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Topology Inference with Multivariate Cumulants:
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Abstract—Many tasks regarding the monitoring, management,
and design of communication networks rely on knowledge of the
routing topology. However, the standard approach to topology
mapping—namely, active probing with traceroutes—relies on
cooperation from increasingly non-cooperative routers, leading
to missing information. Network tomography, which uses end-
to-end measurements of additive link metrics (like delays or log
packet loss rates) across monitor paths, is a possible remedy.
Network tomography does not require that routers cooperate
with traceroute probes, and it has already been used to infer the
structure of multicast trees. This paper goes a step further. We
provide a tomographic method to infer the underlying routing
topology of an arbitrary set of monitor paths using the joint
distribution of end-to-end measurements, without making any as-
sumptions on routing behavior. Our approach, called the Mobius
Inference Algorithm (MIA), uses cumulants of this distribution
to quantify high-order interactions among monitor paths, and
it applies Mobius inversion to ‘“disentangle” these interactions.
In addition to MIA, we provide a more practical variant called
Sparse Mobius Inference, which uses various sparsity heuristics
to reduce the number and order of cumulants required to be
estimated. We show the viability of our approach using synthetic
case studies based on real-world ISP topologies.

Index Terms—Topology inference, network tomography, cu-
mulants, high-order statistics.

I. INTRODUCTION

Many tasks regarding the monitoring, management, and
design of communication networks benefit from the network
operator’s ability to determine the routing topology, i.e., the
incidence between paths and links in the network. During
small-scale network failures, for example, routes may automat-
ically switch, and it is important that the network operator has
knowledge of the new routing matrix. In the case of large-scale
topology failures, inference of the routing topology is a crucial
prelude to determining both the surviving network topology
and the available services that remain. Peer-to-peer file-sharing
networks are another example: nodes may want to know the
routing topology so that they can select routes that have
minimal overlap with existing routes, so as to avoid congestion
and improve performance. Additional applications to the in-
ference of dark networks and adversarial networks is obvious.
Furthermore, the problem of optimal monitor placement relies
on some knowledge of the network topology, and inference of
the routing matrix provides topological information that could
be used to bootstrap new end-to-end measurements.
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Literature Review: Two main approaches are available
for topology inference in communication networks: using
traceroutes, and using network tomography [1]. Traceroutes
are the simplest and most direct approach, but they rely on
intermediate routers to cooperate by responding to traceroute
packets. This cooperation is becoming increasingly uncommon
[2], leading to inaccuracies in traceroute-based topology map-
ping [3]. Some authors have modified traceroute approaches
to account for uncooperative routers [4], [5], [6], using partial
traceroute results to over-estimate the topology, then applying
heuristics and side information to merge nodes. These ap-
proaches perform well on test cases, but a rigorous method
of selection among viable topologies would still be desirable.

Another approach to topology inference has started to
emerge from the literature on network tomography. Network
tomography is the problem of inferring additive link metrics
(like delays or log packet loss rates) from end-to-end mea-
surements; a nice review is provided in [7]. Unlike traceroute
approaches, network tomography does not rely on intermediate
routers to cooperate with traces. Instead, it measures some
metric like delay or log packet loss rate between hosts, and
it solves a linear inverse problem to infer the values of
these metrics on each link. While most tomography literature
assumes that the routing matrix is known, some authors have
used tomographic approaches to infer the routing topology in
special cases. In general, these approaches to are based on
a collection of statistics called path sharing metrics (PSMs),
which are defined for each pair of host-to-host paths. The PSM
for a pair of paths is the sum of metrics across all links that
are shared by the two paths. A topology is then selected that
explains all of the PSMs.

The tomographic approach was first applied to the single-
source and multiple-receiver setting to infer multicast trees.
One of the first papers to adopt this idea is [8], which uses joint
statistics of packet loss between pairs of receivers as a PSM.
By repeatedly identifying the pair with greatest path sharing,
joining that pair into a “macro-node,” and re-computing the
statistics, the authors iteratively build the multicast tree from
the bottom up. A few years later, [9] generalized this idea from
packet losses to other PSMs, including correlations between
packet delays between receiver pairs; and [10] accounted
for measurement noise by moving the problem to a max-
imum likelihood framework. Somewhat more recently, [11]
re-considered the problem of constructing a multicast tree
from PSMs and provided new rigorous and more-efficient
algorithms. All of these papers use PSMs for pairs of source-
receiver paths to reconstruct the tree.

Later work has extended tomographic topology inference



from beyond multicast trees to more general multiple-source,
multiple-receiver problems. In [12], the authors merge multi-
cast trees to infer the topology with multiple sources, under
some “shortest-path” assumptions on the routing behavior—
again using PSMs. [13] provides more general necessary and
sufficient conditions for when network inference is possible
based on PSMs. Both of these papers essentially assume
shortest-path routing, an assumption which is not always valid,
for example, due to load balancing in the TCP layer [12].
This assumption also cannot accommodate more complex
probing paths, such as the two-way paths that emerge when a
monitoring endpoint pings another node.'

Recent papers have also applied tomography to problems
with uncertain (yet not completely unknown) topologies. In
[14], the typical linear inverse problem from tomography is
replaced with a Boolean linear inverse problem, allowing the
authors to identify failed links from end-to-end data. Similarly,
[15] studies the problem of making network tomography
robust to dynamics in the network topology. The last two
papers also deal with the problem of measurement design,
i.e. constructing the routing matrix to ensure identifiability.
Neither of these two last papers is concerned with inferring the
routing matrix; however, they do represent approaches outside
of the PSM paradigm to gleaning topological information from
end-to-end data in a tomography setting.

Another recent paper [16] introduced a new method for
topology inference, called “OCCAM”. Like most of the other
methods we have referenced, OCCAM is based on PSMs;
however, instead of algorithmically constructing the unique
topology that is consistent with the PSMs and routing as-
sumptions, OCCAM solves an optimization problem with
an Occam’s razor heuristic. The heuristic is not guaranteed
to find the correct network structure (unless the underlying
network is a tree), but the authors demonstrate good empirical
performance. To our knowledge, OCCAM is the only approach
to truly general topology inference via network tomography,
i.e., an approach that does not require any assumptions on
routing behavior (beyond the fundamental assumption of stable
paths between source-receiver pairs).

Contributions: This paper provides another such ap-
proach to topology inference. We extend the use of second-
order PMSs into higher-order statistics (i.e., statistics involving
more than two paths), allowing us to relax any underlying
assumptions about the underlying topology. Our method uses
cumulants to quantify high-order interactions between multiple
paths, then applies Mobius inversion to “disentangle” these
interactions, resulting in an encoding of the routing topology.
Our general approach, which we call the Mobius Inference Al-
gorithm (MIA), is a non-parametric method of reconstructing
the routing matrix from multivariate cumulants of end-to-end
measurements, under mild assumptions. It does not require
any prior knowledge of the topology or distributions of link
metrics, and works under general routing topologies.

The paper has three main contributions. First, we provide a
novel application of statistics and combinatorics to network to-
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mography. We show that multivariate camulants of end-to-end
measurements reveal interactions between the monitor paths
(in the form of overlapping links), and we demonstrate how
Mobius inversion can be used to infer link-path incidence from
these cumulants. Based on these observations, we construct the
Mobius Inference Algorithm (MIA), which recovers a provably
correct routing matrix from these cumulants.

Second, we adapt MIA to the more practical scenario in
which a dataset of end-to-end measurements is available,
instead of exact cumulants. This “empirical” variant of the
routing inference algorithm applies a hypothesis test to every
candidate column of the routing matrix, deciding based on the
data whether or not the column is present. This hypothesis
testing is based on a novel statistic, and it works within any
framework for location testing the mean of a distribution.

Third, we create a more practical procedure, called Sparse
Mobius Inference, which modifies MIA using several sparsity
heuristics. This procedure minimizes the number of cumulants
that need to be evaluated, restricts cumulant orders to some
user-specified limit, and reduces the time complexity of the
algorithm. The procedure also makes the inference more robust
against measurement noise, by replacing the exact Mdbius
inversion formula with a lasso regression problem.

Finally, we use many numerical case studies, based on
real-world Rocketfuel networks, to evaluate the performance
of Sparse Mobius Inference. We study how the performance
depends on the underlying network, the number of monitor
paths, the sample size, and other parameters.

Organization: This paper takes a didactic approach to
introducing MIA and its sparse variant. Section II formally
describes the communication network model and key vari-
ables, provides a brief introduction to cumulants and k-
statistics, and discusses our three mild assumptions. Section III
considers the easiest setting for topology inference, wherein
precise values for all of the necessary cumulants are available
without noise, so that we can focus on the core statistical and
combinatorial insights behind MIA. Section IV then replaces
the precise cumulant values with noisy measurements. Then
Section V replaces MIA altogether with the more practical
Sparse Mobius Inference procedure, which allows the user to
cap the order of cumulants they are willing to estimate. Finally,
Section VI provides an overview of our numerical results and
evaluation. The full set of numerical results, as well as all
proofs of theoretical results, are contained in appendices in
the supplementary file.

II. MODELING AND PRELIMINARIES
A. Model

We consider a network on a (possibly directed) graph G
with a set of links L = {¢1,0s,...,¢,,}. Every link is
associated with an additive link metric, like a time delay or
log packet loss rate. We will refer to these metrics simply as
“delays,” although other metrics are possible.

For each link, there is a link delay variable Uy, which is a
random variable representing the amount of time that a unit
of traffic requires to traverse the link. Link delays are not
measured directly. Instead, we will infer properties of these



variables from cumulative delays across certain simple paths
in G, called monitor paths. Let P,, be a set of n monitor
paths. Each p € P, is associated with a path delay variable
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which is the total delay experienced by a unit of traffic along
the path p. If we define a random vector of link variables

U= (U, Uy, Ugm)T and a random vector of path
variables V = (V,, V), Vp,.), then we can write (1)
in the form

V =RU 2)

using a routing matrix R € {0,1}"*™, where r,, = 1 if and
only if p traverses the link ¢. We stress that we do not make
any assumptions about the nature of these monitor paths or
the underlying routing behavior. They may be one-way paths
between monitoring endpoints, two-way paths from a ping to
a node and back, or both. The paths do not have to reflect
shortest-path routing.

We suppose that an experimenter is capable of measuring
path delays V,,(¢) for each monitor path p, at many sample
times ¢. The experimenter has no prior knowledge about the
link variables U, and does not know the routing matrix R.
Importantly, we make the simplifying assumption in this paper
that link delays are spatially and temporally independent, i.e.,
Uy(t) and Uy (t') are statistically independent unless ¢ = ¢’
and ¢ = t’. This assumption is fundamental in the network
tomography literature [1], [7], [9], [10], [11], [12].

B. Preliminaries and Notation

General Notation:  Let Z>y and Z- denote the sets
of non-negative and positive integers, respectively. Given a
set S and an integer i < |S|, let the binomial (f ) =
{8’ C S :|S’| =i} denote the collection of all i-element sub-
sets of S. Given i,n € Zxo, let () denote the number of i-
element multisets chosen from n distinct elements. Given two
ordered and countable sets X C Y, define the characteristic
vector x(X,Y) € {0, 1}l of X in Y by x;(X,Y) = 1 if and
only if y; € X. Given any function f : X — R, the support
of the function supp(f) is the subset of elements z € X such
that f(z) # 0.

Multi-Indices: A multiset is a set that allows for repeated
elements. A multiset can be represented by a multi-index,
which is a function o : S — Z>¢ that maps each element
of S to its multiplicity in the multiset. The support of a multi-
index is the set of elements with positive multiplicity, i.e.,
supp(a) = {s € S : a(s) > 1}. The size of a multi-index is
its total multiplicity: |o| = Y g a(s). If S is an ordered set
with n elements (e.g., if S consists of elements of a vector),
then multi-indices on .S are naturally represented as vectors
a € Z%; in this case, we will use multi-indices on S and vec-
tors in Z2, interchangeably. For example, for S = {a, b, ¢, d},
the multi-index corresponding to the multiset {a, b, b, d, d, d}
can be represented by the vector (1 2 0 3) , using an
alphabetic ordering of S.

Link Sets: Throughout this paper, we make use of two
maps from sets of monitor paths to sets of links. Recall that
R € {0,1}™*™ is the routing matrix. For each P C P,,, we
define the common link set C : 2P — 2L by

CP)={{eL:ry=1,Vpe P} 3)
and the exact link set E : 2P~ — 2L by

EP)={¢eL:rpy=1,Vpe Pandry =0, Vp ¢ P}
“

The common link set C(P) contains all links that are utilized
by every path in P. The exact link set is more strict: E(P)
consists of links that are utilized by every path in P and that
are not utilized by any path outside of P. Neither of these
maps are known a priori. It is worth noting that the exact
link set contains all of the information of the routing matrix,
since E(P) is nonempty if and only if the characteristic vector
X(P, Py,) is a column of R.

As an example, consider the following routing matrix en-
coding 8 monitor paths that utilize 8 links:

10000000
00001100
00010101

rR_|00110110

“fo1110000
01001010
01101001
01000110

In this example, C({p1}) = E({p1}) = {¢1}, since column 1
is the only column with a nonzero first entry, and all other
entries in the column are zero. Furthermore, C({ps,p7}) =
E({ps,p7}) = {¢s}, since column 8 is the only column with
a nonzero third and seventh entry, and all other entries are
zero. But C' and E are not always equal: C({ps,ps}) = {p2},
but column 2 contains other nonzero entries as well, so
E({ps,ps}) = 0. Multiple common links are also possible,

e.g.. C({ps,p7}) = {l2, 05}

C. Cumulants and k-Statistics

Cumulants are a class of statistical moments, which extend
the familiar notions of mean and covariance to higher orders.
A good introduction is provided in [17]; we provide a quick
background here. Given a random variable X, define the
cumulant generating function

K(t) = logE[etX] = kit + %tQ + %1@ 4.
which admits a Taylor expansion for some sequence of co-
efficients k1, ko, K3, . ... These coefficients are defined as the
cumulants of the random variable X. The first three cumulants
are identical to central moments: x; is the mean of X, ko
is the variance, and 3 = E[(X — E[X])?]. For orders four
and higher, the relationship between cumulants and central
moments is increasingly complicated. Table I provides some
examples of common distributions whose cumulants have
closed-form expressions. Given a random variable X and an
integer ¢ € Z, we let x;(X) denote the ith cumulant of X.



Distribution ~ Parameters ~ Cumulants

Normal 1, o2 K1 =p, ko =02, kg =0fori >3
Exponential A ki = A(i—1)! fori>1

Gamma a, B af~ (i —1)! fori > 1

TABLE I: Cumulants of some common univariate distribu-
tions.

Multivariate cumulants are an extension of cumulants to
joint distributions. Given some jointly-distributed random vari-
ables Xi, Xo,...,X,, the cumulant generating function is

Ka o
K(t) = IOg E[6t1X1+ +t"X"] = Z wt

where the sum in the Taylor expansion occurs over all multi-
indices « on the set of integers {1,2,...,n}, and t* denotes
the product V0@ .42 " Collecting X1, X, ..., X,
into the random vector X = (X 1 Xo Xn)T, we
use either the compact notation x,(X) or expanded notation
Ka(X1, Xa,...,X,) to represent the multivariate cumulant of
the joint distribution that corresponds to the multi-index a. If
« is the multi-index of all ones, we drop the subscript and use
the shorthand notation x(X;, Xo,...,X,). We also refer to
the order of a cumulant as the size |« of its multi-index.

First-order multivariate cumulants are means: if o has all
zero multiplicites except a(i) = 1, then k,(X) = E[X]].
Second-order multivariate cumulants are covariances: if « has
all zero multiplicities except (i) = a(j) = 1, then £, (X) =
cov(X;, X;). If instead «(z) = 2 with all other multiplicities
zero, then £, (X) = Var(X;). We will also make use of two
general properties of multivariate cumulants:

(1) Multilinearity. If Y is a random variable independent
from X1, Xo,...,X,, then

K}a(Xh...,Xi—FY,...,Xn):

Iia(Xl,...7Xi,...,Xn>+HQ(X1,...7YV,...,X71)

for any index 7 and multi-index a.

(ii) Independence. If any pair X;, X; of the random variables
X1, X5, ..., X, are independent, and «(i) and a(j) are
both non-zero, then x,(X) = 0.

Cumulants can be computed analytically from joint distri-

butions using the generating function, but for unknown dis-

tributions, they must be estimated from samples. Given an

ii.d. sample x1,X9,...,xy € R" from X, the k-statistic

ko(x1,X2,...,%X,) is defined as the minimum-variance un-

biased estimator of x,(X). The first and second-order k-

statistics are sample means and sample covariances, but

higher-order k-statistics quickly become more complex. We
refer the reader to [18] and [19] for a discussion of how general
k-statistics are derived. For the purpose of this paper, it suffices

to note that software packages are available to compute k-

statistics from samples, both in R [20] and our own Python

library [21].

D. Assumptions

At various points throughout the paper, we will invoke three
closely-related assumptions regarding the routing matrix and

link delay cumulants. The first assumption requires that R has
no repeated columns:

Assumption 1 (Distinct Links). No two links are traversed by
precisely the same set of paths in P,,; i.e., no two columns
of R are identical; i.e., |E(P)| € {0,1} for all P C P,,.

This assumption is common in the network tomography lit-
erature. If ¢,/ € L are used by precisely the same set
of monitor paths, then the link delays Uy, U, will only
show up in path delays through their sum U, + Up. Due
to this linear dependence, complete network tomography is
impossible when Assumption 1 is violated, since R will be
rank deficient.

The second assumption requires that link delays have
nonzero cumulants:

Assumption 2 (Nonzero Cumulants). For all £ € L, and for
alli = 2,3, ..., n, the delay cumulant is nonzero: x,;(U;) # 0.

For most practical purposes, one can think of Assumption 2 as
meaning that no link delay distribution is normally distributed.
Non-normality is a necessary condition for the assumption to
hold, since the normal distribution has zero-valued cumulants
for orders 3 and higher. Non-normality is not technically a
sufficient condition, since it is theoretically possible for a
distribution to have zero cumulants at some orders, but these
cases are not common. In fact, the normal distribution is the
only distribution with a finite number of nonzero cumulants
[17]. If link delays are known to be non-normally distributed,
we consider this to be a weak assumption.

Finally, the third assumption requires that certain sums of
link delays have nonzero cumulants:

Assumption 3 (Nonzero Common Cumulants). For all P C
P, and for all ¢ = 2,3,...,n, if C(P) is nonempty, then
> vec(p) KilUe) # 0.

In other words, if all paths in P C P, share a collection of
common links C'(P), the delay cumulants on these common
links should not cancel out by summing to zero. This is also
a weak assumption, since such a cancellation is very unlikely.
In fact, many families of distributions supported on Ry
(including exponential and gamma distributions) have strictly
positive cumulants at all orders, in which case Assumption 3
is satisfied automatically.

III. THEORETICAL FOUNDATIONS

We now proceed with our main theoretical contribution: a
simple algorithm to infer the routing matrix from multivariate
cumulants of path latencies. The purpose of this section is
to state the underlying theoretical principles of MIA, so we
will temporarily assume that exact values for multivariate
cumulants of the path delay vector V are available. In reality,
the experimenter seldom knows these exact values and must
estimate them via k-statistics instead, but this requires some
extra statistical treatment that we defer to Sections IV and V.
For now, we will assume exact cumulant values to focus on
the discrete mathematics that underpin MIA.

MIA works by identifying which exact link sets E(P) are
nonempty, since these correspond precisely to columns of R



(via the characteristic vector of P). The sizes of the exact link
sets are not directly observable, but they can be inferred from
the sizes of the common link sets. From (3) and (4), we can
see that exact and common link sets are related by

E(P)=0(P)\ | c(Pu{p.
p'epr
We can count the size of the union using the inclusion-
exclusion principle:

U cruiph)=> (-1 PHo@). o

p'¢P QDP

Since C(PU{p'}) C C(P) for all p, we can use the inclusion-
exclusion formula (5) to find the size of the exact link set as
a function of the sizes of the common link sets:

E(P) =Y () PlcQ) (6)

Q2P

If we could somehow evaluate the number of common links
shared by any set of monitor paths, we could use the inclusion-
exclusion principle to compute any |F(P)|, from which we
could reconstruct the routing matrix.

Unfortunately, counting the number of common links is typ-
ically infeasible in a tomography setting. But the relationship
in (6) actually holds for any additive measure of link sets, not
just cardinality, and some additive measures can be inferred
directly from end-to-end path data. For example, if “|C(Q)|”
represents the sum of delay variances Var(Uy) for each link in
C(Q), then (6) yields the sum of delay variances across links
in E(P), which is nonzero if and only if E(P) is nonempty.
This sum of delay variances across common links can be
inferred from path delay data—at least for pairs of monitor
paths p, p’, the covariance cov(V,, V,/) is equal to the sum of
delay variances for each shared link in C'({p,p’}). For larger
path sets, we require higher-order statistics—Ilike multivariate
cumulants—to measure “|C'(P)|”.

Having conveyed some of the core ideas behind MIA, we
are ready to present the algorithm itself and examine it with
more theoretical rigor. The algorithm occurs in three stages:

(i) Estimation. Estimate a vector of multivariate cumulants of
path latencies. This vector contains information about the
links that are common to any given collection of paths.
(The label “estimation” is a misnomer in the context of
this section, wherein cumulants are known precisely, but
it will make more sense when we consider the “data-
driven” version of the algorithm.)

(ii) Inversion. Apply a Mobius inversion transformation to
this vector of estimates. The vector resulting from this
transformation contains the routing matrix, under a simple
encoding. The transformation is linear, so this step can
be viewed as a matrix-vector multiplication.

(iii)) Reconstruction. Decode the transformed vector, thereby
reconstructing the routing matrix.

Theorem 1 (Analysis of MIA). Consider the applica-
tion of Algorithm 1 to a joint distribution of path de-
lays V.= (Vp, Vp, Vpn)T. Let R € {0,1}"*™

Algorithm 1 Mobius Inference Algorithm (MIA)

Input: Joint distribution of path delays V
Output: Routing matrix R

: /I Estimation stage:

. Initialize undefined function f, : 2°» — R
: for PC P, :

Define a as any multi-index on F,, such that
supp(a) = P and |a| = n

5 fn(P) < ka(V)

6: // Inversion stage:

7. Initialize undefined function g, : 2> — R
8

9

AW N =

: for PC P, :
: gn(P) ZQQP(_I)‘Q‘_lp‘fn(Q)
10: // Reconstruction stage:
11: Initialize empty matrix R € R"*0
12: for PC P, :
13: if g,(P) #0:
14: R+ (R x(P,Py))
15: return R

be the true underlyin_ig routing matrix, and let U =
(Ug1 Uy, U gm) be the underlying link delays, so that
V = RU. The following are true:

(i) The algorithm terminates and returns a matrix R €
{0,1}™%™ for some 1 € Z>g, in O(2") time.
(ii) By line 6, the map f, : 2 — R satisfies the following

property:
f(P)=Y" kn(U), VPCP, (7
teC(P)
(iii) By line 10, the map g, : 28 — R satisfies the following
property:
gn(P)= > kn(Us), VPCP, (8

LeE(P)

(iv) Every column of R is also a column of R. Furthermore,
under Assumptions I and 2, R and R are equivalent (up
to a permutation of columns).

Statement (i) is obvious from inspection of the algorithm,
so we will focus on proving the remaining three statements,
which fall neatly into the three stages (estimation, inversion,
and reconstruction) of the algorithm. In the following subsec-
tions, we will analyze each of these three stages.

A. Estimation Stage

The purpose of the estimation stage is to collect a vector
of high-order statistics of path delays. These statistics are
carefully chosen so that they contain information about the
routing topology. The title of “estimation” for this stage will
be more appropriate in the next subsection, when we must
estimate these statistics from data (rather than compute them
analytically from a known distribution).

In the estimation stage, we gather a vector of multivariate
path delay cumulants for every path set P C P,,. The



multivariate cumulants that we select for each path set are
based on representative multi-indices:

Definition 2 (Representative Multi-Indices). Let P C P,,, and
let i > |P| be an integer. An ith-order representative multi-
index of P is any multi-index « on P,, such that supp(«) = P
and |a| = i. We use the notation A; p to denote the set of all
ith-order representative multi-indices of P.

We will now collect a vector of path delay cumulants, with
one entry corresponding to each set of monitor paths in 2m:

Definition 3 (Common Cumulant). Let ¢ be a positive integer.
For each P C P,,, let a be any ith-order representative multi-
index of P. The ith-order common cumulant is the map f; :
2Pm _ R with entries

fi(P) = ka(V),

Careful readers will also note that we refer to “the” common
cumulant, rather than “a” common cumulant, which would
seem more appropriate, given the many choices of repre-
sentative multi-indices. But the value of the common cumu-
lant is independent of the particular choice of representative
multi-index—regardless of which representative multi-index
we choose, it is always the sum of univariate cumulants across
links that are traversed by every path in P. Broadly speaking,
the value of f;(P) contains information about which links are
common to every path in P.

VP C Py €))

Lemma 4 (Properties of the Estimation Stage). The following

are true:

(i) Let P C Pp,. If i > |P|, there are (|1i9\_711) ith-order
representative multi-indices of P.

(ii) For all i € Zg, the common cumulant f; : 2P — R
satisfies (7).

(iii) Statement (ii) of Theorem 1 is true, i.e., Algorithm I
correctly computes the common cumulant vector for order
i=n.

B. Inversion Stage

In the inversion stage, we extract topological information
from the vector of common cumulants by applying an invert-
ible linear transformation. Lemma 4 (ii) shows that common
cumulants are sums over common link sets. But it is clear from
(3) and (4) that common link sets can be written as unions of
exact link sets, which more directly provide information about
the routing matrix. Accordingly, common cumulants can be
written as sums over exact link sets, using exact cumulants:

Definition 5 (Exact Cumulant). For each positive integer ¢,
we define the ith-order exact cumulant g; : 2Pm 5 R by (8),
replacing n with 1.

In the following lemma, we formalize the relationship of
common cumulants as sums of exact cumulants. We then apply
Mbobius inversion to this sum:

Lemma 6 (Properties of the Inversion Stage). Let f; be the
common cumulant vector, and let g; : 27 — R. The following
three statements are equivalent:

(i) g; is the exact cumulant vector.

(i) f; and g; satisfy

fi(P)=3 9(Q), YPCP,  (10)
Q2P
(iii) f; and g; satisfy
g(P) = (-1IIPIf(Q), VPSP, (1)

Q2P

Furthermore, statement (iii) of Theorem 1 is true, i.e., the
Algorithm 1 correctly computes the exact cumulant vector.

Lemma 6 is the heart of MIA. By applying the inversion (11)
to the vector of common cumulants, we calculate the vector
of exact cumulants. Whereas common cumulants contain
information about which links are traversed by every path in
a set, exact cumulants contain information about which links
are traversed precisely by the paths in a set, i.e., they contain
information about columns of the routing matrix.

C. Reconstruction Stage

The final stage of the algorithm is to reconstruct the routing
matrix from the exact cumulant vector. This reconstruction is
straightforward, using only the zero-nonzero pattern of g;:

Lemma 7 (Properties of the Reconstruction Stage). Let g, :
2Pm 5 R be the exact cumulant vector. For each P C P,,,
let x(P,P,,) € {0,1}" be the characteristic vector of P in
Py.. The following are true:

(i) If P € supp(gn), then x(P, P,,) must be a column of the
routing matrix. Under Assumptions 1 and 2, the converse
is also true.

(ii) Statement (iv) of Theorem 1 is true.

D. Detailed Example

In order to illustrate MIA, we will apply the algorithm to a
small example, consisting of 3 monitor paths that utilize three
links. We will walk through each of the three stages of the
algorithm in detail.

Setup: Consider a network with three monitor paths
P, = {p1,p2,ps} and three links L = {¢1,¢5,¢3}, with a
routing matrix

12)

Clearly this routing matrix satisfies Assumption 1. Each of the
three link delay distributions is exponential, with probability
density functions f,,(z) = Ape=** for each ¢ € L, and
intensities Ay, = 1, Ay, = 1.5, and A\, = 2 (in units of per
millisecond). All cumulants of exponential distributions are
positive, so the latency variables satisfy Assumption 2. We
then invoke (2) to obtain the joint distribution of path delays.
We assume that the theoretical distribution of path delays
is known—in particular, the cumulants k,(V) are known
exactly—and our objective is to use these cumulants to infer
the routing matrix, via Algorithm 1.



1) Estimation Stage: There are seven non-empty subsets of
P,,. Sets with one path only have one 3rd-order representative
multi-index; for example, the path set P = {p; } has a unique
representative multi-index o = (3,0,0). Sets with two paths
have 2 representative multi-indices; for example, P = {p1,p2}
has @ = (2,1,0) and o’ = (1,2,0). The three-element path
set P = P, has only the one representative multi-index « =
(1,1,1). For each of these seven path sets, we will select one
of the representative multi-indices arbitrarily and collect them
into the common cumulant vector. For example:

f3({p1}) K(3,0,0) (V) 70/27
f3({p2}) K(0,3,0) (V) 9/4
f3({ps}) %(0,0,3)(V) 1/4
f3 = | fs{p1,p2}) | = | ka20(V) | = 2
fs({p1,p3}) K(1,0,2) (V) 0
f3({p2,p3}) K(0,1,2) (V) 1/4
f3(Pm) 5(1,1,1)(V) 0

It is worth noting that f3 agrees with (7), i.e., we can
decompose the vector into univariate cumulants of link delays:

£(3,0,0) (V) r3(Ur) + k3(Us) 70/27
£(0,3.0) (V) r3(Ut) + k3(Us) 9/4
£(0,0,8) (V) k3(Us) 1/4
f3= | ra20(V) | = k3(Uy) = 2
K(1,0,2)(V) 0 0
K(0,1,2)(V) #3(Us) 1/4
r11,) (V) 0 0

Of course, performing this decomposition relies on our prior
knowledge of R and the link delay distributions, which are
unavailable to the experimenter.

2) Inversion Stage: In order to obtain the exact cumulant
vector g3 from the common cumulant vector f3, we apply the
Moébius inversion transformation (11). Note that this trans-
formation is linear, and it can be represented in the matrix

form g3 = Xf3, where the matrix X contains the coefficients
(—1)lQI=IPI:

g3({p1}) 100~-1-1 0 1 f3({p1})

g3({p=}) 010-10 -1 1 f3({p=})

gs({p3}) 601 0 -1 -1 1 f3({ps})
gs({pi,p2}) [=1000 1 0 0 —1| | fs({p1,p2})
gs({p1,ps}) 000 0 1 0 —1f[fs({p1,ps})
93({p2,p3}) 000 0 0 1 —1[|fs({p2,p3})
gg(Pm) 000 O O 0 1 fg(Pm)

Evaluating this transformation, we obtain the following ex-
pression for the exact cumulant vector:

93({191}) 16/27
93({p=}) 0
93({ps}) 0
g3 = | 9g3({p1,p2}) | = 2
g3({p1,p3}) 0
93({p2,p3}) 1/4

We can verify that these values for gz agree with both (8)
and (10). For example, the routing matrix (12) implies that
E({p1}) = {2}, so (8) gives

2 16
93({p1}) = N

in agreement with our computed result for g3. Furthermore,
(10) claims that we can decompose f3({p1}) according to

f3({p1}) = gs({p1}) + 93({p1, p2}) + 93({p1,p3}) + ga(Pon)
70
27
in agreement with f5({p;}) obtained from the previous stage.
3) Reconstruction Stage: All that remains is to examine the
zero-nonzero pattern of gs. Note that gs has three non-zero
entries: P = {p1}, P = {p1,p2}, and P3 = {pa,p3}. We
can then reconstruct the routing matrix from the characteristic
vectors of these three path sets:

=)

1 1
R:(X(Plap’m) X(Pz2, Pr) X(P?npm)): 01
0 0

Observe that R is equivalent to the “ground truth” routing
matrix in (12), modulo an irrelevant permutation of columns,
as guaranteed by Theorem 1 (iv).

IV. FROM DISTRIBUTIONS TO DATA

Having presented the core theory underlying MIA, we now
turn to a more practical problem: routing matrix inference from
data, rather than from a theoretical distribution of path delays.
Instead of knowing the joint distribution of the path delay
vector V, in this section, we only assume that an i.i.d. sample
Vi,Va,..., vy € R™ of this distribution is available. Thus,
instead of using ground-truth cumulant values k., (V) in the
estimation stage of the algorithm, we have to use estimates
of these cumulants via the k-statistics ko (Vi,Va,...,Vy).
Moreover, because k-statistics introduce noise into the infer-
ence procedure, we will also need to modify the reconstruction
stage to be robust against this noise.

Estimation Stage: In lines 4 and 5 of Algorithm 1, MIA
selects an arbitrary representative multi-index o € A,, p and
records the common cumulant value f,(P) < kq(V). The
choice of representative multi-index here is truly arbitrary,
since all yield an identical value for k. (V). This is not true for
k-statistics. While the expected values of k,(vi,va,...,Vy)
are identical for all o € A, p, the actual values of these
statistics will generally be different. It is not clear that any
of these values is a better estimate than the others, so we
propose replacing k. (V) with the simple average

fn(P)<;_11>1 3 kalvi,va,...

a€A, p
of all k-statistics for the representative multi-indices of P.
Thus, we replace both lines 4 and 5 in Algorithm 1 with
(13), as well as using the notation f,,(P) instead of f,(P)
(to highlight that the algorithm is now using an estimate of
the common cumulant instead of its true value).

,VN) (13)



Inversion Stage: There is no need to modify the inversion
stage of the algorithm in the data-driven setting. The inversion
stage simply applies the linear transformation g, = Xf,,
where X encodes the Mobius inversion. When we switch
from g, and f, to vectors of estimates g, and f‘n, this
transformation is still valid in expectation:

E[gn] = XE[f‘n] = an = 8n

Reconstruction Stage: In line 13 of Algorithm 1, MIA
checks if an entry of the exact cumulant vector is nonzero. But
in the data-driven scenario, we switch from exact cumulants
to estimates g,,, which only match the zero-nonzero pattern of
g, in expectation. To account for inevitable noise in these esti-
mates, instead of checking if g, (P) = 0, we must adopt some
kind of hypothesis test Nonzero(g,(P) | vi,va,...,VN),
i.e., some decision rule to guess whether g,,(P) # 0 based on
the data. We will examine the construction of such a test in
the next subsection.

The performance of MIA in the data-driven setting depends
entirely on the accuracy of the hypothesis test. This accuracy
depends on the test itself, the choice of test parameters (like
significance levels), and the size of the sample size N, so
it is difficult to state general theoretical guarantees regarding
the algorithm. Nonetheless, some guarantees are evident in
extreme cases, if Assumptions 1 and 2 are satisfied:

(i) If the test has no Type I error, ie., if g,(P) = 0
always leads to a decision that Nonzero(g,(P) |
Vi,Va,...,vy) is false, then every column of R will
be a true column of R.

(i) If the test has no Type II error, then R will contain every
column of R.

(i) If the test is comsistent, in the sense that the test is free
of both Type I and Type II error in N — oo limit, then

similarly R = R in the N — oo limit.

For all practical purposes, none of these extreme cases will
apply, and we will have to rely on the algorithm’s performance
in test scenarios to assess its usefulness.

A. Hypothesis Tests

We now examine the hypothesis test Nonzero(g,(P) |
V1,Va,...,Vy), which we will subsequently abbreviate as
Nonzero(g,(P)). Because E[g,(P)] = gn(P), we can
assess the null hypothesis g,(P) = 0 via an equivalent null
hypothesis, that E[g,(P)] = 0. There is no single correct way
to perform this mean location test—many approaches exist,
with advantages and disadvantages.

1) Normal Approximation: Because the statistics g, (P) are
asymptotically normally distributed, we could simply estimate
the mean and variance of the distribution and apply a standard
z-test. This approach is used in [22], for example, to perform
hypothesis testing on univariate cumulants, using univariate k-
statistics. Unfortunately, while the mean of the distribution is
easily estimated by g, (P), the variance relies on computing
variances of multivariate k-statistics, which are both mathe-
matically and computationally complex.

2) Sample Splitting: Another simple approach is to parti-
tion the original N-length sample into M subsamples of size
N/M, compute §,,(P) for each subsample, and use standard
hypothesis testing to assess whether the statistics have zero
mean. Since the subsamples are non-overlapping, each of the
M values of g, (P) will be iid, so standard approaches (like
the 1-sample Student’s t-test [23, §9.5]) can be used to test
the null hypothesis that E[g,,(P)] = 0.

3) Bootstrapping: Bootstrapping (see, e.g., [24, Chapter 2])
is a resampling technique that uses the empirical distribution
(i.e., the discrete distribution with uniform weight on each
sample value) to approximate the original distribution. For b =
1,2,..., M (where typically M = 50), we define a resample
Vb1, Vb2, ..., Vpn that is chosen randomly with replacement
from the original sample vi,va,...,vy. We then compute
gn(P) for each resample, resulting in a sample of size M
for g, (P), which we can use to perform a mean hypothesis
test. This approach has been applied to estimating confidence
intervals for cumulants [25].

B. Detailed Example

In order to illustrate the empirical version of MIA, we
will continue to use the low-dimensional example from Sec-
tion III-D, with the same routing matrix (12) and the same
exponentially-distributed link delays. We created a synthetic
dataset with 900 independent samples from each link distri-
bution, which we transformed into 900 samples of V,, , V,,, ,
and V),, based on the sums encoded in the routing matrix.

We wuse the sample splitting approach to the
Nonzero(g(P)) hypothesis test in this example. The
900 original sample points are split into 30 samples of
size 30. To carry out the estimation stage, we estimate the
common cumulant vector for each of these 30 samples with
the simple average of k-statistics in (13):

f({p1})

k k(3,0,0)(-)
fs({p2}) k0,3,0) (")
f3({ps}) k(0,0,3) (")

3ka,2,00() + 3k@2,1,0) ()

5k(1,0,2) (") + k2,0, (")

5k0.1,2) () + 3k0,2,1)()
k(-

Ss({pr,p2}) | =

f3({p1,ps})

fs({p2, ps})
f3(Pm)

Here k,(-) is shorthand for k,(v1,va,...,vy). Columns 2
and 3 of Table II report the means and standard errors for
these 30 estimates of fg. To perform the inversion stage, the
the vector g3 is then computed by g3 = ng, where X is the
matrix defined in Section III-D. Columns 4 and 5 of Table II
similarly summarize the distribution of these 30 estimates for
gs. Indeed, all of the f3(P) and g3(P) averages are within
one standard error of f3(P) and g3(P), respectively.

Based on these 30 estimates of g3, we perform the recon-
struction stage using a 1-sample Student’s ¢-test to assess the
null hypothesis that E[g3(P)] = 0 for each path set. The p-
value for each null hypothesis is reported in Table III, as well
as the result of the test with a significance threshold of 0.01.

For precisely three of the path sets, we reject the null
hypothesis that g3(P) = 0: P = {m}, P> = {p1,p2},




P | f3(P) f3.p | 93(P) g3.p

{p1} 2.59 2.67+0.5 0.593 0.66 + 0.2

{p2} | 225 2.31+£0.7 0 0.06 % 0.2

{p3} 0.25 0.24 4+ 0.05 0 0.02 £ 0.02

{p1,p2} 2 2.01 0.6 2 2.01+0.5

{p1,p3} 0 —0.01=+0.05 0 —0.0140.04

{p2,p3} 0.25 0.23 £ 0.07 0.25 0.23 £+ 0.06

{p1,p2,p3} 0  0.00=+0.09 0  0.00+0.09
TABLE II: Common and exact cumulants in the low-

dimensional example. Columns f3(P) and g3(P) report the
true underlying values, while f5(P) and §3(P) show the mean
and standard error of the respective estimates.

P | p-value for g3(P) =0 x(P)isin R?

{p1} 0.001  Yes

{p2} 0.8 No

{p3} 0.5 No
{p1,p2} 0.0005  Yes
{p1,p3} 09 No
{p2,p3} 0.0008  Yes
{p1,p2,p3} 1 No

TABLE III: Hypothesis testing for whether or not x (P, Py,)
is a column of the routing matrix, at 0.01 significance.

and P; = {p2,ps}. Assembling the characteristic vectors of
these path sets into R, we obtain an identical estimate to our
result from Section III-D, which is identical to the ground truth
routing matrix (up to a permutation of columns).

V. SPARSE MOBIUS INFERENCE

The key step in the Mobius Inference Algorithm is the
linear transformation g; = Xf;, where g; is a vector of
2™ — 1 exact cumulants, f; is a vector of 2" — 1 common
cumulants, n is the number of monitor paths, and X is
the matrix encoding Mdbius inversion. Three problems arise
naturally: the computational expense of the transformation
X, the impracticality of populating every entry of f; with
empirical measurements, and the noise present in f; (and g;)
due to the use of cumulants with excessively high order. In this
section, we simultaneously tackle these three problems using
several different sparsity heuristics.

Our proposed “Sparse Mobius Inference” procedure pro-
ceeds in three stages. In the first stage, we use measurements
of low-order common cumulants to identify which entries
of the f; and g; vectors can contain nonzero entries. We
can then ignore all other entries of these vectors and drop
their corresponding columns and rows from X, reducing the
Mbobius inversion down to a (typically much) smaller set
of equations. In the second stage, we impose the following
sparsity heuristic on g;: if P is a sufficiently large path set that
is strictly contained within some other path set in supp(f;),
then g;(P) = 0. This heuristic allows us to remove further
entries from both g; and f;, provided we make a suitable
modification to X. Finally, in the third stage, we apply a
sparsity-promoting lasso optimization problem to filter noisy
estimates of common cumulants and impute the values of
common cumulants that are impractical to measure. The end
result is a sparse estimate for g;, which only relies on estimates
of common cumulants up to a small, user-specified order.

A. Stage 1: Bound the Support of f;

In the first stage, we estimate the collection of path sets
P C P, for which f;(P) # 0. The key to this process is the
observation that f;(Q) # 0 only if f;(P) # 0 for all subsets
P C @: if just a single subset P has a zero-valued common
cumulant, then C'(P) = 0, which implies that C(Q) = 0. If we
focus on small path sets, then we can use low-order cumulants
to identify which of these path sets have no common links,
and remove all of their supersets from the support of f;.

We can maintain a compact representation of our estimate
of supp(f;) using a bounding topology. A bounding topology
is any collection of path sets B C 2= with the following
property: if f;(P) # 0, then B contains some path set B € B
such that P C B. We will refer to the collection of all sets
contained by some B € B (i.e., the union UBeB 28Y as the
“support estimate” of B. Below are two extreme examples:

e B ={P,,} is trivially a bounding topology, albeit not a
very informative one, since the support estimate is 22 .

e B = supp(g;) is a bounding topology: if f;(P) # 0,
then some superset B 2O P satisfies g;(B) # 0, and
thus B € B. This is a “tight” bounding topology, in the
sense that every set in its support estimate is indeed in
the support of f;.

Stage 1 begins with an uninformative bounding topology (like
B = {P,}), and it iteratively “tightens” B using successive
orders of common cumulant estimates. The fundamental idea
is that if we determine Nonzero(f;(P)) is false for some
small path set P, then we ought to split up all B € B
containing P into smaller sets that do not contain P, thereby
eliminating all supersets of P from the support estimate. This
iterative tightening procedure then terminates at a (typically
small) user-specified cumulant order.

Unfortunately, Nonzero(f;(P)) is usually a hypothesis
test with limited statistical power—there is a chance that our
data would incorrectly indicate that f;(P) = 0, leading us
to remove any superset of P from the support estimate and
thus ignore nonzero values of the common cumulant in future
calculations. Such an error could greatly harm the accuracy of
later stages of the topology inference. In order to hedge against
this possibility, we propose a robust procedure that splits a set
B € B only if a sufficient number of subsets of B are found
to have zero common cumulant. The user provides a threshold
Sfunction t : Zsg X Zsg — Z~q, where B € B is never split
so long as ¢(|B],4) size-i subsets of |B| are found to have a
nonzero common cumulant.

The core of the procedure is Algorithm 2, which tightens an
estimate of the bounding topology using common cumulants
of some fixed order . The algorithm initially computes the
collection of all size-i sets P in the support estimate of B for
which Nonzero(f;(P)) is true. What follows is effectively a
voting procedure: each of these sets P counts as a “vote” in
favor of keeping each superset () O P in the support estimate.
If one of the sets B € B fails to reach its threshold of (| B|, %)
votes, then B is split up into the |B| subsets obtained by
removing one element from B, and the votes for these subsets
are tallied as well. This process repeats until all the sets in B



with size at least ¢ reach their respective thresholds. Theorem
8 formally states the guarantees of this algorithm:

Algorithm 2 Tighten(B,i,t)

Input: Bounding topology B C 2Pm, cumulant order i €

Z9, and threshold function ¢ : Zvg X Zsg — Z>9
Output: Tightened bounding topology B’ C 27
1: Initialize B’ =0, X =0, and

P = {P € BLEJB (?) : NonzerO(fi(P))}

2: while |B| >0 :

3 Remove an arbitrary set B from B and add it to X

4 if |B|<ior |{PeP:PC B} >t(B]i):

5: B+ B'U{B}

6: else

7 for pe B :

3 Bsub — B\ {p}

9 if Boyp, ¢ X and no set in BU B’ contains
Bsup :

10: B+ BU {Bsub}

11: return B’

Theorem 8 (Properties of Algorithm 2). Let B C 2Pm pe
a collection of path sets, let i € Z~y be a cumulant order,
and let t : Z<g X Zsg — Zsq be a threshold function. The
following are true:

(i) Algorithm 2 evaluates IsNonzero(fi(P)) O(n') times
and terminates after O(29) iterations of the while loop,
where q is the size of the largest set in . The algorithm
returns a collection of path sets B C 2Pm.

(ii) The support estimate of B' is a subset of the support
estimate of B.

(iii) For any set P in the support estimate of B, P is also
in the support estimate of B if either |P| < i, or if
there is a superset (Q O P in the support estimate of BB
for which at least t(|Q|,1) size-i subsets R C Q satisfy
Nonzero(f;(R)).

Proof. There are at most () = O(n') size-i sets, so

Nonzero(f;(P)) is evaluated O(n') times to compute P.
The worst-case runtime occurs when [{P € P : P C B}| <
t(|B|,i) for each iteration of the while loop, in which case
the variable B takes on the value of every subset (with size at
least 7) of every original set in B precisely once (because the
collection X tracks which sets have already been processed,
preventing redundant iterations of the while loop). Thus, there
are O(27) iterations of the while loop.

To prove (ii), observe that every set added to B’ was
originally in the queue /3, and that sets in the queue are either
from the original collection I, or they are subsets of a previous
element in the queue. Hence every set in /3’ is a subset of a set
in the original B, so the support estimate of B’ is a subset of
the original support estimate. To prove (iii), suppose that P is
in the support estimate of B3’, so that some B’ € B’ contains
P. Sets are only added to B’ on line 5, and the set must satisfy

either |B’| < i or [{P' € P: P' C B'}| > t(|B'|,4), i.e., (b)
is satisfied with Q = B’. O

Through the repeated application of Algorithm 2 to a
collection 55 and successively larger orders i, as detailed in
Algorithm 3, we obtain tighter support estimates. Every path
set in supp(f;) should remain in the support estimate of B
after each iteration, so long as the values of the threshold
function ¢ are sufficiently small (and the test Nonzero(f;(P))
is sufficiently accurate). Furthermore, as we incorporate infor-
mation from higher-order cumulants, we remove path sets for
which f;(P) = 0 from the support estimate. In summary,
the support estimate of B becomes a more and more accurate
approximation of supp(f;).

Algorithm 3 BoundingTopology(B,io,if,t)

Input: Initial guess B C 2Pm  initial cumulant order i, final
cumulant order iy, and threshold function ¢ : Z.g x
Zs0 = Zxo

Output: Tightened bounding topology B C 2m

1: for i =dip,90 +1,...,%f :
2: B + Tighten(B,i,t)
3: return B

We will conclude the discussion of Stage 1 by addressing
two questions—how should we select the initial guess for B
that is supplied to Algorithm 3, and how should we design the
threshold function ¢?

Choosing an Initial Bounding Topology: A safe (albeit
inefficient) choice for the initial guess of bounding topology
is B = {2F"}. Clearly the support estimate of B will contain
every path set in supp(f;). Unfortunately, this choice also
maximizes the runtime of Algorithm 3, since the sub-routine
Algorithm 2 is exponential in the size of the largest set in 5.

A more practical approach is to use second-order cumulants
(i.e., covariances) to construct an initial guess for 5. Second-
order k-statistics tend to have a small variance (compared to
the higher-order k-statistics), leading to only a small probabil-
ity that Nonzero( fo(P)) yields a false negative, which makes
the thresholding in Algorithm 2 unnecessary. If we require
that Nonzero(f2(P)) is true for all two-element subsets of
each set in B, then we can use second-order cumulants to
construct a more efficient initial guess for 3, and then we can
run Algorithm 3 on this initial guess starting at order g = 3.

One way to efficiently construct this covariance-based ini-
tial guess is to use standard algorithms for maximal clique
enumeration. Recall from graph theory that a cligue is any
set of nodes for which all nodes in the set are adjacent, and
a maximal clique is a clique that is not contained within a
larger clique. Construct a graph G, = (P, E},) where each
monitor path is a node, and an edge {p;,p;} is included in
Ey if and only if Nonzero(f2({p:,p;})) is true. Cliques in
Gy, are precisely the path sets for which Nonzero(f3(P)) is
true of every two-element subset. Therefore, we take as our
initial guess for 5 the set of maximal cliques in G. The size
of the largest clique is typically significantly smaller than n,
leading to a faster runtime for Algorithm 3.



Constructing the Threshold Function: Algorithm 3 re-
quires the user to specify a threshold function ¢(|P|, ), indi-
cating the minimum number of size-¢ subsets of P that must
pass the nonzero common cumulant test for P to remain in the
support estimate. Choosing the threshold value is a balance—
large values may lead to sets in supp(f;) being rejected from
the support estimate, but small values will cause information
from many zero-valued cumulants to be ignored. We will try
to devise an intuitive and tunable form for ¢(|P|, %) to strike
this balance.

Recall that the statistical power of a hypothesis test is
the probability of rejecting the null hypothesis given that
the alternative hypothesis is true—in our case, the probabil-
ity that Nonzero(f;(P)) is true if indeed P € supp(f;).
Suppose that, for each P € supp(f;), the corresponding
test Nonzero(f;(P)) is true independently and with uniform
probability 1 — 5. Under these (inaccurate but nonetheless
useful) assumptions, the number of size-i subsets of any
Q@ € supp(f;) for which Nonzero(f;(P)) is true follows
a binomial distribution, with (lC{”) trials and a success prob-
ability of 1 — 8. Hence, the probability that at least ¢(|Q|, %)
size-i subsets of @ pass the nonzero test is 1 —Fjq) ;(¢(|Q|, 7)),
where Flq); is the cdf of the binomial distribution.

Because () truly belongs to the support of f;, it is highly
undesirable that we erroneously remove () from the support
estimate by setting the threshold ¢(|Q)|, ¢) inappropriately high.
To render such an error unlikely, we must ensure that 1 —
Fig,i(t(]Q], 7)) exceeds some high probability 1 —~ € (0,1),
e.g., 1 —v = 0.1. Once we specify =, we can solve for the
appropriate threshold as the quantity

t(1Ql, 1) = max{t € Z>o : Figi(t) <7}
=min{t € Z>o: Fgi(t) >} -1

In other words, we set ¢(|Q|, ¢) as one less the v quantile of the
binomial distribution with (I?I) trials and success probability
1 — . There is no good closed-form expression for the value
of this quantile; however, it is readily computable in many
statistics packages.

This binomial quantile specification for ¢(|Q|,?) is some-
what informal, since the outcomes of Nonzero(f;(P)) are
neither independently nor identically distributed, as the deriva-
tion assumed. However, the method does at least provide an
intuitive way to reduce the specification of ¢ down to two tun-
able parameters, v € (0,1) (the highest tolerable probability
that Q@ € supp(f;) is accidentally rejected) and 5 € (0,1)
(an estimate for the probability that Nonzero(f;(P)) yields
a false negative). We could also specify different values of
these parameters for different k-statistic orders ¢, to account
for the fact that k-statistics tend to become less accurate with
higher orders.

B. Stage 2: Bound the Support of g;

In the previous stage, we used information from low-order
cumulants to narrow the entries of f; containing nonzero
entries down to the support estimate of 3. Because f;(P) =0
implies that g;(P) = 0 as well, this stage also simultaneously
restricts the nonzero entries of g to to the support estimate

of B. The second stage drops even more zero-valued entries
from these two vectors. Instead of using empirical information
from low-order cumulants, this stage enforces a “hard” sparsity
heuristic: that g;(P) = 0 for all path sets P larger than some
threshold size s, unless that path set is an element of 5. In
other words, we assume that the only “large” path sets are
those contained directly in the bounding topology inferred
from low-order cumulants.

This heuristic immediately zeros out large swaths of the g;
vector, allowing us to ignore them during the final stage. But
the heuristic also allows us to drop even more entries from
the f; vector, as stated in the following lemma:

Lemma 9 (Elimination of Large, Non-Maximal Path Sets).

Let B C 2P be a collection of path sets, and let s € Z~.

Assume that the following are true:

(i) Every set in B is maximal (i.e., no B, B’ € B exist such

that B C B’),

(ii) fi(P) # 0 and g;(P) # 0 only if P is in the support
estimate of B, and

(iii) g;(P) =0 for all P C P, with |P| > s and P ¢ B.

Then for every P in the support estimate of B such that |P| <

gP)= Y (-1)QIPIfQ)
Q2P:|QI<s
- s—ip (1Bl =P = 1Y,
BEL;QP( b < s —|P]| >1,(B)

(14)

Due to (14), there is no need to measure or keep track of
fi(P) for sufficiently large P, unless P is a set in 5. Note
that these common cumulants are not just zeroed out—they
take on a nonzero value; however, this value is constrained to
a linear combination of the common cumulants for B € B,
which are already elements of the common cumulant vector.

C. Stage 3: Lasso Optimization

The previous two stages eliminated large parts of the f; and
g; vectors, using a combination of information from low-order
cumulants, a priori assumptions, and suitable modifications
of the Mobius transformation matrix X. These two stages
significantly reduce the computational expense of performing
Mobius inversion and populating f; with empirical estimates
of common cumulants. Furthermore, because the first stage
tends to eliminate the largest subsets of P, from the support
for f;, we can populate f; with cumulants of order lower than
n. But this cumulant order (which must be at least the size
of the largest path set with a nonzero common cumulant)
can still be unrealistically large, and the resulting common
cumulant estimates can be quite noisy. In the final stage of
Sparse Mobius Inference, we address these two problems by
filtering f; using lasso optimization.

To set up the problem, the user first supplies a maximum
cumulant order iy.x € Zsg, indicating the largest order of
cumulant they are willing to estimate. Based on %,,,x, we par-
tition the common cumulant vector by f; .. = (£, fu)T, and
we make the corresponding partition to the inversion matrix



X = (XO Xu) f, corresponds to the common cumulants
Jinay (P) of path sets with size at most i,ax, i.€., the common
cumulants that we can “observe” using empirical estimates. All
other “unobserved” common cumulants are consigned to the
f, vector. Note that f, is not directly populated with common
cumulant estimates: in fact, both f,, f, are left as decision
variables in the lasso optimization problem, and the value
of f, is allowed to deviate from the empirical estimate if it
promotes a sparser solution g. Instead, all of the empirical
common cumulant estimates are collected into a vector fo,
and the corresponding standard deviations of each estimate
are collected into the vector o. We then solve for the optimal
common cumulant vector £* = (£ f;j)T using the convex,
unconstrained optimization problem:

f,. 1.

J(fo,fu) = ||E_1<fo - fO)H% + HD(Xofo + XufU)Hl

= argminfmfu J(f07 fu) (15)

Here ¥ = diag{o}, and D is some tunable diagonal matrix of
positive weights (which we will soon discuss in more detail).
Having computed the solution, we then evaluate g* = X, £ +
D €%

Eqn. (15) simultaneously de-noises measurements of the
observed common cumulant values and imputes the unob-
served common cumulants. The quadratic term is proportional
to the log likelihood of the data fo (under the assumption of
independent and normally-distributed common cumulant esti-
mates with variances 02), and the regularizer || X,f, + X, f.||1
encourages sparsity in the vector g*. The end result is an
estimate of g, . that only measures common cumulants up
to a user-specified order and is more robust to noise in these
measurements.

As with the full Mobius Inference Algorithm, the columns
of the routing matrix correspond to the nonzero entries of
8i,...- Thus, once we obtain an optimal (and sparse) exact
cumulant vector g*, we add the characteristic vector of each
P € supp(g*) to our estimate of the routing matrix.

Weighting the 1-Norm: A straightforward choice for
weighting the 1-norm of g* is to choose a uniform weighting
strategy, in which case D = AI for some parameter A > 0
that weights the 1-norm relative to the log likelihood of
the data. But uniform weighting tends to suppress entries
of g* corresponding to singleton path sets. If P = {p}
for some p € P, then (14) shows that g;(P) is the only
entry of g; that depends on f;(P). Thus, if the uncertainty
o in the measurement of fo(P) is sufficiently large, the
optimizer is free to zero out ¢*(P) by tuning the decision
variable corresponding to f;(P). Indeed, we have observed
numerically that uniform weighting leads to routing matrix
estimates missing many columns with single nonzero entries.

To counteract this problem, we suggest applying less weight
to “under-determined” entries of g*. Formally, for each P in
the support estimate, let

a(P) = {@ in supp. est. : X,(Q, P) > 0}/,
[{@ in supp. est. : X, (Q, P) > 0}/,

be the number of entries of g* that depend on the decision vari-
able corresponding to f; . (P). We then choose the weight

|P| S imax
|P| > imax

807i07ifat

User Parameters

Fig. 1: Diagram of the Sparse Mobius Inference procedure.

corresponding to g*(P) according to d(P) = Aa(P)’, where
A > 0 is a uniform overall weight for the 1-norm term, and
b € [0,1) is some exponent. The exponent should be non-
negative to ensure that the weight is increasing in a(P), but it
should also be fairly small, so that the weight’s rate of change
rapidly tapers off for positive a(P). We have found empirically
that setting b between 0.2 and 0.4 is generally a good choice.

D. Putting Everything Together

For completeness, we now show how the three stages of the
Sparse Mobius Inference procedure come together to form a
data-to-routing-matrix pipeline. Figure 1 depicts a diagram of
this process.

The user begins Stage 1 with an initial guess of the bounding
topology By C 2P (either {P,,} or maximal cliques of the
graph formed by nonzero covariances), an initial cumulant
order %o (usually 2 or 3), a final cumulant order iy (e.g., 4 or
5), and a threshold function ¢ (perhaps using quantiles of the
binomial distribution). Algorithm 3 then tightens the support
estimate by setting 3 = BoundingTopology(Bo,o,%f,1),
using the path delay dataset to evaluate Nonzero(f;(P)) for
orders i = 79,49 + 1,...,%;. Then B is passed on to Stage 2.

In the second stage, the user provides a size threshold s
for the “hard” sparsity heuristic. In accordance with (14), the
modified Mobius inversion matrix X is constructed, consid-
ering only rows and columns of the matrix corresponding to
path sets in the support estimate of B that are either directly
in B or at most of size s. This matrix X is passed to Stage 3.

To begin the final stage, the user specifies a cumulant order
Imax (€.2., 3, 4, or 5) and partitions the common cumulant
vector and the matrix X accordingly. For path sets of size at
most imax, the path delay data is once again used to estimate
the common cumulants fo and the variances o2 of these
estimates. Solving (15) yields a filtered common cumulant
vector f*, leading to a sparse estimate g* = Xf* of the
exact cumulant vector. Finally, the routing matrix estimate R
is constructed from the zero-nonzero pattern of g*.
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Fig. 2: Distributions of F1 scores of the routing matrix estimate for the 120 case studies, based on a sample of size 100,000.
Plots in each row are based on the same underlying network, and plots in the same column have the same number of monitor
nodes. The three boxes in each plot correspond to values ¢y,,x = 2, 3,4 used for inference.

VI. RESULTS AND EVALUATION

What follows is an abbreviated set of experimental results
applying Sparse Mobius Inference to many synthetic datasets.
The full description of our methodology and results are
contained in Appendix A (in the supplementary file).

Synthetic Datasets: We created 120 synthetic datasets
based on real ISP network topologies, provided by Rocket-
fuel [26]. We selected three networks within the Rocketfuel
database with different sizes and densities (AS1221, AS1755,
and AS2914). For each topology, we generated 40 synthetic
datasets of path delays: 10 each for experiments with 5, 6,
7, and 8 monitor nodes. For each of these 40 case studies,
the network links are assigned different gamma delay distri-
butions, the n,,q. monitor nodes are selected at random, and
the n = ("5%) monitor paths are chosen by computing the
shortest path between each pair of monitor nodes. Then a large
sample of the joint path delay distribution is recorded.

Sparsity of the Common and Exact Cumulants: The
Sparse Mobius Inference procedure is based on the postulate
that the vectors of common and exact cumulants are both
sparse. This assumption holds up extremely well in our case
studies; with n = 28 paths, for example, 99.99% to 99.999%
of the entries of the common cumulant vector are zero.

Evaluating the Bounding Topology: The first stage of
Sparse Mobius Inference uses low-order cumulants to esti-
mate supp(f;). Our results indicate that Algorithm 3 is very
effective at finding a bounding topology with a tight support
estimate. For almost all of the 120 case studies, third-order
cumulants (i = 3) with a sample size N = 50,000 or larger

are sufficient to construct a bounding topology that predicts
supp(f;) with an F1 score of 1.0 (or extremely close to 1.0).

Evaluating the Estimated Routing Matrix: Next, we eval-
uate the performance of Sparse Mobius Inference end-to-end.
We ran stages 2 and 3 to get an estimate of R for each case
study and various sample sizes, using as input to Stage 2 the
bounding topologies computed with ¢y = 4 from the same
sample. The hyperparameters of the lasso heuristic (A and the
exponent b) are tuned separately for each underlying network
and number of monitor paths. Figure 2 shows the F1 scores
that we obtained for each of the 120 case studies. For all
underlying networks, the performance tends to degrade with
the number of monitor paths, and the best estimate is usually
obtained using third-order k-statistics (imax = 3).

Evaluating the Lasso Heuristic: We also evaluated the
lasso heuristic in Stage 3 using ground-truth cumulants. For
these experiments, we borrowed the bounding topologies com-
puted from the NV = 100,000 sample with iy = 4, but instead
of populating the f, vector in (15) with k-statistics computed
from this sample, we used the true common cumulants. These
values have no uncertainty, so we removed the quadratic
penalty from J(f,,f,), instead constraining f, = f,. Again,
the hyperparameters A\ and b are tuned separately for each
network and number of monitor paths. Figure 3 plots the
distribution of the resulting F1 scores. For smaller (5 or 6
monitor) scenarios, the lasso heuristic is typically capable
of 100% accurate routing matrix reconstruction. For larger
scenarios, the heuristic requires up to third-order cumulants
for completely accurate inference.
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Fig. 3: Distributions of F1 scores of the routing matrix estimate
based on ground-truth cumulants (instead of k-statistics). Each
plot corresponds to a particular number of monitor paths,
and the results are aggregated across case studies from the 3
underlying networks. The three boxes in each plot correspond
to values imax = 2, 3,4 used for inference.

Discussion: Our results paint a mixed but optimistic
picture for the Sparse Mobius Inference procedure. Admit-
tedly, higher F1 scores from the N = 100, 000 sample would
be desirable before the method is deployed in real-world
applications. But the two key components of the procedure—
estimating supp(f;) from low-order k-statistics, and using the
lasso sparsity heuristic to infer R without using the high-order
cumulants required by MIA—worked very well in isolation,
achieving 100% accuracy in most scenarios.

VII. CONCLUSION

We have provided a novel tomographic approach to routing
topology inference from path delay data, without making any
assumptions on routing behavior. Through MIA, we have
provided a theoretical framework for extending the use of
second-order statistics in network tomography toward higher-
order statistics. Furthermore, we have introduced the Sparse
Mobius Inference procedure, which implements a heuristic and
more practical variant of MIA. We have extensively studied the
performance of Sparse Mébius Inference using many synthetic
case studies. While more work is needed to improve the
filtering of noisy k-statistics, our results indicate that the
Sparse Mobius Inference can serve as a solid foundation for
future improvements.
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A Extended Results and Evaluation

A.1 Synthetic Datasets

To evaluate the Sparse Mobius Inference procedure, we created several synthetic datasets based on real
ISP network topologies, provided by Rocketfuel [1]. We selected three networks within the Rocketfuel
database with different sizes and densities: AS1221 (the Telstra network in Australia), AS1755 (the
EBONE network in Europe), and AS2914 (the Verio network in the United States). Table 1 contains
some summary statistics of these networks. AS1755 is the least “dense,” in that it has the smallest
average degree and the smallest clustering coefficient. AS2914, on the other hand, has by far the largest
average degree (and a similar clustering coefficient to AS1221).

For each of these 3 underlying networks, we generated 40 synthetic datasets of path delays: 10 each
for experiments with 5, 6, 7, and 8 monitor nodes, resulting in a total of 120 case studies. In each case
study, the network links are assigned different delay distributions. The mean delay p on each link is
chosen from a normal distribution with a mean of 10 ms and a standard deviation of 2 ms. Based on p,
the link delay is assigned a gamma distribution with shape parameter a = 4 and rate parameter § = %.
Figure 1 plots some samples of these delay distributions. Then for each of these 120 cases studies, the n
monitor nodes are selected at random, and the (g) monitor paths are chosen by computing the shortest
path between each pair of monitor nodes (based on the mean link delays).

Finally, for each of the 120 case studies, we generate three different samples of the joint path delay
distribution with sizes 10,000, 50,000, and 100,000. For each of these three values of IV, the sample is
bootstrapped into 50 different “re-samples” of size N (by randomly sampling the original N points with
replacement). Note that bootstrapping does not introduce new data; rather, the 50 different re-samples
of the original N points allow us to empirically estimate the distribution of k-statistics. (We tried using
100 re-samples instead of 50 as well, but only led to marginal improvement with significantly greater
runtime.)

Network Nodes Links Avg. Degree Cluster Coef

AS1221 318 758 4.77 0.28
AS1755 172 381 4.43 0.20
AS2914 960 2821 5.88 0.25

Table 1: Topological properties of the networks, including number of nodes and links (edges), the
average node degree, and the graph clustering coefficient.
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Figure 1: Sample link distributions with delay means of 6 ms, 10 ms, and 14 ms.

A.2 Sparsity of the Common and Exact Cumulants

The Sparse Mobius Inference procedure is based on the postulate that the vectors of common and exact
cumulants are both sparse, so we ought to examine how well this premise holds up in our empirical
case studies. Figure 2 plots the following four sparsity metrics for the 120 case studies:

e Size of supp(g;), i.e., the number of path sets P C P, for which g;(P) # 0. This is equivalent to
the number of logical links.

e Size of supp(f;), i.e., the number of path sets P C P, for which f;(P) # 0.
e Density of supp(f;), i.e., the fraction (2" — 1)~!|supp(f;)|.
e Largest set in supp(f;), i.e., the size | P| of the largest set P C P,, for which f;(P) # 0.

Unsurprisingly, the number of logical links |supp(g;)| tends to be small compared to the number of
path sets 2™ — 1, and the number of links increases in a roughly linear manner with the number of
monitor paths. Figure 2 (upper left) also shows that the number of links utilized by n monitor paths
depends heavily on the underlying network topology. AS2914 leads to the largest numbers of logical
links, which is to be expected, since AS2914 is the largest of the three networks. Remarkably, AS1221
has by far the smallest numbers of links, even though AS1221 has the middle number of links and
average degree and the largest clustering coefficient.

Figure 2 (upper right and lower left) also indicate that the common cumulant vector is very sparse.
While the number of nonzero entries increases roughly exponentially in n, the fraction of the 2" — 1
entries which are nonzero also decreases rapidly in n, approaching 0.001% density for scenarios with 28
monitor paths. Evidently the first stage of the Sparse Mobius Inference procedure is very well justified
in trying to isolate the support of f;, as this stage (if it is accurate) will eliminate the vast majority of the
common cumulant entries from the problem, thereby greatly reducing the number of k-statistics that
need to be evaluated. We should point out that this measurement task can still be nontrivial: as the
upper right plot indicates, the number of entries in the common cumulant vector was close to 100,000
in the “worst” of our case studies. This provides some additional motivation for the final stage of the
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i=2 i=3 i=4

N| o]l a B 4| a B 4
10,000 | 10729 [ 107 0.1 0.15| 1072 025 0.3
50,000 | 107%° | 10730 0.05 0.15| 107> 0.05 0.15
100,000 | 10740 | 1073 0.05 0.15 | 1071 0.05 0.15

Table 2: Parameters used for estimating the bounding topology: « (the p-value threshold for the
Nonzero hypothesis test), 5 (an estimate for the Type II error of the Nonzero test), and v (a desired
upper bound for the probability of falsely removing a size-i subset of P, from the support estimate).
Different parameters are used for different sample sizes N, corresponding to each row. Different pa-
rameters are also used for different k-statistic orders ¢, corresponding to each group of columns.

Sparse Mobius Inference procedure, which leaves many entries of the common cumulant un-measured
and infers them instead through the lasso heuristic.

Finally, Figure 2 (lower right) depicts how large the path sets in supp(f;) can get. One way to
interpret this sparsity metric is how “crowded” by monitor paths the links can get. AS1221 tends to
have the largest path sets with nonzero common cumulants. One scenario with n = 28 even has a path
set of size 16 in supp(f;), which implies that 16 of the 28 monitor paths in this scenario all use one
particular link. This “crowding” of links in AS1221 naturally complements the small sizes of | supp(g;)|
in the upper left plot: since the monitor paths traverse a smaller number of links in this network, it
makes sense that the few links that are utilized will have to withstand heaver utilization by the monitor
paths.

A.3 Evaluating the Bounding Topology

The first stage of Sparse Mobius Inference (described in Section V.A) uses low-order k-statistics to
estimate supp(f;), by constructing a bounding topology B. For each of the 120 case studies and each
of the 3 sample sizes, we ran Algorithm 3 to construct a bounding topology. We implemented the
Nonzero(f;(P)) hypothesis test with the following procedure: (i) compute 50 estimates of fl(P) by
applying (12) to each of the bootstrapped re-samples; (ii) estimate a p-value for the null hypothesis
that f;(P) = 0 by applying a one-sample Student’s t-test to the 50 estimates of fi(P); and (iii) deciding
Nonzero(f;(P)) is true if and only if that p-value is below a pre-determined threshold, a. The values
used for these thresholds are reported in Table 2.

The initial bounding topologies By were constructed using second-order k-statistics (covariances)
and the maximal clique approach described in Section V.A. We recorded these initial values of By to
assess the accuracy of their support estimates, and then we applied Algorithm 2 to tighten the bounding
topology using k-statistics of order ¢« = 3. We recorded these “third-order” estimates as well, and then
applied Algorithm 2 one last time with k-statistics of order ¢ = 4. Again, the final bounding topology
is recorded and the accuracy of its support estimate is assessed.

The threshold function ¢ that we supplied to Algorithm 2 was constructed from the quantile approach
described in Section V.A. Recall the quantile approach has two parameters: 3, an estimate for the Type
IT error rate of Nonzero(f;(P)); and 7, an upper bound for the probability that a size-i path set is
incorrectly removed from the support estimate. The optimal values of these parameters depend on the
k-statistic order and sample size, since higher-order k-statistics tend to be less accurate, and larger



samples lead to lower variance of the k-statistic estimates. We tuned these parameters to the values
reported in Table 2.

To evaluate the performance of this stage, we study how the support estimate after each order 4
(2, 3, and 4) compares to the ground-truth support of f;, as well as how this performance scales with
the size of the path delay sample. We assess the accuracy of the support estimate using two standard
metrics for binary classifiers: precision, i.e., the fraction of path sets in the support estimate that
truly belong to supp(f;); and recall, the fraction of supp(f;) that is in the support estimate. For good
performance of the first stage, the recall should be very close to one (so that non-zero entries of f; are
not ignored in the next two stages), and the precision should approach one as the support estimate is
tightened with successive orders 1.

Figure 3 shows the precision of the support estimate after each successive round of tightening, while
Figure 4 shows the corresponding recall. For the vast majority of the 120 case studies, using N = 50, 000
samples and a k-statistic order up to i = 3 is enough to get a 100% accurate support estimate. There
is also very little difference in the results between using the N = 50,000 and N = 100, 000, indicating
that a sample size of 50,000 is usually enough to determine whether or not f;(P) = 0 for orders up
to ¢« = 4. Overall, the results show that Stage 1 of Sparse Mobius Inference is highly successful in
identifying the collection of path sets with a nonzero common cumulant.

A.4 Evaluating the Estimated Routing Matrix

Next, we evaluate the performance of Sparse Mobius Inference end-to-end. We ran stages 2 and 3 to
get an estimate of R for each case study and from each of the three differently-sized samples, using as
input to Stage 2 the bounding topologies computed with iy = 4 from the same sample. We tuned the
hyperparameters of the lasso heuristic (A and the exponent b) separately for each underlying network,
number of monitor paths, and value of i;,,. Tuning was done by a grid search over values of b from
0 to 1 in increments of 0.1, and values of A from 0 to 4 in increments of 0.2. We then selected the
pair of parameters resulting in the highest average F1 score across the 10 cases studies with the given
underlying network and monitor paths, when evaluated with the given i,,x on N = 100, 000.

To assess the accuracy of an estimated routing matrix R compared to the ground truth R, we
computed precision and recall in the following manner: precision is the fraction of the columns of R
that are also columns of R, and recall is defined wice versa. Then we combined these two metrics
into a single F'1 score, which is the geometric mean of precision and recall. Figures 5, 6, and 7 report
the distributions of F1 scores that we obtained based on samples of size 100,000, 50,000, and 10,000,
respectively.

We now examine how the performance of the inference depends on particular parameters:

Choice of iy,,x For most of our case studies with N = 50,000 or N = 100,000, the optimal choice
of k-statistic order is simply imax = 3. This is likely because the third-order statistics contain more
information than the second-order statistics, but the fourth-order statistics were too noisy for the
solution of the lasso optimization problem to settle close enough to the true cumulant values. (This is
probably also the same reason why ipyax = 2 yields the best performance when N = 10, 000.)

The 8-monitor-node cases from AS1221 are a notable exception; in most of these scenarios, imax = 4
leads to the best performance. The likely reason for this anomaly is visible in Figure 2: the AS1221
network, with n = 28 monitor paths (corresponding to 8 monitor nodes), leads to the largest size of
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supp(f;) and the largest path sets in supp(f;) among all of the case studies. Thus, it is to be expected
that common cumulant estimates from more and larger path sets are necessary to identify which path
sets in supp(f;) also have a nonzero exact cumulant. These results suggest that higher choices of iax are
needed when there is a greater amount of link sharing between monitor paths, and in these cases, larger
samples are needed to ensure that accurate cumulant estimates are possible with limited uncertainty.

Choice of Sample Size There were a few cases in which N = 10,000 were enough for decent
performance (AS1755 with 5 monitor nodes, and AS2914 with 5 or 6 monitor nodes). In all of these
cases, tmax = 2 was also the optimal k-statistic order, indicating that the small sample size is only
sufficient when covariances alone contain nearly enough information to reconstruct R. Unfortunately,
the sample size needs to be at least 5 times larger in most other cases, so as to allow for an accurate
estimate of third-order cumulants. It is also interesting to observe that doubling the sample size from
50,000 to 100,000 does not lead to significant improvements in the accuracy of R.

B Proofs from Section III

This section contains proofs from lemmas in Section III of the main manuscript. For convenience, the
lemma statements are reproduced as well.

B.1 Estimation Stage

Lemma 1 (Properties of the Estimation Stage). The following are true:
(i) Let P C P,,. If i > |P|, there are (ui;.‘:ll) ith-order representative multi-indices of P.

(ii) For all i € Zsq, the common cumulant f; : 2P — R satisfies

fa(P)=Y" ka(Up), VPC Py
2eC(P)

(iii) Statement (ii) of Theorem 1 is true, i.e., Algorithm 1 correctly computes the common cumulant
vector for order i = n.

Proof. To prove (i), we will count the number of ways that ¢ “counts” of multiplicity can be assigned
to the support of a representative multi-index. Each element of P contains at least one count, and we

are free to distribute the remaining i — | P| counts arbitrarily across the elements of P. Thus, there are

((Z.‘_IT},‘ )) ways to distribute the remaining counts, which is equivalent to (| ;T}l)

To prove (ii), let o be some ith-order representative multi-index of P. Using the independence of
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Figure 5: Distributions of F1 scores of the routing matrix estimate for the 120 case studies, based on
a sample of size 100,000. Plots in each row are based on the same underlying network, and plots in
the same column have the same number of monitor nodes. The three boxes in each plot correspond to
values imax = 2, 3,4 used for inference.
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a sample of size 50,000. Plots in each row are based on the same underlying network, and plots in
the same column have the same number of monitor nodes. The three boxes in each plot correspond to
values imax = 2, 3,4 used for inference.
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Figure 7: Distributions of F1 scores of the routing matrix estimate for the 120 case studies, based on
a sample of size 10,000. Plots in each row are based on the same underlying network, and plots in
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values imax = 2, 3,4 used for inference.
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Uy and the multilinearity of multivariate cumulants, we have

fi(P)=r | ROU,..., RYU,... R™U,... R™WU

~~

(1) times a(n) times
= ; (r?g(l)-~-7“z{gn)> K Up,...,Uyp

a(1)+-+a(n) times

ol IT rie) miwo)

¢=1 \jesupp(a)

where RU) denotes the jth row of R. Since []
obtain

jesupp(a) Ti¢ = 1 if £ € C(P) and is zero otherwise, we

fiP)= Y kuly), VPC Py,
teC(P)

To prove (iii), observe that the estimation stage of Algorithm 1 defines the map f,, precisely ac-
cording to Definition 3, so that f,, is the common cumulant vector by line 6 of the algorithm. Then
statement (iii) follows by statement (ii) of this lemma. O

B.2 Inversion Stage

Lemma 2 (Properties of the Inversion Stage). Let f; be the common cumulant vector, and let g; :
2Pm 5 R. The following three statements are equivalent:

(i) gi is the exact cumulant vector.

(ii) fi and g; satisfy

Q2P
(iii) f; and g; satisfy
gi(P)= > (-)PIf@),  vPC P, (B2)
Q2P

Furthermore, statement (iii) of Theorem 1 is true, i.e., the Algorithm 1 correctly computes the exact
cumulant vector.

Proof. We begin with the equivalence (ii) <= (iii). This equivalence holds for any functions f;,g; :
2Pn 5 R, and it follows from the Mé&bius inversion formula applied over 277, See, for example, 2,
Theorem 5.1].

To prove that (i) = (ii), we will first show that

cp) = E@) (B.3)



Let ¢ € C(P), and examine the column of the routing matrix Ry € {0,1}". There is some @ C P,
for which the characteristic vector satisfies x(Q, P,) = Ry. It follows that £ € E(Q). Now, because
¢ € C(P), it follows that rp, = 1 for all p € P, so that Q O P. Therefore ¢ € UQQP E(Q). Next, let
RS UQQP E(Q), so that ¢ € E(Q) for some @ D P. It is clear that rp, = 1 for all p € @, so the inclusion
@ O P implies that ¢ € C'(P). Now, if g; is the exact cumulant vector, we can (from Definition 5)
substitute (B.3) into

gn(P)= > ka(Us), VPCP, (B.4)
(€E(P)
obtaining
S a@=3 3 mU)= 3 xU)=fi(P)
Q2P QOP eE(Q) 0eC(P)

The last step follows from Lemma ?7? (ii). Hence (i) = (ii).
To prove that (ii) = (i), suppose that f; and g; satisfy (B.1). By (B.3),

d @ =) Z ki(Up) (B.5)

Q2P Q2OP(leE(Q

for all P C P,,. We will use (B.5) to show that g; satisfies (B.4) by strong induction over |P|. In the
| P| = n base case, the only possible set is P = Py, for which (B.5) reduces to gi(Fn) = >_sc g(p,,) #i(Ue)-
Now suppose that (B.4) holds for all P with |P| > i for some j € [2,n]. Let P C P, such that |P| = j—1,

and observe that
Z gz( = gz Z Z Rj U@

Q2P QDOPLeE(Q)

by the inductive hypothesis. Substituting this equation in to (B.5) and simplifying, we obtain (B.4).
Hence (B.4) holds for all P C P,,, so (ii) = (i).

To prove the final statement, note that the inversion stage of Algorithm 1 defines the map g,
according to (B.2), where f, is the common cumulant vector (per Lemma 4 (iii)), by line 10. It follows
from the equivalence proven in this lemma that g, is the exact cumulant vector. O

B.3 Reconstruction Stage

Lemma 3 (Properties of the Reconstruction Stage). Let g, : 25 — R be the evact cumulant vector.
For each P C P, let x(P, P,,) € {0,1}" be the characteristic vector of P in P,,. The following are
true:

(i) If P € supp(gn), then x(P, Py,) must be a column of the routing matriz. Under Assumptions 1
and 2, the converse is also true.

(ii) Statement (iv) of Theorem 1 is true.

Proof. 1f g,(P) # 0, it is clear from (B.4) that E(P) is non-empty, which implies that some column
of the routing matrix Ry satisfies x(P, P,,) = Ry. Now suppose that Assumptions 1 and 2 are true.
By Assumption 1, the set E(P) is either empty or contains a single element. By Assumption 2, if
E(P) contains a single element ¢, it must satisfy x,(U;) # 0. Therefore, if g,(P) = 0, under these two
assumptions, it follows that E(P) is empty. Hence x(P, P,,) is not a column of the routing matrix.
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Per Lemma 6, the vector g, in Algorithm 1 is the exact cumulant vector by line 10, so we can apply
the above result to g, in the reconstruction stage of the algorithm, yielding statement (iv) of Theorem
1. O

C Proofs from Section V

This section contains proofs from statements in Section V of the main manuscript. For convenience,
the statements are reproduced as well.

Theorem 4 (Properties of Algorithm 2). Let B C 2 be a collection of path sets, let i € Zsq be a
cumulant order, and let t : Z~y X Zsg — Z>g be a threshold function. The following are true:

(i) Algorithm 2 evaluates IsNonzero(f;(P)) O(n?) times and terminates after O(29) iterations of the
while loop, where q is the size of the largest set in B. The algorithm returns a collection of path
sets B C 2Pm

(i) The support estimate of B is a subset of the support estimate of B.

(iii) For any set P in the support estimate of B, P is also in the support estimate of B if either
|P| < i, or if there is a superset Q) O P in the support estimate of B for which at least t(|Q],17)
size-i subsets R C Q) satisfy Nonzero(fi(R)).

Proof. There are at most () = O(n') size-i sets, so Nonzero(f;(P)) is evaluated O(n') times to
compute P. The worst-case runtime occurs when |[{P € P : P C B}| < t(|B|,7) for each iteration of
the while loop, in which case the variable B takes on the value of every subset (with size at least 7)
of every original set in B precisely once (because the collection X tracks which sets have already been
processed, preventing redundant iterations of the while loop). Thus, there are O(27) iterations of the
while loop.

To prove (ii), observe that every set added to B’ was originally in the queue B, and that sets in the
queue are either from the original collection B, or they are subsets of a previous element in the queue.
Hence every set in B’ is a subset of a set in the original B, so the support estimate of B’ is a subset of
the original support estimate. To prove (iii), suppose that P is in the support estimate of B’ so that
some B’ € B’ contains P. Sets are only added to B’ on line 5, and the set must satisfy either |B’| < i
or {P' € P:P CB}| >t(B],i), ie., (b) is satisfied with @ = B'. O

Lemma 5 (Elimination of Large, Non-Maximal Path Sets). Let B C 2P be a collection of path sets,
and let s € Z~y. Assume that the following are true:

(i) Every set in B is mazimal (i.e., no B, B" € B exist such that B C B'),
(ii) fi(P)# 0 and g;(P) # 0 only if P is in the support estimate of B, and

(iii) gi(P) =0 for all P C P,, with |P| > s and P ¢ B.

14



Then for every P in the support estimate of B such that |P| < s,

g(P)=">_ () P5@Q

Q2P:|Q|<s

S (_1)3—|P|<!B|S—_U‘PP‘—1>fi(B)

BeB:BDOP

Proof. Let P be in the support estimate of B with |P| < s. We can split the Mdbius inversion formula
into two parts:

g(P)=" > (-1 5@Q)

Q2P:Q|<s

D IRt

ROP:|R|>s

Focus on the second sum, and let R O P such that |R| > s. Condition (iii) implies that

i(R)=>"g(@Q= > aB)

QDR BeB:BDR

so we can simplify the second sum by

> ) g(R)

RDP:|R|>s

= > DRI S gB)

RDOP:|R|>s BeB:BDOR

)Y gm) S (A

BeB BOROP:|R|>s
|B|

—0 Y am Y (0

BeB Jj=s+1

S N (i

BeB

Finally, observe that ¢;(B) = fi(B), since there are no proper supsersets of B in the support estimate
of B (due to condition (i)). O
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