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Utility Optimal Thread Assignment and Resource
Allocation in Multi-Server Systems
Pan Lai, Rui Fan, Xiao Zhang, Wei Zhang, Fang Liu, Joey Tianyi Zhou

Abstract—Achieving high performance in many multi-server
systems requires finding a good assignment of worker threads to
servers and also effectively allocating each server’s resources to its
assigned threads. The assignment and allocation components of
this problem have been studied extensively but largely separately
in the literature. In this paper, we introduce the assign and
allocate (AA) problem, which seeks to simultaneously find an
assignment and allocation that maximizes the total utility of
the threads. Assigning and allocating the threads together can
result in substantially better overall utility than performing the
steps separately, as is traditionally done. We model each thread
by a utility function giving its performance as a function of
its assigned resources. We first prove that the AA problem is
NP-hard. We then present a 2(

√
2 − 1) > 0.828 factor approx-

imation algorithm for concave utility functions, which runs in
O(mn2 +n(logmC)2) time for n threads and m servers with C
amount of resources each. We also give a faster algorithm with the
same approximation ratio and O(n(logmC)2) time complexity.
We then extend the problem to two more general settings. First,
we consider threads with nonconcave utility functions, and give a
1/2 factor approximation algorithm. Next, we give an algorithm
for threads using multiple types of resources, and show the
algorithm achieves good empirical performance. We conduct
extensive experiments to test the performance of our algorithms
on threads with both synthetic and realistic utility functions, and
find that they achieve over 92% of the optimal utility on average.
We also compare our algorithms with a number of practical
heuristics, and find that our algorithms achieve up to 9 times
higher total utility.

Keywords: Assignment and allocation; utility; algorithms;
multi-server systems; web hosting center; cloud

I. INTRODUCTION

In this paper, we study efficient ways to execute a set of
resource constrained worker threads on multiple servers. Our
problem consists of two steps. First, each thread is assigned
to a server. Subsequently, the resources at each server are
allocated to the threads assigned to it. Each thread obtains
a certain utility based on the resources it is allocated, which
is captured in the form of a utility function. The goal is to
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maximize, over all possible assignments and allocations, the
total utility of all the threads. We call this problem AA, for
assign and allocate.

The AA problem can model a range of system settings. One
example is a web hosting center, where a service provider op-
erates websites on behalf of customers. Incoming web requests
are serviced by threads which are run on center’s servers. As
requests have different characteristics, the performance of the
thread for each request depends on the amount of resources,
such as processing or memory, which the thread is allocated.
The goal of the service provider is to process the largest num-
ber of requests, and it does this by controlling both the servers
which threads are assigned to and the resources allocated to the
threads on each server, in a way which maximizes the overall
system performance. Another application of the AA problem
is in cloud computing. Clouds are a promising paradigm for
providing configurable computing resources to users. A cloud
provider sells virtual machine instances (corresponding to
threads in AA) running on physical machines (corresponding
to servers). Customers use utility functions to express their
willingness to pay for instances consuming different amounts
of resources, and the provider’s task is to assign and size the
virtual machines to maximize her profit (utility). As a final
application, consider a multicore processor, where each core
corresponds to a server offering its shared cache as a resource
to concurrently executing threads. Each thread is first bound to
a core, after which cache partitioning [4], [5] can enforce an
allocation of the core’s cache among the assigned threads. A
thread’s performance is often strongly dependent on its cache
allocation [5], [10], [31]. A scheduler tries to maximize overall
system performance through an efficient mapping of threads
to the cores and effectively partitioning of each core’s cache.

The two steps in AA correspond to the thread assignment
and resource allocation problems, both of which have been
studied extensively in the literature. However, to the best of
our knowledge, these problems have not been studied together
in the unified context considered in our work. Existing works
on resource allocation [4], [5], [10], [11], [12] largely deal
with dividing the resources on a single server among a given
set of threads. It is not clear how to apply these algorithms
when there are multiple servers, since there are many possible
ways to initially assign the threads to servers, and certain
assignments result in low overall performance regardless of
how resources are subsequently allocated. For example, if
there are two types of threads, one with high maximum utility
and one with low utility, then assigning all the high utility
threads to the same server will result in competition between
them and depressed overall utility no matter how resources
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are allocated. Likewise, existing works on thread assignment
[2], [3], [8], [9] often overlook the resource allocation aspect.
Typically in these works each thread requests a fixed amount
of resource. Once assigned to a server, a thread is allocated
precisely the resources it requested, without any adjustments
made based on the requests of other threads assigned to the
same server. This can also lead to suboptimal performance.
For example, consider a thread which obtains xβ utility when
allocated x amount of resource, for some β ∈ (0, 1)1, and
suppose the thread requests z > 0 resources. Then when there
are n threads and one server with C resources, typical thread
assignment algorithms would give C

z threads z resources
each while the rest receive 0, leading to a total utility of
Czβ−1; note that this quantity is constant in n. However, the
optimal allocation gives C

n resources to each thread and has
total utility Cβn1−β , which is arbitrarily better than the first
allocation for large n. To see this, consider an example of
C = 100, z = 10, β = 0.5, then the ratio between Cβn1−β

and Czβ−1 is
√

n
10 , which is arbitrarily large for large n.

The AA problem models each thread using a nondecreasing
utility function giving its performance as a function of the
resources it receives. In practice, many utility functions are
concave, capturing a frequently observed diminishing returns
property [5]. However, in certain settings, such as cache hit
rates for different amounts of cache allocation, the utility
function may also be nonconcave [10]. Furthermore, a thread’s
utility may sometimes depend on multiple types of resources.
The goal in AA is to simultaneously find assignments and
allocations for all the threads which maximizes their total
utility. To the best of our knowledge, we are the first to study
the two problems in a unified context. Our paper makes the
following contributions.

1) We show that the AA problem is NP-hard, even when
there are only two servers. In contrast, the problem is
efficiently solvable when there is a single server [12].

2) We present an approximation algorithm which achieves
at least α = 2(

√
2−1) > 0.828 times the optimal utility

for concave utility functions. The algorithm relates the
optimal solution of a single server problem to an approx-
imately optimal solution of the multiple server problem.
It runs in O(mn2 + n(logmC)2) time, where n and m
are the number of threads and servers, respectively, and
C is the amount of resource on each server. We also
present a faster algorithm with O(n(logmC)2) running
time and the same approximation ratio.

3) We also consider threads with nonconcave utility func-
tions, and present an algorithm with approximation
ratio 1

2 and running time O(snmCα(mC)(logmC)2),
where s is the maximum number of concave or convex
segments in each utility function, and α is the inverse
Ackermann function.

4) While the previous three algorithms consider utility
functions based on a single resource type, we also
present an algorithm for utility functions based on
multiple types of resources. We show that this algorithm
achieves good empirical performance.

1For β = 1
2

, this is known as the “square root rule” [6], [7].

5) We conduct extensive experiments to test the perfor-
mance of our algorithms. We use several types of
synthetic and realistic utility functions, and show that
our algorithms obtains over 92% of the maximum
utility on average. We also compare our algorithms
with several simple but practical heuristics, and show
that they achieve up to 9 times higher utility for very
heterogeneous threads.

The rest of paper is organized as follows. In Section II,
we describe related works on thread assignment and resource
allocation. Sections III formally defines our model and the AA
problem. Section IV proves AA is NP-hard. Section V presents
an approximation algorithm for concave utility functions and
its analysis, and Section VI proposes a faster algorithm.
Section VII presents and analyzes an algorithm for nonconcave
utility functions. In Section VIII, we describe our experimental
results. Section IX extends our proposed algorithms to multiple
resource types. Finally, Section X concludes and discusses
some future problems.

II. RELATED WORKS

There is a large body of work on resource allocation for
a single server. Fox et al. [11] considered concave utility
functions and proposed a greedy algorithm to find an optimal
allocation in O(nC) time, where n is the number of threads
and C is the amount of resource on the server. Galil [12]
proposed an improved algorithm with O(n(logC)2) running
time, by doing a binary search to find an allocation in which
the derivatives of all the threads’ utility functions are equal,
and the total resources used by the allocation is C. Resource
allocation for nonconcave utility functions is weakly NP-
complete. However, Lai and Fan [10] identified a structural
property of real-world utility functions which leads to fast
parameterized algorithms.

Our work is related to the application placement problem, in
which applications with different resource requirements need
to be mapped to servers while fulfilling certain quality of
service guarantees. Urgaokar et al. [2] proposed offline and
online approximation algorithms for application placement,
and the offline algorithm achieves a 1

2 approximation ratio.
[3] proposed algorithms to place web applications on servers
with the goal of maximizing the amount of demand which
can be satisfied. They model each thread using a single value
corresponding to a fixed amount of allocated resource, instead
of a utility function allowing a range of resource allocations
as our paper does.

The AA problem is also related to the multiple knapsack
and multiple-choice knapsack (MCKP) problems, for which
there has been a number of studies. For the former, Neebe et
al. [16] proposed a branch-and-bound algorithm, and Chekuri
et al. [17] proposed a polynomial time approximation scheme.
The multiple knapsack problem differs from AA in that each
item, corresponding to a thread, has a single weight and value,
corresponding to a single resource allocation and associated
utility. In contrast, we use utility functions which allow threads
a continuous range of allocations and utilities. The MCKP
problem can model utility functions as it considers classes
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of items with different weights and values and chooses one
item from each class; each class corresponds to a utility
function. However, MCKP only considers a single knapsack,
and thus corresponds to a restricted form of AA with one
server. Kellerer et al. [13] proposed a greedy MCKP algorithm.
Lawler [15] proposed a 1 − ε approximate algorithm, while
Gens and Levner [14] proposed a 4

5 approximate algorithm
with better running time. AA can be seen as a combined
multiple-choice multiple-knapsack problem. We are not aware
of any previous work on this problem. The model used in this
paper corresponds to the case where there are items for every
weight.

There has also been a large amount of work on resource
provisioning for cloud computing and data centers, which
are related to the multi-server setting we consider. [19], [20]
analyzed online bin packing algorithms for the problem of
dispatching cloud gaming requests to servers in order to
minimize total cost. Bobroff et al. [23] proposed a first-fit
heuristic which dynamically places virtual machines (VMs)
on physical machines to minimize the number of machines
required to support a workload at a specified allowable rate
of SLA violations. Jennings et al. [24] surveyed many virtual
machine placement schemes in clouds. These works typically
follow a bin packing formulation, whereas the AA problem
corresponds to a multiple-choice multiple knapsack problem.
Lampe et al. [26] proposed an auction scheme to allocate VMs
to users to maximize a provider’s profit. [27], [28] proposed
auction schemes to allocate VMs to users to maximize social
welfare. [27] focuses on the online problem while [28] focuses
on the offline problem. In auction schemes, each user submits
a bid stating their desired number of VM instances and their
maximum willingness to pay, and the system provider decides
whether to accept the users’ bids. Each user’s request for VMs
is allowed to be assigned to more than one physical machine.
However, in the AA problem, each thread can be assigned
to only one server. Tang et al. [18] proposed a policy to
allocate multiple resources to different users to achieve long-
term fairness, but do not consider how to assign the resource
requests to different servers as our paper does. Han et al. [30]
proposed an algorithm to schedule (offload) jobs on mobile
devices to edge servers to minimize the jobs’ response times
in edge-clouds. Wei et al. [29] proposed an online algorithm
to minimize cost for data centers with multiple servers and
randomly arriving service requests by determining the state of
each server among three types (i.e., active, idle and setup).
Han [25] proposed an approximate dynamic VM management
method to minimize power consumption in data centers. While
all these works have as a basic goal—an efficient usage of
servers and resources, they usually consider these aspects
separately, and also do not model thread performance using
utility functions.

III. MODEL

In this section we formally define our model and problem.
We consider a set of m homogenous servers s1, . . . , sm.
Each server has C > 0 amount of resources, where C is
a positive integer. We note that homogeneous servers, i.e.

servers with the same processing capabilities and available
resources, have been widely studied in the literature [2], [22]
and accurately model a number of scenarios. For example,
multicore processors typically contain shared caches of the
same size, and datacenters often have many identically con-
figured servers for ease of management. We also have n
threads t1, . . . , tn. The set of threads is static, to capture
threads performing long-running tasks. Let S and T denote
the set of servers and threads, respectively. Each thread ti is
associated with a utility function fi : [0, C] → Z≥0, giving
its performance as a function of the resources it is allocated.
We assume that fi is nonnegative and nondecreasing. We
also assume that fi is either concave, or consists of a set of
concave or convex segments. In the former case, the concavity
assumption models a diminishing returns property frequently
observed in practice [5], and is often used to model cache and
memory performance [6], [7]. The latter case of a nonconcave
function consisting of several concave or convex segments was
introduced in [10], and can be used to model an arbitrary
function f : [0, C]→ Z≥0. It was observed in [10] that most
utility functions f , despite being possibly nonconcave, consist
of a small number s of segments [0, b1], (b1, b2], . . . , (bs−1, C],
such that f is either concave or convex in each segment
(bi, bi+1]. Examples of such functions include cache hit rate
functions from the SPEC CPU benchmarks, such as aspi or
swim.

Our goal is to assign the threads to the servers in a
way which respects the resource bounds and maximizes the
total utility. While a solution to this problem involves both
an assignment of threads and allocations of resources, for
simplicity we use the term assignment to refer to both. Thus,
an assignment is given by a vector [(r1, c1), . . . , (rn, cn)],
indicating that each thread ti is allocated ci amount of resource
on server sri . Let Sj be the set of threads assigned to server
sj . That is, Sj = {i | ri = j}. Then for all 1 ≤ j ≤ m, we
require

∑
i∈Sj

ci ≤ C, so that the threads assigned to sj use
at most C resources. We assume that every thread is assigned
to some server, even if it receives 0 resources on the server.
The total utility from an assignment is

∑m
j=1

∑
i∈Sj

fi(ci) =∑
i∈T fi(ci). The AA (assign and allocate) problem is to find

an assignment that maximizes the total utility.

IV. HARDNESS OF THE PROBLEM

In this section, we show that it is NP-hard to find an
assignment maximizing the total utility, even when there are
only two servers and the utility functions are all concave. Thus,
it is unlikely there exists an efficient optimal algorithm for the
AA problem. This motivates the approximation algorithms we
present in Sections V and VI.

Theorem IV.1. Finding an optimal AA assignment is NP-hard,
even when there are only two servers and all threads have
concave utility functions.

Proof. We give a reduction from the NP-hard partition prob-
lem [21] to the concave AA problem with two servers. In
the partition problem, we are given a set of numbers S =
{c1, . . . , cn} and need to determine if there exists a partition of
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S into sets S1 and S2 such that
∑
i∈S1

ci =
∑
i∈S2

ci. Given
an instance of partition, we create an AA instance A with
two servers each with C = 1

2

∑n
i=1 ci amount of resources.

There are n threads t1, . . . , tn, where the i’th thread has utility
function fi defined by

fi(x) =

{
x if x ≤ ci
ci otherwise

The fi functions are nondecreasing and concave. We claim
the partition instance has a solution if and only if A’s
maximum utility is

∑n
i=1 ci. For the if direction, let A∗ =

[(r∗1 , c
∗
1), . . . , (r

∗
n, c
∗
n)] denote an optimal solution for A, and

let S1 and S2 be the set of threads assigned to the servers 1
and 2, respectively. We show that S1, S2 solve the partition
problem. We first show that c∗i = ci for all i. Indeed, if
c∗i < ci for some i, then fi(c∗i ) < ci, while fj(c∗j ) ≤ cj , for all
j 6= i. Thus,

∑n
j=1 fj(c

∗
j ) <

∑n
j=1 cj , which contradicts the

assumption that A∗’s utility is
∑n
j=1 cj . Next, suppose c∗i > ci

for some i. Then since A∗ is a valid assignment, we have∑
i∈S1

c∗i +
∑
i∈S2

c∗i ≤ C+C =
∑n
i=1 ci, and so there exists

j 6= i such that c∗j < cj . But then fj(c∗j ) < cj and fk(c∗k) ≤ ck
for all k 6= j, so A∗’s total utility is

∑n
k=1 fk(c

∗
k) <

∑n
i=1 ci,

again a contradiction. Thus, we have c∗i = ci for all i, and so∑
i∈S1

c∗i+
∑
i∈S2

c∗i =
∑n
i=1 ci = 2C. So, since

∑
i∈S1

c∗i ≤
C and

∑
i∈S2

c∗i ≤ C, then
∑
i∈S1

c∗i =
∑
i∈S2

c∗i = C.
Hence,

∑
i∈S1

ci =
∑
i∈S2

ci = C, and S1, S2 solve the
partition problem.

For the only if direction, suppose S1, S2 are a solution to
the partition instance. Then since

∑
i∈S1

ci =
∑
i∈S2

ci = C,
we can assign the threads with indices in S1 and S2 to servers
1 and 2, respectively, and get a valid assignment with utility∑n
i=1 fi(ci) =

∑n
i=1 ci. This is a maximum utility assignment

for A, since fi(x) ≤ ci for all i. Thus, the partition problem
reduces to the AA problem, and so the latter is NP-hard for
two servers.

V. APPROXIMATION ALGORITHM FOR CONCAVE
FUNCTIONS

In this section, we present an algorithm for the AA problem
when the utility function for each thread is concave. The
algorithm outputs an assignment with total utility at least
α = 2(

√
2 − 1) > 0.828 times the optimal, and runs in

O(mn2 + n(logmC)2) time. The algorithm consists of two
main steps. The first step transforms the utility functions,
which are arbitrary nondecreasing concave functions and dif-
ficult to work with algorithmically, into functions consisting
of two linear segments, which are easier to handle. Next, we
find an α-approximate thread assignment for the linearized
functions. We then show that this leads to an α approximate
solution for the original concave problem. For ease of exposi-
tion, we list the notations used in the remainder of the paper
in Table I.

A. Linearization
To describe the linearization procedure, we start with the

following definition.

TABLE I
LIST OF NOTATIONS

Notations Definitions
n Number of all threads
m Number of all servers
S Set of all threads
T Set of all threads
C Each server’s resource capacity
fi Original utility function of thread ti
gi Utility function of thread ti after linearization
ri Assignment of thread ti
ci Resource allocation of thread ti
ĉi Super-optimal resource allocation of thread ti
E Set of unfull threads
D Set of full threads
γ Maximum super-optimal utility of threads in E
G Total utility at the linear problem
F Total utility at the original problem
F ∗ Optimal total utility at the original problem
F̂ Super-optimal utility
α 2(

√
2− 1)

fi(x) gi(x)

x
C0

Fig. 1. Illustration of linearization of fi(x) to gi(x).

Definition V.1. Given an instance A of the AA problem with
m servers each with C amount of resources, and n threads
with utility functions f1, . . . , fn, consider the quantity

F̂ = max
ci,i∈[1,n]

n∑
i=1

f(ci)

subject to
∑n
i=1 ci ≤ mC. Let ĉ1, . . . , ĉn be values for

c1, . . . , cn, respectively, which achieve the optimum F̂ . Then
we call F̂ =

∑n
i=1 fi(ĉi) the super-optimal utility of A, and

ĉ1, . . . , ĉn the super-optimal allocation for A.

To motivate the above definition, note that for any valid
assignment [(r1, c1), . . . , (rn, cn)] for A, we have

∑
i=1 ci ≤

mC. Therefore, the utility of the assignment
∑n
i=1 fi(ci) is at

most F̂ . Let F ∗ denote A’s maximum utility. Then we have
the following.

Lemma V.2. F ∗ ≤ F̂ .

Thus, to find an α approximate solution to A, it suffices to
find an assignment with total utility at least αF̂ . We note that
the problem of finding F̂ and the associated super-optimal
allocation can be solved in O(n(logmC)2) time using the
algorithm from [12], since the fi functions are concave. Also,
since these functions are nondecreasing, we have the following
basic property.
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TABLE II
EXAMPLE EXECUTION OF ALGORITHM 1

Loop index (i, j) Allocation Assignment R C1 C2

Loop 1 (4,1) c4 = 6 r4 = 1 {1,2, 3} 1 7
Loop 2 (2,2) c2 = 3 r2 = 2 {1,3} 1 3
Loop 3 (3,2) c3 = 3 r3 = 2 {1} 1 1
Loop 4 (1,1) c1 = 1 r1 = 1 ∅ 0 1

Lemma V.3.
∑n
i=1 ĉi = mC.

In the remainder of this section, fix A to be an AA problem
consisting of m servers with C resources each and n threads
with utility functions f1, . . . , fn. Let [ĉ1, . . . , ĉn] be a super-
optimal allocation for A computed as in [12]. We define the
linearized version of A to be another AA problem B with the
same set of servers and threads, but where the threads have
piecewise linear utility functions g1, . . . , gn defined by

gi(x) =

{
fi(ĉi)

x
ĉi

if x < ĉi

fi(ĉi) otherwise
(1)

Figure 1 shows how fi(x) is linearized to gi(x). The blue
curve is fi(x) and the red curve is gi(x). We first prove the
following basic property.

Lemma V.4. For any i ∈ T and x ∈ [0, C], fi(x) ≥ gi(x).

Proof. For x ∈ [0, ĉi], we have

fi(x) ≥ ĉi − x
ĉi

fi(0) +
x

ĉi
fi(ĉi)

≥ gi(x),

where the first inequality follows because fi is concave, and
the second inequality follows because fi(0) ≥ 0. Also, for
x > ĉi, fi(x) ≥ fi(ĉi) = gi(x). Hence, the lemma holds.

Lemma V.4 implies that to find an assignment with total
utility at least αF̂ at Problem A, it suffices to find an
assignment with total utility at least αF̂ at the linearized
problem.

B. Approximation algorithm for linearized problem
We now describe an α approximation algorithm for the

linearized problem. The pseudocode is given in Algorithm
1. The algorithm takes as input a super-optimal allocation
[ĉ1, . . . , ĉn] for A and the resulting linearized utility functions
g1, . . . , gn, as described in Section V-A. Variable Cj represents
the amount of resource left on server j, and R is the set of
unassigned threads. The outer loop of the algorithm runs until
all threads in R have been assigned. During each iteration,
U is the set of (thread, server) pairs such that the server has
at least as much remaining resource as the thread’s super-
optimal allocation. If any such pairs exist, then in line 6 we
find a thread in U with the greatest utility using its super-
optimal allocation. Otherwise, in line 9 we find a thread that
can obtain the greatest utility using the remaining resources
of any server. In both cases we assign the thread in line 12
to a server giving it the greatest utility. Lastly, we update the
server’s remaining resources accordingly.

Algorithm 1
Input: Super-optimal allocation [ĉ1, . . . , ĉn], and g1, . . . , gn as de-

fined in Equation 1

1: Cj ← C for j = 1, . . . ,m
2: R← {1, . . . , n}
3: while R 6= ∅ do
4: U ← {(i, j) | (i ∈ R) ∧ (1 ≤ j ≤ m) ∧ (ĉi ≤ Cj)}
5: if U 6= ∅ then
6: (i, j)← argmax(i,j)∈U gi(ĉi)
7: ci ← ĉi
8: else
9: (i, j)← argmaxi∈R,1≤j≤m gi(Cj)

10: ci ← Cj

11: end if
12: ri ← j
13: R← R− {i}
14: Cj ← Cj − ci
15: end while
16: return (r1, c1), . . . , (rn, cn)

1) An example execution: We first give a simple example
to illustrate Algorithm 1. Suppose there are 2 servers, 4
threads, and each server has C = 7 units of resource. Let
ĉ1 = 2, ĉ2 = 3, ĉ3 = 3, ĉ4 = 6, f1(ĉ1) = 3, f2(ĉ2) =
6, f3(ĉ3) = 4 and f4(ĉ4) = 7. Then g1(ĉ1) = 3, g2(ĉ2) =
6, g3(ĉ3) = 4, g4(ĉ4) = 7. Table II shows how Algorithm
1 produces the assignment and allocation for the linearized
problem. The algorithm runs for n = 4 iterations. In each
iteration, the column labeled (i, j) shows the (thread, server)
pair which increases the overall utility by the largest amount,
as in Line 6, 9 of Algorithm 1, column Allocation shows
the final allocation of the thread in the pair, and column
Assignment shows the final assignment of the thread in the
pair. Initially C1 = 7, C2 = 7, and R = {1, 2, 3, 4}. In the first
iteration, U consists of all (thread, server) pairs. The pair (4,1)
results in the largest utility increase of 7. Thus, (i, j) = (4, 1)
in line 6 and the algorithm assigns thread t4 to server s1 in
line 13. It allocates 6 units of resource on server s1 to t4 in
line 7, sets R = {1, 2, 3}, C1 = 1 and leaves C2 unchanged.
In the second iteration, U = {(1, 2), (2, 2), (3, 2)} in line 4,
in the third iteration U = {(3, 2)}, and in the fourth iteration
U = ∅, after which the algorithm terminates.

C. Analyzing the linearized algorithm
We now analyze the quality of the assignment produced

by Algorithm 1. We first define some notations. Let D =
{i ∈ T | ci = ĉi} be the set of threads whose allocation in
Algorithm 1 equals its super-optimal allocation, and let E =
T −D be the remaining threads. We say the threads in D are
full, and the threads in E are unfull. Note that full threads are
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the ones computed in line 6, and unfull threads are computed
in line 9.

The full threads have the same utility in the super-optimal
allocation and the allocation produced by Algorithm 1. Thus,
to show Algorithm 1 achieves a good approximation ratio it
suffices to show the utilities of the unfull threads in Algorithm
1 are sufficiently large compared to their utilities in the super-
optimal allocation. We first show some basic properties about
the unfull threads.

Lemma V.5. At most one thread from E is assigned to any
server.

Proof. Suppose for contradiction there are two threads ta, tb
with a, b ∈ E assigned to a server sk, and assume that ta was
assigned before tb. Consider the time of tb’s assignment, and
let Sj denote the set of threads assigned to a server sj . We have∑
i∈Sk

ci = C, because a ∈ E, and so ta was allocated all of
sk’s remaining resources in lines 10 and 14 of Algorithm 1.
Also,

∑
i∈Sj

ci = C for any j 6= k. Indeed, if
∑
i∈Sj

ci < C
for any j 6= k, then sj has more remaining resources than sk,
and so tb would be assigned to sj instead of sk because it
can obtain more utility. Thus, together we have that when tb
is assigned,

∑
i∈T ci ≥

∑m
j=1

∑
i∈Sj

ci = mC. Now, ci ≤ ĉi
for all i ∈ T . Also, since a, b ∈ E, then ca < ĉa and cb <
ĉb. Thus, we have

∑
i∈T ĉi >

∑
i∈T ci ≥ mC, which is a

contradiction because
∑
i∈T ĉi = mC by Lemma V.3.

Lemma V.6. |E| ≤ m− 1.

Proof. Lemma V.5 implies that |E| ≤ m, so it suffices to
show |E| 6= m. Assume for contradiction |E| = m. Then by
Lemma V.5, for each server sk there exists a thread ta, a ∈ E
assigned to sk. ta receives all of sk’s remaining resources,
and so

∑
i∈Sk

ci = C after its assignment. Then after all m
threads in E have been assigned, we have

∑
i∈T ci = mC.

But since ca < ĉa for all a ∈ E, and ci ≤ ĉi for all i ∈ T , we
have

∑
i∈T ĉi >

∑
i∈T ci = mC, which is a contradiction.

Thus, |E| 6= m and the lemma follows.

The next lemma shows that the total resources allocated to
the unfull threads in Algorithm 1 is not too small compared
to their super-optimal allocation. We first briefly outline the
main proof idea. Note that some servers may have unallocated
resources after Algorithm 1 terminates, since there may be
some unfull threads which do not get their super-optimal
allocations. Let Ds be the set of servers containing only
full threads after Algorithm 1 terminates, and let Es be the
remaining servers containing some unfull threads. Recall that
Cj represents the unallocated resources in a server j. Then
for any thread i ∈ E and any server j ∈ Ds, we have
ci ≥ Cj , because in each iteration of thread assignment we
assign a thread to a server giving it the largest utility. Thus,
we can show

∑
i∈E ci∑

i∈E ci+
∑

j∈Ds Cj
≥ |E|
|E|+|Ds| . Also, we can

show
∑
i∈E ci+

∑
j∈Ds Cj =

∑
i∈E ĉi. Additionally, the total

number of unfull threads and unfull servers (i.e. |E| + |Ds|)
is equal to the total number of servers m, since each unfull
thread is distributed to a different server in Es. From this,
we can derive that

∑
i∈E ci∑
i∈E ĉi

≥ |E|m , as stated in the following
lemma.

Lemma V.7.
∑
i∈E ci ≥

|E|
m

∑
i∈E ĉi.

Proof. We first partition the servers into sets U and V , where
U = {j ∈ S |Sj ⊆ D} is the set of servers containing only
full threads, and V = S − U are the servers containing some
unfull threads. Let Cj = C −

∑
i∈Sj

ci be the amount of
unused resources on a server sj at the end of Algorithm 1.
Then Cj = 0 for all j ∈ V , since the unfull thread in Sj was
allocated all the remaining resources on sj . So, we have∑

j∈U
Cj =

∑
j∈S

Cj =
∑
j∈S

(C −
∑
i∈Sj

ci)

= mC −
∑
i∈T

ci,

and so ∑
i∈T

ci = mC −
∑
i∈U

Cj . (2)

Next, we have∑
i∈T

ci =
∑
i∈D

ĉi +
∑
i∈E

ci

= mC −
∑
i∈E

ĉi +
∑
i∈E

ci.

The first equality follows because ci = ĉi for i ∈ D, and the
second equality follows because D ∪ E = T and

∑
i∈T ĉi =

mC. Combining this with the earlier expression for
∑
i∈T ci

in Equation 2, we have

mC −
∑
i∈U

Cj = mC −
∑
i∈E

ĉi +
∑
i∈E

ci, (3)

and so ∑
i∈E

ci +
∑
i∈U

Ci =
∑
i∈E

ĉi. (4)

Now, assume for contradiction that
∑
i∈E ci <

|E|
m

∑
i∈E ĉi.

Then by Equation 4 we have∑
i∈U

Ci >
m− |E|
m

∑
i∈E

ĉi. (5)

We have |V | = |E|, since by Lemma V.5 each server in V
contains only one unfull thread. Thus |U | = m− |V | = m−
|E|. Using this in Equation 5, we have that there exists an
j ∈ U with

Cj ≥
1

|U |
∑
i∈U

Ci >
1

m

∑
i∈E

ĉi. (6)

We claim that for all i ∈ E, j ∈ U , ci ≥ Cj . Indeed, suppose
ci < Cj for some i. But since Cj > ci, ti should be allocated
to sj because it can obtain greater utility on sj than its current
server, which is a contradiction. Thus, ci ≥ Cj for all i ∈ E.
Using this and Equation 6, we have∑

i∈E
ci ≥

∑
i∈E

Cj = |E|Cj >
|E|
m

∑
i∈E

ĉi

However, this contradicts the assumption that
∑
i∈E ci <

|E|
m

∑
i∈E ĉi. Thus, the lemma follows.

Let γ = maxi∈E gi(ĉi) be the maximum super-optimal
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utility of any thread in E. The following lemma says that
all of the first m threads assigned by Algorithm 1 are given
their super-optimal allocations and have utility at least γ.

Lemma V.8. Let ti be one of the first m threads assigned by
Algorithm 1. Then i ∈ D and gi(ci) ≥ γ.

Proof. To show i ∈ D, note that the m servers all had C
resource at the start of Algorithm 1, and fewer than m threads
were assigned before ti. So when ti was assigned, there was
at least one server with C resource. Then ti can obtain ĉi
resource on one of these servers, and so i ∈ D.

To show gi(ci) ≥ γ, suppose the opposite, and let j ∈ E be
such that gj(ĉj) = γ. Since ĉj ≤ C, and since in ti’s iteration
there was some server with C resource, then in that iteration
Algorithm 1 would have obtained greater utility by assigning
tj instead of ti, which is a contradiction. Thus, gi(ci) ≥ γ.

Lemma V.8 implies there are at least m threads in D, and
so we have the following.

Corollary V.9.
∑
i∈D gi(ci) ≥ mγ.

The next lemma shows that for the threads in E, threads
with higher slopes in the nonconstant portion of their utility
functions are allocated more resources.

Lemma V.10. For any two threads i, j ∈ E, if gi(ĉi)ĉi
>

gj(ĉj)
ĉj

,
then ci ≥ cj .

Proof. Suppose for contradiction ci < cj , and suppose first
that ti was assigned before tj . Then when ti was assigned,
there was at least one server with cj or more remaining
resources. We have ĉi > cj , since otherwise ti can be allocated
ĉi resources, so that i 6∈ E. Now, since ĉi > cj > ci, then ti
could obtain greater utility by being allocated cj instead of ci
amount of resources. This is a contradiction.

Next, suppose tj was assigned before ti. Then when tj
was assigned, there was a server with at least cj amount of
resources. Again, we have ĉi > cj . Indeed, otherwise we have
ĉi ≤ cj , and ĉj > cj since j ∈ E, and so ti can be allocated
its super-optimal allocation while tj cannot. But Algorithm
1 prefers in line 4 to assign threads that can receive their
super-optimal allocations, and so it would assign ti before tj ,
a contradiction. Thus, ĉi > cj . However, this means that in
the iteration in which tj was assigned, ti can obtain greater
utility than tj , since gi(cj) = cj

gi(ĉi)
ĉi

> cj
gj(ĉj)
ĉj

= gj(cj),
where the first equality follows because ĉi > cj , the inequality
follows because gi(ĉi)

ĉi
>

gj(ĉj)
ĉj

, and the second equality
follows because ĉj > cj . Thus, ti would be assigned before
tj , a contradiction. The lemma thus follows.

The following facts are used in later parts of the proof. Facts
V.11 and V.12 follow by simple manipulation, while Fact V.13
follows from the Cauchy-Schwarz inequality, and Fact V.14 is
Chebyshev’s sum inequality.

Fact V.11. Given a, a′, b, c > 0 and a ≥ a′, b ≤ c, we have
a+b
a+c ≥

a′+b
a′+c .

Fact V.12. Given a, a′, b, b′ > 0, if a
a′ ≤

b
b′ , then a

a′ ≤
a+b
a′+b′ ≤

b
b′ .

Fact V.13. Given a1, . . . , an > 0, we have
(
∑n
i=1 ai)(

∑n
i=1

1
ai
) ≥ n2.

Fact V.14. Given a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥
bn, we have

∑n
i=1 aibi ≥ ( 1n

∑n
i=1 ai)(

∑n
i=1 bi).

We now state a lower bound on a certain function that will
be used in later parts of the proof.

Lemma V.15. Let A, d > 0, and 0 < a1 ≤ a2 . . . ≤ an. Also,
let β =

A+
∑n

i=1 aizi
A+

∑n
i=1 zi

, where each zi ∈ [0, d]. Then

β ≥ min
j=1,...,n

(
A+

∑j
i=1 aid

A+ jd
, 1

)

Proof. If a1 ≥ 1, then Fact V.12 implies that β ≥ 1, and the
lemma holds. Otherwise, suppose a1 < 1. Then differentiating
β with respect to z1, we get

β′(z1) =
(a1 − 1)A+

∑n
i=2(a1 − ai)zi

(A+
∑n
i=1 zi)

2

Since a1 ≤ a2 . . . ≤ an and a1 < 1, we have β′(z1) < 0.
Thus, β(z1) is minimized for z1 = d, and we have

β ≥
A+ a1d+

∑n
i=2 aizi

A+ d+
∑j
i=2 zi

To simplify this expression, suppose first that A+a1d
A+d ≤ a2.

Then we have

β ≥
A+ a1d+

∑n
i=2 aizi

A+ d+
∑n
i=2 zi

≥ A+ a1d

A+ d
.

The second inequality follows because a2 ≤ . . . ≤ an and
by Fact V.12. Thus, the lemma is proved. Otherwise, (A +
a1d)/(A+ d) > a2, and so

A+ a1d+
∑n
i=2 aizi

A+ d+
∑n
i=2 zi

≥
A+ a1d+ a2d+

∑n
i=3 aizi

A+ 2d+
∑n
i=3 zi

We can simplify the latter expression in a way similar to
above, based on whether (A + a1d + a2d)/(A + 2d) ≤ a3.
Continuing this way, if we stop at the j’th step, then β ≥
(A+

∑j
i=1 aid)/(A+ jd). Otherwise, after the n’th step, we

have β ≥ (A+
∑n
i=1 aid)/(A+nd). In either case, the lemma

holds.

Since for i ∈ E, ĉi > ci and by definition of g, we have
g(ci) =

gi(ĉi)
ĉi

ci for i ∈ E. Algorithm 1 produces an allocation
c1, . . . , cn with total utility G =

∑
i∈D gi(ĉi)+

∑
i∈E

gi(ĉi)
ĉi

ci.
We now prove that this allocation is an α approximation to
the super-optimal utility F̂ =

∑
i∈T fi(ĉi).

Lemma V.16. G ≥ αF̂ , where α = 2(
√
2− 1) > 0.828.

Proof. We have F̂ =
∑
i∈T fi(ĉi) =

∑
i∈T gi(ĉi) by the
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definition of the gi. Thus,

G

F̂
=

∑
i∈D gi(ĉi) +

∑
i∈E

gi(ĉi)
ĉi

ci∑
i∈D gi(ĉi) +

∑
i∈E gi(ĉi)

≥
mγ +

∑
i∈E

gi(ĉi)
ĉi

ci

mγ +
∑
i∈E gi(ĉi)

≥
mγ +

(∑
i∈E ci/|E|

)∑
i∈E

gi(ĉi)
ĉi

mγ +
∑
i∈E gi(ĉi)

≥
mγ +

(∑
j∈E ĉj/m

)∑
i∈E

gi(ĉi)
ĉi

mγ +
∑
i∈E gi(ĉi)

Recall that γ = maxi∈E gi(ĉi). To obtain the first inequality,
we have

∑
i∈D gi(ĉi) ≥ mγ by Corollary V.9 and the fact

that ĉi = ci for all i ∈ D. Also, we have
∑
i∈E

gi(ĉi)
ĉi

ci ≤∑
i∈E gi(ĉi), since ĉi ≥ ci for all i ∈ E. Thus, we can

apply Fact V.11 to the first and second expressions above,
letting

∑
i∈D gi(ĉi) play the role of a,

∑
i∈E

gi(ĉi)
ĉi

ci play
the role of b,

∑
i∈E gi(ĉi) play the role of c, mγ play the

role of a′. The second inequality follows because by Lemma
V.10, threads i ∈ E with larger values of gi(ĉi)

ĉi
also have

larger values of ci. Thus, we can apply Fact V.14 to bring
the term

∑
i∈E ci/|E| outside the sum

∑
i∈E

gi(ĉi)
ĉi

ci. The
last inequality follows because of Lemma V.7. Now, assume
WLOG that the elements in E are ordered by nonincreasing
value of ĉi, so that 1

ĉ1
≤ 1

ĉ2
≤ . . . ≤ 1

ĉ|E|
. Let Ei denote

the first i elements of E in this order. For any i ∈ E, we
have gi(ĉi) ∈ [0, γ]. Thus, applying Lemma V.15 to the last
expression above, letting gi(ĉi) play the role of zi and

∑
j∈E ĉj

mĉi
play the role of ai, and noting G

F̂
≤ 1, we have

G

F̂
≥ min

i=1,...,|E|

mγ +
(∑

j∈E ĉj/m
)∑

j∈Ei

γ
ĉj

mγ + iγ


≥ min

i=1,...,|E|

m+ 1
m

(∑
j∈Ei

ĉj

)(∑
j∈Ei

1
ĉj

)
m+ i


≥ min

i=1,...,|E|

(
m+ i2

m

m+ i

)

The second inequality follows by simplification and because∑
j∈E ĉj ≥

∑
j∈Ei

ĉj for any i. The last inequality follows
by Fact V.13. It remains to lower bound the final expression.
Recall |E| ≤ m − 1 by Lemma V.6. Treating i as a real
value and taking the derivative with respect to i, we find the
minimum value is obtained at i = (

√
2 − 1)m, for which

G
F̂
≥ 2(
√
2− 1) = α. Thus, the lemma is proved.

D. Solving the concave problem
To solve the original AA problem with concave utility

functions f1, . . . , fn, we run Algorithm 1 on the linearized
problem to obtain an allocation c1, . . . , cn, then simply output
this as the solution to the concave problem. The total utility
of this solution is F =

∑
i∈T fi(ci). We now show this is an

α approximation to the optimal utility F ∗.

Theorem V.17. F ≥ αF ∗, and Algorithm 1 achieves an α
approximation ratio.

Proof. We have F =
∑
i∈T fi(ci) ≥

∑
i∈T gi(ci) ≥ αF̂ ≥

αF ∗, where the first inequality follows because fi(ci) ≥ gi(ci)
by Lemma V.4, the second inequality follows by Lemma V.16,
and the last inequality follows by Lemma V.2. Hence, the
theorem is proved.

Next, we give a simple example that shows our analysis of
Algorithm 1 is nearly tight.

Theorem V.18. There exists an instance of AA where Algo-
rithm 1 achieves 5

6 > 0.833 times the optimal total utility.

Proof. Consider 3 threads, and 2 servers each with 10 units
of resource. Let

f1(x) =

{
1
5x if x ∈ [0, 5]

1 if x > 5.

Also, let f2(x) = 1
10x. Suppose the first two threads both have

utility functions f1, and the third thread has utility function
f2. The super-optimal allocation is [ĉ1, ĉ2, ĉ3] = [5, 5, 10].
Algorithm 1 may assign threads 1 and 2 to different servers,
with 5 units of resource each, then assign thread 3 to server 1
with 5 units of resource. This has a total utility of 2 1

2 . On the
other hand, the optimal assignment is to put threads 1 and 2
on server 1 and thread 3 on server 2. This has a utility of 3.
Thus, the ratio between the total utility achieved by Algorithm
1 and the optimal utility is 5

6 > 0.833. Hence, the theorem is
proved.

Lastly, we analyze Algorithm 1’s time complexity.
Theorem V.19. Algorithm 1 runs in O(mn2 + n(logmC)2)
time.

Proof. Computing the super-optimal allocation takes
O(n(logmC)2) time using the algorithm in [12]. Then the
algorithm runs n loop iterations, where in each iteration it
computes the set U with O(mn) elements. Thus, the theorem
follows.

VI. A FASTER ALGORITHM FOR CONCAVE FUNCTIONS

In this section, we present a faster approximation algorithm
for concave utility functions that achieves the same approxi-
mation ratio as Algorithm 1 in O(n(logmC)2) time.

Remark: Since the faster approximation algorithm has the
same approximation ratio as Algorithm 1 and lower time
complexity, one may wonder why not omit Algorithm 1 and
present the faster algorithm directly. Indeed, Algorithm 1 is
the starting point of the faster algorithm, and more natural
to understand. By analyzing Algorithm 1, we find some
important properties as shown in Section V-C that result in
the approximation ratio. We propose the faster algorithm by
improving Algorithm 1’s time complexity while keeping these
properties.

A. Algorithm description

The pseudocode of the faster approximation algorithm is
shown in Algorithm 2. The algorithm also takes as input a
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TABLE III
EXAMPLE EXECUTION OF ALGORITHM 2

Loop index j Allocation Assignment C1 C2

Loop 1 (i = 1) 1 c1 = 6 r1 = 1 1 7
Loop 2 (i = 2) 2 c2 = 3 r2 = 2 1 4
Loop 3 (i = 3) 2 c3 = 2 r3 = 2 1 2
Loop 4 (i = 4) 2 c4 = 2 r4 = 2 1 0

super-optimal allocation ĉ1, . . . , ĉn, which we compute as in
Section V-A. It sorts the threads in nonincreasing order of
gi(ĉi). It then takes threads m + 1 to n in this ordering, and
sorts them again, this time in nonincreasing order of gi(ĉi)/ĉi.
Next, it initializes C1, . . . , Cm to C, and stores them in a max
heap H . Cj represents the amount of remaining resources on
server j. The main loop of the algorithm iterates through the
threads in order. Each time it chooses the server with the most
remaining resources, allocates the minimum of the thread’s
super-optimal allocation and the server’s remaining resources
to it, and assigns the thread to the server. Then H is updated
accordingly.

Algorithm 2
Input: Super-optimal allocation [ĉ1, . . . , ĉn], and g1, . . . , gn as de-

fined in Equation 1

1: Sort threads in nonincreasing order of gi(ĉi) as t1, . . . , tn
2: Sort tm+1, . . . , tn in nonincreasing order of gi(ĉi)/ĉi
3: Cj ← C for j = 1, . . . ,m
4: Store C1, . . . , Cm in a max-heap H
5: for i = 1, . . . , n do
6: j ← argmax1≤j≤m Cj

7: ci ← min(ĉi, Cj)
8: Cj ← Cj − ci, and update H
9: ri ← j

10: end for
11: return (r1, c1), . . . , (rn, cn)

1) An example execution: We show a simple example
execution to illustrate Algorithm 2. We consider the same
setup as the example for Algorithm 1, namely with m =
2, n = 4, C = 7, ĉ1 = 2, ĉ2 = 3, ĉ3 = 3, ĉ4 = 6, g1(ĉ1) =
3, g2(ĉ2) = 6, g3(ĉ3) = 4, g4(ĉ4) = 7. Table III shows how
Algorithm 2 produces the assignment and allocation of the
linearized problem. Initially, the threads are sorted in order
t4, t2, t1, t3 in lines 1 and 2. For presentation purposes, we
reindex the threads as t1, t2, t3, t4. In other words, the newly
indexed threads have ĉ1 = 6, ĉ2 = 3, ĉ3 = 2, ĉ4 = 3,
g1(ĉ1) = 7, g2(ĉ2) = 6, g3(ĉ3) = 4, g4(ĉ4) = 7. C1, C2 are
initially 7, and the algorithm runs for 4 iterations. As shown
in the table III, in each iteration, the column labeled j shows
the index of the server with the maximum remaining resource,
as in line 6 of Algorithm 2, column Allocation shows the final
allocation of thread ti, and column Assignment shows the final
assignment of thread ti.

In the first iteration, j = 1 in line 6 since server s1 has the
maximum remaining resource. The algorithm assigns thread
t1 to server s1 in line 9, and allocates 6 units of resource on
server s1 to it in line 7. C1 = 1 in line 8, and C2 remains
unchanged. The algorithm then continues this way for three

more iterations, producing the final allocation and assignment
shown in Table III.

B. Algorithm analysis
We now show Algorithm 2 achieves an α = 2(

√
2 − 1)

approximation ratio, and runs in O(n(logmC)2) time. The
proof of the approximation ratio uses exactly the same set of
lemmas as in Section V-A, V-B and V-C. The proofs for most
of the lemmas are also similar. Rather than replicating them,
we will go through the lemmas and point out any differences
in the proofs. Please refer to Sections V-A, V-B and V-C for
the definitions, lemma statements and original proofs.
• Lemma V.5 The proof of this lemma depended on the

fact that in Algorithm 1 if we assign a second E thread
to a server, then all the other servers have no remaining
resources. This is also true in Algorithm 2, since in line
6 we assign a thread to a server with the most remaining
resources, and so if when we assign a second E thread t
to a server s and there was another server s′ with positive
remaining resources, we would assign t to s′ instead, a
contradiction.

• Lemma V.7 The only statement we need to check from
the original proof is that for all i ∈ E we have ci ≥ Cj .
But this is true in Algorithm 2 because if there were any
ci < Cj , line 6 of Algorithm 2 would assign thread i to
server j instead of i’s current server, a contradiction. All
the other statements in the original proof then follow.

• Lemma V.8 This follows because lines 1 and 2 of Al-
gorithm 2 show that the first m assigned threads have
at least as much super-optimal utility as the remaining
n −m threads. Also, the first m threads must be in D,
since there is always a server with C resources during
the first m iterations of Algorithm 2. Thus, all threads
in E are among the last n − m assigned threads, and
their maximum super-optimal utility is no more than the
minimum utility of any D thread.

• Lemma V.10 As we stated above, all threads in E must
be among the last n−m assigned by Algorithm 2. That
is, they are among threads tm+1, . . . , tn. In line 2 these
threads are sorted in nondecreasing order of gi(ĉi)/ĉi.
Thus, the lemma follows.

Given the preceding lemmas, we can state the approximation
ratio of Algorithm 2. The proof of the theorem is the same as
the proof of Theorem V.17, and is omitted.

Theorem VI.1. Let F be the total utility from the assignment
produced by Algorithm 2, and let F ∗ be the optimal total
utility. Then F ≥ αF ∗.

Lastly, we analyze Algorithm 2’s time complexity.

Theorem VI.2. Algorithm 2 runs in O(n(logmC)2) time.

Proof. Finding the super-optimal allocation takes
O(n(logmC)2 time using the algorithm in [12]. Steps
1 and 2 take O(n log n) time. Since C is usually large in
practice, we can assume that log n = O(logmC)2. Each
iteration of the main for loop takes O(logm) time to extract
the maximum element from H and update H . Thus, the
entire for loop takes O(n logm) time. Thus, the overall
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running time is dominated by the time to find a super-optimal
allocation, and the theorem follows.

Comparing Theorem VI.2 and Theorem V.19, we see that
Algorithm 2 has lower time complexity than Algorithm 1.

VII. ALGORITHM FOR NONCONCAVE FUNCTIONS

In this section, we present an approximation algorithm for
the AA problem for threads with nonconcave utility functions2.
One situation where such functions arise is in cache allocation,
where increasing the cache allocated for a thread beyond a
certain size allows its entire working set to fit into the fastest
level of cache, and leads to a large nonconcave increase in
performance. As nonconcave functions pose more challenges
than concave ones, our algorithm achieves an approximation
ratio of 1

2 instead of α = 2(
√
2− 1).

The basic model we consider is the same as in Section III.
We additionally assume that each utility function consists of
one or more concave or convex segments. That is, for each
utility function f : [0, C] → Z≥0, there exist 0 = b0 < b1 <
b2 < ... < bk = C, such that f is either concave or convex in
the interval (bi−1, bi], for 1 ≤ i ≤ k. Let s be the maximum
number of segments in any utility function. Note that in the
case of s = C, f can be an arbitrary nondecreasing function.
However, it was observed in [10] that s is typically a small
value, e.g. 3 in practice. Moreover, a small value of s enables
our algorithm to run faster.

We present an approximation algorithm, which we call
AANC, to solve the AA problem in this setting. AANC fol-
lows a similar structure as Algorithm 2, with the following
difference. Recall that the input to Algorithm 2 is a super-
optimal allocation, which for concave utility functions can
be computed by the algorithm from [12]. In the nonconcave
setting, we use the fast algorithm from [10], which computes
an optimal allocation [ĉ1, . . . , ĉn] for a single server with
mC resources in O(snmCα(mC)(logmC)2) time, where
α denotes the inverse Ackermann function. Thus, we define
AANC to be the same as Algorithm 2, but using [ĉ1, . . . , ĉn]
as the initial input.

AANC achieves an approximation ratio of 1
2 . The main

reason for the reduced approximation ratio is that the property
that fi ≥ gi for all i ∈ T used in Lemma V.4 does not hold for
nonconcave utility functions. Thus, while Lemma V.16, which
states that the total utility using the linearized gi functions is
at least α times the super-optimal utility, continues to hold
in the nonconcave case, it does imply that the total utility
under the original nonconcave utility functions fi is also ≥ α
times the super-optimal utility. Nevertheless, we can show that
even in the nonconcave setting, the number of threads which
do not get their super-optimal allocation is small, and their
super-optimal utilities are smaller than those of threads which
do get their super-optimal allocations. Thus, the threads still
obtain a large fraction of the super-optimal utility, leading to
a 1

2 approximation ratio.
We now analyze the quality of the assignment produced by

AANC. The proof uses several results, including Lemma V.2,

2We allow some of the threads to have nonconcave utility functions, and
others to have concave ones.

Lemma V.6 and Corollary V.9, which were proven in Sections
V-A and V-C. The proofs of these lemmas did not rely on
the concavity of the fi functions, and thus continue to hold
in the nonconcave setting. Please refer to Sections V-A, V-B
and V-C, VI for the definitions, lemma statements and original
proofs.

We first show that the super-optimal utility of the full
threads in D is no smaller than that of the unfull threads in
E.

Lemma VII.1.
∑

i∈D fi(ĉi) ≥
∑

i∈E fi(ĉi).

Proof. Recall the definition of γ = maxi∈E gi(ĉi) in Section
V-C. We first claim

∑
i∈D fi(ĉi) ≥ mγ. This is because by

the definition of function gi, we have fi(ĉi) = gi(ĉi) = gi(ci)
for any thread i ∈ D. Thus, by Corollary V.9, we have∑
i∈D fi(ĉi) ≥ mγ.
Next, we claim

∑
i∈E fi(ĉi) ≤ mγ. We have ∀i ∈

E, gi(ĉi) ≤ γ. Also, |E| ≤ m − 1 by Lemma V.6. Thus,
since fi(ĉi) = gi(ĉi), we have

∑
i∈E fi(ĉi) =

∑
i∈E gi(ĉi) ≤

(m− 1)γ.
Combining the above, we have

∑
i∈D fi(ĉi) ≥∑

i∈E fi(ĉi).

AANC produces an allocation c1, . . . , cn with total utility
F =

∑
i∈D fi(ĉi) +

∑
i∈E fi(ci). We now prove that this

allocation is an 1
2 approximation to the super-optimal utility

F̂ =
∑
i∈D fi(ĉi) +

∑
i∈E fi(ĉi).

Lemma VII.2. F ≥ 1
2
F̂ .

Proof. We have

F

F̂
=

∑
i∈D fi(ĉi) +

∑
i∈E fi(ci)∑

i∈D fi(ĉi) +
∑
i∈E fi(ĉi)

≥
∑
i∈D fi(ĉi)∑

i∈D fi(ĉi) +
∑
i∈E fi(ĉi)

≥ 1

2
.

The last inequality follows since
∑
i∈D fi(ĉi) ≥

∑
i∈E fi(ĉi)

by Lemma VII.1. Thus, the lemma is proved.

Recall that F ∗ is the optimal total utility. Also, F ∗ ≤ F̂ ,
by Lemma V.2. Thus, combining these with Lemma VII.2,
we have the following bound on the approximation ratio of
AANC.

Theorem VII.3. F ≥ 1
2F
∗.

Next, we give an instance of AA which shows our analysis
of AANC is nearly tight.
Theorem VII.4. For any ε > 0, there exists an instance of
AA such that AANC achieves 1

2 + ε times the optimal total
utility.

Proof. Consider 2m− 1 threads, and m servers each with m
units of resource. Let

f1(x) =

{
x if x ∈ [0, 1]

1 if x > 1,

and
f2(x) =

{
0 if x ∈ [0,m− 1]

1 if x > m− 1.
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Suppose the first m threads all have utility functions f1, and
the remaining m − 1 threads have utility functions f2. The
super-optimal allocation is ĉ1 = . . . = ĉm = 1, ĉm+1 =
. . . = ĉ2m−1 = m. AANC may assign threads 1, 2, . . . ,m all
to different servers, with 1 unit of resource each, and then
assign threads m+ 1, . . . , 2m− 1 also all to different servers
with m−1 units of resource each. This achieves a total utility
of m. On the other hand, the optimal assignment is to put
threads 1, 2, . . . ,m on server 1 and threads m+1, . . . , 2m−1
on servers 2, 3, . . . ,m, respectively. This has a total utility
of 2m − 1. Thus, AANC achieves an approximation ratio of
m

2m−1 ∈ [ 12 ,
1
2 + ε] for a sufficiently large m.

Lastly, we analyze AANC’s time complexity.

Theorem VII.5. AANC runs in O(snmCα(mC)(logmC)2)
time, where s is the maximum number of concave or convex
segments in any utility function fi, and α(mC) is the inverse
Ackermann function.

Proof. Finding the super-optimal allocation takes
O(snmCα(mC)(logmC)2) time using the algorithm
in [10]. Note that α(mC) ≤ 4 for all realistic values of m
and C. Similar to the proof of Theorem VI.2, the overall
running time of AANC is dominated by the time to find a
super-optimal allocation, and the theorem follows.

VIII. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate the performance
of our algorithms using both synthetic and real-world utility
functions. We compare the total utility our algorithms achieve
with the super-optimal (SO) utility, which is at least as large
as the optimal utility. We also compare the algorithm with
several simple but practical heuristics we name UU, UR, RU
and RR3. The UU (uniform-uniform) heuristic assigns threads
in a round robin manner to the servers, and allocates the
threads assigned to a server the same amount of resources.
UR (uniform-random) assigns threads in a round robin man-
ner, and allocates threads a random amount of resources on
each server. RU (random-uniform) assigns threads to random
servers, and equally allocates resources on each server. Finally,
RR (random-random) randomly assigns threads and allocates
them random amounts of resource.

Our simulation experiments use threads with synthetic ran-
dom utility functions generated according to various probabil-
ity distributions as described below.

To generate the random concave utility functions, we fix an
amount of resource C on each server, and set the value of
the utility function at 0 to be 0. We generate two values v
and w according to the distribution H , conditioned on w ≤ v,
and set the value of the utility function at C

2 to v, and the
value at C to v +w. Then we apply the PCHIP interpolation
function from Matlab to the three generated points to produce
a concave utility function.

3To the best of our knowledge, we are the first to study the thread
assignment and resource allocation problems in a unified context, and we are
unaware of other algorithms in the literature which can be directly compared
to our algorithms. Thus, to evaluate our algorithms’ performance, we compare
them to several simple but practically useful heuristics.
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Fig. 2. Average performance of Algorithm 2 versus SO,UU,RU,UR, and RR
as a function of β under the uniform and normal distributions.

To generate the random nonconcave utility functions, we
also set the function to be 0 at allocation 0. We generate a value
b ∈ (0, C) according to a distribution H , then divide [0, C] into
two segments [0, b] and [b, C]. Then we generate two concave
functions in these segments using a similar approach as for
generating a concave utility function. In all the experiments
on synthetic utility functions, we set the number of servers
to be m = 8 and the resource size to be C = 100, and test
the effects of varying different parameters. One parameter is
β = n

m , the average number of threads per server. The results
in the following sections show the average performance from
1000 random trials.

A. Concave Utility Functions
We first look at the performance of Algorithm 2 with

concave utility functions; we omit testing Algorithm 1, since it
achieves the same approximation ratio as Algorithm 2. We note
that for m = 8, n = 100, C = 100, Algorithm 2 terminated
in 9 ms. This can be further improved by implementing
the algorithm in C instead of Matlab and using better data
structures.

1) Uniform and normal distributions: We first look the total
utility obtained by Algorithm 2 compared to those obtained by
the SO, UU, UR, RU and RR algorithms on threads with con-
cave utility functions generated according to the uniform and
normal distributions. We set the mean and standard deviation
of the normal distribution to be 10 and 20, respectively.

Figures 2(a) and 2(b) show the average over 1000 random
runs of the ratio of Algorithm 2’s total utility to the utilities
of the other algorithms, for β varying between 1 to 15. The
behaviors for both distributions are similar. Compared to SO,
Algorithm 2’s utility ratio never drops below 0.99, showing
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Fig. 3. Average performance of Algorithm 2 versus SO,UU,RU,UR, and RR
as a function of β and µ under the power law distribution.

that it always achieves at least 99% of the optimal utility. The
ratios of Algorithm 2’s total utility compared to those of UU,
UR, RU and RR are always above 1, showing that it always
perform better than the simple heuristics. For small values
of β, UU performs well. Indeed, for β = 1, UU achieves
the optimal utility because it places one thread on each server
and allocates it all the resources. UR does not achieve optimal
utility even for β = 1, since it allocates threads random
amounts of resources. RU and RR may allocate multiple
threads per server, and also do not achieve the optimal utility.
As β grows, the performance of the heuristics gets worse
relative to Algorithm 2. This is because as the number of
threads grows, it becomes more likely that some threads
have very high maximum utility. These threads need to be
assigned and allocated carefully. For example, they should be
assigned to different servers and allocated as much resources
as possible. The heuristics likely fail to do this, and hence
obtain low performance. The performance of UR and RR,
as well as those of UU and RU converge as β grows. This
is because both random and uniform assignments assign the
threads roughly evenly between the servers for large β. Also,
the performance of UU and RU are substantially better than
UR and RR, which indicates that the way in which resources
are allocated has a larger effect on performance than how
threads are assigned, and that uniform allocation is generally
better than random allocation.

2) Power law distribution: We now look at the performance
of Algorithm 2 using threads with utility functions generated
according to the power law distribution. Here, each value
x has a probability λx−µ of occurring, for some µ > 1
and normalization factor λ. Figure 3(a) shows the effect of
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Fig. 4. Average performance of Algorithm 2 versus SO,UU,RU,UR, and RR
as a function of β, γ and θ under the discrete distribution.

varying β while fixing µ = 2. Here we see the same trends
as those under the uniform and normal distributions, namely
that Algorithm 2 always performs very close to optimal, while
the performance of the heuristics gets worse with increasing
β. However, the rate of performance degradation is faster than
with the uniform and normal distributions. This is because the
power law distribution with µ = 2 is more likely to generate
threads with very different maximum utilities. These threads
must be carefully assigned and allocated, which the heuristics
fail to do. For β = 15, Algorithm 2 is 3.9 times better than
UU and RU, and 5.7 times better than UR and RR.

Figure 3(b) shows the effect of varying µ, using a fixed β =
5. Algorithm 2’s performance is nearly optimal. In addition,
the performance of the heuristics improves as µ increases.
This is because for higher values of µ, it is unlikely that there
are threads with very high maximum utilities. So, since the
maximum utilities of the threads are roughly the same, almost
any even assignment of the threads works well. Despite this,
we still observe that UU and RU perform better than UR and
RR. This is because when the threads are roughly the same, the
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concavity of the utility functions implies the optimal allocation
is to give each thread nearly the same amount of resources.
This is done by UU and RU but not by UR and RR.

3) Discrete distribution: We now look at the performance
using utility functions generated by a discrete distribution.
This distribution takes on only two values `, h, with ` < h.
γ is a parameter that controls the probability that ` occurs,
and θ = h

` is a parameter that controls the relative size of
the values. Figure 4(a) shows Algorithm 2’s performance as
we vary β, fixing γ = 0.85 and θ = 100. The same trends
as with the other distributions are observed. Specifically, our
algorithm is much better than other algorithms when β is
large. For example, for β = 15, our algorithm is 9 times
better than UR and RR, and 5 times better than UU and RU.
The reason behind the significant performance improvement
is that the discrete distribution under θ = 100 is very likely to
generate threads with very different maximum utilities. Figure
4(b) shows the effect of varying γ, when β = 5 and θ = 5.
Our algorithm achieves the lowest performance for γ = 0.8,
when we achieve 92% of the super-optimal utility. The four
heuristics also perform worst for this value. For γ close to 0
or 1, all the heuristics perform well, since these correspond to
instances where either h or ` is very likely to occur, so that
almost all the threads have the same maximum utility. Lastly,
we consider the effect of varying θ. Here, as θ increases,
the difference between the high and low utilities becomes
more evident, and the effects of poor thread assignments
or misallocating resources become more serious. Hence, the
performance of the heuristics decreases with θ. Meanwhile,
Algorithm 2 always achieves over 92% of the optimal utility.

B. Nonconcave Utility Functions
In this section we evaluate the performance of AANC on

threads with nonconcave utility functions. We note that for
m = 8, n = 100, C = 100, AANC terminates in 9.47 seconds.
Our implementation of AANC again used Matlab, and we
believe the running time of the algorithm can be substantially
improved using more optimized code. However, we leave a
more efficient implementation as future work.

1) Uniform distribution: We first consider the total utility
obtained by AANC compared to SO, UU, UR, RU and RR on
threads with nonconcave utility functions generated according
to the uniform distribution. Specifically, for each thread we
generate a nonconcave utility function with two concave
segments, where each segment is generated using the approach
described earlier in this section. Figures 5 shows the average
ratio of AANC’s total utility versus the utilities of the other
algorithms, for β varying between 1 to 15. The behaviors are
similar to that for Algorithm 2 using concave utility functions
generated according to the uniform distribution. Compared to
SO, our performance never drops below 0.98, which is slightly
lower than the average ratio of 0.99 achieved by Algorithm 2.
Likewise, AANC performs similarly to Algorithm 2 for other
distributions. Due to space limitations we omit an in-depth
discussion.

2) Real-world utility functions: We also use real-world
utility functions derived from 10 SPEC CPU benchmarks:
gap, parser, applu, twolf, mcf, fma3d, gzip, crafty, apsi, swim.
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Fig. 5. Average performance of AANC versus SO,UU,RU,UR, and RR as a
function of β under the uniform distribution.
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TABLE IV
PERFORMANCE OF AANC VS. SO, UU, RU, UR AND RR FOR DIFFERENT

RESOURCE SIZES USING THE FIRST SET OF 8 REAL-WORLD UTILITY
FUNCTIONS (I.E., gap, parser, applu, twolf, mcf, fma3d, gzip, crafty)

Server resource size SO UU RU UR RR
4 1 2.85 1.87 12.13 2.04
8 0.98 1.61 1.55 2.14 1.62
16 1 1.02 1.36 1.19 1.40

TABLE V
PERFORMANCE OF AANC VS. SO, UU, RU, UR AND RR FOR DIFFERENT

RESOURCE SIZES USING THE SECOND SET OF 8 REAL-WORLD UTILITY
FUNCTIONS (I.E., gap, applu, twolf, mcf, fma3d, gzip, apsi, swim)

Server resource size SO UU RU UR RR
4 1 2.94 1.91 14.35 2.14
8 0.987 1.62 1.53 2.21 1.62

16 0.98 1.02 1.32 1.17 1.36

Each benchmark’s execution speed (utility) is measured using
its IPC (instructions per cycle) as a function of the amount
of L2 cache the program is allocated4. Figure 6 shows the
utility functions of the first 5 benchmarks with concave utility
functions, and Figure 7 shows the last 5 benchmarks with
nonconcave utility functions 5. In the experiment on real-world
utility functions, we set the number of servers to be m = 2,
and the number of threads to be n = 8, representing some 8
among the 10 benchmarks described earlier. We then test the
effects of varying the server resource size C representing the
size of the L2 cache.

We look at the performance using real-world utility func-
tions from the first set of 8 CPU benchmarks (i.e., gap,
parser, applu, twolf, mcf, fma3d, gzip, crafty). The first 5
benchmarks have concave utility functions and the last 3
ones have nonconcave utility functions. We set the number
of threads to n = 8 to represent the 8 benchmarks. Table
IV shows the ratio of AANC’s total utility compared to the
utilities of SO,UU,RU,UR, and RR for different resource sizes
C. Compared to SO, our performance never drops below 0.98,
i.e., AANC always achieves at least 98% of the optimal utility.
The ratios of AANC’s utility compared to those of UU, UR, RU
and RR are again always above 1, so that it always perform
better than the heuristics. In addition, the performance ratio
decreases as C increases. For example, when C = 4, our
algorithm is 2.85×, 1.87×, 12.13× and 2.04× better than
UU,RU,UR,RR, respectively. For C = 16, our algorithm is
1.02×, 1.36×, 1.19× and 1.40× better than UU,RU,UR,RR,
respectively. This shows our algorithm is most effective in
highly resource constrained environments or when running a
large number of threads.

Lastly, we look at AANC’s performance using real-world

4In multicore processors with multiple levels of cache, the first level L1
cache is typically privately owned by each core, while the L2 cache is shared
by different cores.

5Our data is obtained from [5], [10], which do not show the benchmarks’
utility with zero resource. Since having sufficient cache is crucial to perfor-
mance, we make the simplifying assumption that the utility of a benchmark
allocated zero L2 cache is zero [31]. While this assumption does not hold
in practice, we use it to facilitate a more uniform comparison with synthetic
utility functions.

utility functions from the second set of 8 CPU benchmarks
(gap, applu, twolf, mcf, fma3d, gzip, apsi, swim). The first
4 benchmarks have concave utility functions and the last 4
ones have nonconcave utility functions. We set the number of
threads to be n = 8, representing the following 8 benchmarks.
Table V shows the ratio of AANC’s total utility compared to
the utilities of SO,UU,RU,UR, and RR for different resource
sizes C. The behaviors are similar with that for the first set
of 8 benchmarks.

IX. EXTENSION TO MULTIPLE RESOURCE TYPES

In this section, we further generalize our algorithms to a
setting where each server has multiple types of resources, and
each thread’s utility function depends on all the resource types.
An example of this situation is in cloud computing, where
a virtual machine’s (i.e. thread’s) performance is affected by
both the number of CPU cores and amount of memory it is
allocated. We adapt our algorithms for the single resource
setting to the multi-resource one, and demonstrate that the
new algorithm achieves good empirical performance.

The model we use is similar to the one presented in Section
III, and we only point out the differences. We assume there
are d types of resources, and refer to the i’th type of resource
as a type-i resource. Each server has Ci amount of type-
i resource, where Ci is a positive integer. Each thread ti
has a d-dimensional utility function fi(x1, . . . , xd), where
xj ∈ [0, Cj ] is the amount of type-j resource ti is allo-
cated. We assume that each thread’s utility function is non-
decreasing and concave. An assignment is given by a vector
[(r1, c1,1, . . . , c1,d), . . . , (rn,1, c1,1, . . . , cn,d)], indicating that
each thread ti is allocated ci,j amount of type-j resource for
j = 1, . . . , d on server sri .

We now present the algorithm for the AA problem with
multiple resource types, which we call AAMR. Similar to Def-
inition V.1, we first define the super-optimal utility and super-
optimal allocation of the problem under multiple resource
types.

Definition IX.1. Given an instance A of the AA problem
with m servers each with Ci amount of type-i resource for
i = 1, . . . , d, and n threads with utility functions f1, . . . , fn,
consider the quantity

F̂ = max
ci,j ,i∈[1,n],j∈[1,d]

n∑
i=1

f(ci,1, . . . , ci,d)

subject to
∑n
i=1 ci,j ≤ mCj for j = 1, . . . , d. Let ĉi,j , i ∈

[1, n], j ∈ [1, d] be values for ci,j , i ∈ [1, n], j ∈ [1, d],
respectively, which achieve the optimum F̂ . Then we call
F̂ =

∑n
i=1 f(ĉi,1, . . . , ĉi,d) the super-optimal utility of A, and

ĉi,j , i ∈ [1, n], j ∈ [1, d] the super-optimal allocation for A.

AAMR first finds the super-optimal allocation of the prob-
lem with multiple resource types, and then uses the allocation
as an indicator to assign threads and allocate resource to
the assigned threads. Finding the super-optimal allocation is
equivalent to finding an optimal allocation which maximizes
the total utility of n threads on a single server, given the
threads’ utility functions f1, . . . , fn, and a resource capacity
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Ĉi = mCi for each type-i resource on the server. We use a
dynamic programming algorithm which we call DPSOPT to
solve this problem. Given x1 ∈ [0, Ĉ1], . . . , xn ∈ [0, Ĉn] and
k ∈ [1, n], let Fk(x1, . . . , xd) be the maximum utility of the
first k threads when they are allocated x1 amount of type-1
resource, . . ., xd amount of type-d resource. Then we have

Fk(x1, . . . , xd) = max
zi∈[0,min(xi,Ci)],i=1,...,d

{fk(z1, . . . , zd)

+Fk−1(x1 − z1, . . . , xd − zd)}.

Note that zi ≤ Ci for i = 1, . . . , d, since the domain of
each thread’s utility function is [0, Ci] for a type-i resource.
We can find the maximum total utility Fn(Ĉ1, . . . , Ĉd) by
finding all Fk(x1, . . . , xd) in increasing lexicographical order
of k, x1, . . . , xd, and then use backtracking to find the optimal
allocation for threads tn, . . . , t1. The time to solve the DP
(dynamic programming) is O(nC2d) for n threads, where
C = maxi Ĉi. Note however that d is typically small in
practice, e.g. d = 3 when considering processing, memory and
network bandwidth as resources. Thus, the DP can typically
be solved in an acceptable amount of time for moderate values
of C.

We now give the pseudocode for AAMR. The input includes
the original utility functions f1, . . . , fn, and a super-optimal
allocation ĉi,j for i = 1, . . . , n and j = 1, . . . , d returned by
DPSOPT. Note that we do not use linearized utility functions
as we do for the single resource setting due to the difficulty
of linearizing multi-dimensional utility functions. Variable Ci,j
represents the amount of type-j resource remaining on server
i, and R is the set of unassigned threads. The outer loop of
the algorithm runs until all threads in R have been assigned.
During each iteration, U is the set of (thread, server) pairs such
that the server has at least as much remaining resource as the
thread’s super-optimal allocation, for every resource type. If
any such pair exists, then in line 7 of AAMR we find a thread
in U with the greatest utility when given its super-optimal
allocation. Otherwise, in line 10 we find a thread which can
obtain the greatest utility when running on any server and
using the minimum value between the thread’s super-optimal
allocation and the remaining resources on the server, for each
resource type. In both cases we assign the thread in line 13
to a server giving it the greatest utility. Lastly, we update the
server’s remaining resources accordingly.

A. Experimental Evaluation of AAMR
As multi-dimensional utility functions pose more challenges

than one-dimensional ones, the analysis of AAMR is per-
formed numerically. Similar to Section VIII, we compare
AAMR to the super-optimal (SO) utility, which is an upper
bound on the optimal utility, and which can be computed
using DPSOPT. We also compare AAMR with several simple
but practical heuristics, including UU (uniform assignment
and uniform allocation), UR (uniform assignment and random
allocation), RU (random assignment and uniform allocation),
RR (random assignment and random allocation). We consider
two resource types, and assume that each thread ti has a
random two-dimensional concave utility function fi(x1, x2) =
γ1x

α1
1 +γ2x

α2
2 , where x1 ∈ [0, C1], x2 ∈ [0, C2] are variables,

Algorithm 3 Pseudocode for AAMR
1: Input: Utility functions f1, . . . , fn, and super-optimal allocation
ĉi,j for i = 1, . . . , n and j = 1, . . . , d returned by DPSOPT

2: Ci,j ← Cj for i = 1, . . . ,m and j = 1, . . . , d
3: R← {1, . . . , n}
4: while R 6= ∅ do
5: U ← {(i, j) | (i ∈ R)∧ (1 ≤ j ≤ m)∧ (ĉi,1 ≤ Cj,1)∧ . . .∧

(ĉi,d ≤ Cj,d)}
6: if U 6= ∅ then
7: (i, j)← argmax(i,j)∈U fi(ĉi,1, . . . , ĉi,d)
8: ci,k ← ĉi,k for k = 1, . . . , d
9: else

10: (i, j) ← argmaxi∈R,1≤j≤m

fi(min(Cj,1, ĉi,1), . . . ,min(Cj,d, ĉi,d))
11: ci,k ← min(Cj,k, ĉi,k) for k = 1, . . . , d
12: end if
13: ri ← j
14: R← R− {i}
15: Cj,k ← Cj,k − ci,k for k = 1, . . . , d
16: end while
17: return (r1, c1,1, . . . , c1,d), . . . , (rn, cn,1, . . . , cn,d)
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Fig. 8. Average performance of Algorithm AAMR versus SO,UU,RU,UR,RR
as a function of β under two resource types.

and γ1, γ2 > 0, α1, α2 ∈ (0, 1) are parameters. We generate
γ1, γ2, α1, α2 randomly according to the uniform distribution.
In the experiment, we set the number of servers to be m = 4
and the resource size to be C1 = 40, C2 = 20. We test the
effects of varying parameter β = n

m , which represents the
average number of threads per server. The following results
show the average performance from 100 random trials.

Figure 8 shows the average ratio of AAMR’s total utility to
the utilities of the other algorithms, for β varying between 1
to 7. The behaviors shown in the figure are similar to those for
one resource type in Section VIII. In addition, compared to
SO, AAMR’s utility ratio never drops below 0.96, indicating
that AAMR always achieves at least 96% of the optimal utility.
Moreover, AAMR is always no worse than UU, RU, UR, RR,
and it is 1.98×, 1.97×, 2.67×, 2.62× better than UU, RU,UR,
RR when β = 7.

X. CONCLUSION

In this paper, we studied the novel problem of simulta-
neously assigning threads to servers and allocating server
resources to maximize total utility. We showed that the prob-
lem is NP-hard, even when there are only two servers and
all utility functions are concave. For concave utility func-
tions, we presented two algorithms with approximation ratio
2(
√
2− 1) > 0.828, running in times O(mn2 + n(logmC)2)
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and O(n(logmC)2), respectively. In addition, we presented
an algorithm with approximation ratio 1

2 for threads with
nonconcave utility functions, and an algorithm for concave
utility functions with multiple resource types. Lastly, we tested
our algorithms on multiple types of threads, and found that our
algorithms always achieve at least 92% of the optimal utility,
and typically over 98% of the optimal utility. Our utility is up
to 9 times better than those of several heuristic methods.

In this work we considered homogeneous servers each with
the same amount of resources. We are interested in extend-
ing this model to accommodate heterogeneous servers with
different capacities. In addition, our algorithms are currently
centralized, and all decisions are made by a single scheduler
process. To scale the AA problem to larger system settings, we
would like to consider distributed versions of our algorithms,
where assignments and allocations are made concurrently by
multiple schedulers.

REFERENCES

[1] P. Lai, R. Fan, W. Zhang, F. Liu. Utility maximization thread assignment
and resource allocation. IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2016

[2] B. Urgaonkar, A. Rosenberg, P. Shenoy. Application placement on a
cluster of servers. International Journal of Foundations of Computer
Science, vol. 18, no. 05, pp. 1023-1041, 2007

[3] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviri-
denko, and A. Tantawi. Dynamic placement for clustered web applica-
tions. Proceedings of the 15th International Conference on World Wide
Web, 2006

[4] E. Suh, L. Rudolph, S. Devadas. Dynamic partitioning of shared resource
memory. Journal of Supercomputing Architecture, 2002

[5] M. K. Qureshi, Y. N. Patt. Utility-based resource partitioning: a low-
overhead, high-performance, runtime mechanism to partition shared re-
sources. IEEE/ACM International Symposium on Microarchitecture, 2006

[6] V. Srinivasan, T. R. Puzak, and P. G. Emma. Cache miss behavior, is it√
2. Proceedings of the 3rd Conference on Computing Frontiers, 2006

[7] D. Thiebaut. On the fractal dimension of computer programs and its
application to the prediction of the cache miss ratio. IEEE Transactions
on Computers, vol. 38, no. 7, 1989

[8] M. Becchi, P. Crowley. Dynamic thread assignment on heterogeneous
multiprocessor architectures. Proceedings of the 3rd Conference on Com-
puting Frontiers, 2006
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