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Abstract—Propelled by multi-user MIMO (MU-MIMO) tech-
nology, unmanned aerial vehicles (UAVs) as mobile hotspots
have recently emerged as an attractive wireless communication
paradigm. Rate adaptation (RA) becomes indispensable to en-
hance UAV communication robustness against UAV mobility-
induced channel variances. However, existing MU-MIMO RA
algorithms are mainly designed for ground communications with
relatively stable channel coherence time, which incurs channel
measurement staleness and sub-optimal rate selections when
coping with highly dynamic air-to-ground links. In this paper,
we propose SensRate, a new uplink MU-MIMO RA algorithm
dedicated for low-altitude UAVs, which exploits inherent on-
board sensors used for flight control with no extra cost. We
propose a novel channel prediction algorithm that utilizes sensor-
estimated flight states to assist channel direction prediction for
each client and estimate inter-user interference for optimal rates.
We provide an implementation of our design using a commercial
UAV and show that it achieves an average throughput gain of
1.24× and 1.28× compared with the bestknown RA algorithm
for 2- and 3-antenna APs, respectively.

Index Terms—UAV mobility, multi-user MIMO, channel pre-
diction, rate adaptation.

I. INTRODUCTION

ONE key feature of the next generation communication
system is the seamless cooperation between terrestrial

and non-terrestrial infrastructures [1]. Compared to terrestrial
stations, unmanned aerial vehicles (UAVs), with their high
flexibility and fast deployment, constitute a promising ap-
proach to provide on-demand, cost-effective and short-range
wireless services. Numerous new UAV applications in civilian
and commercial domains have emerged, such as traffic offload-
ing in hotspot areas [2]–[6], delay-tolerant data collection from
distributed wireless devices [7], [8] and UAV-enabled mobile
edge computing [9], [10], which normally require intensive
uplink transmission. Driven by the need for superior spectral
efficiency and network capacity, numerous efforts have been
devoted to applying MU-MIMO technology to air-to-ground
systems [11]–[13].

Due to the high flexibility, low cost and easy accessi-
bility, low-altitude small UAVs have always been favored
by companies [3]–[5]. We focus on the low-altitude small
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UAVs to provide short-range high-rate wireless service over
a very small cell. The Federal Aviation Administration (FAA)
guidelines may be used as a working definition for this
category: UAVs can freely fly below the altitude of 120 m
without any permit [14]. In this category, AT&T [5] and
multiple companies [3], [4] have tested the flying station at an
altitude of 60 m. DroneFi [2] proposes UAV hotspots flying
below 20 m over a smaller cell size. The UAV altitudes set in
the studies of UAV-enabled data collection and mobile edge
computing generally vary from 10 m to 100 m [7]–[10]. Some
researchers argue that the lower altitude, the less UAV energy
consumption and more stable high-rate connection [15].

In the context of low-altitude UAV hotspots, ensuring high-
quality network services (i.e., high-rate, ultra-reliable) under
dynamic flight states is paramount. Yet, air-to-ground links
suffer from time-varying channels induced by agile UAV
mobility and fast wireless fading. Current communication
systems typically enhance communication robustness through
rate adaptation (RA). However, exiting RA algorithms [16]–
[21] are not suitable for UAV hotspots with MU-MIMO
networks to serve multiple clients. MU-MIMO RA algo-
rithms [16]–[21] are mainly for ground-to-ground communi-
cations, which target stationary devices, pedestrians, vehicles
with relatively stable velocity and channel coherence time.
They measure channel information in pre-estimated coherence
time for optimal rates. However, the varying flight states cause
the coherence time to continuously change [2], leading to
severe channel measurement staleness and sub-optimal rate
selections.

A rich body of literature has been devoted to channel
prediction in UAV scenarios. Whereas, they focus more on
the received power, the amplitude and the throughput [2],
[22]–[26], but rarely involve the prediction of phase. In MU-
MIMO networks, there exists inter-user interference due to the
non-orthogonality of clients’ channel directions, which deeply
affects network capacity and rate selections. The channel
direction depends on both phase and amplitude. In particular,
slight UAV movements can cause significant changes in phase.
Willink et al. [27] take into account the phase by measuring
the spatial correlation across the antenna array along the flight
path, but do not form an effective prediction method.

In this paper, we propose SensRate, a new uplink MU-
MIMO RA algorithm dedicated for low-altitude UAVs, which
exploits UAV’s inherent on-board sensors to predict chan-
nel directions and inter-user interference for optimal rates.
The key observation is that the fluctuation patterns of chan-
nel directions are closely related to the UAV’s movements.
Through theoretical analysis and real-world measurements,
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we find that the phase difference of the antenna array that
determines the channel direction significantly decreases or
increases when wireless fading occurs along flight trajectories,
while remaining relatively stable without fading. Contrary to
the extreme sensitivity of phase, the phase difference exhibits
more stable and regular changes, facilitating the prediction
of the channel direction. Based on this observation, we first
model the fine-grained changes in clients’ channel directions
along UAV’s trajectories over time, from both phase and
amplitude perspectives. Then, we propose a sensor-assisted
channel prediction scheme that estimates the wireless fading
frequency as a function of flight states and predicts the channel
direction for each client. Finally, SensRate enables each client
to estimate interference from others and pick accurate rates to
maximize the overall system throughput.

We implement SensRate on a DJI Matrice 100 and compare
our design with baseline algorithms under a wide range
of conditions, including varying flight states, CSI reading
rates, environments and moving clients. The experimental sites
include an empty square and a parking lot with different
reflectors nearby. The flight states of UAV cover velocities
of 0-10 m/s and link distances ranging from 5-45 m with
random locations of clients, reaching a total of 2.5-hour aerial
CSI measurement. The results show that SensRate achieves an
average throughput gain of 1.24× and 1.28× over the best-
known RA algorithm for 2- and 3-antenna APs, respectively.

The contributions are summarized below.

• Through theoretical analysis and real-world experimental
measurements, we thoroughly investigate the channel
direction changing pattern over time as the UAV moves.
Unlike previous works [2], [22]–[26] that generally fo-
cus on the received power, amplitude and throughput,
we parameterize the change in channel directions, from
both amplitude and phase perspectives, to support the
prediction of inter-user interference in UAV MU-MIMO
networks.

• We propose a sensor-assisted channel prediction scheme
that exploits the UAV’s inherent sensor data to better
adapt to the highly dynamic air-to-ground links. Un-
like prior works that rely on coarse-grained distance
regimes [26], [28], [29], we estimate the wireless fading
frequency/interval as a function of UAV velocities and
positions, which improves the adaptability of SensRate
by effectively mitigating the negative impacts caused by
varying flight states.

• We propose a new uplink MU-MIMO RA algorithm
dedicated for UAVs to maximize the overall throughput.
Unlike previous MU-MIMO RA algorithm that are sus-
ceptible to UAV-mobility induced channel variances [16]–
[21], SensRate is built based on the sensor-assisted chan-
nel prediction scheme, which effectively mitigates the
impact of CSI staleness caused by the fast wireless fading
and agile UAV mobility.

The remainder of the paper is organized as follows. Sec-
tion II explores the impact of different flight states on MU-
MIMO networks, which is the underpinning of our design.
Section III elaborates on the design of SensRate. Section IV

presents the implementation details and evaluation results.
Section V reviews the related works, followed by some dis-
cussions in Section VI and the conclusion in Section VII.

II. EXPLORING FLIGHT IMPACT ON MU-MIMO

Recently, research efforts have been made toward deploying
UAV hotspots to fly contiguously to shorten the link distances
and avoid the blockage of buildings and trees [2], [7], [9].
Besides, the UAV mobility has been verified to consume less
battery than UAV hovering. Thus, we focus on the RA design
in mobile UAV scenarios, yet the profound impact of varying
flight states on MU-MIMO networks is still under-explored.

In this section, we first introduce the generation of inter-user
interference in MU-MIMO networks. Then, we take a deep
dive into the impact of various flight states on MU-MIMO
networks, which prompts us to incorporate flight-state-related
sensor data into SensRate design.

A. Interference by Non-Orthogonal Channel Directions

Suppose a scenario where two single-antenna ground clients
concurrently communicate with a 2-antenna UAV. The re-
ceived signals y = (y1, y2) on the UAV is formulated as(

y1
y2

)
=

(
h11 h21
h12 h22

)(
x1
x2

)
+

(
n1
n2

)
, (1)

where hk = (hk1, hk2) denotes the channel vector between
client k and AP, nm the noise at AP’s antenna m, which
follows nm ∼ CN (0, N0). The AP utilizes a zero-forcing
(ZF) technique [18] to decode x1, x2 by projecting y along
a direction orthogonal to the channel vector of one client,
say client 1. This allows AP to first decode x2, but results
in a signal to noise ratio (SNR) reduction caused by inter-
user interference. According to [18], [30], we can compute
the resulting SNRproj and ∆SNR by

SNRproj = SNRorig(1− cos2 θ), (2)

∆SNR(dB) = −10 log10(1− cos2 θ), (3)

where SNRorig is the original SNR of x2 when the client
transmits alone, i.e., without projection, θ is the angle between
the directions of channel vectors h1, h2, that is

cos2 θ =
|h1 · h2|2

‖h1‖2‖h2‖2
. (4)

We can see the detailed derivation process and experimental
verification in [18]. When extended to scenarios with an M -
antenna UAV and K(K ≤M) concurrent streams, θ becomes
the angle between the channel direction of one client, say hk
and the subspace S spanned by other K − 1 directions of
concurrent streams. The channel direction of the client k is
defined as the direction of its channel vector hk [18]. We can
observe that once θ is less than 45◦, ∆SNR exceeds 3 dB,
and when θ is 10◦, ∆SNR reaches 40 dB. The inter-user
interference deeply affects the optimal rates and throughput.
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(b) Impact of distance

Fig. 1. Impact of different flight states and CSI reading rates on channel
direction changes.

B. Impact of UAV’s Flight States

Since the overall throughput is closely related to the inter-
user interference, we conduct a series of experiments to
investigate the impact of varying flight states on the channel
direction changes. We deploy a DJI Matrice 100 UAV as a
multi-antenna AP to log sensor readings and collect the UAV-
to-client CSI at different rates fr including 1000 Hz, 200Hz,
100 Hz, 50Hz and 33Hz. We measure the channel direction
changes between adjacent CSI readings to represent the speed
of channel variations under different flight states.

Impact of velocity. Fig. 1(a) plots the average channel
direction changes during different CSI reading intervals at
various UAV’s velocities from 0 m/s to 10 m/s. The UAV-
to-client distance is limited within 10-20 m. As shown in
Fig. 1(a), the channel direction changes during the same
CSI reading interval increase with the UAV velocity. Once
fr ≤ 100 Hz, any UAV velocity above 2 m/s can cause a
10◦ channel direction variation during the reading interval,
and velocities more than 7 m/s may cause a variation of
nearly 14◦. According to Eq. (2)-(4), 10◦ channel direction
variation during the CSI reading interval can render a change
in SNRproj ranging from 0 to 20 dB, which deeply affects the
optimal rate selections.

Impact of distance. Likewise, Fig. 1(b) plots the average
channel direction changes during different CSI reading inter-
vals under various UAV-to-client distance ranges. The UAV
velocity is limited within 2-4 m/s. We observe that closer
UAV-to-client distances are more likely to cause larger channel
direction variations during each CSI reading interval. When
the distance is less than 30 m, average channel direction
changes of 8◦ are measured at fr ≤ 100 Hz.

Fig. 2(a) and Fig. 2(b) further demonstrate the combined
impact of UAV velocity and altitude. The z axes respectively
show the average changes in the channel direction and SNR
during 20 ms (fr = 50 Hz). Note that the average change in
channel direction or SNR during 20 ms decreases with UAV
altitude, but increases with UAV velocity. At a low altitude of
10 m, a velocity of 2 m/s will result in an average channel
direction change of 9◦ and an average SNR change of nearly
2 dB during 20 ms. However, as the UAV altitude increases
to 40 m, the impact of UAV velocity becomes less significant.
Only a much higher velocity of 10 m/s may cause a channel
change during 20 ms comparative to that at low altitudes at a
velocity of 1-2 m/s.

To summarize, the speed of channel variations changes
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Fig. 2. Impact of UAV velocity and height on channel changes during a CSI
reading interval of 20 ms.

rapidly with varying flight states. Once the CSI reading rates
fail to adapt to the speed of channel variations, the traditional
MU-MIMO RA algorithms that simply utilize the past channel
information for rate selections fall short. Instead, we need a
channel prediction scheme that can leverage the flight-state-
related sensor data to predict SNRproj for each client.

III. UAV MU-MIMO RATE ADAPTATION

In this section, we first characterize the overall SensRate
architecture. Then, we model the channel direction dynamics
as the UAV moves and propose a sensor-assisted prediction al-
gorithm that predicts SNRproj over the next few milliseconds.
Based on the predicted SNRproj , we proceed to execute the
RA scheme and choose the accurate rates for all concurrent
MU-MIMO clients on a per-packet basis to maximize the
overall throughput of the uplink (UL) transmission.

A. System Architecture
Fig. 3 shows the overall architecture of SensRate at a

high level. We consider the scenario where K(K ≤ M)
single-antenna ground clients concurrently communicate with
an M -antenna UAV hotspot. Note that each ground client
k(k ∈ {1, 2, ...,K}) keeps listening to the periodic sensor
broadcast from the UAV. They obtain the real-time flight
states S of the UAV and passively learn their UL channel
vectors hk = (hk1, hk2, ..., hkM ) using channel reciprocity.
Therein, we simplify the direction of UL channel as Dk =
(1, hk2/hk1, ..., hkM/hk1) and each SNRorig,km can be com-
puted by |hkm|2P/N0, where P is the client’s transmission
power, and N0 the average noise level at the AP. Then, we
input the past measurements of (SNRt

′

orig,km, ...,SNRtnorig,km)

(Dt
′

k , ...,D
tn
k ) and the sensor data Stn into the channel pre-

diction module, where t′, tn refers to the time of broadcast
from t′ to tn and m = 1, 2, ...,M . The prediction module
separately predicts the changes in SNRorig,k, Dk for each
client k in the following rounds of transmission before the
next CSI measurement is available, as illustrated in Fig. 4.
The sensor broadcast rate here indicates the minimum rate of
getting CSI readings for ground clients.

Next, similar to the MAC protocol in SAM [31], clients
join concurrent transmissions one after another. They count
the number of concurrent streams by cross-correlating with
the known preamble to detect whether the number of existing
streams equals M . The client that wins the transmission oppor-
tunity announce the predicted directions Dtn+tl to later con-
tenders by annotating the physical layer convergence protocol
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Fig. 3. Overall SensRate architecture.

(PLCP) header1, according to [18]. Therein, tn+ tl represents
the time for the round l of the transmission and tn+tl < tn+1.
The clients that can hear this channel direction broadcast are
eligible to continue to join the contention. Otherwise, they
will give up the contention and wait for the next round of
transmission. Then, the later winners can learn the predicted
channel directions of already ongoing streams and combine
its own channel predictions to calculate the angle θtn+tlk and
resulting SNRtn+tlproj,k by Eq. (2)-(4). Depending on SNRtn+tlproj,k,
the rate Rtn+tlk is determined for each client to maximize
the overall throughput, even if the clients change in different
round of transmission. Note that the clients contend for the
medium using the traditional 802.11 content mechanism in
our experiment. However, more advanced contention and user
selection mechanisms like [30], [32] can also be adopted in
SensRate, but this is beyond the scope of our work.

We formulate the maximization of overall throughput as

max
R1,··· ,RK

K∑
ηk [Rk, pk(SNRproj,k, Rk)] , (5)

SNRproj,k = f(ht
′

k , ...,h
tn
k ,D

tn+tl
1 , ...,Dtn+tlk−1 ,Stn), (6)

where throughput ηk for each client k depends on the selected
rate Rk and bit error rate (BER) pk, and pk is further deter-
mined by SNRproj,k and Rk. Therein, the predicted SNRproj,k
at the time tn + tl is decided by the past channel measure-
ments (ht

′

k , ...,h
tn
k ) from time t′ to tn, the predicted channel

directions of the already ongoing clients (Dtn+tl1 , ...,Dtn+tlk−1 )
and the sensor data Stn , as described above.

B. Channel Direction Modeling

Before proposing the sensor-assisted prediction algorithm,
we first explore how the channel direction D changes with
UAV movements in this section.

Near regime. Mobile UAV hotspots can leverage flying
capabilities to provide short-range and unobstructed wireless
network. The resulting transmission regime overlaps with the
Fresnel zone [2], [33], where the path loss is dominated by the
constructive and destructive interference between the line-of-
sight path and propagation paths from nearby reflectors. Thus,
we focus on the Dk changes under multipath effect. Recall
that Dk is defined as (1, hk2/hk1, ..., hkM/hk1), where each

1According to [18], in order to enable later contenders to decode the
direction information, the ongoing transmissions will pause their streams at
predefined times k ∗ tnull (k = 1, 2, ...,M − 2) and send null samples for
a period of time that is long enough to broadcast the direction information.
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Fig. 4. The prediction period in SensRate.

hkm/hk1(m ∈ {1, 2, ...,M}) can be written in the form of
amplitude and phase

hkm/hk1 = |hkm|/|hk1|ej(ϕkm−ϕk1). (7)

Therein, ∆ϕkm = ϕkm − ϕk1 denotes the phase difference
between signals received by antenna 1 and m on the UAV from
client k. We convert Dk to separate analyses of ∆ϕkm, |hkm|
and focus on the change in ∆ϕkm in this subsection. The
prediction of |hkm| is detailed in the next subsection.

Two-ray ground propagation model. Our analysis of the
multipath effect starts with a two-ray ground propagation
model. Suppose that the horizontal distance between the UAV
and the client is dH and the heights of the UAV and the client
are dU and dc, respectively. Then, each hkm between the client
k and the antenna m on the UAV can be modeled by

hkm = hd + hr

=
1

dd
exp(−j2πdd

λ
) + ρ

1

dr
exp(−j2πdr

λ
),

(8)

where hd denotes the direct-path channel, hr the reflected-path
channel, ρ the reflection coefficient from the ground2, dd and
dr the link distances of the direct path and the reflected path.
We assume dr = γdd and the phase ϕkm can be extracted as

ϕkm = −2πdd
λ
− arctan

ρ
γ sin 2π(γ−1)dd

λ

1 + ρ
γ cos 2π(γ−1)dd

λ

. (9)

Then, we derivate Eq. (9) with respect to dd as follows

ϕ′km|dd = −2π

λ
− π
λ
a0−

−ργ
′

γ2 sin 2π(γ−1)dd
λ + π

λ ( ρ
2

γ2 − 1)a0

1 + ρ2

γ2 + 2ρ
γ cos 2π(γ−1)dd

λ

,

(10)
where a0 = γ′dd + γ − 1. When hd and hr interfere
destructively, ϕd and ϕr gradually reach the state: ϕd ≈
ϕr + (2β + 1)π, β ∈ Z. Therefore, we calculate dd during
a fading period by dd = βλ

γ−1 . Similarly, when hd and hr
interfere constructively, ϕd and ϕr gradually reach the state:
ϕd ≈ ϕr + 2βπ, β ∈ Z. Thus, dd = (2β+1)λ

2(γ−1) . As a result,
ϕ′km|dd in this two states can be simplified to

ϕ′km|dd =

−
2π
λ (1 + a0

1
1+ γ

ρ
), dd = βλ

γ−1 .

− 2π
λ (1 + a0

1
1− γρ

), dd = (2β+1)λ
2(γ−1) .

(11)

Then we analyze the change in ϕ′km|dd from two different
cases when the UAV flies in the horizontal or vertical direction.

2The reflection coefficient from the ground ρ is within -1 to 0, and is close
to -1 when the ground surface is paved and asphalt.
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Fig. 5. Theoretical and experimental values of ϕ′
km|dd when the UAV flies

(a) horizontally or (b) vertically.
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Fig. 6. Theoretical models of the changes in ϕk1,ϕkm,∆ϕkm as the UAV
flies (a) horizontally or (b) vertically in a short period.

Horizontal flight. When the UAV flies in the horizontal
direction, the hight of UAV dU is fixed and we assume the
height of client dc = 1. Then, γ can be expressed by γ =√
d2d+4dU
dd

, and the derivation of γ in terms of dd is γ′|dd =
−4dU

d2d

√
d2d+4dU

. Therefore, a0 is computed as a0 = dd√
d2d+4dU

−1.

Due to the fact that dd>dU − 1, a0 is within the range of
a0 ∈ ( −2dU+1 , 0). Since ρ ∈ (−1, 0), we can obtain the value
of a0

1− γρ
∈ ( −1dU+1 , 0) and a0

1+ γ
ρ
∈ (0,+∞). Thus, when hd

and hr interfere constructively, ϕ′km|dd is within a small range
(−2πλ , −2πλ (1− 1

dU+1 )), which remains relatively stable around
−2π
λ , i.e., the phase changing speed of the direct-path link.

In contrast, when hd and hr interfere destructively, ϕ′km|dd
belongs to a large range (−∞, −2πλ ), which deviates a lot from
−2π
λ . Fig. 5(a) depicts both theoretical and experimental values

of ϕ′km|dd when the UAV flies in the horizontal direction.
The experimental value fluctuates around the theoretical value,
and the overall changing trend is similar. Note that without
fading, ϕ′km|dd is relatively stable for large proportion of time.
While fading occurs, ϕ′km|dd suddenly decreases. We plot in
Fig. 6 the theoretical models of ϕkm, ϕk1, ∆ϕkm. Fig. 6(a)
shows the case of horizontal flight. When no fading occurs,
∆ϕkm = ϕkm−ϕk1 is basically unchanged because both ϕkm
and ϕk1 have stable changing speed around −2πλ . Nevertheless,
when fading occurs for either hk1 at time t1 or hkm at time t3
in turns, ∆ϕkm experiences obvious increment or decrement
under the multipath effect. We also depict in Fig. 7 the plane
and three-dimensional models of the UAV flight and radio
propagation for better understanding.

Fig. 8(a) further shows one example of the dynamic changes
in ϕd, ϕr and ϕkm during the fading period. The green
and blue arrows represent hd, hr respectively, while the red
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Fig. 7. Two-ray ground propagation model from a ground client to the UAV
and the tree-dimensional UAV flight model.
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Fig. 8. The dynamic changes in ϕd, ϕr , ϕkm as the UAV moves horizontally
(a) during a fading period, ∆ϕ2 ≈ ϕ3< ϕ4; (b) during the period when hd,
hr interfere constructively, ∆ϕ2 ≈ ϕ3 ≈ ϕ4.

arrow denotes the resulting hkm. We set the length of the
arrow to amplitude and the direction to phase. Since dd
and dr are unequal, the phase changing speeds are slightly
different. From time t1 to t4, the phase difference between
ϕd and ϕr gradually increases. When fading happens, their
phase difference varies rapidly from <180◦ (t3) to >180◦

(t4). Thus, the direction of hkm experiences a large-scale
steering, from one side of the two arrows hd, hr to the other
side, much larger than the normal rotation speed. We can
observe that ∆ϕ4>∆ϕ3 ≈ ∆ϕ2 and ϕkm undergoes a more
rapid changing process when fading occurs. When hd and hr
interfere constructively (Fig. 8(b)), the direction of hkm also
steers from one side to the other side at t3-t4. However, this
steering is small, basically equal to the normal rotation speed.
The changing speed of ϕkm doesn’t vary too much.

Vertical flight. When the UAV flies in the vertical di-
rection, the horizontal distance dH is fixed. Then, γ =√
d2d+4+4

√
d2d−d

2
H

dd
, and a0 = 2

γ
√
d2d−d

2
H

+ 1
γ−1. As the altitude

of UAV gradually increases, we assume that dd satisfies
the relationship dd>

√
d2H + 1. Thus, a0 is within the range

a0 ∈ (0, 8√
1+9d−2

H ∗(3
√

1+d−2
H +
√

1+9d−2
H )

). When dH > 1, the

range of a0 can be simplified to (0, 0.34). Then, we can obtain
the value of a0

1− γρ
∈ (0, 0.17) and a0

1+ γ
ρ
∈ (−∞, 0). As a

result, when hd and hr interfere constructively, ϕ′km|dd is
within a small range (−2πλ (1+0.17), −2πλ ), close to the phase
changing speed −2πλ of the direct-path link. In contrast, during
a fading period, the value of ϕ′km|dd belongs to a large range
(−2πλ ,+∞). Fig. 5(b) shows both theoretical and experimental
values of ϕ′km|dd , which are consistent. Fig. 6(b) demonstrates
the theoretical model in which ∆ϕkm also decreases or
increases significantly with fading occurrence for hk1 or hkm,
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Fig. 9. Experimental and theoretical values of SNRorig,k1, SNRorig,k2 and
∆ϕk2 versus time when the UAV flies horizontally at variable velocities.

while remaining relatively stable for other conditions.
Experimental validation. We evaluate the aerial channel

changes on an open-air parking lot, where the channel mea-
surements are affected by multiple reflectors, i.e., ground,
trees and a car. Fig. 9 shows both experimental and theoret-
ical values of SNRorig,k1, SNRorig,k2 and ∆ϕk2 when the
UAV flies horizontally at variable velocities. The apparent
reductions in SNRorig indicate the deep fades experienced
by two channels hk1, hk2 in turn. When no fading occurs,
∆ϕk2 remains basically stable, indicating that ϕ′k1|d and ϕ′k2|d
are similar (and relatively stable around −2π

λ ) during this
period. When fading of hk1 or hk2 occurs in turn, ∆ϕk2
increases or decreases as ϕ′k1|d or ϕ′k2|d deviates a lot from
−2π
λ . These real-world measurements are consistent with the

theoretical phase models in Fig. 5 and Fig. 6, which gives us
an opportunity to model the phase difference ∆ϕkm changes
as the UAV moves, based on the occurrence of deep fades.

C. Sensor-Assisted Prediction Algorithm

As theoretical models in Section III-B show that ∆ϕkm
increases or decreases synchronously with the wireless fading,
the fading forecast becomes paramount. However, due to the
dynamic flight states, the fading positions and frequency vary
significantly. Thus, we propose a channel prediction algorithm
that exploits the flight-state-related sensor data to predict
SNRorig,k and Dk for each client k.

Prediction module. Fig. 10 depicts the detailed prediction
process. Inspired by [2], we also adopt a second-order polyno-
mial with time as the axis to fit and predict the fading patterns
of each SNRorig,km. As shown in Fig. 9, the experimental
values of SNRorig,km fit the second-order polynomial curve.
However, different from the constant velocity of 1 m/s in
[2], the flight states are highly dynamic in our experiment.
This greatly affects the channel variance, especially the fading
frequency ffading (Tfading = 1

ffading
, shown in Fig. 10). To

tackle this problem, we predict ffading as a function of UAV’s
relative velocity v and position p to the client, i,e., ffading =
g(v,p). This function provides the information of axis of
symmetry for the second-order polynomial to better adapt to
the dynamic flight states. In addition to the axis information,
SensRate takes the past SNRorig,km measurements to form a
set of points (blue and white points in Fig. 10) that build the
second-order polynomial regression. This polynomial will be

Fading SNR threshold

Tfading
t

SNRkm

SNRk1

   

Prior readings Predicted valueAxis information Predicted model

Fig. 10. The prediction algorithm based on the past channel measurements
and predicted fading frequency ( 1

Tfading
).

updated as new SNRorig,km becomes available and thoroughly
initialized after detecting the lowest SNRorig,km. Based on this
second-order polynomial function, we can predict SNRorig,km
change in the near future.

In order to predict Dk changes, we need to accurately
detect the beginning and the end of a fade because ∆ϕkm
changes significantly during the fading period. Typically, the
SNR during a fade is lower than the value before and after the
fading. So we set an SNR threshold to indicate the start and the
end of a fade. This threshold is empirically set as the medium
value of past several SNR fluctuation ranges. Once detecting
that the newly predicted SNRorig,km or SNRorig,k1 is less
than their respective thresholds, we adopt a linear function that
relies on the past ∆ϕkm measurements to fit the changes in
∆ϕkm and predict the future value, as shown in Fig. 10. From
the start to the end of a fade, this linear function is updated
once new ∆ϕkm measurement is available. After the fading
ends, the phase difference becomes relatively stable and we
can directly utilize the last measured value. It is noteworthy
that when both channels hkm, hkm are during the fading
period, the phase difference remains relatively stable, since
the two channels have similar phase changing trends.

After predicting the changes in SNRorig,km, SNRorig,k1 and
∆ϕkm, we can calculate each hkm/hk1 that forms Dk, where
|hkm| is converted from SNRorig,km. Next, each client can
predict its channel direction Dk and estimate the angle θk be-
tween itself and the already ongoing clients. Additionally, the
SNRorig,k can be calculated by SNRorig,km,m = 1, 2, ..M .
Then, we can obtain the resulting SNRproj,k according to
Eq. (2)-(3) for each client to select the transmission rate.

Predicting fading frequency using sensor data. In this
part, we describe the detailed prediction process of fading
frequency ffading = g(v,p) that relies on the relative velocity
v and position p of the UAV to each ground client. The UAV
periodically broadcasts its 3D velocity and 3D position. If the
ground client is equipped with IMU and GPS, it can directly
calculate v and p. However, for the client without IMU or GPS,
we can further employ the technique in [34] by leveraging the
time of flight (ToF) and Doppler shift to estimate the velocity
v′ in the direct-path direction and the UAV-to-client distance
dd. In this case, the relative position p of the UAV can be
obtained when ignoring the change in height dc of the client.

Recall that we can estimate the direct-path distance dd,β
corresponding to each fading position as dd,β = βλ

(γ−1) , β ∈ Z.
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Fig. 11. The average Tfading with various UAV velocities or UAV-to-client
distances, including the predicted value and the ground truth.

For each p along UAV trajectories, there are two representa-
tions of γ in the horizontal or vertical direction, which are

γ =


√
d2d+4dUdc
dd

, dU , dc as parameters,√
d2d+4d2c+4dc

√
d2d−d

2
H

dd
, dH , dc as parameters.

(12)

When estimating dd,β in the horizontal direction, dU , dc are as
known parameters with only dd as a variable. The estimation
of dd,β in the vertical direction is similar. Thus, we can solve
two different series of {dd,β}s, β ∈ Z for each p. If the
current real-time v is exactly close to the vertical or horizontal
direction, we calculate the real-time dd and search its interval
dd,β−1 ≤ dd<dd,β along this direction. The change in direct-
path distance ∆dd between adjacent fading positions can be
computed by ∆dd = dd,β − dd,β−1.

As shown in Fig. 7(b), we convert the absolute value of
relative velocity v = |v| into the velocity v′ in the direct-path
direction by

v′ = v ∗ | cosα|, (13)

where α is the angle between the relative velocity of UAV and
the direct-path link, which can be directly calculated through
v and p. The fading interval Tfading can be predicted by

∆dd =
∫ Tfading v ∗ | cosα| dt. (14)

However, if the current real-time v is oblique, the Tfadings in
vertical direction and horizontal direction should be separately
estimated, and the smaller value is selected. It is noteworthy
that Tfading should be continuously updated especially when
there exits oblique flight in UAV trajectory, because dU or dH
is not constant in this case.

We conduct real-world experiments on an open-air parking
lot to compare the predicted Tfading with the ground truth.
Fig. 11 shows the average Tfading in horizontal flights with
various UAV velocities or UAV-to-client distances. When
testing Tfading vs. UAV velocity, the UAV-to-client distance is
limited within 10-20 m. When testing Tfading vs. distance, the
velocity is limited within 2-3 m/s. Note that Tfading decreases
with the velocity and increases with the distance, which is in
line with Eq. (12)-(14). We can observe that the predicted
values are similar to the ground truth, verifying that SensRate
does perform well in adapting to different flight states.

D. Rate Selections and ZF-SIC Decoding

According to Section III-A, clients join transmissions one
after another (say from client 1 to K). Client 1 can determine

the rates only based on its predicted SNRorig. Later clients
estimate the inter-user interference and SNRproj for rate selec-
tions. SensRate uses zero-forcing with successive interference
cancellation (ZF-SIC) [18], [35] to decode in descending order
from client K to 1. Specifically, once the kth stream is
successfully decoded by projecting the received signal along
the direction orthogonal to the subspace consisting of D1 to
Dk−1, we subtract it from the received signals.

It is noteworthy that there exists error propagation and
imperfect interference cancellation in ZF-SIC decoding. By
applying the technique in [18], [36] to cope with the imperfect
cancellation, each client compares its predicted SNRorig with
a threshold of 25-27 dB before transmission. If the SNRorig
exceeds this threshold, the client (except client 1) will reduce
the transmission power to avoid the residual noise after cancel-
lation. Besides, due to the error propagation, the BER of client
k will be affected by whether the previous streams ((k+1)th-
Kth) are decoded correctly. According to [35], we can estimate
the error probability of decoding the stream from client k (for
simplicity, we treat it as BER pk) by

pk = pk+1 + (1− pk+1) ∗ pke =

K∑
i=k

pie K∏
j=k+1

(1− pje)

 ,

(15)
where pie is the BER of decoding the ith stream incorrectly
when all the previous streams are decoded correctly. Then
we calculate the effective SNReff,i and estimate the coded
bit error rate pie,Ri of each rate selection Ri, based on the
predicted subcarrier SNRproj,i. Then, by combining pie,Ri with
Eq. (15), the throughput ηk of client k can be estimated as

ηk = Rk(1− pk)L = (1− pk+1)L ∗Rk(1− pke,Rk)L, (16)

where L is the number of bits in a packet.
The aim of SensRate is to schedule proper Rk for all con-

current clients to maximize the overall throughput (formulated
as Eq. (5)). A key point is that the AP decodes the streams
in order of client K to 1. We can observe from Eq. (16) that
the pk+1 of the previously decoded streams will not affect
the rate selection Rk of client k to maximize its throughput
ηk. But the rate selection Rk of each client k and its resulted
pke,Rk will affect the decoding of remaining streams (1th to
(k − 1)th). Thus, the multi-client rate selections for Eq. (5)
can be converted to the rate selection of each client k as

max
R1,··· ,RK

K∑
ηk → max

Rk

k∑
i=1

ηi, k = 1, 2, · · · ,K

= max
Rk

(1− pk+1)L ∗
k∑
i=1

Ri ∗ k∏
j=i

(1− pje,Rj )
L

 .
(17)

Limited by the inherent problem that client k doesn’t know
the conditions (SNR, R, pe, etc.) of other clients, it assumes
the conditions of later clients are as same as itself to obtain
the Rk of Eq. (17), which is simplified to

max
Rk

(1− pk+1)L ∗Rk ∗
k∑
i=1

 k∏
j=i

(1− pke,Rk)L

 . (18)
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Fig. 12. Experimental setup. (a) Implementation. (b) An experimental site: an empty square. (c) Another experimental site: an open-air parking lot with a
car on it and trees surround it. (d) The map of UAV trajectories and clients’ locations shared by both experimental sites.

This module enables each client k to select the proper rate Rk
over all available physical-layer rates to maximize the overall
throughput in a fully distributed manner.

E. Additional Issues

Decoding scheme. We choose ZF to decode the concurrent
streams due to its relatively low complexity and good perfor-
mance in the high SNR regime. Since each client can estimate
the SNRproj before joining the contention, SensRate forces
clients whose estimated SNRproj are below 4 dB (minimum
SNR for rate selection [18]) to give up joining the contention,
which avoids the performance degradation of ZF in the low
SNR regime and maximizes the overall throughput.

None-line-of-sight (NLOS). As stated in [37], compared
to LOS propagation, an extra path loss of 20-30 dB needs
to be further subtracted in NLOS propagation, which are
measured in Suburban, Urban, Dense Urban, and Highrise
Urban. Thus, compared to clients under LOS conditions, the
clients under NLOS conditions have much lower probabilities
of joining transmission at the current moment. Instead, when
the UAV patrols around, they join the transmission when the
LOS propagation path becomes available.

Overhead. We finally check the extra overhead introduced
by SensRate. The overhead mainly comes from (1) the UAV
broadcast packets, and (2) the exchange of channel directions
among clients. As the experimental results shown in Sec-
tion IV-D, the UAV broadcast rate of 50-100 Hz is required
for SensRate prediction. The UAV broadcast packet includes
3D positions (3 × 4 bytes) and 3D velocities (3 × 4 bytes).
The transmission time is (24 ∗ 8/6e6 + 100) × 50(100) =
6600 µs(13200 µs), which only requires 0.66%-1.32% of
the available airtime at the lowest rate of 6 Mbps. The
100 µs comes from the PLCP header that contains the training
preamble. Like TurboRate [18], we also transform the channel
directions across all subcarriers to the time domain. The
clients only broadcast the first few significant taps, e.g., five
taps, of the time-domain channels, resulting in a 4% average
throughput loss [18] as an inevitable sacrifice. In addition, the
computational cost at the UAV side mainly comes from the
ZF-SIC decoding, with the complexity of O(KM3). The cost
at the client side includes (1) the phase difference prediction
(O(KM)), (2) the SNRorig prediction (O(KM)), (3) the θ
calculation (O(KM3)), (4) the SNRproj calculation (O(K)),

and (5) the rate selection (O(K)), with total complexity of
O(KM3). Therein, we simplify the cost of linear/curve fitting
to O(1), which originally relates to the number of samples.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Implementation. We implement SensRate on a commercial
UAV platform, DJI Matrice 100, which serves as a mobile
hotspot to communicate with several ground clients. As shown
in Fig. 12(a), the UAV is equipped with sensors including in-
ertial measurement unit (IMU), GPS receiver, barometer, mag-
netometer and ultrasound to obtain its real-time 3D positions
and 3D velocities. Besides, an Intel next unit of computing
(NUC) with an Intel 5300n wireless chipset is equipped on the
UAV, which is connected with three omni-directional antennas
to act as a multiple-antenna AP. On the ground, we deploy a
controller NUC equipped by an Intel 5300n wireless chipset to
connect with three omni-directional antennas. By placing the
antennas separately at different positions, we regard them as
several independent clients. The wireless cards work in the
monitor mode, operating on a 20 MHz channel at 5 GHz
frequency band. We leverage the Intel 5300 CSI tool [38] to
record air-to-ground CSI at 1000 Hz as well as corresponding
timestamps. The collected CSI traces are then downsampled
to different CSI reading rates to evaluate the performance of
SensRate. Although this CSI is measured in a 3×3 MIMO
mode, it can evaluate advanced techniques like multi-user
MIMO [38] in our experiment, where each antenna on the
ground acts as a client.

The NUC on the UAV logs the timestamps, 3D positions
and 3D velocities at 50 Hz. To minimize the time offset
between NUCs, we connect them to the campus network to
synchronize their system time before each UAV flight. As the
real-time clock (RTC) drift of Intel NUC is 24 ppm [39], the
time offset between NUCs during each flight is limited and
do not affect our experiments. Thus, we use the timestamps
to align the sensor data and CSI. It is noteworthy that this
alignment is not required in our system design, as clients
can measure CSI and obtain corresponding UAV sensor data
from UAV broadcast packets without additional alignment.
The experimental sites include an empty square and an open-
air parking lot with a car on it and trees surround it, as shown
in Fig. 12(b) and Fig. 12(c). The UAV is controlled to fly
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Fig. 13. The comparison between different RA algorithms for 2- and 3-
antenna APs.

in different trajectories with varying flight states according to
experimental requirements. We use the collected traces to eval-
uate SensRate’s performance on top of an 802.11-compatible
MU-MIMO OFDM library [30]. To realize SensRate, we add
the function of sensor-assisted channel prediction and rate
adaptation to this MU-MIMO communication system.

Baseline algorithms. For performance comparison, we have
also implemented three baseline RA algorithms:
• TurboRate [18] is the state-of-the-art RA algorithm for

UL MU-MIMO, which takes into account the inter-user
interference as a bias for transmission rate selections.
Clients in TurboRate exchange the past channel direction
measurements to calculate the inter-user interference.

• OPT is an omniscient algorithm that provides upper
bounds for all the algorithms. It knows in advance the
CSI, the inter-user interference and the SNRproj for all
clients, and ensures the highest transmission rate for the
next frame that can be successfully sent.

• ESNR [40] refers to the single-user RA algorithm, which
selects the optimal 802.11n MIMO rates based on effec-
tive SNR of past channel information. Only one client
is allowed to transmit to a multi-antenna AP at a time
through traditional 802.11 content mechanism.

B. Overall System Throughput

To begin with, we test the overall throughput of SensRate
and compare it with several baseline algorithms defined in
Section IV-A. The whole experiments are conducted in 2-
antenna AP and 3-antenna AP scenarios, respectively.

2-antenna AP scenario. We first focus on the 2-antenna AP
scenario, where two single-antenna clients concurrently trans-
mit to a mobile UAV hotspot. The two clients are randomly
deployed in the wild, with combination of dots in Fig. 12(d).
For each choice of clients’ locations, we collect the real-time
sensor data and CSI for over ten vertical and horizontal UAV
trajectories, respectively. The UAV velocities vary from 0 to
10 m/s and the UAV-to-client distances are within 45 m. We
use the CSI reading rate fr of 50 Hz to evaluate SensRate
when the UAV velocity is below 6 m/s and increase fr to
100 Hz when the UAV velocity is over 6 m/s, which is
also used in following experiments. We conduct the same
experiment on both sites shown in Fig. 12(b) and Fig. 12(c).

The results in Fig. 13(a) illustrate that SensRate can in-
crease throughput for both clients. The overall throughput

gain reaches 1.24× and 1.77× over TurboRate and ESNR,
respectively. This gain mainly benefits from the SensRate’s
prediction function and adaptability to the UAV flights. With
the assistance of sensor data, SensRate can provide a more ac-
curate SNRproj prediction value albeit with the CSI staleness.

3-antenna AP scenario. Next, we check the system per-
formance in the 3-antenna AP scenario, where three single-
antenna clients concurrently transmit to the mobile UAV. We
repeat this experiment with the same configurations as in
the 2-antenna AP scenario. The throughput of four systems
is demonstrated in Fig. 13(b). SensRate delivers an over-
all throughput gain of 1.28× and 2.48× over TurboRate
and ESNR, respectively. Consistent with the 2-antenna AP
scenario, the capability of SensRate to adapt to dynamic
UAV channels allows all clients to choose more accurate
transmission rates and achieve higher throughput.

C. Impact of Flight States

We further compare SensRate with other RA algorithms in
terms of different flight states. For simplicity, we zoom in on
the overall system throughput in the 2-antenna AP scenario.

Impact of velocity. In this experiment, we locate the two
clients at dots B and D in Fig. 12(d), respectively, and control
the UAV to move back and forth on trajectory 2 at different
velocities of 0-10 m/s. Fig. 14 shows that SensRate outper-
forms TurboRate at each velocity range. The performance gap
gradually increases with velocities, and reaches 26.7% at UAV
velocities of 6-10 m/s. Taking OPT as a reference, SensRate is
able to maintain the overall throughput close to OPT, verifying
the robustness in channel prediction function.

Impact of distance. We next test the performance of
SensRate at different average distances between the UAV and
two ground clients. We place two clients at dots A and B in
Fig. 12(d), and extend trajectory 2 to larger distance ranges,
including <10 m, 10-15 m and 15-25 m. Then, the UAV
altitude is increased to test the distance range of 25-45 m. The
velocity is within 1-3 m/s. SensRate outperforms TurboRate at
each distance range. The performance gap reaches the peak in
the closest distance range, as the closer UAV-to-client distance
increases the fading frequency, thus exacerbating the channel
variance. SensRate can offer strong adaptability. However,
the closest distance also inevitably increases the difficulty for
SensRate to predict the channel changes as accurately as in
the case when the channel is stable, which slightly enlarges
the gap between SensRate and OPT.

Fig.16 evaluates the system performance by comprehen-
sively changing UAV-to-client distances and velocities. The
throughput level of all systems decreases with velocities and
distances. SensRate outperforms other existing RA algorithms
and the gap between SensRate and TurboRate is the largest at
the state tuple of (5,10), which causes larger channel variance.
However, the throughout gain at the state tuple of (10, 45)
significantly decreases, as the received power will no longer
be dominated by the fast fading when the distance increases
(e.g., to 45 m). The dependence of RA algorithms on channel
prediction is reduced. Besides, the performance of SensRate is
close to the OPT algorithm. In detail, the overall throughput
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of SensRate across different flight states can achieve 88.1% to
93.5% of the OPT algorithm.

Evaluation for different trajectories. The above experi-
ments verify the overall adaptability of SensRate. Then we
further explore the specific throughput changes of clients under
different UAV trajectories (shown in Fig. 12(d)), which are
• Trajectory 1: The UAV flies vertically back and forth

between the altitude of 2 m to 38 m at 2-4 m/s. The
clients 1 and 2 are located at dots D and C, respectively.

• Trajectory 2: The UAV flies from client 2 (dot B) to
client 1 (dot D) horizontally at a constant velocity of
1.3 m/s.

• Trajectory 3: The UAV passes by between client 1 (dot
D) and client 2 (dot C) at variable velocities.

Fig. 17 illustrates the dynamics of throughput results and
real-time flight states. We have the following observations:
• In Fig. 17(a), the throughput of both clients decreases

simultaneously as the UAV’s altitude increases. SensRate
achieves throughput gains for each client throughout
the flight compared with TurboRate, and the gains are
most significant when the UAV’s altitude is low at the
beginning and end of the trajectory.

• In Fig. 17(b), the throughput changes of clients 1 and 2
are opposite, with one increasing and the other decreasing

as the UAV flies from one to the other. SensRate also
outperforms TurboRate throughout the flight, whereas the
peaks of the gains for clients are not synchronized, both
depending on the time when the UAV is closest.

• Fig. 17(c) shows the result of a more complex UAV flight
with changes in both distance and velocity. As expected,
the performance for each client is improved the most
when the UAV is fastest and very close to the client,
which causes severe channel fluctuations.

D. Impact of CSI Reading Rates

SensRate predicts MU-MIMO channel based on past CSI
measurements. It is obvious that sufficient CSI readings can
make the channel prediction mechanism perform better. How-
ever, to enable more CSI available at clients requires more
UAV broadcast packets, which may hamper the channel uti-
lization. In this subsection, we downsample the collected CSI
traces to different rates of CSI readings fr, including 200 Hz,
100 Hz, 50 Hz, 25 Hz and 10 Hz. Then, we investigate their
impact on the system throughput and explore the minimum
rate that meets SensRate prediction requirement.

Fig. 18 compares the performance of SensRate and Turbo-
Rate under different fr. When the maximum UAV velocity
is 6 m/s, both the throughput and throughout gain increase
rapidly with fr from 10 Hz to 50 Hz. When fr reaches
100 Hz or upper, the growth of the overall throughput sig-
nificantly slows down, and the gain gradually diminishes.
These results indicate that 50 Hz CSI reading rate is sufficient
for channel prediction in SensRate when UAV velocities are
within 6 m/s. Continuing to increase the CSI reading rate may
cause oversaturation and threaten channel utilization. When
the UAV velocity reaches 10 m/s, the overall throughput still
significantly increases with fr from 50 Hz to 100 Hz, and then
becomes relatively stable when fr is higher than 100 Hz. Thus,
we increase fr to 100 Hz to support SensRate at 6-10 m/s,
as enough sample points between subsequent deep fades is
required for the prediction algorithm to perform well.
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(b) Trajectory 2
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(c) Trajectory 3

Fig. 17. The dynamics of throughput and real-time flight states under different trajectories. (a) Trajectory 1. (b) Trajectory 2. (c) Trajectory 3.

E. Impact of Environments

In this subsection, we investigate whether SensRate adapts
to environments with more multipath reflections. We compare
SNRproj prediction accuracy on both sites shown in Fig. 12(b)
and Fig. 12(c), and test cases when the UAV flies at 1 m/s and
5 m/s on average. Table I shows that whether the UAV is at
1 m/s or 5 m/s, the SNRproj prediction accuracy is nearly
the same on both square and parking lot. This verifies that
SensRate allows operation in the presence of various multipath
reflections and adapts to different flight states.

We further analyze the tolerance of SensRate over en-
vironmental complexity by simulating the prediction error.
The prediction error is partly quantified by the deviation of
the SNR curve from the expected second-order polynomial
based on the two-ray ground propagation model. As PNr ∝
( λ
4πdd

)2
∣∣∣1 +

∑N−1
i=0 ρi

1
γi
exp(−j∗2π(γi−1)∗ddλ )

∣∣∣2, where N is
the number of reflected paths, i = 0 the reflected path
from the ground, the SNR deviation is estimated by DN =
10 ∗ lg(PNr )− 10 ∗ lg(P 0

r ). Since the SNR change exceeding
3 dB may require the node to adjust the rate [18], we use 3 dB
as the threshold. When E[|DN |] < 3 dB, this environmental
complexity can be highly tolerated. As it is impossible to
simulate all states of reflectors, we simply assume the change
of each γi as γi = kiγ0. When ki > 1, through traversing all
values of ki, we summarize in Table II the states of reflectors
in a complex environment which SensRate can highly tolerate.
When ki ≤ 1, i.e., the reflector i is closer to the client
than the ground, the approximate frequency γ0 − 1 of the
reflected wave from the ground is higher than that of other
reflected waves, and the amplitude 1

γ0
and 1

γi
is nearly the

same. Thus, the occurrence of fading is generally consistent
with our prediction. When there are not many reflectors with
ki < 1, SensRate can highly tolerate this case.

For environments where the reflectors do not meet the
above requirements, the tolerance of SensRate may be lower.
However, the prediction in SensRate is realized by fitting CSI
readings and the parameters are continuously updated. Thus,
even if more complex environments may cause the fading
pattern to deviate from the expectations based on the two-
ray ground propagation model, the prediction function will
still correct itself to reduce the error. Compared to traditional
algorithms that directly use previously measured CSI to select
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Fig. 18. The impact of CSI reading rates.

rate, SensRate shows more promising for throughput gain.

F. Moving Clients

In order to verify the compatibility of SensRate to the
moving clients, we further conduct two sets of experiments,
in which the clients are stationary or being held by persons
who walk randomly. As the ground clients in our experiment
(NUC) do not have IMU or GPS, we employ the wireless-
assisted technique in [34] to estimate velocity v′ in the direct-
path direction and UAV-to-ground distance dd. This process
is detailed in Section III-C. We can see the results in Table I.
When the UAV flies at 5 m/s, the moving clients have little
impact on the throughput and prediction error. When the
UAV flies at 1 m/s, the impact increases slightly, as the
random walk of clients increases the non-linearity degree of
the relative trajectory between the UAV and ground clients,
which increases the difficulty of channel prediction. However,
this performance degradation is not much, and there is still an
obvious throughput gain compared to TurboRate, especially
at UAV velocity of 5 m/s. This reflects the adaptability and
robustness to moving clients and non-linear flight trajectories.

V. RELATED WORK

Related works fall into the following categories.
MU-MIMO RA algorithm. Most existing MU-MIMO RA

algorithms rely on per-user PER [16], [20] or CSI [17]–[19],
[21]. TurboRate [18] measures uplink CSI through periodic
broadcast from the AP to select uplink rates. Some works [17],
[19], [21] assign the AP to receive CSI feedback from clients
to determine downlink rates and user selections. They [17],
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TABLE I
PERFORMANCE OF SENSRATE UNDER DIFFERENT ENVIRONMENTS AND

MOVING CLIENTS.

Environment, UAV
Velocity (m/s)

Prediction
error

Client , UAV
velocity (m/s)

Prediction
error

Throughput
(Mbps) Gain

Square, 1 0.5212 Stationary, 1 0.5133 58.0386 20.23%

Parking lot, 1 0.6523 Moving, 1 0.6429 55.8218 15.6%

Square, 5 1.9085 Stationary, 5 1.9079 50.2342 27.4%

Parking lot, 5 2.0092 Moving, 5 1.9310 49.8839 26.5%

[19] focus on finding ways to reduce CSI overhead and
improve channel utilization. Some studies [16], [20] adjust
downlink rates according to per-user PER that updated upon
the reception of ACK frames. Such PER-based RA algorithms
eliminate CSI feedback overhead, which have been favored
by large 802.11 vendors such as Qualcomm and Broadcom
for simplicity. All these RA algorithms rely on the channel
measurements in coherence time without prediction, which are
not optimized for the dramatically fluctuating UAV channels.

Inter-user interference prediction. The prediction, adapta-
tion and cancellation of inter-user interference play important
roles in MU-MIMO networks. For UL streams, TurboRate [18]
exchanges channel directions to estimate inter-user interfer-
ence and adjust rates. Zhou et al. [30] prioritize clients whose
channel directions are aligned with predefined orthogonality
vectors to minimize inter-user interference. MIMOMate [32]
selects clients with minimum interference among them. For
downlink streams, many studies [21], [41] enhance the chan-
nel utilization by optimizing precoders to suppress inter-user
interference. However, these estimations are still calculated by
past channel measurements, which have been experimentally
verified in [30] to be easily affected by mobile devices.

With the rapid development of deep learning (DL), re-
searchers have advocated applying DL in MIMO channel
prediction [42]–[45]. Some works [42], [43] predict by ex-
ploiting temporal correlation across CSI series. OCEAN [44]
leverages the spatiotemporal relationship of CSI and considers
frequency, location, etc. However, the distance is divided into
sub-regions. YOLO [45] performs DL-based MIMO channel
reconstruction by viewing the channel as an image. Whereas,
none of them dive into the fine-grained correlation between
motion states and MU-MIMO channel changes. Using DL to
achieve sensor-assisted MU-MIMO channel prediction can be
our future work. SensRate lays the foundation for it.

Aerial channel prediction. Several studies [23], [24], [37]
model the path loss and shadowing effect to determine op-
timal UAV placements. Some works [28], [29] predict the
received power based on the distance between aircraft pairs.
DroneFi [2] predicts the SNR by capturing the periodic fading
patterns along flights, based on the two-ray propagation model.
DroneNet [46] combines the 3-D ray tracing and throughput.
He et al. [25] exploit the UAV sensor data to train a neural
network for channel prediction and link adaptation. However,
it focuses on the single-user transmission and cannot give a
fine-grained correlation to support channel prediction at any
transmission time. In contrast, SensRate builds a model with
time as the axis and sensor data as the parameter to predict
aerial channel changes. Recent efforts [33], [47] measure the

TABLE II
STATES OF REFLECTORS IN A COMPLEX ENVIRONMENT WHICH

SENSRATE CAN HIGHLY TOLERATE.

N Requirement of γi, i = 1, 2, 3, ..., N − 1

N = 2 γ1 ≥ 1.4γ0
N = 3 γ1 ≥ 1.5γ0, γ2 ≥ 2.4γ0
N = 4 γ1 ≥ 1.7γ0, γ2 ≥ 2.3γ0, γ3 ≥ 3.4γ0
N = 5 γ1 ≥ 1.8γ0, γ2 ≥ 2.6γ0, γ3 ≥ 2.9γ0, γ4 ≥ 3.7γ0

. . . . . .

delay spread of air-to-ground multipath channels for differ-
ent UAV altitudes and elevation angles. Willink et al. [27]
characterize the air-to-ground MIMO channels and examine
the spatial correlation across antenna arrays, which take into
account the phase but do not form a prediction method. To
summarize, few researchers pay attention to the prediction of
channel directions or phases of UAV MIMO networks, making
it difficult to estimate inter-user interference and adapt rates.

VI. DISCUSSION

Underlying applications. SensRate is proposed for low-
altitude UAVs. The underlying applications include traffic
offloading in hotspot areas [2]–[6], [48], [49], data collec-
tion [7], [8] and UAV-enabled mobile edge computing [9],
[10], considering the UAV altitudes and velocities in this
paper. For example, DroneFi [2] proposes drone hotspots
flying below 20 m. Tethered UAVs have recently attracted
attention for network coverage [6] with limited altitudes and
velocities. For applications of data collection and mobile edge
computing, the UAV altitudes set in related works generally
vary from 10 m to 100 m [7]–[10]. Moreover, a maximum
UAV velocity of 10 m/s is widely used in studies of these
UAV applications [2], [6], [9], [10], [48], which is sufficient
for UAV trajectory scheduling.

Rotation. There is no special optimization of SensRate to
adapt to UAV rotation, but the harm can be minimized. The
reason is that seamless switching can be achieved between
SensRate and the traditional mode (i.e., using past CSI for rate
selections without prediction). Once a client detects obvious
UAV rotation, excessive non-linearity in relative motion tra-
jectories or a sharp increase in prediction errors, the client can
switch to the traditional mode in time to minimize performance
degradation. Furthermore, the study of UAV rotation can be
our future work to further optimize UAV transmission.

VII. CONCLUSION

This paper introduces SensRate, a sensor-assisted UL MU-
MIMO RA algorithm tailored for mobile UAVs to maximize
the overall throughput. SensRate mitigates the impact of CSI
staleness and enables the channel direction and inter-user inter-
ference to be traced and predicted under agile UAV mobility.
We think this is an important design point for UAV-MIMO to
materialize the high throughput and enhance the performance
of UAV hotspots. The experimental results show that SensRate
achieves an average throughput gain of 1.24× and 1.28×
over the best-known RA algorithm for 2- and 3-antenna APs,
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respectively. We hope this design can contribute the MU-
MIMO communication in mobile scenarios by providing new
insights on channel prediction and link adaptation.
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