levels
of resilience that are no worse (and in some cases even
stronger) than existing stateless and stateful LBs, respectively.
For instance, our stateful LB increases resilience by utilizing
a novel and fast stack-based mechanism that simplifies the
operation of today’s cuckoo-hash-based stateful LBs, which
suffer from slow insertion times.

In summary, our contributions are:
• We quantify limitations of existing stateless and stateful

LBs through large-scale simulations. We show that the
quality of the load distribution of existing LBs is 40 times
worse than that of an ideal LB. We also show stateless
LBs (such as Beamer and Faild) can reduce such imbal-
ances at the price of increasing PCC violations.

• We introduce CHEETAH, an LB that guarantees PCC for
any realizable load balancing mechanisms. We present
a stateless and a stateful design of CHEETAH, which
make different trade-offs in terms of resilience and
performance.

• We implement our stateless and stateful CHEETAH LBs in
FastClick [13] and compare their performance with state-
of-the-art stateless and stateful LBs, respectively. We also
implement both versions of CHEETAH with a weighted
round-robin LB on a Tofino-based switch [12].

• In our experiments, we show the potential benefits of
CHEETAH with a non-hash-based load balancing mecha-
nism. The number of processor cycles per packet for both

our stateless and stateful implementation of CHEETAH

is comparable to existing stateless implementations and
3.5x fewer cycles per packet than existing stateful LBs.

II. BACKGROUND AND MOTIVATION

Internet organizations deploy large-scale applications using
clusters of servers located within one or more datacenters
(DCs). We provide a brief background on DC LBs, discuss
related work, and show limitations of the existing schemes.
However, we do not discuss geo-distributed load balancing
across DCs or network-level DC load balancers [14]–[21],
whose goal is to load balance the traffic within the DC network
and do not deal with per-connection-consistency problems.
Further, we distinguish between stateless LBs, which do
not store per-connection state, and stateful LBs, which store
information about ongoing connections.

Multi-tier load balancing architectures. Datacenter oper-
ators assign a Virtual IP (VIP) address to each operated
service. Each VIP in a DC is associated with a set of servers
providing that service. Each server has a Direct IP (DIP)
address that uniquely identifies the server within the DC.

A LB inside the DC receives incoming connections for
a certain VIP and selects a server to provide the requested
service. Each connection is a Layer 4 connection (typically
TCP or QUIC). For each VIP, a LB partitions the space of the
connection identifiers (e.g, TCP 5-tuples) across all the servers
(i.e, DIPs) associated with that VIP. The partitioning function
is stored in the LB and is used to retrieve the correct DIP for
each incoming packet.

A large-scale DC may have tens of thousands of servers and
hundreds of LBs [3], [6], [11]. These LBs are often arranged
into different tiers (see Fig. 1). The 1st-tier of LBs are faster
and less complex than those in subsequent tiers. For example,
a typical DC would use BGP routers using ECMP forwarding
at the 1st-tier, followed by Layer 4 LBs, in turn followed by
Layer 7 LBs and applications [4]. Similar to prior work on
DC load balancing, we consider Layer 7 LBs to be at the
same level as the services [2]–[4]. Any 1st tier LB receiving
a packet directed to a VIP, performs a look up to fetch the
set of 2nd tier LBs responsible for that VIP. It then forwards
the packet towards any of these LBs. The main goal of the
1st-tier is demultiplexing the incoming traffic at the per VIP
level towards their dedicated 2nd tier LBs. The 2nd-tier LBs
perform two crucial operations: (i) guaranteeing (PCC) [11]
and (ii) load balancing the incoming connections.

A. Limits of Stateless Load Balancers

Traditional stateless LBs cannot guarantee PCC.
A stateless LB partitions the space of connection identifiers
among the set of servers. The partitioning function is stored
in the LB and does not depend on the number of active
connections. Most stateless LBs, e.g, ECMP [22], [23] &
WCMP [8], store this partitioning in the form of an indirection
table, which maps the output of a hash function modulo
the size of the table to a specific server [5], [7], [8], [22].
A uniform hash scheme maps each server to an equal number
of entries in the indirection table. When a LB receives a packet,
it extracts the connection identifier from the packet and feeds



356 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 1. Traditional datacenter load balancing architecture.

it as input to a hash function. The output of the hash modulo
the size of the indirection table determines the index of the
entry in the table where the LB can find to which server the
packet should be forwarded. If the number of servers changes,
the indirection table must be updated, which may cause some
existing connections to be rerouted to the new (and incorrect)
server that is currently associated with an entry in the table,
resulting in a PCC violation.

Advanced stateless LBs cannot always guarantee PCC.
Beamer [5] and Faild [7] introduced daisy-chaining to tackle
PCC. They encapsulate in the header of the packet the address
of a “backup” server to which a packet should be sent when
the LB hits the wrong server. This backup server is selected
as the last server that was assigned to a given entry in
the indirection table before the entry was remapped. PCC
violations are prevented as long as one does not perform two
reconfigurations that change the same entry in the table twice
(as only one backup server can be stored in the packet) and
one can simultaneously reconfigure all the LBs (see [5] for an
example).

Fig. 2a shows the percentage of broken connections (i.e,
PCC violations) with and without daisy chaining in our large-
scale simulations. We used the same parameters, traffic work-
loads, and cluster reconfiguration events derived from previous
work on real-world DC load balancing, i.e, SilkRoad [11].
Namely, we simulated a cluster of 468 servers and we gener-
ated a workload using the same traffic distribution of a large
web server service. We performed DIP updates, i.eremoval
or additional of servers from the cluster, using different
frequency distributions. SilkRoad reports that 95% of their
clusters experience between 1.5 and 80 DIP updates/minute
and provide distributions for the update time. We define the
number of broken connections as the number of connections
that have been mapped to at least two different servers during
their starting and ending times. Fig. 2a shows that Beamer and
Faild (plotted using the same line) still break almost 1% of the
connections at the highest DIP update frequency, which may
lead to an unacceptable level of service level agreement (SLA)
violations [11].

Hash-based LBs cannot uniformly spread the load.
We now investigate the ability of different load balancing
mechanisms to uniformly spread the load across the servers for

a single VIP. Similar to the Google Maglev work [3], we define
the imbalance of a server as the ratio between the number of
connections active on that server and the average number of
active connections across all servers. We also define the system
imbalance as the maximum imbalance of any server. The
imbalance of a simulation run is the average imbalance of the
system during the entire duration of the simulation. We discuss
different load metrics in Sect. IV. Using the same simulation
settings as described above, we compare (i) Beamer [5]/
Faild [7], which use a uniform hash, (ii) Round-Robin [24],
which assigns each new connection to the next server in a list,
(iii) Power-Of-Two [10], which picks the least loaded among
two random servers, and (iv) Least-Loaded [24], which assigns
each new connection to the server with the fewest active
connections. We note that Round-Robin, Power-Of-Two, and
Least-Loaded require storing the connection-to-server map-
ping, hence they cannot be supported by Beamer/Faild. In this
simulation, we do not change the size of the cluster but
rather vary only the number of connections that are active
at the same time in the cluster between 20K and 200K.
We choose this range of active connections to induce the same
imbalances (15%-30%) observed for uniform hashes in Google
Maglev [3]. Fig. 2b shows the results of our simulations.
Round-Robin outperforms a Beamer-like LB by a factor of
1.2×. When comparing these schemes with Power-Of-Two
and Least-Loaded, we observe a reduction in imbalance by a
factor of 10× and 40×, respectively. These results show that a
more uniform load distribution can be achieved by storing the
mapping between connections and servers, though one still has
to support PCC when the LB pool size changes. We note that
today’s stateful LBs [2]–[4], [11] rely on different variations
of uniform-hash, thus suffer from imbalances similarly to
Beamer.

Beamer can reduce imbalance at the cost of a greater
number of PCC violations. We tried to reduce the imbal-
ances in Beamer by monitoring the server load imbalances
and modify the entries in the indirection table accordingly.
We extended Beamer with a dynamic mechanism that gets as
input an imbalance threshold and remove a server from the
indirection table whenever its load is above this threshold.
The server is re-added to the table when its number of active
connections drops below the average. Note that, if an entry in
the indirection table changes its server mapping twice, Beamer
will break those existing connections that were relying on
the initial state of the indirection table. Fig. 2c shows the
percentage of broken connections for increasing imbalance
thresholds. We set the number of active connections to 70K
(corresponding to an average 30% imbalance in Fig. 2b).
We note that guaranteeing an imbalance of at most 10%
would cause 3% of all connections to break. Even with an
imbalance threshold of 40% one would still observe 0.1%
broken connections because of micro-bursts. Hence, even this
extended Beamer cannot guarantee PCC and uniform load
balancing at the same time.

B. Limits of Stateful Load Balancers

Stateful LBs store the connection-to-server mapping in a
so-called ConnTable for two main reasons: (i) to preserve



BARBETTE et al.: CHEETAH: HIGH-SPEED PROGRAMMABLE LB FRAMEWORK 357

Fig. 2. Analysis of PCC-violations and load imbalances of state-of-the-art load balancers. To ease visibility, points are connected with straight lines along
the x-axis.

PCC when the number of servers changes and (ii) to enable
fine-grain visibility into the flows.

Today’s stateful LBs cannot guarantee PCC. Consider
Fig. 1 and the case in which we add an additional stateful LB
for a certain VIP. The BGP routers, which rely on ECMP, will
reroute some connections to a LB than does not have the state
for that connection. Thus, this LB does not know to which
server the packet should be forwarded unless all LBs use
an identical hash-based mechanism (and therefore experience
imbalances). Therefore, existing LBs (including Facebook
Katran [4], Google Maglev [3], and Microsoft Ananta [2]) rely
on hashing mechanisms to mitigate PCC violations. However,
this is not enough if the number of servers also changes, then
some existing connections will be routed to an LB without
state, hence it will hash the connection to the wrong server,
thus breaking PCC.

Today’s stateful LBs rely on complex and slow
data structures. State-of-the-art LBs rely on cuckoo-hash
tables [25] to keep per-connection mappings. These data
structures guarantee constant time lookups but may require
non-constant insertion time [26]. These slow insertions may
severely impact the LB’s throughput, e.g, a throughput loss by
2x has been observed on OpenFlow switches when performing
∼ 60 updates/second [27]. Finally, SYN-flood attacks are more
effective with slow insertions at the LB.

We refer the reader to our supplementary online-only
material (Appendix C) for an extensive discussion of these
limitations.

C. Service Resilience and Load Balancers

Load balancers are an indispensable component against
Distributed Denial of Service (DDoS) attacks, e.g, bandwidth
depletion at the server and memory exhaustion at the LB.
Dealing with such attacks is a multi-faceted problem involv-
ing multiple entities of the network infrastructure [28], e.g,
firewalls, intrusion detection, application gateways. This paper
does not focus on how the LB fits into this picture but rather
studies the resilience of the LB itself and the resilience that
its design provides to the service operation.

LBs shield servers from targeted bandwidth depletion
attacks. An LB system should be able to absorb sudden
bursts due to DDoS attacks with minimal impact on a service’s
operation. Today’s LB mechanisms rely on hash-based load
balancing mechanisms to provide a first pro-active level of
defense, which consists in spreading connections across all
servers. As long as an attacker does not reverse engineer the
hash function, multiple malicious connections will be spread

over the servers. A system should not allow clients to target
specific servers with spurious traffic.

Stateful LBs support per-connection view at lower
resilience. Stateful LBs provide fine-grained visibility into the
active connections, providing resilience to the service opera-
tion, e.g, by selectively rerouting DDoS flows. At the same
time, stateful LBs are a trivial target of resource depletion
clogging DDoS attacks: incoming spurious connections add to
the connection table rapidly exhaust the limited LB memory
(e.g, [5]) or grow the connection table aggressively, rapidly
degrading performance even with ample memory [27]. State-
less LBs can inherently withstand clogging DDoS, sustaining
much higher throughput, but can only offer per-server statistics
visibility to the service operation.

Having analyzed the above limitations of today’s load
balancers, we conclude by asking the following question:
“Can we design a load balancing system that guarantees
PCC, supports any realizable load balancing mechanism, and
achieves similar levels of resiliency of today’s state-of-the-art
LBs?”

III. THE CHEETAH LOAD BALANCER

In this section, we present CHEETAH, a load balancing
system that supports arbitrary load balancing mechanisms and
guarantees PCC without sacrificing performance. CHEETAH

solves many of today’s load balancing problems by encod-
ing information about the connection into a cookie that is
added to all the packets of a connection. CHEETAH sets the
cookie according to any chosen and realizable load balancing
mechanism and relies on that cookie to (i) guarantee future
packets belonging to the same connection are forwarded to
the same server and (ii) speed up the forwarding process
in a stateful LB, which increases the resilience of the LB.
Understanding what information should be encoded into the
cookie, how to encode it, and how to use this information
inside a stateless or stateful LB is the goal of this section.
We first introduce the stateless CHEETAH LB, which guar-
antees PCC and preserves the same resilience and packet
processing performance of existing stateless LBs. We then
introduce the stateful CHEETAH LB, which improves the
packet processing performance of today’s stateful LBs, and
present an LB architecture that strikes different tradeoffs
in terms of performance and resilience. We stress the fact
that CHEETAH is not a new LB mechanism but rather a
building block for deploying arbitrary LB mechanisms without
breaking PCC (we show several implemented LB mechanisms
in Sect. IV).



358 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 3. CHEETAH stateless LB operations.

A naïve approach. We first discuss a straightforward
approach to guarantee PCC that would not work in practice
because of its poor resiliency. It entails storing the identifier
of a server (i.e, the DIP) in the cookie of a connection.
In this way, an LB can easily preserve PCC by extracting
the cookie from each subsequent incoming packet. We note
that such naïve approaches are reminiscent of several previous
proposals on multi path transport protocols [29], [30], where
the identifiers of the servers are explicitly communicated
to the clients when establishing multiple subflows within
a connection. There is at least one critical resiliency issue
with this approach. Some clients can wait to establish many
connections to the same server and then suddenly increase
their load. This is highly undesired as it leads to cascade-effect
imbalances and service disruptions [31].

A. Stateless CHEETAH LB

The stateless CHEETAH LB: encoding an opaque offset
into the cookie. We now discuss how we overcome the above
issues in CHEETAH. We aim to achieve the same resiliency
levels of today’s production-ready stateless LBs (e.g, Faild [7]/
Beamer [5], [31]) while supporting arbitrary load balancing
mechanisms and guaranteeing PCC. We assume a single tier
LB architecture and defer the discussion of multi-tier archi-
tectures to later in this section. In this subsection, we assume
the LB both adds and removes a cookie from a packet without
any help from the servers.

The CHEETAH stateless LB keeps two different types of
tables (see Fig. 3): an AllServers table that maps a server
identifier to the DIP of the server and a VIPToServers
table that maps each VIP to the set of servers running that
VIP. The AllServers table is mostly static as it contains
an entry for each server in the DC network. Only when servers
are deployed in/removed from the DC is the AllServers
table updated. The VIPToServers table is modified when
the number of servers running a certain service increases/
decreases, a more common operation to deal with changes
in the VIP current demands.

When the LB receives the first packet of a connection (top
part of Fig. 3), it extracts the set of servers running the service
(i.e, with a given VIP) from the VIPToServers table,

selects one of the servers according to any pre-configured
load balancing mechanism (e.ground-robin), and forwards the
packet. For every packet received from a server (middle part
of Fig. 3), the LB encodes an “opaque” identifier of the
server mapping into the cookie for this connection. To do
so, CHEETAH computes the hash of the connection identifier
with a salt S (unknown to the clients), XORs it with the
identifier of the server, and adds the output of the XOR to
the packet header as the cookie. The salt S is the same for
all connections. When the LB receives any subsequent packet
belonging to this connection (bottom part of Fig. 3), it extracts
the cookie from the packet header, computes the hash of
the connection identifier with the salt S, XORs the output
of the hash with the cookie, uses the output of the XOR as
the identifier of the server, and retrieves the DIP of the server
from the AllServers table.

Stateless CHEETAH guarantees PCC. CHEETAH relies
on two main design ideas to avoid breaking connections:
(i) moving the state needed to preserve the mapping between
a connection and its server into the packet header of the
connection and (ii) using the more dynamic VIPToServers
table only for the 1st packet of a connection. Subsequently,
the static AllServers table is used to forward packets
belonging to any existing connection. This trivially guarantees
PCC.

Compared to existing stateless LBs Stateless CHEETAH

achieves comparable resiliency. Binding the cookie with the
hash of the connection identifier brings one main advantage
compared to the earlier naïve scheme, as an attacker must
first reverse engineer the hash function of the LB in order
to launch an attack targeting a specific server. This is similar
to existing stateless LBs, which rely on non-cryptographically
secure (yet efficient) hash functions such as CRC. This makes
CHEETAH as resilient as other production-ready stateless LBs.
We note that CHEETAH is orthogonal to DDoS mitigation
defence mechanisms, especially when deployed in reactive
mode. We further discuss CHEETAH resilience, including
support for multi path protocols, in Sect. VI.

Stateless CHEETAH supports arbitrary load balancing
mechanisms. All the reviewed state-of-the-art LBs (even
stateful ones) are restricted to uniform hashing when it comes
to load balancing mechanisms — as any other mechanism
would break an unacceptable number of connections when
the number of servers/LBs changes. In contrast, whenever a
new connection arrives at a stateless CHEETAH LB, CHEETAH

selects a server among those returned from a lookup in the
VIPToServers table. The selected server may depend upon
the specific load balancing mechanism configured by the
service’s operator. We note that the selection of the server may
or may not be implementable in the data-plane. The CHEETAH

LB guarantees that once the mapping connection-to-server has
been established by the LB logic (not necessarily at the data-
plane speed), all the subsequent packets belonging that that
connection will be routed to the selected server. Since the
binding of the connection to the server is stored in the packet
header, CHEETAH can support LB mechanisms that go well
beyond uniform hashing. For instance, an operator may decide
to rely on “power of two choices” [10], which is renowned
to decrease load imbalances. Another service operator may



BARBETTE et al.: CHEETAH: HIGH-SPEED PROGRAMMABLE LB FRAMEWORK 359

prefer a weighted round-robin load balancing mechanism that
uses some periodically reported metrics (e.g, CPU utilization)
to spread the load among the servers.

Lower bounds on the size of the cookie. In CHEETAH,
the size of the cookie has to be at least log2 k bits, where k is
the maximum number of servers stored in the AllServers
table. Therefore, the size of the cookie grows logarithmically
in the size of the number of servers. One question is whether
PCC can be guaranteed using a cookie whose size is smaller
than log2(k) and the memory size of the LB is constant.

Theorem 1: Given an arbitrarily large number of connec-
tions, any load balancer using O(1) memory requires cookies
of size Ω(log(k)) to guarantee PCC under any possible change
in the number of active servers, where k is the overall number
of servers in the DC that can be assigned to the service with
a given VIP.

Proof Sketch: We prove the statement of the theorem
in the widely adopted Kolmogorov descriptive complexity
model [32]. We leverage similar techniques used in the past
to demonstrate a variety of memory-related lower bounds for
shortest-path routing problems [33].

Let R be the set of all the possible connection identifiers.
Let C be the set of all possible cookies. Let S = {s1, . . . , sk}
be the set of servers. We assume |R| � k, which is the most
interesting case in real-world datacenters. Suppose, by con-
tradiction, that there exists an LB which uses O(1) memory
with cookies of size smaller than log(k) bits that guarantees
PCC under any arbitrary number of changes in the subset of
active servers A ⊆ S. For any possible set of active servers A,
the LB maps a new incoming connection identifier r ∈ R to
a server s ∈ S using an arbitrarily function f : R × 2S → S.

Let us now restrict our focus to the k distinct sets of active
servers in which only a single server is active, i.e, Ai={si}, for
i={1, . . . , k}. At any time instant, only one of these servers is
active. The non-active servers continue serving the previously
established connections, which should always be routed to
the correct server. Depending on the time instant when a
connection r ∈ R arrives at the LB, the connection may be
mapped to one of these currently active servers. Therefore,
the LB must be able to distinguish among |R| × k distinct
possible mappings between connections and servers. Consider
a cookie with l bits, where l < log(k). This information
allows us to distinguish among |R| × l possible mappings,
leaving |R| × (log k − l) > |R| mappings to the LB memory.
This is a contradiction as we assumed the LB uses a memory
of O(1). �

It is trivial to verify that the above theorem holds even if one
wants to implement an advanced LB mechanism, e.ground-
robin, least-loaded, even in the absence of changes in the set
of active servers.

While the above results close the doors to any sublogarith-
mic overhead in the packet header; in practice, operators may
decide to trade some PCC violations and load imbalances for
a smaller sized cookie. We leave the design of such LBs as
future work.

B. Stateful CHEETAH LB

We also designed a stateful version of CHEETAH to support
a finer level of visibility into the flows than that offered by

Fig. 4. CHEETAH stateful LB operations for the 1st packet of a connection.
We omit both the VIP-to-servers, which is part of the LB-logic, and
the stateless cookie for identifying the stateful LB. The response packet does
not traverse the load balancers. Subsequent packets from the user access their
index in the correspoding ConnTable.

stateless LBs. A stateful LB can keep track of the behaviour
of each individual connection and support complex network
functions, such as rate limiters, NATs, detection of heavy-
hitters, and rerouting to dedicated scrubbing devices (as in the
case of Microsoft Ananta [2] and CloudFlare [28]). In contrast
to existing LBs, our stateful LB guarantees PCC (inher-
ited from the stateless design) and uses a more performant
ConnTable that supports constant time insertions/deletions
and is amenable to fast data plane implementations. In the
following text we say that PCC is guaranteed if a packet is
routed to the correct server as long as an LB having state for
its connection exists. We also assume that the LB adds the
cookie into the packets received by the users but it does not
remove it, i.ethe servers must be aware of the cookie. It is
however possible to also handle the cookies entirely at the LB
as shown in our GitHub repository.

The stateful CHEETAH load balancer: encoding table
indices in the packet header. As discussed in Sect. II,
today’s stateful LBs rely on advanced hash tables, e.g, cuckoo-
hashing [25], to store per-connection state at the LB [11].
Such data structures offer constant-time data-plane lookups but
insertion/modification of any entry in the table requires inter-
vention of the slower control plane or complex & workload-
dependant data structures (e.g, Bloom filters [11], Stash-based
data structures [26]), which are both complex and hard to tune
for a specific workload.

We make a simple yet powerful observation about stateful
tables that any insertion, modification, or deletion of an
entry in a table can be greatly simplified if a packet carries
information about the index of the entry in the table where
its connection is stored. Since datacenters may have tens of
billions of active connections, we need to devise a stateful
approach where the size of the cookie is explicitly given
as input. In a stateful CHEETAH LB (see Fig. 4), we store
a set of m ConnTable tables that keep per-connection
statistics and DIP mappings. We also use an equal number
of ConnStack stacks of indices, each storing the unused
entries in its corresponding ConnTable.



360 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

For the sake of simplicity, we first assume there is only one
LB and one ConnTable with its associated ConnStack, i.e,
m = 1. Whenever a new connection state needs to be installed,
CHEETAH pops an index from ConnStack and incorporates
it as part of the cookie in the packet’s header. It also stores the
selected server and the hash of the connection identifier with
a salt S into the corresponding table entry. This hash value
allows the LB to filter out malicious attempts to interfere with
legitimate traffic flows, similarly to SilkRoad [11]. Whenever
a packet belonging to an existing connection arrives at the
LB, CHEETAH extracts the index from the cookie and uses
it to quickly perform a lookup only in the ConnTable.
Note that insertion, modification, and deletion of connections
can be performed in constant time entirely in the data plane.
We explain details of the implementation in Sect. IV.

The number of connections that we can store within a single
ConnTable is equal to 2r, where r is the size of the cookie.
In practice, the size of the cookie may limit the number of
connections that can be stored in the LB. We therefore present
a hybrid approach that uses a hash function to partition the
space of the connection identifiers into m partitions. As for
any stateful table, m should be chosen high enough so the total
number of entries m ∗ 2r is suitable. The same cookie can be
re-used among connections belonging to distinct partitions.

A hybrid datacenter architecture. Stateful LBs are typi-
cally not deployed at the edge of the datacenter for two rea-
sons: they are more complex and slower compared to stateless
LBs. As such, they are a weak point that could compromise
the entire LB availability. Therefore, we propose a 2-tier DC
architecture where the first tier consists of stateless CHEETAH

LBs and the second tier consists of stateful CHEETAH LBs.
The stateless LB uses the first bytes of the cookie to encode
the identifier of a stateful load balancer, thus guaranteeing a
connection always reaches the same LB regardless of the LB
pool size. The stateful load balancer uses the last bytes of
the cookie to encode per-connection information as described
above.

C. Deployment Scenarios

There are three main dimensions of the implementation
space: (i) server modifications vs no modifications, (ii) state-
less vs stateful, and (iii) hardware vs software implementation.
By allowing modifications to the servers, we can support
Direct Server Return (DSR), which means that the servers
insert the cookie and packets do not have to traverse any load
balancer on their way back to the users. If we cannot modify
the servers, we only need to consider stateless CHEETAH.
In this case traffic from the servers can hit any of the load
balancers, which will then add the cookie.

We now discuss bandwidth requirements for the different
design scenarios with hardware and software LBs. A software
LB sees traffic in both directions without DSR and in one
direction with DSR. A hardware LB could instead replace
the ingress switch/router of the datacenter. In this case, traf-
fic from/to the users has anyway to traverse the switch in
both directions. Therefore, a hardware implementation that
is deployed “on-path” removes any bandwidth overheads due
to software LB implementations. We note that some server
selection mechanisms may not be realizable in hardware.

It depends on the capabilities of the device. For instance, while
it is easy to implement Weighted-Round-Robin in P4, sorting
an array of server loads is more cumbersome. With software
implementations, such a problem does not exist.

IV. IMPLEMENTATION

The simplicity of our design makes CHEETAH amenable to
highly efficient implementations in the data-plane. We imple-
mented stateful and stateless CHEETAH LBs on FastClick [13],
a faster version of the Click Modular Router [34] that supports
DPDK [35] and multi-processing. Previous stateless systems,
such as Beamer [5], have also relied on FastClick for their
software-based implementation. We also implemented stateless
and stateful versions of the CHEETAH LB with a weighted
round-robin LB on a Tofino-based switch using P4 [12]. Both
implementations are available at [36]. We first discuss the
critical question of where to actually store the cookie in
today’s protocols and then describe the FastClick and Tofino
implementations.

Preserving legacy-compatibility. Our goal is to limit
the amount of modifications needed to deploy CHEETAH

on existing devices. Ideally, we would like to use a dedi-
cated TCP option for storing the CHEETAH cookie into the
packet header of all packets in a connection. However, this
would require modifications to the clients, which would be
infeasible in practice. We therefore identified three possible
ways to implement cookies within existing transport protocols
without requiring any modifications to the clients’ machines:
(i) incorporate the cookie into the connection-id of QUIC
connections, (ii) encode the cookie into the least significant
bits of IPv6 addresses and use IPv6 mobility support to
rebind the host’s address (the LB acts as a home agent),
and (iii) embed the cookie into part of the bits of the TCP
timestamp options. In this paper, we implemented a proof-
of-concept CHEETAH using the TCP timestamp option1 as
explained in Appendix A (see online-only supplementary
material) and a proof-of-concept CHEETAH using QUIC con-
nection IDs (Sect. IV-D). We note that a QUIC implementation
is easier and more performant since parsing TCP options is
an expensive operation in both software and hardware LBs.
As for TCP timestamps, we note that similar encodings of
information into the TCP timestamp have been proposed in
the past but require modifications to the servers [30]. The
stateless CHEETAH LB can transparently translates the server
timestamps with the encoded timestamps without interfering
with TCP timestamp related mechanisms (i.e, RTT estimation
and protections against wrapped sequences [37]). Therefore,
no modifications are required to the servers for stateless mode
unless the datacenter operator wants to guarantee Direct Server
Return (DSR), i.e, packets from the servers to the client
do not traverse any load balancer. In that case, the server
must encode the cookie into the timestamp itself. The cookie
must also be sent back by the server for stateful mode,
as the load balancer would not be able to find the stack
index for returning traffic. Server modifications are described

1We verified in Appendix A in the online-only supplementary material that
the latest Android, iOS, Ubuntu, and MacOS operating systems support TCP
timestamp options but not Windows.



BARBETTE et al.: CHEETAH: HIGH-SPEED PROGRAMMABLE LB FRAMEWORK 361

in Appendix A.2 (see online-only supplementary material).
We leave the implementation of CHEETAH on IPv6 as future
work. Finally, we also explored Segment Routing (SR) [38]
as a source routing protocol for adding both the VIP and an
encoded cookie. One of the problems with SR is that we could
not find a way for the server to force the client to add the
CHEETAH cookie back to the server.

A. Analysis of TCP Timestamp Usage

Today’s servers use TCP timestamp granularity ≥ 1ms.
We ran a comprehensive set of measurements to determine the
granularity of the TCP timestamp unit utilized by the largest
service providers according to the Alexa Top100 ranking [39].
We downloaded large files from each the top 15 ranked web
sites and extracted both the TCP timestamp TSval options and
the client side timestamp. We then computed the difference
between the TCP last and first timestamps and divided this
amount by the difference between the client measured last
and first (non-TCP) timestamps. The result is the granularity
of the server-side TCP timestamp unit. We report the results
in Table II. All the service providers using TCP timestamps
have a granularity of at least 1ms so the timestamp would
wrap every 216 ≈ 65 seconds when using CHEETAH to support
these services. This means a connection handled by CHEETAH

should be sending packets that are not spaced apart more than
65 seconds, e.g, using a keep-alive.

TCP timestamps are mostly supported in today’s OSes.
We ran a small experiment to verify whether today’s client
devices support the echoing of TCP timestamp options back
to the servers. We tested the latest OSes available in both
recent smartphones and desktop PCs: Google Android 9, iOS
13, Ubuntu 18.04, Microsoft Windows 10, and MacOS 10.14.
We observed that all except Microsoft Windows correctly
negotiate and echo the TCP timestamp option when the server
requires to use it. Based on some recent measurements, more
than 98% of the smartphone and tablet devices are either
using Android or iOS [40]. Smartphone devices are the most
common type of devices, representing 53% of all devices [41].
For desktop devices, Windows is the predominant OS with
over 75% of the desktop share whereas MacOS represent a
16% of this share [42]. For Windows desktop devices, a cloud
operator can either encode the cookie in the QUIC header
(69% of the Windows users use Google Chrome, compatible
with QUIC [43]), IPv6 address, or use a traditional stateful
LB for these devices.

B. FastClick Implementation Using TCP Timestamps

The FastClick implementation is a fully-fledged implemen-
tation of CHEETAH that supports L2 & L3 load balancing and
multiple load balancing mechanisms (e.g, round-robin, power-
of-two choices, least-loaded server). The LB supports different
load metrics including number of active connection and CPU
utilization. The LB decodes cookies for both stateless and
stateful modes using the TCP timestamp as described above,
and can optionally fix the timestamp in-place if the server is
not modified to do it.

Parsing TCP options. Each TS option has a 1-byte iden-
tifier, 1-byte length, and then the content value. Options

TABLE I

TCP OPTIONS PATTERN

may appear in any order. This makes extracting a specific
option a non-trivial operation [29]. We focus on extracting
the timestamp option TSecr from a packet. To accelerate this
parsing operation, we performed a statistical study over 798M
packets headers from traffic captured on our campus.

Table I shows the most common patterns observed across
the entire trace for packets containing the timestamp option.
The Linux Kernel already implements a similar fast parsing
technique for non-SYN(/ACK) packets. We first consider
non-SYN packets (i.e, “Other packets” in the table). Our study
shows that 99.95% of the packets have the following pattern:
NOP (1B) + NOP (1B) + TimeStamp (10B) possibly followed
by other fields. When a packet arrives, we can easily determine
whether it matches this pattern by performing a simple 32-bit
comparison and checking that the first two bytes are NOP
identiers and the third one is the Timestamp id. We process
the remaining 0.05% of the traffic in the slow path. We now
look at SYN packets. Consider the first row in the table, i.e,
MSS (4B) + SAckOK (2B) + TimeStamp (10B) + SAck +
EOL. To verify if a packet matches this pattern, we perform
a 64-bit wildcard comparison and check that the first byte is
the MSS id, the fifth byte is the SAckOK id, and the seventh
byte is the TimeStamp id. We can apply similar techniques for
the remaining patterns matchable with 64 bits. Some types of
hosts generate packets whose patterns are wider than 64 bits,
which is the limit of our x86_64 machine. We then rely
on one SSE 128bit integer wildcard comparison to verify
such patterns. The remaining 2.24% of patterns are handled
through a standard hop-by-hop parsing following the TCP
options Type-Length-Value chain. Finally, we note that we
can completely avoid the more complex parsing operations for
SYNs and SYN/ACKs if servers use TCP SYN cookies [44]
(see Appendix A in the online-only supplementary material
for more details).

Load balancing mechanisms. CHEETAH supports any
realizable LB mechanisms while guaranteeing PCC. We imple-
mented several load balancing mechanisms that will be eval-
uated using multiple workloads in Sect. V-B. Among the
load-aware LB mechanisms, we distinguish between metrics
that can be tracked with or without coordination. Without
any coordination, the LB can keep track of the number of
packets/bytes sent per server and an estimate of the number
of open connections based on a simple SYN/FIN counting



362 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

TABLE II

MEASURED TCP TIMESTAMP GRANULARITY FOR DIFFERENT WEBSITES.
N.A. MEANS TCP TIMESTAMPS WERE DISABLED

mechanism.2 For LB approaches that require coordination
with the servers, our implementation supports load distribution
based on the CPU utilization of the servers. Note that using
a least-loaded server for coordination-based approaches is a
bad idea as a single server will receive all the incoming con-
nections until its load metric increases and is reported to the
LB, ultimately leading to instabilities in the system. Therefore,
we decided to implement the following two load-aware balanc-
ing mechanisms, which we introduced in Sect. II: (i) power-
of-two choices and (ii) a weighted round robin (WRR). For
WRR, we devised a system where the weights of the servers
change according to their relative (CPU) loads. We increase
the weights for servers that are underutilized depending on
the difference between their load and the average server load.
More formally, the number of buckets Ni assigned to server i
is computed as Ni = round(10 Lavg

(1−α)∗Li+α∗Lavg
) where Li is

the load of a server, and α is a factor that tunes the speed of the
convergence, which we set to 0.5. A perfectly balanced system
would give N = 10 buckets to each server. An underutilized
server gets more than N buckets (in practice limited to 3N )
while an overloaded server gets less than N buckets (lower
bounded by 2).

C. P4 Implementation Using TCP Timestamps

The stateless CHEETAH LB follows exactly the descrip-
tion from Sect. III-A. We store the all-servers and the
VIP-to-servers tables using exact-match tables. We rely
on registers, which provide per-packet transactional memories,
to store a counter that implements the weighted-round-robin
LB. We note that implementing other types of LB mechanisms
such as least-loaded in the data-plane is non-trivial in P4 since
one would need to extract a minimum from an array in O(1).
This operation will likely requires to process the packet on
the CPU of the switch. The insertion/deletion of the cookie on
any subsequent non-SYN packet can be performed in the data-
plane. The stateful CHEETAH LB adheres to the description
in Sect. III-B. We use P4 registers to enable the insertion
of connections into the ConnTable at the speed of the
data-plane. We store the elements of the ConnStack stack
in an array of registers, the ConnTable into an array of
registers, and the index in the array of registers that stores

2We envision an ad-hoc reliable mechanism to signal closed connection
between the LB and the server.

the head of the stack. We implemented CHEETAH on both the
Tofino [12] and bmv2 [45] targets. The source code of both
implementations is publicly available at our repository [36].
There is a tricky aspect to be considered when implementing
the stateful version of CHEETAH. All registers in a PISA
pipeline must be accessed in the same order in the different
“if-else” branches. In stateful CHEETAH, we however need to
handle two operations that require registers to be processed
in the opposite order. First, when CHEETAH receives a TCP
SYN from a client, it pops an empty table index from the
ConnStack and it stores the hash of the connection identifier
in the ConnTable. The second operation considers the
reception of a TCP FIN packet, which requires to extract
the cookie from the packet, check the hash, and pull the
cookie onto the ConnStack. Since the stacks and tables are
implemented in the registers, these two operations cannot be
supported at the same time. The solution consists of handling
the FIN only when it is received by the server and skip the hash
check, assuming the server is trusted. Finally, we expect the
VIPToServers and AllServers tables to occupy limited
memory on the switch. A 40K-server datacenter would need
roughly 2 ·(2B+4B) ·40K = 480KB of memory whereas pro-
grammable switches have tens of MBs of SRAM memory [46].
Stateless CHEETAH can scale up to millions of servers. Stateful
CHEETAH is limited by the amount of memory available to
store connections (similarly to SilkRoad [11]). More specifi-
cally, with our current implementation we can use seven stages
of the pipeline for ConnTable, yet further optimizations may
be possible. The ConnStack data structure occupies 2 bytes
per entry in the ConnTable.

D. P4/Picoquic Implementation Using QUIC

To show the feasibility of realizing CHEETAH without
relying on TCP timestamps, we also implemented a prototype
of stateless CHEETAH on top of the QUIC transport proto-
col [47]. We used the picoquic [48] implementation of
QUIC. We extended picoquic by adding the encoding of
the CHEETAH cookie in the second and third bytes of both
the short and long connection IDs. We then implemented a
P4 load balancer that can be compiled to the bmv2 target. The
LB extracts the cookie from the connection ID and redirects
the packets to the correct server. We do not currently support
QUIC migrations: when the source IP address and UDP port
changes, the LB will not be able to forward the packet to
the correct server. We leave the problem of guaranteeing PCC
during QUIC connection migrations and the implementation
of the Cheetah QUIC-based LB on the Tofino as future work.
The source code of both implementations is publicly available
at our repository [36].

V. EVALUATION

The CHEETAH LB design allows datacenter operators to
unleash the power of arbitrary load balancing mechanisms
while guaranteeing PCC, i.e, the ability to grow/shrink the
LB and DIP pools without disrupting existing connections.
In this section, we perform a set of experiments to assess the
performance achievable through our stateless and stateful LBs.
All experiments are based on the FastClick implementation



BARBETTE et al.: CHEETAH: HIGH-SPEED PROGRAMMABLE LB FRAMEWORK 363

using TCP timestamps unless stated differently. All experi-
ments scripts, including documentation for full reproducibility
are available on GitHub [36].
We pose four main questions in this evaluation:

• “How does the cost of packet processing in CHEETAH

compare with existing LBs?” (Sect. V-A)
• “Can we reduce load imbalances by implementing more

advanced LB mechanisms in CHEETAH?” (Sect. V-B)
• “How does the PCC support in CHEETAH compare with

existing stateless LBs?” (Sect. V-C)
• “How does CHEETAH performs on a Tofino?”

(Sect. V-D)
Experimental setting. The LB runs on a dual-socket,

18-core Intel®Xeon®Gold 6140 CPU @ 2.30GHz, though
only 8 cores are used from the socket attached to the NIC. Our
testbed is wired with 100G Mellanox Connect-X 5 NICs [49]
connected to a 32×100G NoviFlow WB5000 switch [50]. All
CPUs are fixed at their nominal frequency.

Workload generation. To generate load, we use 4 machines
with a single 8-core Intel®Xeon®Gold 5217 CPU @ 3.00GHz
with hyper-threading enabled using an enhanced version of
WRK [51] to generate load towards the LB. We also use
four machines to run up to 64 NGINX web servers (one
per hyper-thread), isolated using Linux network namespaces.
Each NGINX server has a dedicated virtual NIC using SRIOV,
allowing packets to be switched in hardware and directly
received on the correct CPU core. We generate requests from
the clients using uniform and bimodal distributions, as well as
the large web server service distributions already used in the
simulations of Sect. II.

Metrics. We evaluate the imbalance among servers using
both the variance of the server loads and the 99th percentile
flow completion times (FCTs). We refer to the FCT as the time
elapsed between the time the last ACK received at the sender
(the web server) and the time the sender initiates the con-
nection. We measure the LB packet processing time in CPU
cycles per second. Each point is the average of 10 runs of
15 seconds unless specified otherwise.

A. Packet Processing Analysis

We first investigate the cost in terms of packet processing
time for using stateless CHEETAH. We compare it against
stateful CHEETAH, a stateful LB based on per-core DPDK
cuckoo-hash tables, and two hash-based LBs, one using hashes
computed in hardware by the NIC for RSS [52], and one using
hashes computed in software with DPDK. We also compare
with a streamlined version of Beamer [5], without support for
bucket synchronization, UDP, and MPTCP, thus representing
a lower-bound on the Beamer performance.

Stateless CHEETAH incurs minimal packet processing
costs. Fig. 5 shows the number of CPU cycles consumed by
different LBs divided by the number of forwarded packets for
increasing number of requests per second. We tune the request
generation for a file of 8KB so that none of the machines
were overloaded. The main result from this experiment is
that stateless CHEETAH consumes almost the same number
of CPU cycles per packet as the most optimized hardware
assisted hash-based mechanism and significantly fewer cycles
than stateful approaches. Beamer consumes more cycles than

Fig. 5. CPU cycles/packet for various methods. CHEETAH achieves 5x fewer
cycles than stateful LBs.

both CHEETAH LBs, still without bringing PCC guarantee
(see Sect. V-C). This is mainly due to the operation of
encapsulating the backup server into the packet header and
the more compute-intensive operations needed by Beamer to
lookup into a bigger “stable hashing” table. Finally, we note
that each methods only need 4 CPU cores to saturate the
100Gbps link.

We further evaluate the packet processing latency of our
Tofino implementation using in-built timestamp primitives.
Our findings show that the QUIC and TCP timestamp imple-
mentations results in 0.7% and 30% higher processing times
compared to a hash-based LB, respectively. One can notice the
more complex parsing of TCP timestamps results in higher
overheads. We note the packet processing latency does not
affect the overall throughput achievable on a Tofino and that
all processing latencies are below 1µs.

Stateful CHEETAH outperforms cuckoo-hash based LBs.
We also note in Fig. 5 the improvements in packet process-
ing time of stateful CHEETAH (which uses a stack-based
ConnTable table) compared to the more expensive stateful
LBs using a cuckoo-hash table. Stateful CHEETAH achieves
performance close to a stateless LB and a factor of 2 − 3x
better that cuckoo-hash based LBs.

Dissecting stateless CHEETAH performance. The key
insight into the extreme performance of CHEETAH is that
the operation of obfuscating the cookie only adds less than
a 4-cycle hit. We in fact rely on the network interface card
hardware to produce a symmetric hash (i.e., using RSS).
We expect the advent of SmartNICs as well as QUIC and
IPv6 implementations, which have easier-to-parse headers,
to perform even better. We note that our stateless CHEETAH

implementation uses server-side TCP timestamp correction
(see Sect. IV), which only imposes a 0.2% performance hit
over the server processing time. If we were to use LB-side
timestamp correction, we observe that the stateless CHEETAH

modifies the timestamp MSB on the LB in just 30 cycles
per packet performance hit. To summarize, stateless CHEETAH

brings the same benefits as stateful LBs (in terms of load bal-
ancing capabilities) in addition to PCC guarantees at basically
the same cost (and resilience) of stateless LBs.

B. Load Imbalance Analysis

We now assess the benefits of running CHEETAH using
a non-hash-based load balancing mechanism and compare



364 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

Fig. 6. 99th-perc. FCT for the increasing average server load. CHEETAH
achieves 2x−3x lower FCT than Hash RSS.

Fig. 7. Variance among servers’ load of various methods for an increasing
number of servers. CHEETAH, though stateless, allows a near-perfect load
spreading.

it to different uniform hash functions (similarly to those
implemented in Microsoft Ananta [2], Google Maglex [3],
Beamer [5], and Faild [7]). We stress that we do not propose
novel load balancing mechanisms but rather showcase the ben-
efits of a load balancer design that supports any realizable load
balancing mechanisms. We only evaluate stateless CHEETAH

as the load imbalance does not depend on the stored state (and
would result in similar performance).

In this experiment, each server performs a constant amount
of CPU-intensive work to dispatch a 8KB file. The generator
makes between 100 and 200 requests per server per second
on average depending on our targeted system load. Given
this workload, we expect an operator to choose a uniform
round-robin LB mechanism to distribute the load.

CHEETAH significantly improves flow completion time.
Fig. 6 compares CHEETAH with round-robin and hash-based
LB mechanisms with 64 servers. We consider three hash
functions: Click [34], DPDK [35], and the hardware hash
from RSS. We stress the fact that these hash-based functions
represent the quality of load balancing achievable by exist-
ing stateless (e.g, Beamer) and stateful (e.g, Ananta) LBs.
We measure the 99th percentile flow completion time (FCT)
tail latency for the increasing average server load. CHEETAH

reduces the 99th percentile FCT by a factor of 2-3x compared
to any hash-based mechanism, e.g, Hash RSS.

CHEETAH spreads the load uniformly. To understand why
CHEETAH achieves better FCTs, we measure the variance of
the servers’ load over the experiment for an average server

Fig. 8. Evaluation of multiple load balancing methods for a bimodal
workload. Both AWRR and Pow2 outperform Hash RSS by a factor of 2.2
and 1.9 resp. with 64 servers.

load of 60% and 16, 32, and 64 servers. Fig. 7 shows that
the variance of RR is smaller than hash-based methods. This
is because the load balancer iteratively spreads the incoming
requests over the servers instead randomly spreading them.
In this specific scenario, CHEETAH allows operators to lever-
age RR, which would otherwise be impossible with today’s
load balancers. Fig. 7 also shows that the quality of the hash
function is important as the default function provided in Click
does not perform well. In contrast, the CRC hash function used
by DPDK is comparable to the Toeplitz based function used
in RSS [53]. Moreover, the RSS function has the advantage
of being performed in hardware.

CHEETAH improves FCT even with non-uniform work-
loads. Fig. 8 shows the tail FCT for a bimodal workload,
where 10% of requests take 500ms to be ready for dispatching
and the remaining ones take a few hundred microseconds.
In this scenario, some servers will be loaded in an unpre-
dictable way thus creating a skew that requires direct feedback
from the servers to solve. We can immediately see that RR
with 64 servers leads to very high FCTs. We evaluate three
ways to distribute the incoming requests according to the
current load (see Sect. IV-B): automatic weighted round robin
(AWRR), power of two choices (Pow2), and the least loaded
server. Each server piggybacks its load using a monitoring
Python agent on the server that reports its load through an
HTTP channel to the LB at a frequency of 100Hz, though
experimental results showed similar performance at 10Hz.
Least loaded performs poorly since it sends all the incoming
requests to the same server for 10ms, overloading a single
server. Pow2 and AWRR spread the load more uniformly
as the LB penalizes those servers that are more overloaded.
Consequently, both methods reduce the FCT by a factor of two
compared to Hash RSS with 64 servers. These experiments
show the potential of deploying advanced load balancing
mechanisms to spread the service load.

C. PCC Violations Analysis

We now demonstrate the key feature of the stateless CHEE-
TAH LB, i.e, avoid breaking connections while changing the
server and/or LB pool sizes. We compare CHEETAH against
Hash RSS, consistent hashing, and Beamer. In Beamer, a con-
nection breaks whenever the bucket to which the connection



BARBETTE et al.: CHEETAH: HIGH-SPEED PROGRAMMABLE LB FRAMEWORK 365

Fig. 9. Percentage of broken requests while scaling the number of servers.
Cheetah guarantees PCC whereas hashing breaks up to 11% of the connec-
tions, consistent hashing 3% and Beamer up to 0.5%.

Fig. 10. Tail latency for QUIC experiment.

is mapped is updated twice before the connection ends. When
a new server is added to the pool, Beamer re-assigns 1/N of the
buckets from existing servers to the new server. To avoid as
much disruption as possible, the oldest buckets are taken from
existing servers to assign to a new server. When a server is
removed, its buckets are assigned equally to remaining servers.

We start our experiment with a cluster consisting of
24 servers. We tune a python generator [36] to create
1500 requests/s, increasing following a sinusoidal load to
2500 requests/s and descending back to 1500 over the 40 sec-
onds of the experiment. The workload follows the web server
distribution. We iteratively add 7 servers to the pool as
the load increases. We then drain 8 servers when the rate
decreases. Fig. 9 shows the percentage of broken requests over
completed requests every second over time. Some connections
gets accounted as broken dozen of seconds later as clients send
retransmissions before raising an error. Compared to Beamer,
Cheetah achieves better load balancing with AWRR without
breaking connections.

D. QUIC & Tofino Implementation

We devise a new experiment to showcase CHEETAH work-
ing with the QUIC protocol using a P4 program compiled on
a Tofino switch. We use this experiment to simply show that
the QUIC implementation on a Tofino works with different
LB mechanisms. We do not aim to quantify the possible gains
for different QUIC workloads and different LB mechanisms
and we do not aim to benchmark the Tofino, which is
not a bottleneck in any of our experiments. We integrate
picoquic, the reference IETF QUIC implementation with the

Fig. 11. Throughput for QUIC experiment.

WRK HTTP request generator [51] and use the embedded
QUIC/HTTP 0.9 server of picoquic on one server per core,
using 2 machines of 16 cores. We modify the picoquic server
to generate the cookie in the connection ID as mentioned in
Sect. IV-D. We compare a simple hash-based LB implemented
in P4, and the stateless CHEETAH using Round Robin (RR)
in Fig. 10 under an increasing request rate of 1MB files.
At 2.5K req/s, we see that both LB mechanisms achieve
roughly the same throughput of roughly 22.5Gbps. The tail
latency of the hash-based LB is however 4x higher than the
RR one, i.e, 1 second vs. 250ms, because of a worse load
balance of the workload. At loads above 3K req/s, we observe
in Fig. 11 an 8% improvement of the RR LB supported with
CHEETAH over the hash-based LB. The reason why the two
lines do not converge to the same throughput at higher loads is
that the WRK load generator keeps at most 2048 simultaneous
open connections, which effectively self-limit the generated
load.

VI. FREQUENTLY ASKED QUESTIONS

Does CHEETAH preserve service resilience compared
to existing LBs? Yes. We first discuss whether a client can
clog a server. A client generating huge amounts of traffic using
the same connection identifier can be detected and filtered out
using heavy-hitter detectors [2]. This holds for any stateless
LBs, e.g, Beamer [5]. A more clever attack entails reverse
engineering the salted hash function and deriving a large
number of connection identifiers that the LB routes to the
same (specific) server, possibly with spoofed IP addresses.
To do so, an attacker needs to build the (conn.id, cookie) 
→
server mapping. This requires performing complex measure-
ments to verify whether two connection IDs map to the same
server. Given that CHEETAH uses the same hash function
of any existing LB (which is not cryptographic due to their
complexity [7]), reverse engineering this mapping will be as
hard as reverse engineering the hash of the existing LBs.
As for the resilience to resource depletion, we note from Fig. 5
that stateless (stateful) CHEETAH has similar (better) packet
processing times of today’s stateless (stateful) LBs. Moreover,
stateful CHEETAH supports line-rate insertions, which mitigate
SYN flood attack. Thus, we argue that CHEETAH achieves the
same levels of resilience of today’s existing LB systems.

Does CHEETAH make it easy to infer the number of
servers? Not necessarily. A 16-bit cookie permits at least an



366 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 1, FEBRUARY 2022

order of magnitude more servers than the number of servers
used to operate the largest services [11]. If this is still a
concern, one can hide the number of servers by reducing the
size of the cookie and partitioning the connection identifier
space similarly to our stateful design of CHEETAH.

Does CHEETAH support multipath transport protocols?
Yes. In multipath protocols, different sub-connection identi-
fiers must be routed to the same DIP. Previous approaches
exposed the server’s id to the client [29], [30]; however, this
decreases the resilience of the system decreases. CHEETAH

can use a different permutation of AllServers for each
additional i’th sub-connection. Clients inform the server of
the new sub-connection identifier to be added to an existing
connection. The server replies with the cookie to be used using
the i’th AllServers table. This keeps the resilience of the
system unchanged compared to the single path case.

VII. RELATED WORK

There exists a rich body of literature on datacenter
LBs [2]–[5], [8], [11], [14]–[22], [54], [55]. We do not discuss
network-level DC load balancers [14]–[21], whose goal is to
load balance the traffic within the DC network and do not deal
with per-connection-consistency problems.

Stateless LBs. Existing stateless LBs rely on hash func-
tions and/or “daisy chaining” techniques to mitigate PCC
violations (Sect. II), e.g, ECMP [22], WCMP [8], consistent
hashing [54], Beamer [5], and Faild [7]. The main limitation
of such schemes is the suboptimal balancing of the server
loads achieved by the hash function, which is known to grow
exponentially in the number of servers [56]. Shell [57] uses
the timestamp option as a reference to an history of indirection
tables, which comes at both the expense of memory and
low-frequency load rebalancing. Encoding the connection-to-
server mapping has been discussed in an editorial note without
discussing LB resilience, stateful LBs, or implementing and
evaluating such a solution [58].

QUIC-LB [55] is a high-level design proposal at the IETF
for a stateless LB that leverages the connection-id of
the QUIC protocol for routing purposes. While sharing some
similarities to our approach, QUIC-LB (i) does not present a
design of a stateful LB that would solve cuckoo-hash insertion
time issues, (ii) does not evaluate the performance obtainable
on the latest generation of general-purpose machines, (iii)
relies on the modulo operation with an odd number to hide
the server from the client, an operation that is not supported
in P4, and (iv) does not discuss multi path protocols. Stateless
load balancers that support multipath transport protocols have
been proposed in the past. Such load balancers guarantee all
the subflows of a connection are routed to the same server
by explicitly communicating an identifier of the server to the
client [29], [30]. These approaches may be externally exploited
by malicious users to cause targeted imbalances in the system,
which is prevented in CHEETAH thanks to using distinct hashes
for the subflows (see Sect. VI).

Stateful LBs. Existing stateful LBs store the connection-to-
server mapping in a cuckoo-hash table [2]–[4], [6], [11] (see
Sect. II). These LBs still rely on hash-based LB mechanisms
— as these lead to fewer PCC violations when changing the
number of LBs. In contrast, CHEETAH decouples PCC support

from the LB logic, thus allowing operators to choose any
realizable LB mechanism. Moreover, hash-based tables suffer
from slow (non-constant) insertion time. FlowBlaze [26] and
SilkRoad [11] tackled this problem using a stash-based and
bloom-filter-based implementations, respectively. Yet, both
solutions cannot guarantee insertions in constant-time: Flow-
Blaze relies on a stash that may be easily filled by an adversary
while SilkRoad is limited by both the size of the bloom
filter (which is quickly filled under SYN-flood attacks) and
the complexity of the implementation. Other stateful LBs
such as LBAS [59], Spotlight [60] Concury [61], and the
work of Hunt et al. [62] replace the hash server selection
mechanism with a more advanced scheme yet insertions into
the connection table cannot be performed in constant time.
CRAB [63] is an LB that only participates in the connection
establishment and then migrates a TCP connection to the
selected server. CRAB supports arbitrary server selection
mechanisms but (i) it requires modifications to the TCP stack
at both clients and servers, (ii) does not obfuscate the server
IDs, and (iii) does not design a fast data-plane for stateful LBs.
CHEETAH differs from these works by using a constant-time
stack that is amenable to fast implementation in the dataplane.
Existing stateful LBs also suffer from the fact that the 1st-tier
of stateless ECMP LBs reshuffle connections to the wrong
stateful LB when the number of LBs changes. In contrast,
1st-tier stateless CHEETAH guarantees connections reach the
correct stateful LB regardless of changes in the LB pool size.

VIII. CONCLUSION

We introduced CHEETAH, a novel building block for load
balancers that guarantees PCC and supports any realizable LB
mechanisms. We implemented CHEETAH on both software
switches and programmable ASIC Tofino switches. We con-
sider this paper as a first step towards unleashing the power
of load balancing mechanisms in a resilient manner. We leave
the question of whether one can design novel load balancing
mechanisms tailored for Layer 4 LBs as well as deployability
with existing middleboxes as future work.

ACKNOWLEDGMENT

The authors would like to thank all the anonymous review-
ers for their value feedback.

REFERENCES

[1] T. Barbette et al., “A high-speed load-balancer design with guar-
anteed per-connection-consistency,” in Proc. USENIX NSDI, 2020,
pp. 667–683.

[2] P. Patel et al., “Ananta: Cloud scale load balancing,” in Proc. ACM
SIGCOMM, 2013, pp. 207–218.

[3] D. E. Eisenbud et al., “Maglev: A fast and reliable software network
load balancer,” in Proc. USENIX NSDI, 2016, pp. 523–535.

[4] C. Hopps. (Sep. 2019). Katran: A High Performance Layer 4 Load Bal-
ancer. [Online]. Available: https://github.com/facebookincubator/katran

[5] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless dat-
acenter load-balancing with beamer,” in Proc. USENIX NSDI, 2018,
pp. 125–139.

[6] R. Gandhi et al., “Duet: Cloud scale load balancing with hardware and
software,” in Proc. ACM SIGCOMM, 2014, pp. 27–38.

[7] J. T. Araujo, L. Saino, L. Buytenhek, and R. Landa, “Balancing on the
edge: Transport affinity without network state,” in Proc. USENIX NSDI,
2018, pp. 111–124.



BARBETTE et al.: CHEETAH: HIGH-SPEED PROGRAMMABLE LB FRAMEWORK 367

[8] J. Zhou et al., “WCMP: Weighted cost multipathing for improved
fairness in data centers,” in Proc. EuroSys, 2014, pp. 1–14.

[9] W. Wang and G. Casale, “Evaluating weighted round Robin load
balancing for cloud web services,” in Proc. 16th Int. Symp. Symbolic
Numeric Algorithms Sci. Comput., Sep. 2014, pp. 393–400.

[10] M. D. Mitzenmacher, “The power of two choices in randomized load
balancing,” Ph.D. dissertation, Dept. Comput. Sci., Univ. California,
Berkeley, CA, USA, 1996.

[11] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful
layer-4 load balancing fast and cheap using switching ASICs,” in Proc.
ACM SIGCOMM, 2017, pp 15–28.

[12] Barefoot. (Sep. 2019). Tofino: World’s Fastest P4 Programmable Eth-
ernet Switch ASIC. [Online]. Available: https://www.barefootnetworks.
com/products/brief-tofino/

[13] T. Barbette. (2015). Github–FastClick. [Online]. Available: https://
github.com/tbarbette/fastclick

[14] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in Proc. 11th ACM Conf.
Emerg. Netw. Exp. Technol., Dec. 2015, pp. 1–13.

[15] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“DRILL: Micro load balancing for low-latency data center networks,”
in Proc. SIGCOMM, 2017, pp. 225–238.

[16] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine grained
traffic engineering for data centers,” in Proc. 7th Conf. Emerg. Netw.
EXperiments Technol. (CoNEXT), New York, NY, USA, 2011, p. 8, doi:
10.1145/2079296.2079304.

[17] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proc. Conf. ACM Special
Interest Group Data Commun., Aug. 2017, pp. 253–266.

[18] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy, and J. Rexford,
“CLOVE: How I learned to stop worrying about the core and love the
edge,” in Proc. ACM HotNets, 2016, pp. 155–161.

[19] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “HULA:
Scalable load balancing using programmable data planes,” in Proc. ACM
SOSR, 2016, pp. 1–12.

[20] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” in
ACM SIGCOMM, 2015, pp. 465–478.

[21] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in ACM SIGCOMM, 2014, pp. 503–514.

[22] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, docu-
ment RFC 2992, Nov. 2000.

[23] M. Chiesa, G. Kindler, and M. Schapira, “Traffic engineering with equal-
cost-multipath: An algorithmic perspective,” IEEE/ACM Trans. Netw.,
vol. 25, no. 2, pp. 779–792, Apr. 2017.

[24] J. C. Villanueva. (Jun. 2015). Comparing Load Balancing Algorithms.
[Online]. Available: https://www.jscape.com/blog/load-balancing-
algorithms

[25] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51,
no. 2, pp. 122–144, May 2004.

[26] S. Pontarelli et al., “Flowblaze: Stateful packet processing in hardware,”
in Proc. USENIX NSDI, 2019, pp. 531–548.

[27] F. Németh, M. Chiesa, and G. Rétvári, “Normal forms for match-
action programs,” in Proc. 15th Int. Conf. Emerg. Netw. Exp. Technol.,
Dec. 2019, pp. 44–50.

[28] M. Majkowski. (Jan. 2018). SYN Packet Handling in the Wild. [Online].
Available: https://blog.cloudflare.com/syn-packet-handling-in-the-wild/

[29] F. Duchene and O. Bonaventure, “Making multipath TCP friendlier
to load balancers and anycast,” in Proc. IEEE 25th Int. Conf. Netw.
Protocols (ICNP), Oct. 2017, pp. 1–10.

[30] V. Olteanu and C. Raiciu, “Datacenter scale load balancing for multipath
transport,” in Proc. Workshop Hot topics Middleboxes Netw. Function
Virtualization, Aug. 2016, pp. 20–25.

[31] H. Tabunshchyk. (Dec. 2017). Super Fast Packet Filtering With eBPF
and XDP. [Online]. Available: https://bit.ly/2mpoIyO

[32] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Int. J. Comput. Math., vol. 2, nos. 1–4, pp. 157–168, 1968.

[33] P. Fraigniaud and C. Gavoille, “Memory requirement for universal
routing schemes,” in Proc. 14th Annu. ACM Symp. Princ. Distrib.
Comput. (PODC), 1995, pp. 223–230.

[34] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The click modular router,” ACM Trans. Comp. Syst., vol. 18,
no. 3, pp. 263–297, Aug. 2000. [Online]. Available: http://doi.acm.
org/10.1145/354871.354874

[35] Linux Foundation. (2015). Data Plane Development Kit. [Online].
Available: http://www.dpdk.org

[36] Cheetah Authors. (2020). Github–Cheetah Source Code. [Online]. Avail-
able: https://github.com/cheetahlb/

[37] D. Borman, R. T. Braden, V. Jacobson, and R. Scheffenegger, TCP
Extensions for High Performance, document RFC 7323, Sep. 2014.
[Online]. Available: https://rfc-editor.org/rfc/rfc7323.txt

[38] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, Segment Routing Architecture, document RFC 8402,
Jul. 2018. [Online]. Available: https://rfc-editor.org/rfc/rfc8402.txt

[39] Alexa. The Top 500 Sites on the Web. Accessed:
Nov. 10, 2020. [Online]. Available: https://www.alexa.com/
topsites

[40] Statcounter. Mobile Operating System Market Share Worldwide.
Accessed: Nov. 10, 2020. [Online]. Available: https://
gs.statcounter.com/os-market-share/mobile/worldwide

[41] Desktop vs Mobile vs Tablet Market Share Worldwide. Accessed:
Nov. 10, 2020. [Online]. Available: https://gs.statcounter.com/platform-
market-share/desktop-mobile-tablet

[42] Desktop Operating System Market Share Worldwide. Accessed:
Nov. 10, 2020. [Online]. Available: https://gs.statcounter.com/os-market-
share/desktop/worldwide

[43] NetApplications. Market Share for Mobile, Browsers, Operating Sys-
tems and Search Engines | Netmarketshare. Accessed: Nov. 10, 2020.
[Online]. Available: https://bit.ly/37iRNOK

[44] W. Eddy, TCP SYN Flooding Attacks and Common Mitigations,
document RFC 4987, Aug. 2007. [Online]. Available: https://rfc-
editor.org/rfc/rfc4987.txt

[45] Community Authors. (2020). Github–Behavioral Model (BMV2) Source
Code. [Online]. Available: https://github.com/p4lang/behavioral-model

[46] K. Qian et al., “FlexGate: High-performance heterogeneous gateway in
data centers,” in Proc. ACM APNet, 2019, pp. 36–42.

[47] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and
Secure Transport. Accessed: Nov. 10, 2020. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/

[48] C. Huitema. (2020). Picoquic QUIC Implementation. [Online].
Available: https://github.com/private-octopus/picoquic

[49] M. Technologies. ConnectX-5 EN Single/Dual-Port Adapter Supporting
100Gb/s Ethernet. Accessed: Nov. 10, 2020. [Online]. Available:
https://www.mellanox.com/page/products_dyn?product_family=260&
mtag=connectx_5_en_card

[50] NoviFlow. (Sep. 2019). Katran: A High Performance Layer 4 Load
Balancer. [Online]. Available: https://noviflow.com/noviswitch/

[51] W. Glozer. WRK. Accessed: Nov. 10, 2020. [Online]. Available:
https://github.com/wg/wrk

[52] Intel. (2016). Receive-Side Scaling (RSS). [Online]. Available:
http://www.intel.com/content/dam/support/us/en/documents/network/
sb/318 483001us2.pdf

[53] H. Krawczyk, “New hash functions for message authentication,” in Proc.
EUROCRYPT, 1995, pp. 301–310.

[54] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proc. ACM
STOC, 1997, pp. 654–663.

[55] M. Duke, “QUIC-LB: Generating routable QUIC connection
IDs,” IETF Internet-Draft draft-duke-quic-load-balancers-04,
May 2019. Accessed: Nov. 10, 2020. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-load-balancers

[56] V. F. Kolchin, B. A. Sevastyanov, and V. P. Chistyakov, Random
Allocations. Washington, DC, USA: Winston, 1978.

[57] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and T. Clausen,
“Stateless load-aware load balancing in p4,” in Proc. IEEE 26th Int.
Conf. Netw. Protocols (ICNP), Sep. 2018, pp. 418–423.

[58] J. McCauley, A. Panda, A. Krishnamurthy, and S. Shenker, “Thoughts
on load distribution and the role of programmable switches,” ACM
SIGCOMM Comput. Commun. Rev., vol. 49, no. 1, pp. 18–23, Feb. 2019.

[59] J. Zhang et al., “Fast switch-based load balancer considering application
server states,” IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1391–1404,
Jun. 2020.

[60] A. Aghdai, C.-Y. Chu, Y. Xu, D. Dai, J. Xu, and J. Chao, “Spot-
light: Scalable transport layer load balancing for data center net-
works,” IEEE Trans. Cloud Comput., early access, Sep. 18, 2020, doi:
10.1109/TCC.2020.3024834.

[61] S. Shi et al., “Concury: A fast and light-weight software cloud load
balancer,” in Proc. ACM SoCC, 2020, pp. 179–192.

[62] G. Hunt, E. Nahum, and J. Tracey, “Enabling content-based load
distribution for scalable services,” IBM, 1997. Accessed: May 20, 2020.
[Online]. Available: http://www.cs.columbia.edu/~nahum/papers/ibm-
tr97-cluster.pdf

[63] M. Kogias, R. Iyer, and E. Bugnion, “Bypassing the load balancer
without regrets,” in Proc. 11th ACM Symp. Cloud Comput., Oct. 2020,
pp. 193–207.

http://dx.doi.org/10.1145/2079296.2079304
http://dx.doi.org/10.1109/TCC.2020.3024834


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


