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Abstract—Name lookup is a key technology for the forwarding
plane of content router in Named Data Networking (NDN).
To realize the efficient name lookup, what counts is deploying
a high-performance index in content routers. So far, the pro-
posed indexes have shown good performance, most of which
are optimized for or evaluated with URLs collected from the
current Internet, as the large-scale NDN names are not available
yet. Unfortunately, the performance of these indexes is always
impacted in terms of lookup speed, memory consumption and
false positive probability, as the distributions of URLSs retrieved in
memory may differ from those of real NDN names independently
generated by content-centric applications online. Focusing on this
gap, a smart mapping model named Pyramid-NN via neural
networks is proposed to build an index called LNI for NDN
forwarding plane. Through learning the distributions of the
names retrieved in the static memory, LNI that will be trained by
real NDN names offline and preset in content routers in the future
can not only reduce the memory consumption and the probability
of false positive, but also ensure the performance of real NDN
name lookup. Experimental results show that LNI-based FIB can
reduce the memory consumption to 58.258 MB. Moreover, as it
can be deployed on SRAMs, the throughput is about 177 MSPS,
which well meets the current network requirement for fast packet
processing.

Index Terms—Named Data Networking, Forwarding Plane,
Neural Network, Name Lookup.

I. INTRODUCTION

AMED Data Networking (NDN) [1] is proposed as an
N entirely new network architecture for future Internet, in
which packets carry data names rather than IP addresses. In
NDN, all communications are driven by the receiving end, i.e.,
the consumers [1]], through the exchange of two distinct types
of packets: Interest and Data [2]. Both types of packets carry a
name, which identifies a piece of data that can be transmitted
in one Data packet. To fetch desired content, a consumer sends
out an Interest packet with a unique identifying name to the
network. Routers use this name to forward the Interest towards
the producer(s) [1]]. On the forwarding path, once the Interest
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TABLE I
NUMBER OF CHAINS WITH DIFFERENT LENGTH: BLACKLIST-2013 VSs.
BLACKLIST-2020

# of chains with different length

Dataset # of URLs
2 3 4 5 6
Blacklist-2013 20,000 3,733 1,217 283 70 8
Blacklist-2020 20,000 3,658 1,207 327 60 6
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Fig. 1. Lookup time (ms): Blacklist-2013 vs. Blacklist-2020.

reaches a node that has the requested Data, i.e., the Interest
name is the same with the Data name or a prefix of the Data
name [3|], the Data containing both the name and the content
will follow the reversed path taken by the Interest to get back
to the consumer [4]].

For the name-based packet forwarding, the core compo-
nent is the stateful forwarding plane [5]], where three tables
including Content Store, Pending Interest Table (PIT) and
Forwarding Information Base (FIB) are deployed [1f]. Content
Store is a temporary cache of Data packets the router has
received to answer re-requested Interest packets. PIT stores all
the Interests that a router has forwarded but not satisfied yet
where each entry records a name carried in an Interest packet,
together with its incoming and outgoing interfaces. FIB stores
a set of name prefixes of Interest packets announced in routing
and its outgoing interfaces as the next hop to ensure proper
packet forwarding.

Given the forwarding plane in NDN is so different from IP,
it has to imply a substantial re-engineering lookup structures
for fast, memory-efficient, and scalable packet forwarding. So
far, many novel indexes based on trie [[6], hash table [7],



Bloom filter [8]] and skip list [9] are proposed for NDN for-
warding plane to support efficient name lookup. As the large-
scale real NDN names are not available yet, most of these in-
dexes are optimized for or evaluated with URLs collected from
the current Internet. Unfortunately, the performance of indexes
is always impacted by the distributions of data retrieved in
the memory, in terms of lookup speed, memory consumption
and false positive probability. As the distributions of URLs
retrieved in the index of NDN forwarding plane may differ
from those of real NDN names independently generated by
content-centric applications online, the performance of these
indexes designed with URLs will be degraded. To clearly
illustrate this impact, we extracted two URL datasets from
Backlist [10] in 2013 and 2020, and tested their position
located in the memory by CityHash. The pre-experimental
result in Table I shows that the distributions of URLs located
in the static memory between the two datasets are different.
That is the chains to deal with conflicts differ in number and
length, which certainly affects both of the lookup speed and
memory consumption. As shown in Fig. 1, the gap between
the lookup time of the two datasets increases due to the
different number of chains utilized. Given that more than 1
million names have to be stored in NDN forwarding plane, the
performance of name lookup will be more seriously impacted
by the distribution of real names in the memory. To ensure the
performance of NDN forwarding plane, the proposed indexes
have to be redesigned, which leads to the high engineering
effort. Therefore, it is crucial to design an index that can adapt
to the distributions of names retrieved in the memory.

To tackle this gap, a smart mapping model based on neural
networks, called Pyramid-NN, is proposed to construct a
mapping function that can adapt to the distributions of real
NDN names retrieved by learning the distributions in the static
memory. Moreover, based on Pyramid-NN, an index called
LNI is proposed. Through learning the distributions of names
in the static memory, LNI that will be trained by real NDN
names offline and preset in content routers in the future can
not only reduce the memory consumption and the probability
of false positive, but also ensure the performance of real name
lookup. The main contributions are as follows:

1) A smart pyramid-like neural network model named
Pyramid-NN is first conceived to build an efficient index
that can adapt to data distributions. Pyramid-NN learns
the distributions of data retrieved in the static memory by
training, so that it can not only adapt to the distributions
of data retrieved well, but also map the data more
uniformly, which improves the memory utilization. The
architecture of Pyramid-NN is designed to be a multi-
level model consisting of a number of Back Propagation
Neural Networks (BPNNs) [11f], and the level-by-level
training algorithm of it is put forward to support efficient
model training. Moreover, the proper hyperparameters of
it are selected by simulations and analysis.

2) Based on Pyramid-NN, an index called Learning Name
Index (LNI) for NDN forwarding plane is proposed to
support the efficient name lookup. In LNI, the Input
Processor turns variable-length NDN name to fixed-

dimensional input vector; Pyramid-NN does the map-
ping, which can improve the memory utilization, as
well as adapt to complex NDN names as it can collect
training data and select label rules flexibly; the Enhanced
Bitmap [12] gets the memory address for storing data,
which further reduces the memory consumption. More-
over, the lookup algorithm of LNI is also proposed to
implement fast name lookup.

3) The performance of Pyramid-NN is presented in detail
to verify the feasibility for the mapping. As Pyramid-
NN can learn the distributions of data retrieved in
the static memory, compared with the traditional hash
functions with the probability of false positive under 1%,
Pyramid-NN requires only about 25% of the slots and
the execution speed is on the same order of magnitude
as that of the CityHash256.

4) The performance of LNI-based FIB, called LNI-FIB,
is evaluated and discussed by executing contrast ex-
periments with three state-of-the-art indexes, namely
Hash Table-FIB, Binary Patricia Trie-FIB and B-MaFIB.
The results show that LNI-FIB extremely reduces the
memory consumption to 58.258 MB with the probability
of false positive under 1%, which means it can easily
fit into contemporary SRAMs in commercial line card.
Also, the throughput of LNI-FIB is about 177 million
searches per second (MSPS), which well meets the
current network requirement for fast packet processing.

The remainder of this paper is organized as follows. Sec-

tion II surveys related work. Section III provides the design
essentials of NDN name lookup. Section IV presents Pyramid-
NN, including the design overview, the model architecture,
the training process and the model hyperparameter selection.
Section V describes LNI, presenting its architecture and the
process of lookup. Section VI shows the performance of
Pyramid-NN in detail. Section VII compares and discusses the
performance of LNI-FIB by executing contrast experiments.
Section VIII gives a brief conclusion and future work.

II. RELATED WORK

In this section, the indexes proposed in NDN forwarding
plane are summarized [4]], which are classified into five types,
namely trie-based, hash table-based, Bloom filter-based, skip
list-based and machine learning-based.

A. Trie-based Schemes

The logical characteristics of trie can reduce the memory
consumption of the hierarchical names stored in NDN router,
so [13[|-[31]] propose trie-based schemes for NDN forwarding
plane. Among them, the main research issues are how to
design its granularity to reduce the memory consumption and
how to reduce its depth to improve the lookup speed. For
example, NameTrie [[13] proposes minASCII encoding to store
and index forwarding information more efficiently; CONSERT
[14] removes the redundancy to minimize the number of name
prefixes; PC-NPT [[15] proposes path compression to reduce
the average number of node accesses; Binary Patricia Trie
[16] uses binary as the granularity to minimize the impact



of redundant information at memory; CTrie [17] builds a
combinational trie structure from both component-based and
byte-based hierarchical names to achieve the unified index.

B. Hash Table-based Schemes

Hash table has advantages in lookup speed, so [18]], [32]]—
[41] propose hash table-based schemes for NDN forwarding
plane. Among them, the main research issues are how to
ensure more accurate forwarding, how to reduce the memory
consumption and how to support the algorithms of name
matching. For example, FHT [18] uses fingerprint collision
table to reduce the memory consumption; Binary Search of
Hash Tables [32] constructs a balanced binary search tree
to improve the execution efficiency of name matching al-
gorithm; CoDE [33]] achieves fast name lookup and update
using conflict-driven encoding; MOBS [34] concentrates on
the optimization of random search algorithm to reduce the
memory consumption. However, the proposed schemes have
to store all the content names additionally to ensure accurate
forwarding, which causes memory inefficient.

C. Bloom Filter-based Schemes

Bloom filter can greatly reduce the memory consumption, so
[12], [42]-[57] propose Bloom filter-based schemes for NDN
forwarding plane. Among them, the main research issue is
how to solve the problem that Bloom filter can only determine
whether an element is in the set but not locate its memory
address. For example, NameFilter [42]] and DiPIT [43] assign a
Bloom filter to each interface of the forwarding plane; BFAST
[44] combines Bloom filter with hash table; MBF [45]], [46]
and B-MBF [12]] combines Bloom filter with Mapping Array
and Bitmap to locate the memory address.

D. Skip List-based Schemes

Skip list can preserve the order of data storage and ef-
fectively support the cache replacement policy, so [36] and
[58]] propose skip list-based schemes for NDN forwarding
plane. For example, Locality-Aware Skip List [58] records
the address of skip list node accessed when querying a node,
which improves the lookup speed to some extent. However,
the time complexity of such schemes is generally high due to
the limitation of its basic structure [4]].

E. Machine learning-based Schemes

In view of the rapid development of machine learning
techniques in recent years, machine learning-based schemes
have been proposed in indexes for NDN forwarding plane.
Learning Tree [59]] was posted to learn the distribution of data
to build an efficient index. Learned Bloom-Filter Lookup [60]]
combines Recursive Neural Network (RNN) with standard
Bloom filter to improve lookup efficiency.

FE Summary

The indexes based on traditional data structure mentioned
above have shown good performance, most of which are opti-
mized for or evaluated with URLs collected from the current
Internet, as the large-scale real NDN names are not available
yet. However, the distributions of real NDN names may differ
from that of URLs used currently, which will degrade the
performance of the indexes, as the results shown in the pre-
experiments in Section I. Therefore, the indexes have to be
redesigned to ensure the performance. Fortunately, machine
learning brings the opportunity to tackle this issue. Therefore,
an index via neural networks, called LNI, is proposed in
this paper. Through learning the distributions of the names
retrieved in the static memory, LNI that will be trained by
real NDN names offline and preset in content routers in the
future can not only reduce the memory consumption and the
probability of false positive, but also ensure the performance
of real name lookup.

III. DESIGN ESSENTIALS OF NDN NAME LOOKUP

In this section, by summarizing the existing theoretical
results about the NDN name lookup, three design essentials
of NDN name lookup are described in detail respectively.

A. Complex Name Structure

Unlike IP addresses of fixed length, NDN names are
variable-length with no upper bound, having complex and
unrestrained formats. And what’s worse, so far the design
tussle of data naming remains an open challenge due to
the different requirements that applications, security, and the
network place on data names [61]].

As lookup keys in NDN forwarding plane, the complex
NDN names have to be scanned in the forwarding processes.
Consequently, NDN forwarding plane has to support effective
lookup for arbitrary complex names.

B. Small Memory Footprint

Compared with IP, NDN forwarding plane calls for much
more memory space for two reasons. First, the number of en-
tries in NDN forwarding plane is orders-of-magnitude greater
than that in IP. Taking PIT as an example, since an Interest
stays in PIT of each NDN router along the path until the
corresponding Data returns, PIT needs to hold 1 million entries
for 10 Gbps gateway trace and 1.5 million entries for 20 Gbps
at least [62]]. Second, the size of each entry in NDN forwarding
plane is also larger, for an NDN name is more complex than
an IP address. These factors together result in the forwarding
tables with larger memory footprint than IP-forwarding tables.
Therefore, it is really a great challenge to study how to reduce
the mempry consumption of the indexes for three tables in
NDN forwarding plane, so that they can be deployed in small
and high-speed memories (e.g., SRAM).
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Fig. 2. Design overview of Pyramid-NN.

C. High Throughput

NDN forwarding plane requires quite frequent name lookup
and update operations [4]. Whenever Interest/Data(s) arrive
at NDN routers or the routing protocols recompute FIB, the
corresponding names have to be scanned and corresponding
operations have to be performed in NDN forwarding plane.
As reported in [35]], considering a load equal to 100%, PIT’s
operations peak at 60 million per second; in a more realistic
scenario with flow balance or a load of 50%, the frequency
of PIT’s operations is about 6 million per second. Therefore,
NDN forwarding plane has to perform name lookup at a
practicable high speed, so that it can satisfy the requirement
for high throughput in NDN router.

IV. SMART MAPPING MODEL: PYRAMID-NN

Learning techniques are introduced to design a smart
mapping model via neural networks, called Pyramid-NN. In
this section, the design overview, the model architecture, the
training process and the model hyperparameter selection are
described in detail.

A. Design Overview

In order to build an index that can adapt to data distributions
in the memory, Pyramid-NN uses neural networks to learn the
distributions of the data retrieved in the static memory. The
distributions of the data retrieved are reflected in its cumula-
tive distribution function (CDF), whose value represents the
likelihood of a key less than or equals to the lookup key. The
property of the CDF states that for a data set with arbitrary
distribution the values calculated by its CDF have a uniform
distribution on [0, 1]. Utilizing the CDF as a mapping function,
the probability of each key mapped to different slots is the
same. Therefore, the slots mapped can be uniformly distributed
through multiplying the values of the CDF by the total number
of slots in memory.

Specifically, the design overview of Pyramid-NN is illus-
trated in Fig. 2. The first phase is to construct the training set.
A large number of variable-length content names are collected
and turned into fixed-dimensional vectors. These vectors, as
lookup keys in NDN route table, are sorted based on the values
of them, then labeled with the ordinals. The second phase is
to train neural networks using the vector-ordinal pairs to learn
the CDF of the data retrieved. The final phase comes into
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Fig. 3. Model architecture of Pyramid-NN.

application, which is to do the mapping through trained neural
networks. In practice, the Pyramid-NN will be trained with
real NDN names offline and deployed in content routers. The
names of NDN packets are input into the trained Pyramid-NN
and then the CDF values are estimated. Finally, the mapped
slots are obtained by multiplying the values of the CDF by
the total number of slots in memory, which can be distributed
more uniformly.

B. Model Architecture and Training Process

Lookup speed is the most critical requirement for the
index. Therefore, BPNNs are used to build Pyramid-NN, as
it has strong parallel computing ability [63]. However, the
classification accuracy of a single BPNN (i.e., the number
of model level is 1) is only 0.18%, as shown in Fig. 4(a).
Therefore, it is difficult to accurately learn the CDF of millions
of data. But when there are 2 or 3 levels, Pyramid-NN can get
pretty good accuracy performance, as it can efficiently divide
the large namespace into multiple smaller sub-namespaces so
that each BPNN at the last level can accurately represent the
CDF of relatively little data. Thus, Pyramid-NN is designed to
be a multi-level neural network model. Meanwhile, the multi-
level model can work in parallel to further improve the lookup
speed.

Fig. 3 gives an example of two-level Pyramid-NN, which
consists of 1 BPNN at level 1 and 1,000 BPNNs at level
2. Suppose BPNN;, represents the k-th BPNN at level j.
BPNN); ¢ is trained to get the region number from O to 999,



Algorithm 1 Training process of Pyramid-NN

1: Procedure Training (Training_Names[])

2: Size « Training_Names.size;

3: for each i € [0, Size - 1] do

4 Inputs[i][:] « Input_Process(Training_Namesli]);
5 L1_Labels[i] « [i/ Size x 1000];

6: L2_Labels[i] « i/ Size;

7: end for

8: Sort(Inputs);

9: for each j € [1, max_epochs] do

10:  LI_Outputs < BPNNj o(Inputs);

11:  Loss < Loss Function(L1_Outputs, L1_Labels);
12:  Backward(Loss);

13:  Update(Parameters);

14: end for

15: Save(BPNN;j o);

16: for each k € [0, 999] do

17:  index «— Find_Rows(L1_Outputs = k);

18:  for each j € [1, max_epochs] do

19: L2_k_Outputs «— BPNN, ;(Inputs[index][:]);
20: Loss < Loss Function(L2_k_Outputs,
L2_Labels[index]);
21: BPNN; i < Train(Inputs[index][:],
L2_Labels[index));
22: Backward(Loss);
23: Update(Parameters);

24:  end for

25:  Save(BPNN, 1);
26: end for

27: End Procedure

each of which corresponds to a BPNN, ; (0 < k < 999). Each
BPNN, ; is trained to learn a part of the CDF. Therefore,
the estimation range of all the trained BPNN, ; can cover the
entire CDF, i.e., the trained Pyramid-NN can be seen as a
function that estimates the CDF value.

Algorithm 1 shows the training process of Pyramid-NN.
First, for each i € [0, Size - 1] where Size represents the
number of training names, the i-th name is processed to the
corresponding input vector (line 4). The detail process is as
follows. Suppose the input vector is y with dimension N, and
an n-length NDN name can be seen as a vector x € R”, where
x; is the ASCII value of the i-th character. For a name with
length n < N, set y; = x; where 0 < i < n and y; = 0 where n <
i < N.Forn > N, split every N elements of x into a sub-vector,
then set y; = Bitxor(the i-th elements in all sub-vectors) where
0 < i < N, considering that bitxor method can achieve faster
processing speed than hash function. Thus the N-dimensional
input vector y is got; |i / Size X 1000] is calculated as the i-th
label of level 1, which is obviously an integer in [0, 999]; i /
Size is calculated as the i-th label of level 2, which is a decimal
in [0, 1]. Then all the input vectors are sorted in ascending
order to correspond to the labels (line 5-8). Second, BPNN| o
is trained with all the input vectors and labels of level 1 (line
9-15). Third, all of the BPNN, ;s are trained based on the
outputs of level 1. For each k € [0, 999], all the input vectors
with output k at level 1 and their corresponding labels of level
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TABLE I
DATASET OF DOMAIN NAMES

Dataset # of Names Average Length (B) Size (MB)
Training Set 100,000,000 25.871 2,624.170
Validation Set 2,000,000 25.880 52.511
Testing Set 1 500,000 25.895 13.133
Testing Set 2 1,000,000 25.864 26.235
Testing Set 3 1,500,000 25.872 39.364
Testing Set 4 2,000,000 25.887 52.514

2 are picked out as the input vectors and labels of BPNN;
respectively, and then BPNN, . is trained (line 16-26).

For each BPNN; ; in Pyramid-NN, the time complexity of
training is O(n) where n is the epoches of training. The time
complexity does not affect its performance, as Pyramid-NN is
trained offline before being in content routers.

C. Model Hyperparameter Selection

It is generally known that the hyperparameter selection is
important when designing a neural network [64]. In Pyramid-
NN, the number of model levels and the number of neurons
for one BPNN directly affect not only the classification ac-
curacy(i.e., the proportion of the names whose corresponding
outputs and labels are matched in all input names), but also



90%
85%

100.0000%

—a— Classification Accuracy

--e--Input Collision Probability | 1 10.0000%

2
g 80% =
5 759 ! 1 1.0000% 8
R I 8
Q 4 =
< TR A 1 0.1000% &
§ 65% [ ¥ 8
B 6% | ? 10.0100% .2
é [ 2
ZOS5% - 1 0.0010% ©
a N 0010% 2
= 50wt &
& . g
! . A 1 0.0001% S
45% ! NS
l SN,
40% . - % 0.0000%
3 5 7 9 113 15 17 19
Number of Input Neurons
(a)
4 T 3,000
=35 ' —=—Memory Consumption
. |
@ 1| --*--Execution Time 1 2,500
N~ ~~
= 3t ! A g
2, ' 1 2,000 £
a 23 . 5]
g i g
2 2 ! 1 1500 2
= i =
Sis o £
> i 1 1,000 5
o 1 ! (5]
£ L X
5 4 { 500 =
S 05 i
1
1
0 0

3 5 7 9 11 13 15 17 19
Number of Input Neurons

(b)
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the memory consumption and the execution time. Furthermore,
the number of input neurons for one BPNN also affects the
probability of input collision(i.e., the proportion of distinct
names processed to the same input vector in all names).
Therefore, to select the proper hyperparameters for Pyramid-
NN, Pyramid-NN under different hyperparameters is trained
with Deep Learning Toolbox in MATLAB. The performance is
tested on a workstation with an Intel Xeon E5-1650 v2 CPU of
3.50 GHz and DDR3 SDRAM of 24 GB. Given that more than
1 million entries have to be stored in NDN forwarding plane
[4]], billions of different NDN names, based on the naming
conventions [[65]], are generated as the dataset of experiments,
where 100 million are used as the training set, 2 million as
the validation set and 0.5-, 1-, 1.5-, 2-million as the testing
sets, as listed in Table II.

Note that the hyperparameters selected below only represent
one possible solution for implementing Pyramid-NN, but does
not mean that Pyramid-NN must use the below hyperparame-
ters.

1) Number of Model Levels: The classification accuracy of
Pyramid-NN is acceptable when there are 2 or 3 levels, as
shown in Fig. 4(a). Moreover, fig. 4(b) shows the memory
consumption of Pyramid-NN and the time consumption per
million executions, where the 2-level Pyramid-NN requires
less memory and executes relatively fast compared with the
3-level Pyramid-NN, so we determine Pyramid-NN to be a
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two-level model.

2) Number of BPNNs at Level 2: As the number of entries
in NDN forwarding plane is in the order of millions, 1,000
BPNNs are implemented at level 2, where each BPNN maps
thousands of data to achieve more uniform mapping.

3) Number of Input Neurons for one BPNN: As illustrated
in Fig. 5(a), with the increase of the number of input neurons,
both of input collision probability and classification accuracy
decrease. According to the algorithm of input process intro-
duced in subsection IV(B), with the increase of the number
of input neurons, the probability of distinct names processed
to the same input vectors (i.e., the input collision probability)
reduces, but the model will be overfitted, which leads to the
lower classification accuracy.

Specifically, when the number of input neurons is 3 to 6, the
classification accuracy is greater than 80%. However, as it is 5
and 6, the input collision probability can be much less than the
other two cases, which meets the current network requirements
for 1% of packet loss rate well [43]]. Therefore, the number
of input neurons can be 5 or 6. Moreover, considering the
memory consumption and execution time shown in Fig. 5(b),
Pyramid-NN with 5 input neurons requires less memory and
shorter execution time relatively compared with the 6-input
neurons Pyramid-NN. Thus, the number of input neurons is
determined to be 5.



4) Number of Hidden Neurons for one BPNN: Fig. 6(a)
shows that when the number of hidden neurons is greater
than or equal to 20, the classification accuracy is stabilized
at about 85%. Further considering memory consumption and
execution time shown in Fig. 6(b), Pyramid-NN requires more
the memory consumption and longer execution time, as the
number of hidden neurons increases. Hence the number of
hidden neurons is determined to be 20.

V. LEARNING NAME INDEX: LNI

Based on Pyramid-NN, an index is proposed for NDN
forwarding plane, called LNI, which not only can support
efficient NDN name lookup, but also adapt to the distributions
of real NDN names in the static memory. In this section, the
index architecture and lookup process of LNI are presented in
detail.

A. Index Architecture

The index architecture of LNI is shown in Fig. 7, which
contains three units: the Input Processor, Pyramid-NN and the
Enhanced Bitmap.

The Input Processor turns variable-length NDN name to
fixed-dimensional input vector to support efficient lookup for
complex names, as described in Subsection IV(B).

Pyramid-NN does the mapping. According to the hyperpa-
rameter selection in Subsection IV(C), Pyramid-NN is a two-
level model consisting of 1 BPNN at level 1 and 1,000 BPNNs
at level 2, where each BPNN has 5 input neurons, 20 hidden
neurons and 1 output neuron. Through the trained BPNNSs, the
mapped slot is got by multiplying the value of the CDF by
the total number of slots.

The Enhanced Bitmap gets the memory address for storing
data, which further reduces the memory consumption [12].
Specifically, the Enhanced Bitmap is composed of slots with
2 bytes each, and evenly segmented into 1000 equal parts.
Meanwhile, each part corresponds to a BPNN in level 2
of Pyramid-NN and a memory space respectively. From the
output of Pyramid-NN, the corresponding part of the Enhanced
Bitmap is got and the mapped slot in this part is calculated.
Then, the calculation result is inserted in this slot as the
offset address. Based on the base address of memory space
corresponding to this part and the offset address represented
by the number in this slot, the actual memory address for
storing forwarding information can be obtained.

Obviously, the classification accuracy of the BPNN in
Pyramid-NN and the number of slots in the Enhanced Bitmap
jointly affect the false positive probability of LNI. For instance,
if the name that is input into BPNN| o is mapped to a fault
BPNN at level 2, this name will be mapped to the same
slot in the Enhanced Bitmap occupied by the name classified
correctly(i.e., the false positive), that is, the probability of false
positive increases as the classification accuracy reduces. For
the number of slots in the Enhanced Bitmap, the larger the
number of slots, the more dispersed the data is in the Enhanced
Bitmap, thus the false positive probability is reduced. With the
classification accuracy of the BPNN in Pyramid-NN stabilized
at about 85% (as shown in Fig. 6(a)), the number of slots in the
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‘ ASCII
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Sub-vector 3: ( 97,112,115, 0, 0)
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\_ Input Vector y : ( 26,116, 98, 97, 66) J
»— Pyramid-NN ~
A
BPNN,

BPNN,, BPNN,, [ ess

BPNN3 999

7/ Level 2
\ - — - - ———— o -)

~ Enhanced Bitmap ~

x Number of Slots in this part

Lofofofsfofofofofofefafofojofo]s]

Partl Part2 Part999 Part1000

- J

Fig. 7. Index architecture of LNI.

Algorithm 2 Lookup process of LNI
1: Procedure Lookup (Name x)
: Segments «— Split(x, 5);
: Input < Bitxor(Segments);
: L1_Output «— BPNN| o(Input);
L2_Output < BPNN> 1.1 _0us pus (Input);
: Slot « |L2_Output X Bitmapri_ou: pur-sizel;
. if Bitmap[Slot] # O then
Part « Slot / Part_Size;
Offset_Addr «— Bitmap[Slot];
return Base_Addr[Part] + Offset_Addr;
: end if
: End Procedure

—_ = =

Enhanced Bitmap will be appropriately enlarged to reduce the
false positive probability to less than 1% which is the current
network requirements for packet loss rate.

B. Lookup Process

The lookup process of LNI is described in Algorithm 2.
When a NDN name x is input, it is first split, and per-
formed by Bitxor operation to get the 5-dimensional input
vector (line 2-3). Then it is input into the BPNN;, for
calculation (line 4). Based on L/_Output (i.e., the output of
BPNN o), BPNN>. 1.1_ourpur 1 picked and calculated (line 5),
and the mapped slot is equal to L2_Output (i.e., the output
of BPNN 11_ourpur) multiplied by the number of slots in
corresponding part of the Enhanced Bitmap (line 6). Finally,



TABLE III
TRAINING PARAMETERS
Level level 1 level 2
# of Epoches 20 5,000
Learning Rate 0.01 0.01

Loss Function Mean Square Error  Mean Square Error

Target Error 10712 10712

Minimun Gradient 10712 10712
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Fig. 8. Distribution of mapped slots in memory. (a) CityHash. (b) Pyramid-
NN.

the mapped slot is queried. If it is not empty, the actual
memory address is obtained by adding the offset address
recorded in the slot to the base address of memory space
corresponding to its part (line 7-11).

An example of name lookup through LNI is indicated by ar-
row lines in Fig. 7. For an input NDN name /NDN/TJU/map:s,
the ASCII values of every characters form the vector x. Then
x is split every 5 values into sub-vectors (i.e., sub-vector
1 to sub-vector 3), and the corresponding elements in all
sub-vectors do the bitxor to obtain the the 5-dimensional
input vector (26, 116, 98, 97, 66). Afterwards it is input
into Pyramid-NN. In Pyramid-NN, suppose the region number
calculated by BPNN o is 998, so BPNN, 993 is picked next.
Calculated by BPNNj 993, the CDF value is got, supposed to
be 0.5. Therefore, the predicted slot in the Enhanced Bitmap
is equal to 0.5 multiplied by the number of slots in the 999¢h
part, namely 0.5 X 4 = 2. Finally, the slot 3994 in the Enhanced
Bitmap is queried. The actual memory address is equal to the
base address of memory space corresponding to the 999¢h part
plus the offset address 2.

VI. PERFORMANCE OF PYRAMID-NN

In this section, Pyramid-NN is compared with some popular
hash functions such as MDS5 [66]], CityHash256 [67] and
xxHash [68]], as the trained Pyramid-NN is analogous to a
hash function. The performance analysis is carried out in four
aspects including the memory utilization, the probability of
false positive, the model size and the execution speed, which
concern if Pyramid-NN is acceptable in practice.
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Fig. 9. Memory utilization: Pyramid-NN vs. the average of MDS5, City-
Hash256 and xxHash. (a) Empty slot ratio. (b) Number of slots required.

The experimental setup and the dataset are the same as
described in Subsection IV(C). Pyramid-NN is implemented
to be a two-level model consisting of 1 BPNN at level 1
and 1,000 BPNNs at level 2, where each BPNN has 5 input
neurons, 20 hidden neurons and 1 output neuron. More detail
parameters are listed in Table III. After training, all the weights
and biases are extracted from MATLAB and then Pyramid-
NN is regenerated in C++ based on the model specification.
The hash functions are also implemented in C++ for fair
comparison.

A. Memory Utilization

The distribution of mapped slots in memory is first tested
when the load factor is 1 (i.e., 0.5 million names are mapped
to 0.5 million slots). As shown in Fig. 8(a), the distribution
of mapped slots in memory for CityHash is nonuniform with
a large number of conflicts. Hence lots of long chains (the
worst case is 5 chains) are required to deal with the conflicts,
which significantly impact the lookup speed and memory
consumption of the hash table. Instead, as shown in Fig. 8(b),
Pyramid-NN maps more uniformly, and the chains required
are less and shorter, which means better memory utilization
and lookup speed.
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TABLE IV
EMPTY SLOT RATIO: PYRAMID-NN VS. HASH FUNCTIONS
# of Names  Pyramid-NN MDS5 CityHash256 xxHash
500,000 75.452% 77.020% 78.151% 77.883%
1,000,000 53.301% 60.712% 61.008% 60.614%
1,500,000 35.251% 47.355% 47.011% 47.240%
2,000,000 22.068% 36.692% 37.102% 36.778%

Afterwards, the empty slot ratio (i.e., the proportion of
empty slots in the total number of slots in memory) of
Pyramid-NN and the hash functions is tested respectively when
mapping 0.5-, 1-, 1.5- and 2-million names to 2 million slots.
As shown in Fig. 9(a) and Table IV, Pyramid-NN has lower
empty slot ratio compared with the hash functions and the
gap between the two increases further as the number of names
increases. The reason is that the mapping through Pyramid-
NN is relatively uniform, while through the hash functions are
nonuniform and things get worse as the load factor increases.

Faced with the current network requirement that the packet
loss rate should be under 1% [43|], the number of slots required
to control the false positive probability under 1% is tested
with 0.5-, 1-, 1.5- and 2-million names. As illustrated in Fig.
9(b) and Table V, the hash functions require 50X more slots
than the input names, but Pyramid-NN only needs about 10X,
which makes memory much more efficient. As the number
of names increases, the performance of Pyramid-NN declines
slightly, for more outputs require Pyramid-NN to have better
prediction performance which can be done by increasing the
number of BPNNs or levels. However, for the 2 million names,
the two-level Pyramid-NN still performs much better than hash
functions, where it requires only 25% of the slots compared
to the hash functions.

B. Probability of False Positive

Fig. 10 shows the probability of false positive under differ-
ent load factors with 0.5 million names. Compared with the
hash functions, the false positive probability of Pyramid-NN
is much lower and the gap between the two increases further
as the load factor decreases. More detailed results are given in

TABLE V
NUMBER OF SLOTS REQUIRED: PYRAMID-NN VS. HASH FUNCTIONS
# of Names Pyramid-NN MD5 CityHash256 xxHash
500,000 4,000,000 25,000,000 26,000,000 26,000,000
1,000,000 9,000,000 50,000,000 51,000,000 51,000,000
1,500,000 17,000,000 76,000,000 75,000,000 75,000,000
2,000,000 26,000,000 100,000,000 102,000,000 102,000,000
TABLE VI

FALSE POSITIVE PROBABILITY: PYRAMID-NN VS. HASH FUNCTIONS

Load Factor Pyramid-NN  MDS5 CityHash256 xxHash

1 15.131%  36.783%  36.752%  36.812%

12 5224%  21309%  21.307%  21.371%

1/4 1.806%  11.547%  11.490%  11.537%

1/8 0.691% 5.999% 5.986% 6.003%

/16 0.314% 3.063% 3.053% 3.072%

1732 0.157% 1.560% 1.547% 1.548%

1/64 0.078% 0.774% 0.784% 0.749%

TABLE VII

NUMBER OF CLOCK CYCLES: PYRAMID-NN vs. HASH FUNCTIONS

# of Names Pyramid-NN MD5 CityHash256  xxHash
500,000  2.733 x 10° 2.683 x 10° 1.060 x 10° 2.269 x 108
1,000,000 5.176 x 10° 4.935 x 10° 1.952 x 10° 4.760 x 108
1,500,000 7.644 x 10° 7.167 x 10° 2.802 x 10° 7.031 x 108
2,000,000 10.188 x 10° 9.592 x 10° 3.665 x 10° 9.173 x 108

Table VI. When the load factor is 1/8, the probability of false
positive has been reduced to less than 1% for Pyramid-NN, but
still up to about 6% for the hash functions. The cause lies in
that Pyramid-NN achieves more uniform mapping compared
with the hash functions (also as illustrated in Fig. 8) which
means fewer conflicts and lower false positive probability.

C. Model Size

The model size is the size of all the model parameters that
need to be stored. As each BPNN consists of 5 input neurons,
20 hidden neurons and 1 output neuron, the weight and bias
matrix for input-to-hidden connections in one BPNN is 20 X
5 and 20 X 1 in size respectively, while for hidden-to-output
connections is 1 X 20 and 1 X 1. As all the model parameters
are double-precision floating points of 8 bytes, the size of one
BPNNis (20 x5+20x 1+1x20+1x1)x8B=1,128
B. Further, Pyramid-NN contains 1,001 BPNNs in total, so the
total size of Pyramid-NN is 1,128 B x 1,001 ~ 1.129 MB.

D. Execution Speed

The execution speed is tested against 0.5-, 1-, 1.5- and 2-
million names for Pyramid-NN and the hash functions. As
listed in Table VII, thanks to the small enough size of Pyramid-
NN, the number of clock cycles taken with 0.5-, 1-, 1.5- and
2-million names is only 2.733 x 10°, 5.176 x 10°, 7.644 x
10° and 10.188 x 10° respectively, which is an acceptable
high speed on the same order of magnitude as that of the hash
functions. Therefore, it is feasible to use Pyramid-NN in the



TABLE VIII
MEMORY CONSUMPTION (MB): LNI-FIB vS. OTHER INDEXES

600 | B B-MaFIB

400

# of Names LNI-FIB  Binary Patricia Trie-FIB  HT with MD5-FIB ~ HT with CityHash256-FIB ~ HT with xxHash-FIB ~ B-MaFIB
500,000 16.265
1,000,000 32.507
58.258 400.000 408.000 408.000 2,308.097
1,500,000 48.762
2,000,000 65.046
TABLE IX 2,000 |
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index design for NDN forwarding plane, which can satisfy the
current network requirements for fast packet processing.

VII. EVALUATION AND DISCUSSION

In the section, the performance of LNI-based FIB, called
LNI-FIB, is evaluated in terms of the memory consumption,
the probability of false positive and the throughput. These
results are compared with HT-FIB [66], the admitted efficient
Binary Patricia Trie-FIB [[16] and Bloom Filter-based B-
MaFIB [12].

A. Experimental Setup

The experimental setup and the dataset are the same as
described in Subsection IV(C). All the index schemes are
implemented in C++ for a fair comparison.

For LNI-FIB, it is composed of two LNIs [12]. The hyper-
parameter setting and generation of Pyramid-NN is the same
as described in Section IV, while the size of each slot in the
Enhanced Bitmap is set to 2 bytes. For Binary Patricia Trie-
FIB, one entry has 4 bytes which is a pointer to access the
memory storing actual packet information. For HT-FIB, it is
implemented with MD5, CityHash256 and xxHash as the hash
function respectively, while one entry also has 4 bytes. For B-
MaFIB, the size of Bloom filter is 22* bits and the size of MA
is 24 bits, while the size of each slot in the Bitmap is 2 bytes.

B. Memory Consumption

If the index can be stored in small and fast memories
(e.g., SRAM), the routers will easily complete fast packet
forwarding. To determine which indexes can be deployed
on SRAMs, the memory consumption of LNI-FIB, Binary
Patricia Trie-FIB, HT-FIB and B-MaFIB is compared and
analyzed. Given that LNI-FIB, HT-FIB and B-MaFIB are
static, the memory consumption of them is evaluated under
the condition of 1% false positive probability for all testing
sets. For Binary Patricia Trie-FIB, the memory consumption
of it is evaluated with different number of names.

As shown in Fig. 11, the memory consumption of LNI-
FIB is 58.258 MB, which is 10% less than that of Binary
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Fig. 11. Memory consumption (MB): LNI-FIB vs. other indexes.

Patricia Trie-FIB when the number of names is 2 million.
And as for HT-FIB and B-MaFIB, they map data to slots in
memory randomly and have a large number of conflicts which
result in more memory consumption to reduce the conflicts.
In contrast, compared with HT-FIB and B-MaFIB, the LNI-
FIB with higher memory utilization significantly decreases the
memory consumption by 85% and 97%, respectively.

More detailed results are given in Table VIII. The memory
consumption of LNI-FIB includes the model parameters of
Pyramid-NN and the slots in the Enhanced Bitmap. First,
the model parameters of Pyramid-NN consume 1.129 MB as
indicated in Subsection VI(C). Thus the memory consumption
of two Pyramid-NNs is 1.129 MB x 2 = 2.258 MB. Further,
under the condition of 1% false positive probability, the total
number of slots required in two Enhanced Bitmaps is 28-
million, which consume 56 MB. Consequently, the on-chip
memory consumption of LNI-FIB is 58.258 MB. As listed in
Table IX, a line card can be configured with four channels
of 32.187 MB single-chip SRAMs for a total of 128.746 MB
in size [16]. Table VIII shows the memory consumption in
megabytes, LNI-FIB can easily fit into contemporary SRAMs
in commercial line card, as the memory consumption of it is
less than 128.746 MB. In contrast, the memory consumption
of HT-FIB and B-MaFIB limits its deployment on SRAMs.

C. Probability of False Positive

Given the current network requirements that the packet loss
rate should be under 1% [43], the false positive probability
of LNI-FIB, HT-FIB and B-MaFIB with 32 million slots is
compared and analyzed in different number of names.

As shown in Fig. 12, the false positive probability of LNI-
FIB is 0.817% as the number of names is 2 million, which is
less than a third and a ninth of that of HT-FIB and B-MaFIB,



TABLE X
PROBABILITY OF FALSE POSITIVE: LNI-FIB VS. OTHER INDEXES

# of Names LNI-FIB HT with MDS5-FIB HT with CityHash256-FIB HT with xxHash-FIB B-MaFIB
500,000 0.078% 0.774% 0.784% 0.750% 2.371%
1,000,000 0.243% 1.553% 1.557% 1.560% 4.598%
1,500,000 0.488% 2.316% 2.319% 2.310% 6.795%
2,000,000 0.817% 3.061% 3.069% 3.080% 8.925%
TABLE XI
THROUGHPUT (MSPS): LNI-FIB vS. OTHER INDEXES
# of Names LNI-FIB  Binary Patricia Trie-FIB ~ HT with MD5-FIB  HT with CityHash256-FIB  HT with xxHash-FIB B-MaFIB
(SRAM) (SRAM) (DRAM) (DRAM) (DRAM) (SRAM + DRAM)
500,000 162.16 134.75 1.55 3.78 14.26 6.88
1,000,000 173.37 142.84 1.71 423 15.57 7.53
1,500,000 176.90 143.24 1.77 4.46 16.52 8.51
2,000,000 177.37 139.87 1.77 4.58 17.26 8.72

respectively. The reason is that LNI-FIB maps data to slots
more uniformly, but as for the other, the mapping is relatively
nonuniform and has a large number of conflicts.

More detailed results are given in Table X. The false positive
probability of LNI-FIB is approximately equal to 0.078%,
0.243%, 0.488% and 0.817% as the number of names is 0.5-,
1-, 1.5- and 2-million, which is lower than 1%, meeting the
current network requirements. In comparison, the false positive
probability of HT-FIB and B-MaFIB is much higher than that
of LNI-FIB.

D. Throughput

Faced with the current network requirement for fast packet
processing, the throughput in execution of LNPM is tested
against 0.5-, 1-, 1.5- and 2-million names for LNI-FIB, Binary
Patricia Trie-FIB, HT-FIB and B-MaFIB.

The comparison is shown in Fig. 13, LNI-FIB outperforms
the others in throughput due to the deployment on SRAMs.
For 2 million names, the throughput of LNI-FIB is 177.37
MSPS, which is about 26% more than that of Binary Patricia
Trie-FIB. The reason is that each traversing from one level to
the next one in Binary Patricia Trie-FIB requires one memory
access and that the average height of it is much higher than
traditional trie reduces its lookup speed. And compared with
HT-FIB and B-MaFIB, the throughput of LNI-FIB is about
100x%, 38, 10x and 20x more than that of HT with MDS5-
FIB, HT with CityHash256-FIB,HT with xxHash-FIB and B-
MaFIB respectively. Because HT-FIB and B-MaFIB have large
footprint, so that they have to be deployed on DRAM, which
significantly reduces its throughput. Thus, HT-FIB and B-
MaFIB cannot well meet the current network requirement for
packet processing.

More detailed experimental results are given in Table XI.
For 0.5-, 1-, 1.5- and 2-million names, the throughput of LNI-
FIB provides a higher throughput of about 162.16 MSPS,
173.37 MSPS, 176.90 MSPS and 177.37 MSPS, as multi-level
Pyramid-NN in LNI-FIB consists of simple BPNNs with small
size and can run in parallel, which can be executed fast in NDN
forwarding plane.
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Fig. 12. Probability of false positive: LNI-FIB vs. other indexes.
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Fig. 13. Throughput (MSPS): LNI-FIB vs. other indexes.

E. Discussion

As LNI can learn the distributions of name retrieved in the
static memory, LNI-FIB can reduce the memory consumption
and the probability of false positive to 58.258 MB and 0.817%
respectively for 2 million names. And because it can be
deployed on SRAMs, the throughput is about 177 MSPS,



which is much better than that of HT-FIB and B-MaFIB. More
importantly, LNI-FIB can adapt to the distributions of real
NDN names in the static memory by retraining with the names,
which will not only reduce the memory consumption and the
probability of false positive, but also ensure the performance
of real name lookup.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed a smart mapping model via neural net-
works called Pyramid-NN to learn the distributions of names
retrieved in the memory. Based on Pyramid-NN, an index
named LNI was proposed. Through learning the distributions
of the names retrieved in the static memory, LNI that will
be trained by real NDN names offline and preset in content
routers in the future can not only reduce the memory consump-
tion and the probability of false positive, but also ensure the
performance of real name lookup. The performance of LNI-
FIB is evaluated and the experimental results show that its
performance in terms of memory consumption, false positive
probability and throughput can be significantly improved by
utilizing neural network, which can meet the current network
requirement well for fast packet processing.

One promising future direction would be to extend this
design to the build of an engine running on multiple parallel
threads with real packets. And another is exploring more effi-
cient neural networks, which can not only realize the mapping
function, but also map the real NDN names dynamically.
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