
HAL Id: hal-03689859
https://polytechnique.hal.science/hal-03689859

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HLB: Toward Load-Aware Load Balancing
Zhiyuan Yao, Yoann Desmouceaux, Juan-Antonio Cordero-Fuertes, Mark

Townsley, Thomas Clausen

To cite this version:
Zhiyuan Yao, Yoann Desmouceaux, Juan-Antonio Cordero-Fuertes, Mark Townsley, Thomas Clausen.
HLB: Toward Load-Aware Load Balancing. IEEE/ACM Transactions on Networking, 2022, pp.1-16.
�10.1109/TNET.2022.3177163�. �hal-03689859�

https://polytechnique.hal.science/hal-03689859
https://hal.archives-ouvertes.fr

1

HLB: Towards Load-Aware Load Balancing
Zhiyuan Yao , Yoann Desmouceaux , Juan-Antonio Cordero-Fuertes , Mark Townsley , Thomas Clausen

Abstract—The purpose of network load balancers is to optimize
quality of service to the users of a set of servers – basically, to
improve response times and to reducing computing resources
– by properly distributing workloads. This paper proposes a
distributed, application-agnostic, Hybrid Load Balancer (HLB)
that – without explicit monitoring or signaling – infers server
occupancies and processing speeds, which allows making opti-
mised workload placement decisions. This approach is evaluated
both through simulations and extensive experiments, including
synthetic workloads and Wikipedia replays on a real-world
testbed. Results show significant performance gains, in terms
of both response time and system utilisation, when compared to
existing load-balancing algorithms.

Index Terms—load-balancing, cloud and distributed comput-
ing, performance evaluation

I. INTRODUCTION

In data centres (DCs), cloud services and network applica-
tions are associated with server clusters to provide high scal-
ability, availability, and quality of service (QoS) [1], [2]. As a
key component for efficient resource utilisation in DCs, Layer-
4 load-balancers (LBs) distribute network traffic addressed to
a given cloud service evenly on all associated servers, while
consistently maintaining established connections [3]–[7].

The workflow of network LBs is depicted in Figure 1. On
receipt of a new connection request 1 (e.g., a TCP SYN),
LBs 2 determine to which server the new connection is
to be dispatched. Servers 3 respond to the request using
direct-source-return (DSR) mode1; LBs thus have no access
to the server-to-client side of communication. Finally, 4 the
load balancing decision made upon the new connections is
preserved until connection terminates.

There are two requirements for LBs:
• Per-Connection-Consistency (PCC): Packets from the

same connection need to be forwarded to, and handled
by, the same server.

• Fairness: LBs need to balance workloads on all servers
and avoid both overloading and starvation of provisioned
resources [5], [6].

If PCC is not ensured, connections will break and re-
establishments may occur, which take time and degrade
QoS [8], [9], thus potentially causing revenue loss for cloud
providers [10]. PCC can be achieved by LB algorithms

Z. Yao, Y. Desmouceaux and M. Townsley are with Cisco Systems Paris
Innovation and Research Laboratory (PIRL), 92782 Issy-les-Moulineaux,
France; emails {yzhiyuan, ydesmouc,townsley}@cisco.com.

Z. Yao, J.-A. Cordero-Fuertes and T. Clausen are with École Polytech-
nique, 91128 Palaiseau, France; emails {zhiyuan.yao,juan- antonio.cordero-
fuertes,thomas.clausen}@polytechnique.edu.

Digital Object Identifier 10.1109/TNET.2022.3177163
1DSR is enabled for response packets from servers to clients to bypass LBs.

It relieves LBs of handling 2-way traffic, improving network throughput [3].

le
as

t-l
oa

de
d

ov
er

-lo
ad

ed

no
rm

al

Application ServersClient Load Balancer

1

3
24

SYN

!SYN

Figure 1. Workflow of Layer-4 LBs in DC.

from two categories: stateful and stateless. Stateful LBs [3],
[4], [11]–[14] use flow tables to store mappings between
connection IDs (e.g., 5-tuple hashes2) and servers. Stateless
LBs encode connection-server mapping information in covert
channels (e.g., TCP timestamps) [7], or delegate the task of
redirecting misrouted packets to servers [15]–[18]. Both are
based on hashing to avoid connection disruption and packet
misrouting, in case LBs fail or server pools update.

PCC is largely explored in the literature [3], [4], [7], [11],
[12], [16], [18]–[20]. Load balancing fairness and resource
utilisation, in turn, are investigated in [6], [21]–[25].

A. Statement of Purpose

The overall purpose of this paper is to specifically inves-
tigate workload distribution fairness of network LBs. This
paper proposes Hybrid LB (HLB), a distributed, load-aware
load-balancing algorithm that infers server occupancies and
processing speeds for making optimised load balancing deci-
sions. HLB requires no explicit monitoring or signaling, which
incurs additional management traffic that grows with the scale
of server pools and probing frequencies3, and reduces the
effective bandwidth in the core links [11].

This paper also argues that to improve workload distribution
fairness and QoS, the server load information needs to be taken
into consideration, including:
• server occupancy, that indicates queuing delays,
• processing speed, determined by available resources.
Doing so allows HLB to make per-connection-level load

balancing decisions and offer each server subject to a fair share
of workloads. HLB estimates these factors with no additional
overhead for coordination among LBs, or with servers. HLB
works out of the box and requires no network or application
modification, nor additional control message.

The contributions of this paper are three-fold: (i) a study of
the dominating factors in load balancing performance, with a
taxonomy of existing approaches, (ii) specification of a “fair”

2TCP 5-tuple consists of source IP address, destation IP address, source
port, destination port, and protocal number.

3With 50-byte packets, active probing 128 servers at 10Hz generates
64kbps traffic, while the 90-th percentile of per-destination-rack flow rate
is 100kbps in production [28].

https://orcid.org/0000-0002-7211-1506
https://orcid.org/0000-0001-6322-2338
https://orcid.org/0000-0001-5771-3122
https://orcid.org/0000-0001-7976-3470
https://orcid.org/0000-0002-7400-8887

2

TABLE I
TAXONOMY OF RELATED WORK.

LB Algorithms Description Related Works Aware of Server
Capacities

Aware of Server
Occupancy

No Error-Prone
Configurations

ECMP Randomly assigns a server. [11], [16], [26] 7 7 3

WCMP Assigns servers based on weights
defined by provisioned resources.

[3], [4], [18],
[12], [14], [19] 3 7 7

AWCMP Assigns servers based on weights
defined by polled resource utilisation. [6], [22], [24] 7 3 7

LSQ/GSQ2
Assigns servers with the shortest/shorter
queue occupancy based on local/global
observations.

[23], [25], [27],
[7] 7 3 3

SED
Assigns servers with the lowest delay
derived from static server weights
defined by provisioned resources.

[21] 3 3 7

HLB
Assigns servers with the lowest delay
derived from adaptive server weights
based on passive observations.

This work. 3 3 3

LB algorithm, HLB, that requires no manual configuration, or
additional interaction with servers or other LBs, (iii) evalu-
ations, by way of simulations and testbed experiments, that
compare HLB with existing LB algorithms, in various DC
configurations, and under realistic network traffic.

B. Related Work

LVS (Linux Virtual Server) [21] implements a wide range of
load balancing algorithms to improve fairness, however, with-
out attaining throughput and latency characteristics meeting
production requirements for DCs. Using statically configured
match action tables or hash tables [3], [4], [12] increases
throughput and reduces packet processing latencies. How-
ever, these tables do not support advanced load balancing
algorithms, e.g., weighted round-robin [29] or least loaded
server [25], which requires dynamically managing connection-
server mappings. Cheetah [7] allows dynamically registering
and recovering mappings of connections and servers, by
encoding mappings as cookies in covert channels in packet
headers. This allows to retrieve the server handling a given
connection if it is lost, e.g., when an LB fails. Prism [19]
statelessly maps connections to their hash buckets and state-
fully registers connection-server mapping information in a
table of migrated connections when facing potential risks of
connection disruptions, e.g., during server pool updates. When
servers are added or removed, it creates an independent table
to track migrated connections, and updates server weights
for balanced workloads distribution4. Integrating these algo-
rithms [7], [19] will allow HLB to build load-aware algorithms
while guaranteeing PCC for large-scale DCs.

The load-aware LB decision-making process uses the es-
timation of server occupancy and processing speeds, as well
on use of the application of different rules (probabilistic or
minimisation rules). Table I summarises the taxonomy of
network LB algorithms, based on their awareness of server
occupancies and processing speeds.

1) Equal-Cost Multi-Path (ECMP) treats all servers as
equal, and is agnostic to server load state differences.

4This approach of adding a table to track migrated connections is also
employed in Yoda [30], a Layer-7 LB.

It is applied in many LB mechanisms [11], [12], [16],
[17], [26] that aim at minimizing performance overhead.

2) Weighted-Cost Multi-Path (WCMP) assigns weights to
servers proportional to their provisioned resources [3],
[4], [13], [14], [19], which may not correspond to their
actual processing capacity. However, as available server
capacities change with time in elastic DCs [2] or when
workloads are co-located in a shared infrastructure [31],
[32], these quantified capacities may not correspond to
the actual processing capacities of servers.

3) Active WCMP (AWCMP) is a variant of WCMP. It peri-
odically updates server weights, based on probed resource
utilisation information (CPU/memory/IO usage) [6], [22],
[33], [34]. AWCMP requires server modifications to man-
age communication channels and collect observations.
Higher probing frequencies help achieve more accurate
server load estimation, yet lead to increased volume of
control messages and reduced bandwidth [6], [11].

4) Local Shortest Queue (LSQ) tracks for each server the
number of established connections at a per-flow level [7],
[25]. On arrival of new connection requests, LBs assign
the corresponding connections to the server with the
shortest queue based on observed traffic. Global Shortest
Queue with Power-of-2-Choices (GSQ2) is a LSQ variant
that leverages (i) the actual server queue occupancy, and
(ii) the power of choices [35], [36].

5) Shortest Expected Delay (SED) derives the “expected de-
lay” as server occupancy divided by statically configured
server processing speed [21]. New connections are then
assigned to the server with the minimal “expected delay.”

Among load-aware LBs, TWF [25] obtains the actual queue
lengths on each server via periodic out-of-band communica-
tions. It uses statistical models to reduce the impact of outdated
observations. However, TWF assumes that all servers have the
same processing speed, which is not the case with servers
instantiated on heterogeneous architectures [32], malfunction-
ing servers, or servers running colocated workloads [31].
SED [21] statically configures server processing speeds (based
on provisioned server CPU numbers) which neither reflect
the actual processing speed for a given application (e.g., IO-

3

intensive) nor adapt to server health or operational status. HLB
considers server occupancies and adaptively updates server
processing speeds based on passive observations to improve
load balancing performance with little additional overhead.

6LB [23] and SHELL [27] offload the fine-grained load
balancing decision-making processes to servers, and allow
them to hand off requests to another server using SRv6 [37],
if they are already overloaded. Spotlight [6] and LBAS [24]
periodically poll each server for their resource utilisation infor-
mation, and either classify servers into several priority classes,
or predict server load states using Ridge Regression [38], so
as to dynamically update server weights. INCAB [22] tunes
server weights on receipt of notifications from overloaded
servers, which are defined by manually configured thresholds.
Unlike these LB algorithms, HLB is an out-of-the-box LB
and passively collects networking features. It requires no
monitoring or signaling among networking devices, and avoids
error-prone manual configurations.

C. Paper Outline

The remainder of this paper is organized as follows. Sec-
tion II studies 2 dominating factors in LB performance, and
discusses the challenges of implementing load-aware LBs.
Section IV describes the design of HLB and its load balancing
decision-making process. Section V describes the implemen-
tation details of the testbed and the simulator for conduct-
ing evaluations. Section VI presents quantitative evaluations,
comparing and contrasting different load balancing algorithms
under various scenarios. Section VII concludes this paper.

II. PROBLEM SPACE

This section formalises the load balancing problem ad-
dressed in this paper, and defines the problem space by
introducing notation and assumptions.

A load balancing system consists of one or several LBs,
connected to a set of servers in a DC. The set of servers
is denoted S = {s1, ..., sN}, with |S| = N . Given a server,
si ∈ S, its processing speed is denoted µi, and its total number
of jobs or connections in the queue is denoted li.

All LBs implement the same LB algorithm. When there
are multiple LBs, the traffic (a stream of jobs) injected into
the system is randomly distributed among the LBs, e.g., by
the edge router of the DC. Each LB thus is exposed only to a
fraction of the connections in the system - those traversing that
LB. The occupancy estimator of server si on LB j, is denoted
l̃ij (l̃ij ≤ li). The observed and unobserved traffic rates on
server si are denoted λi and γi respectively, with the total
observed traffic rates as λ =

∑
si∈S λi, and total unobserved

traffic rates as γ =
∑
si∈S γi, that subject to the system.

The following hypotheses are made for the remainder of the
paper:
• TCP still is the most widely used protocol in content

delivery networks (CDNs) [28], [39]. Further, this as-
sumption allows experimenting using existing connection
traces [40], and does not limit the generality of the results
over any other connection-oriented transport protocols
(e.g., QUIC [41]).

• Finite-duration connections are assumed for a connec-
tion q with a flow-completion time (FCT) of T (q) <∞.
T (q) is modeled as a random variable with a uni-modal
distribution (e.g., a long-tail distribution as in [28], [31]).

• Non-communicating LBs, i.e., LBs do not communi-
cate with each other. LBs implementation complexity is
reduced [4], [18], especially for high-performance LBs
deployed on dedicated hardware [12], [26].

• Unless otherwise specified, modeling, simulations and
experiments rely on the hypothesis that traffic follows
Poisson distribution.

III. ANALYSIS OF EXISTING LB ALGORITHMS

Given the defined problem space, this section provides
an analytic examination of performances of different LB
algorithms in a simple setup, and analyse the impact of
inaccuracies in their input parameters. The trade-off between
performance and overhead of different design choices is dis-
cussed, and the remaining challenges, that motivate the design
of HLB, are presented.

A. Stochastic Modeling and Simulation

The performance and operation of the LB algorithms de-
scribed in Section I-B, as well as their sensibility to inaccu-
racies in their input parameters, is analysed stochastically, on
a basic load balancing setup, with 2 servers with a processing
speed ratio µ1

µ2
= 2 (i.e., server 1 is 2x faster than server 2).

Each server has a queue of size Q, such that 0 ≤ l1, l2 ≤ Q.
Traffic arrivals and departures are modeled as Poisson pro-
cesses with rates λ (observed traffic), γ (unobserved traffic),
and µ1, µ2. With sufficiently short timeslots, it can be assumed
that only one arrival or departure (at most) happen at a given
timeslot (i.e.,

∑2
i=1(λi + γi + µi) ≤ 1); the system is then

Markovian with the state (l1, l2), departure rates (µ1, µ2), and
arrival rates (λ1, λ2, γ1, γ2). For simplicity, the system works
at nominal capacity (i.e., λ + γ = µ). In these conditions,
Table II describes the traffic arrival rate λi assigned to server
i using different LB algorithms. Note that this section studies
LB algorithms (ECMP, WCMP, LSQ, SED) that correspond
to fundamentally different design choices, while AWCMP and
GSQ2 are variants of WCMP and LSQ respectively.

With si(n)li denoting the probability (or probability density
function), of server si to have a queue length of li at time-step
n, the transition of server occupancies between two time-steps
can be described as:

si(n)li − si(n− 1)li = (λi + γi) · si(n− 1)li−1 +

+µi · si(n− 1)li+1 −
−(λi + γi + µi) · si(n− 1)li

for 0 < li < Q (corner cases are treated accordingly).
Figure 2 depicts the LB performance of each LB algorithm,

measured as the weighted service duration of a connection
(
∑
i∈{1,2}

li
l1+l2

li
µi

), for different configurations.
When the LB observes 100% traffic (i.e., γ = 0) and

assigns server weights based on actual processing speeds
w1

w2
= µ1

µ2
= 2, the WCMP and SED have the best performance.

By considering the state of the queues, LSQ is able to largely

4

TABLE II
TRAFFIC DISTRIBUTION IN 2-SERVERS LB SYSTEM.

Algorithm λi
ECMP 1

2
WCMP (AWCMP) λ · µ1

µ1+µ2

LSQ (GSQ2) λ · Pr{i = argminj=1,2 l̃j}
SED λ · Pr{i = argminj=1,2

l̃j+1

w̃j
}

ECMP WCMP LSQ SED0

2

4

Se
rv

ice
 D

ur
at

io
n

Accurate Config. (100% of Traffic & 2:1 Ratio)
Partial Observation (50% of Traffic)
Inaccurate Weights (1:2 Ratio)
Both Inaccuracies (50% of Traffic & 1:2 Ratio)

Figure 2. Load balancing performance for a cluster of 2 servers with different
processing speeds (µ1

µ2
= 2) under various scenarios for algorithms that

consider different factors under system steady state (λ+ γ = µ1 + µ2).

outperform ECMP. When the LB observes only 50% of traffic
(i.e., γ = λ) and the other 50% of traffic is uniformly split
between the two servers (γ1 = γ2), LSQ and SED outper-
form WCMP, which is agnostic to instant server occupancy.
However, partial traffic observation substantially degrades the
performance of LSQ and SED. As a LSQ variant, GSQ2 gets
global observations thus it is not subject to any impact from
this source of inaccurate observation.

When LBs have inaccurate server weights (e.g., in case
of misconfiguration, w1

w2
= 1

2 , while µ1

µ2
= 2), WCMP and

SED exhibit degraded performance even when the LB sees
all the traffic (γ = 0). As a WCMP variant, AWCMP derives
server weights from servers and may avoid the negative impact
of misconfigurations, though with additional communication
overheads. Taking both server occupancies and processing
speeds into account, SED makes more informed load balancing
decisions. However, while LSQ is only sensitive to partial
observation, the performance of SED can be degraded by
both inaccuracy sources: (i) partial observations on server
occupancies, and (ii) inaccurate server weights.

B. Challenges

Section III-A shows that, performance degrades with 2
sources of inaccuracies (partially observed traffic, and mis-
configured server weights), which are found to be present in
production DCs [4], [23], which are challenging to resolve.

A single LB allows to observe all traffic, but also constitutes
a single point of failure [42]. Multiple LBs are thus deployed
for reliability, leading to partial observations.

Existing load-aware LBs gather observations of server oc-
cupancies either by actively probing or passively observing
networking traffic. As such, these mechanisms are exposed to
the trade-offs between performance and overhead:
• Estimating occupancies based on passive traffic obser-

vation at the LBs requires tracking connection states
– whereas incurs substantial underestimation of server
occupancies, if multiple LBs exists in the system [25].

<latexit sha1_base64="3F4kew5sAkMHBnNFr9n5y1FTl8I=">AAACMnicbVDLSgMxFM3UV62vqks3wVaoCGWmC3VZcKO7ivYBnTJk0kwbmskMSUYpYb7JjV8iuNCFIm79CNNpBW09EDiccy835/gxo1LZ9ouVW1peWV3Lrxc2Nre2d4q7ey0ZJQKTJo5YJDo+koRRTpqKKkY6sSAo9Blp+6OLid++I0LSiN+qcUx6IRpwGlCMlJG84lXZRWIA3ZByT0uPupS7IVJD39c3aQrdQCCsXUVZn2iWepqm8AQ66Y90n0kVfpyWvWLJrtoZ4CJxZqQEZmh4xSe3H+EkJFxhhqTsOnasehoJRTEjacFNJIkRHqEB6RrKUUhkT2eRU3hklD4MImEeVzBTf29oFEo5Dn0zOYkj572J+J/XTVRw3tOUx4kiHE8PBQmDKoKT/mCfCoIVGxuCsKDmrxAPkWlJmZYLpgRnPvIiadWqzmnVua6V6vVZHXlwAA5BBTjgDNTBJWiAJsDgATyDN/BuPVqv1of1OR3NWbOdffAH1tc3mYGrkQ==</latexit>

arg minsi2S
l̃i+1
w̃i(n)

<latexit sha1_base64="WojlqXM8lbbo14WHG1s0Hiv9V1c=">AAACAHicbVDLSsNAFJ34rPUVdeHCzWARXJWkILosqOCyon1AG8pkctMOnUzCzEQMoRt/xY0LRdz6Ge78G6dtFtp6YOBwzr3cOcdPOFPacb6tpeWV1bX10kZ5c2t7Z9fe22+pOJUUmjTmsez4RAFnApqaaQ6dRAKJfA5tf3Q58dsPIBWLxb3OEvAiMhAsZJRoI/Xtw7thLDUoja8fE6AaAnwFnGR9u+JUnSnwInELUkEFGn37qxfENI1AaMqJUl3XSbSXE6kZ5TAu91IFCaEjMoCuoYJEoLx8GmCMT4wS4DCW5gmNp+rvjZxESmWRbyYjoodq3puI/3ndVIcXXs5EkmoQdHYoTDnWMZ60gQMmTWieGUKoZOavmA6JJKYIqcqmBHc+8iJp1aruWdW5rVXq9aKOEjpCx+gUuegc1dENaqAmomiMntErerOerBfr3fqYjS5Zxc4B+gPr8wd3jZZO</latexit>

Shortest Expected Delay

<latexit sha1_base64="97HXsvWxm9Yxbpps3n5M0i+/7VM=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqswURJcFRVxWsA9oh5JJM21oJhmTTKUM/Q43LhRx68e4829Mp7PQ1gMXTs65l9x7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlpaJIrRJJJeqE2BNORO0aZjhtBMriqOA03Ywvp777QlVmknxYKYx9SM8FCxkBBsr+bdcPqGbRGWvfrniVt0MaJV4OalAjka//NUbSJJEVBjCsdZdz42Nn2JlGOF0VuolmsaYjPGQdi0VOKLaT7OlZ+jMKgMUSmVLGJSpvydSHGk9jQLbGWEz0sveXPzP6yYmvPJTJuLEUEEWH4UJR0aieQJowBQlhk8twUQxuysiI6wwMTankg3BWz55lbRqVe+i6t7XKvV6HkcRTuAUzsGDS6jDHTSgCQQe4Rle4c2ZOC/Ou/OxaC04+cwx/IHz+QOZipH6</latexit>

Flow Duration
<latexit sha1_base64="LIxi/bbUQIJpTf96H6qLJQTcEBM=">AAAB8XicbVA9SwNBEJ2LXzF+RS1tFhPBKtylUMuAjWUE84HJEfY2e8mSvb1jd04IR/6FjYUitv4bO/+Nm+QKTXww8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikbeJUM95isYx1N6CGS6F4CwVK3k00p1EgeSeY3M79zhPXRsTqAacJ9yM6UiIUjKKVHqt9pOkgE7PqoFxxa+4CZJ14OalAjuag/NUfxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVjbjxs8XFM3JhlSEJY21LIVmovycyGhkzjQLbGVEcm1VvLv7n9VIMb/xMqCRFrthyUZhKgjGZv0+GQnOGcmoJZVrYWwkbU00Z2pBKNgRv9eV10q7XvKuad1+vNBp5HEU4g3O4BA+uoQF30IQWMFDwDK/w5hjnxXl3PpatBSefOYU/cD5/ACGfkI4=</latexit>⌧i

<latexit sha1_base64="bTSqfXRbbu+f/U1wcemXZkjBKLk=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoZbEVPJWkB/VY8OKxgm2FNoTNZtMu3WzC7kaoIb/EiwdFvPpTvPlv3LY5aOuDgcd7M8zMC1LOlHacb6uysbm1vVPdre3tHxzW7aPjvkoySWiPJDyRDwFWlDNBe5ppTh9SSXEccDoIpjdzf/BIpWKJuNezlHoxHgsWMYK1kXy73hxpxkOa88LPWdH07YbTchZA68QtSQNKdH37axQmJIup0IRjpYauk2ovx1IzwmlRG2WKpphM8ZgODRU4psrLF4cX6NwoIYoSaUpotFB/T+Q4VmoWB6YzxnqiVr25+J83zHR07eVMpJmmgiwXRRlHOkHzFFDIJCWazwzBRDJzKyITLDHRJquaCcFdfXmd9Nst97Ll3rUbnU4ZRxVO4QwuwIUr6MAtdKEHBDJ4hld4s56sF+vd+li2Vqxy5gT+wPr8AbUUkx0=</latexit>

l̃i

<latexit sha1_base64="sk6kbAB0Dvs715DebbdO9p+fRVI=">AAAB/XicbVC7SgNBFJ31GeNrfXQ2g0GwCrsp1DJgo2CRgHlAEsLs5CYZMju7zNwV4hL8FRsLRWz9Dzv/xkmyhSYeGDiccy/3zAliKQx63rezsrq2vrGZ28pv7+zu7bsHh3UTJZpDjUcy0s2AGZBCQQ0FSmjGGlgYSGgEo+up33gAbUSk7nEcQydkAyX6gjO0Utc9vlUGmUJaTSABegdqgMOuW/CK3gx0mfgZKZAMla771e5FPAlBIZfMmJbvxdhJmUbBJUzy7cRAzPiIDaBlqWIhmE46Sz+hZ1bp0X6k7bNBZurvjZSFxozDwE6GDIdm0ZuK/3mtBPtXnVSoOEFQfH6on0iKEZ1WQXtCA0c5toRxLWxWyodMM462sLwtwV/88jKpl4r+RdGvlgrlclZHjpyQU3JOfHJJyuSGVEiNcPJInskreXOenBfn3fmYj6442c4R+QPn8wcaLJT9</latexit>

Instant Queue Length

Time

SY
N

FI
N

AC
K

AC
K

AC
K

n-1 n

SY
N

<latexit sha1_base64="4G/sfqKL/3HH44sx1x6I3XGgeNA=">AAACo3icbVFbi9NAFJ7E2xovW/XRl8Gy0oqWZB/Ul5WCsAg+WGW7u9AJZTI5aYedTOLMiVBD/pg/wzf/jZMLqFsPDHx85zvznUtSKmkxDH95/o2bt27fObgb3Lv/4OHh6NHjc1tURsBSFKowlwm3oKSGJUpUcFka4Hmi4CK5et/mL76BsbLQZ7grIc75RstMCo6OWo9+sAQ2UtfwteqYF03AUKoUapZXzbqWzURPT5iCDFk9aLkxfNfUSu1rwyl9TjU9oSFlLGA5x63gqj5tuh8m31vRS7rn8CqaMiM3W+zL39EwYKDTwalPzXrqT6Pr0TichV3QfRANYEyGWKxHP1laiCoHjUJxa1dRWGLsTFAKBW6YykLJxRXfwMpBzXOwcd3tuKFHjklpVhj3NNKO/bui5rm1uzxxynZqez3Xkv/LrSrM3sa11GWFoEVvlFWKYkHbg9FUGhCodg5wYaTrlYotN1ygO2vglhBdH3kfnB/Potez6PPxeD4f1nFAnpJnZEIi8obMyQeyIEsiPOqdep+8hX/kf/S/+Ge91PeGmifkn/Dj3wh/zxU=</latexit>

µ̃i(n) =

⇢
µ̃i(0) n = 0
F (zi, µ̃i(n � 1)) n > 0

<latexit sha1_base64="gFAs5iwUpvQOQzWVlUgEKh9eBKo=">AAACFXicbVA9SwNBEN3z2/gVtbRZjIKFhLsUahkQRLCJaKKQhDC3mTOLe3vH7pwSjvwJG/+KjYUitoKd/8ZNTOHXg4HHezPMzAtTJS35/oc3MTk1PTM7N19YWFxaXimurjVskhmBdZGoxFyGYFFJjXWSpPAyNQhxqPAivD4c+hc3aKxM9Dn1U2zHcKVlJAWQkzrF3bMkIl5Pu0DIbyX1+AmoGDQ/korQ8K1WDNQToPKjwVanWPLL/gj8LwnGpMTGqHWK761uIrIYNQkF1jYDP6V2DoakUDgotDKLKYhruMKmoxpitO189NWAbzuly6PEuNLER+r3iRxia/tx6DqHN9rf3lD8z2tmFB20c6nTjFCLr0VRpjglfBgR70qDglTfERBGulu56IEB4QKxBRdC8Pvlv6RRKQd75eC0UqpWx3HMsQ22yXZYwPZZlR2zGqszwe7YA3tiz9699+i9eK9frRPeeGad/YD39gk0wJ42</latexit>

Soft Update with Kalman Filter F

<latexit sha1_base64="3FbIf5xYHd0ZNg9LkuQUptleQdE=">AAAB9HicbVA9TwJBEN3DL8Qv1NJmIzGxIncUakmwsbDARD4SuJC5vT3YsLd77u6RkAu/w8ZCY2z9MXb+Gxe4QsGXTPLy3kxm5gUJZ9q47rdT2Njc2t4p7pb29g8Oj8rHJ20tU0Voi0guVTcATTkTtGWY4bSbKApxwGknGN/O/c6EKs2keDTThPoxDAWLGAFjJf9eQogbwEEQqgblilt1F8DrxMtJBeVoDspf/VCSNKbCEA5a9zw3MX4GyjDC6azUTzVNgIxhSHuWCoip9rPF0TN8YZUQR1LZEgYv1N8TGcRaT+PAdsZgRnrVm4v/eb3URDd+xkSSGirIclGUcmwknieAQ6YoMXxqCRDF7K2YjEABMTankg3BW315nbRrVe+q6j3UKvVGHkcRnaFzdIk8dI3q6A41UQsR9ISe0St6cybOi/PufCxbC04+c4r+wPn8AS8Ykbg=</latexit>

Load Balancer

<latexit sha1_base64="hHfNEirhywyD+/uLKcrcdHXHTu0=">AAAB+3icbVDLSgNBEJyNrxhfazx6GQyCp7AbED0GvHiMjzwgWcLspDcZMjO7zMwGw5Jf8eJBEa/+iDf/xkmyB00saCiquunuChPOtPG8b6ewsbm1vVPcLe3tHxweucfllo5TRaFJYx6rTkg0cCahaZjh0EkUEBFyaIfjm7nfnoDSLJaPZppAIMhQsohRYqzUd8v3oEFNYqbwAxF2oxz23YpX9RbA68TPSQXlaPTdr94gpqkAaSgnWnd9LzFBRpRhlMOs1Es1JISOyRC6lkoiQAfZ4vYZPrfKAEexsiUNXqi/JzIitJ6K0HYKYkZ61ZuL/3nd1ETXQcZkkhqQdLkoSjk2MZ4HgQdMATV8agmhitlbMR0RRaixcZVsCP7qy+ukVav6l1Xvrlap1/M4iugUnaEL5KMrVEe3qIGaiKIn9Ixe0Zszc16cd+dj2Vpw8pkT9AfO5w8gIZR7</latexit>

Reservoir Sampling

<latexit sha1_base64="rdvryBbrJ0t0IQoe7/YgM9hNg7I=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYiJYhbsUahm0sYxgPiA5wt5mL1mzt3fszgnhyH+wsVDE1v9j579xk1yhiQ8GHu/NMDMvSKQw6Lrfztr6xubWdmGnuLu3f3BYOjpumTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVqWHNK30S2W36s5BVomXkzLkaPRLX71BzNKIK2SSGtP13AT9jGoUTPJpsZcanlA2pkPetVTRiBs/m187JedWGZAw1rYUkrn6eyKjkTGTKLCdEcWRWfZm4n9eN8Xw2s+ESlLkii0WhakkGJPZ62QgNGcoJ5ZQpoW9lbAR1ZShDahoQ/CWX14lrVrVu6x697Vy/SaPowCncAYX4MEV1OEOGtAEBo/wDK/w5sTOi/PufCxa15x85gT+wPn8AdvVjqg=</latexit>⌧

<latexit sha1_base64="34WVOUCS6JMoOoP0crzz9ff58U8=">AAAB8XicbZBNS8NAEIYn9avWr6pHL4tF8FSSguix4MVjBfuBbSibzbRdutmE3Y1QQv+FFw+KePXfePPfuGlz0NYXFh7emWFn3iARXBvX/XZKG5tb2zvl3cre/sHhUfX4pKPjVDFss1jEqhdQjYJLbBtuBPYShTQKBHaD6W1e7z6h0jyWD2aWoB/RseQjzqix1mNLYchZjsNqza27C5F18AqoQaHWsPo1CGOWRigNE1Trvucmxs+oMpwJnFcGqcaEsikdY9+ipBFqP1tsPCcX1gnJKFb2SUMW7u+JjEZaz6LAdkbUTPRqLTf/q/VTM7rxMy6T1KBky49GqSAmJvn5JOQKmREzC5QpbnclbEIVZcaGVLEheKsnr0OnUfeu6u59o9ZsFnGU4QzO4RI8uIYm3EEL2sBAwjO8wpujnRfn3flYtpacYuYU/sj5/AG4m5Dv</latexit>

Prediction
<latexit sha1_base64="hsKVKhKH3R1rQyERofOHDyWLN4I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0kKoseCF48VTFtoQ9lsNu3azSbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbRS288iinxQrbl1dwGyTryC1KBAa1D96kcpyxOukElqTM9zMwymVKNgks8q/dzwjLIxHfKepYom3ATTxbUzcmGViMSptqWQLNTfE1OaGDNJQtuZUByZVW8u/uf1coxvgqlQWY5cseWiOJcEUzJ/nURCc4ZyYgllWthbCRtRTRnagCo2BG/15XXSbtS9q7p736g1m0UcZTiDc7gED66hCXfQAh8YPMIzvMKbkzovzrvzsWwtOcXMKfyB8/kDjQyPGQ==</latexit>

Update

<latexit sha1_base64="t2AmK0Tgy7aMN4DnfPYGfoKNLNY=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVZKC6LLgxo1QwT6gDWUyvWmHTmbCzEQooZ/hxoUibv0ad/6NkzYLbT0wcDjnHubeEyacaeN5305pY3Nre6e8W9nbPzg8qh6fdLRMFcU2lVyqXkg0ciawbZjh2EsUkjjk2A2nt7nffUKlmRSPZpZgEJOxYBGjxFipf49EpwpjFGZYrXl1bwF3nfgFqUGB1rD6NRhJmuZZyonWfd9LTJARZRjlOK8MUo0JoVMyxr6lgsSog2yx8ty9sMrIjaSyTxh3of5OZCTWehaHdjImZqJXvVz8z+unJroJMiaS1KCgy4+ilLtGuvn97ogppIbPLCFUMburSydEEWpsSxVbgr968jrpNOr+Vd17aNSazaKOMpzBOVyCD9fQhDtoQRsoSHiGV3hzjPPivDsfy9GSU2RO4Q+czx+TCpFu</latexit>

Measurement
<latexit sha1_base64="hsKVKhKH3R1rQyERofOHDyWLN4I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0kKoseCF48VTFtoQ9lsNu3azSbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbRS288iinxQrbl1dwGyTryC1KBAa1D96kcpyxOukElqTM9zMwymVKNgks8q/dzwjLIxHfKepYom3ATTxbUzcmGViMSptqWQLNTfE1OaGDNJQtuZUByZVW8u/uf1coxvgqlQWY5cseWiOJcEUzJ/nURCc4ZyYgllWthbCRtRTRnagCo2BG/15XXSbtS9q7p736g1m0UcZTiDc7gED66hCXfQAh8YPMIzvMKbkzovzrvzsWwtOcXMKfyB8/kDjQyPGQ==</latexit>

Update

<latexit sha1_base64="oZt8+JAOnoKbahYE7wuticoJ4BQ=">AAAB73icbVBNS8NAEN3Ur1q/qh69LBbBU0kKoseKF48V7Ae0oWw203bpZhN3J4US+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSMnGqOTR5LGPdCZgBKRQ0UaCETqKBRYGEdjC+m/vtCWgjYvWI0wT8iA2VGAjO0Eqd25AlKCbQL1fcqrsAXSdeTiokR6Nf/uqFMU8jUMglM6bruQn6GdMouIRZqZcaSBgfsyF0LVUsAuNni3tn9MIqIR3E2pZCulB/T2QsMmYaBbYzYjgyq95c/M/rpji48TOhkhRB8eWiQSopxnT+PA2FBo5yagnjWthbKR8xzTjaiEo2BG/15XXSqlW9q6r7UKvU63kcRXJGzskl8cg1qZN70iBNwokkz+SVvDlPzovz7nwsWwtOPnNK/sD5/AEPUY/4</latexit>

Adaptive
<latexit sha1_base64="hsKVKhKH3R1rQyERofOHDyWLN4I=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0kKoseCF48VTFtoQ9lsNu3azSbsToRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8MJPCoOt+O6WNza3tnfJuZW//4PCoenzSNmmuGfdZKlPdDanhUijuo0DJu5nmNAkl74Tj27nfeeLaiFQ94CTjQUKHSsSCUbRS288iinxQrbl1dwGyTryC1KBAa1D96kcpyxOukElqTM9zMwymVKNgks8q/dzwjLIxHfKepYom3ATTxbUzcmGViMSptqWQLNTfE1OaGDNJQtuZUByZVW8u/uf1coxvgqlQWY5cseWiOJcEUzJ/nURCc4ZyYgllWthbCRtRTRnagCo2BG/15XXSbtS9q7p736g1m0UcZTiDc7gED66hCXfQAh8YPMIzvMKbkzovzrvzsWwtOcXMKfyB8/kDjQyPGQ==</latexit>

Update

<latexit sha1_base64="CzLeuE8DTDkR0WoBoY7xOcypl2I=">AAAC13icbVJNTxsxEPUu/YD0K8CxF6tR0aaUaDcH4IKE2kulXlJE+FA2jbzeSbDi9a5sL1KwVhyKENf+NW78if6GepMFQcJIlp7emzdjzzjKOFPa9+8cd+nFy1evl1dqb96+e/+hvrp2pNJcUujSlKfyJCIKOBPQ1UxzOMkkkCTicByNv5f68TlIxVJxqCcZ9BMyEmzIKNGWGtT/hRGMmDCEs5H4UtSwjZ+eaOKNPRym1lkWNp2ipLx5YhMfNH+braDAYTh1hprxGEyY5MXAsGKhzmNhc9bHqzwXD8LW84bm0x6d++peYB1lqeb8hb/O8kHED88b1Bt+y58GXgRBBRqois6gfhvGKc0TEJpyolQv8DPdN0RqRjkUtTBXkBE6JiPoWShIAqpvpnsp8GfLxHiYSnuExlP2scOQRKlJEtnMhOgzNa+V5HNaL9fD3b5hIss1CDprNMw51ikul4xjJoFqPrGAUMnsXTE9I5JQbb9COYRg/smL4KjdCrZbwa92Y/9bNY5l9BF9Qh4K0A7aRz9QB3URdQ6dC+ePc+WeupfutXszS3WdyrOOnoT79z++ndm3</latexit>

K(n) = P (n)(P (n) + R)�1

µ̃i(n) = µi(n) + K(n)(z̃i(n) � µi(n))

P̃ (n) = (1 � K(n))P (n),

<latexit sha1_base64="G5pzcoPxFDutlz3P0d5a6KKMAB4=">AAACKXicbVDLSgMxFM34rPVVdekm2Aot0jLThboRCm5cVrEP6NRyJ03b0ExmSDJCHeZ33PgrbhQUdeuPmD4W2nogcHLOPST3eCFnStv2p7W0vLK6tp7aSG9ube/sZvb26yqIJKE1EvBANj1QlDNBa5ppTpuhpOB7nDa84eXYb9xTqVggbvUopG0f+oL1GAFtpE6mkrvJiwK+wHmn6AIPB1AwQtEp4BM8vWNXsb4Pd3E5ybua8S6NH5JOzBKTK+TSnUzWLtkT4EXizEgWzVDtZF7dbkAinwpNOCjVcuxQt2OQmhFOk7QbKRoCGUKftgwV4FPVjiebJvjYKF3cC6Q5QuOJ+jsRg6/UyPfMpA96oOa9sfif14p077wdMxFGmgoyfagXcawDPK4Nd5mkRPORIUAkM3/FZAASiDbljktw5ldeJPVyyTktOdflbKUyqyOFDtERyiMHnaEKukJVVEMEPaJn9IberSfrxfqwvqajS9Ysc4D+wPr+AVj7ox8=</latexit>

R(n) = (1 � ↵)R(n � 1) + ↵�2(z̃i(n))

<latexit sha1_base64="ube8C7qW0wUqS8+QUnajDI5S3nY=">AAACBHicbVBNS8NAEN3Ur1q/oh57WWwFTyXpQT0WhCJ4qWBboQ1lst20SzebsLsRSujBi3/FiwdFvPojvPlv3LQ5aOuDgcd7M8zM82POlHacb6uwtr6xuVXcLu3s7u0f2IdHHRUlktA2iXgk731QlDNB25ppTu9jSSH0Oe36k6vM7z5QqVgk7vQ0pl4II8ECRkAbaWCXb4CHIHCTcU0lrvZD0GMCPG3OqgO74tScOfAqcXNSQTlaA/urP4xIElKhCQeleq4Tay8FqRnhdFbqJ4rGQCYwoj1DBYRUeen8iRk+NcoQB5E0JTSeq78nUgiVmoa+6cxuVMteJv7n9RIdXHopE3GiqSCLRUHCsY5wlggeMkmJ5lNDgEhmbsVkDBKICUSVTAju8surpFOvuec197ZeaTTyOIqojE7QGXLRBWqga9RCbUTQI3pGr+jNerJerHfrY9FasPKZY/QH1ucPorSXcQ==</latexit>

Kalman Filter F

<latexit sha1_base64="b3fSGSRZ+dQ/ISQctdejVFS67c4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd2A6DHgxWNE84BkCbOT2WTIzM4y0yuGkI/w4kERr36PN//GSbIHTSxoKKq66e6KUiks+v63t7a+sbm1Xdgp7u7tHxyWjo6bVmeG8QbTUpt2RC2XIuENFCh5OzWcqkjyVjS6mfmtR26s0MkDjlMeKjpIRCwYRSe17nWMij71SmW/4s9BVkmQkzLkqPdKX92+ZpniCTJJre0EforhhBoUTPJpsZtZnlI2ogPecTShittwMj93Ss6d0iexNq4SJHP198SEKmvHKnKdiuLQLnsz8T+vk2F8HU5EkmbIE7ZYFGeSoCaz30lfGM5Qjh2hzAh3K2FDaihDl1DRhRAsv7xKmtVKcFnx76rlWi2PowCncAYXEMAV1OAW6tAABiN4hld481LvxXv3Phata14+cwJ/4H3+AHUGj6I=</latexit>

Softmax
<latexit sha1_base64="QtlCQRaIbixFwPqVSqL3QOguAsY=">AAACT3icdZFLSwMxFIUz9dn6qrp0E6yCLiwzLtSNUHDjsqJVoVOHTHpHg0lmSDJKCfMP3ejOv+HGhSKmdQSfFwIf59xLbk7ijDNtfP/Rq4yNT0xOTVdrM7Nz8wv1xaVTneaKQoemPFXnMdHAmYSOYYbDeaaAiJjDWXx9MPTPbkBplsoTM8igJ8ilZAmjxDgpqidroWG8D/a2iCwrNuQm3sdhogi1cGG3SjMU+addFDbUuYisjhgOmcShIOYqju1xUeD/RtaiesNv+qPCvyEooYHKakf1h7Cf0lyANJQTrbuBn5meJcowyqGohbmGjNBrcgldh5II0D07yqPA607p4yRV7kiDR+rXCUuE1gMRu87h8vqnNxT/8rq5SfZ6lsksNyDpx0VJzrFJ8TBc3GcKqOEDB4Qq5nbF9Iq4MI37gpoLIfj55N9wut0MdprB0Xaj1SrjmEYraBVtoADtohY6RG3UQRTdoSf0gl69e+/Ze6uUrRWvhGX0rSrVdx4vtbU=</latexit>

w̃i(n) = e�µ̃i(n)
P

si2S e�µ̃i(n)

<latexit sha1_base64="3vhlNF6yy8QhyflHLz53xQ+jsvE=">AAAB/HicbVBNSwMxEM3Wr1q/qj16CRbBU9ktiB6LXjxJBfsB7VKyabYNTbJLMiusS/0rXjwo4tUf4s1/Y9ruQVsfDDzem2FmXhALbsB1v53C2vrG5lZxu7Szu7d/UD48apso0ZS1aCQi3Q2IYYIr1gIOgnVjzYgMBOsEk+uZ33lg2vBI3UMaM1+SkeIhpwSsNChXrgjQMb6NtCSCP+Zq1a25c+BV4uWkinI0B+Wv/jCiiWQKqCDG9Dw3Bj8jGjgVbFrqJ4bFhE7IiPUsVUQy42fz46f41CpDHEbalgI8V39PZEQak8rAdkoCY7PszcT/vF4C4aWfcRUnwBRdLAoTgSHCsyTwkGtGQaSWEKq5vRXTMdGEgs2rZEPwll9eJe16zTuvuXf1aqORx1FEx+gEnSEPXaAGukFN1EIUpegZvaI358l5cd6dj0VrwclnKugPnM8fvO+U0g==</latexit>

Batch Normalization
<latexit sha1_base64="aJy32Ryh9ofmtnM8fRsxuw//Y7k=">AAACTnicbVHBThsxEPWmBdIUaGiPvVgNlThFuxwoF6RIXHqqUpVApDhaeZ1ZsPB6V/YsUrD8hVyq3voZvXCgqoo3yaGFjGTp6b154/FzVilpMY5/Rq0XLzc2t9qvOq+3d3bfdPfentuyNgJGolSlGWfcgpIaRihRwbgywItMwUV2fdroFzdgrCz1Gc4rmBb8UstcCo6BSruwz1CqGbhbnzrp6QllueHCsTK4mqGOIa8XmndLKfHui2e2LlJnG55JzQqOV1nmvnm/zrifdntxP14UfQ6SFeiRVQ3T7g82K0VdgEahuLWTJK5w6rhBKRT4DqstVFxc80uYBKh5AXbqFnF4+jEwM5qXJhyNdMH+63C8sHZeZKGz2ds+1RpynTapMT+eOqmrGkGL5UV5rSiWtMmWzqQBgWoeABdGhl2puOIhMww/0AkhJE+f/BycH/aTo37y9bA3GKziaJP35AM5IAn5RAbkMxmSERHkjvwiD+R39D26j/5Ef5etrWjleUf+q1b7ERG/uRM=</latexit>

z̃i = ⌧ i
1
N

P
si2S ⌧ i

1
2

<latexit sha1_base64="pp5gI2ExkmjzFFWQapUiBZdJBWs=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGKUjwgXsrfMwYa9vcvungkh/AsbC42x9d/Y+W9c4AoFXzLJy3szmZkXJIJr47rfTm5tfWNzK79d2Nnd2z8oHh41dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6mfmtJ1Sax/LBjBP0IzqQPOSMGis93qOyLinzcq9YcivuHGSVeBkpQYZ6r/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5xVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDKn3CZpAYlWywKU0FMTGbvkz5XyIwYW0KZ4vZWwoZUUWZsSAUbgrf88ippViveRcW7q5Zq11kceTiBUzgHDy6hBrdQhwYwkPAMr/DmaOfFeXc+Fq05J5s5hj9wPn8AiD6QKg==</latexit> S
er

ve
r

i

a

b

c

<latexit sha1_base64="9kEGPWwh2SCgmagpp7L6+dhav+A=">AAAB63icbVDLSgMxFL3xWeur6tJNsAiuykwX6rJQBDdCBfuAdpBMmmlDk8yQZIQy9BfcuFDErT/kzr8x085CWw8EDuecS+49YSK4sZ73jdbWNza3tks75d29/YPDytFxx8SppqxNYxHrXkgME1yxtuVWsF6iGZGhYN1w0sz97hPThsfqwU4TFkgyUjzilNhcumnetR4rVa/mzYFXiV+QKhRw+a/BMKapZMpSQYzp+15ig4xoy6lgs/IgNSwhdEJGrO+oIpKZIJvvOsPnThniKNbuKYvn6u+JjEhjpjJ0SUns2Cx7ufif109tdB1kXCWpZYouPopSgW2M88PxkGtGrZg6QqjmbldMx0QTal09ZVeCv3zyKunUa/5lzb+vVxuNoo4SnMIZXIAPV9CAW2hBGyiM4Rle4Q1J9ILe0cciuoaKmRP4A/T5A12djck=</latexit>

ECMP

<latexit sha1_base64="QYFHIcvOCXe0nkcTHq0gC7GTn7I=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKezmoB4DXrwIEcwDkiXMTmaTIfNYZmaFsOQXvHhQxKs/5M2/cTbZgyYWNBRV3XR3RQlnxvr+t1fa2Nza3invVvb2Dw6PqscnHaNSTWibKK50L8KGciZp2zLLaS/RFIuI0240vc397hPVhin5aGcJDQUeSxYzgm0u3TNjhtWaX/cXQOskKEgNCrSG1a/BSJFUUGkJx8b0Az+xYYa1ZYTTeWWQGppgMsVj2ndUYkFNmC1unaMLp4xQrLQradFC/T2RYWHMTESuU2A7MateLv7n9VMb34QZk0lqqSTLRXHKkVUofxyNmKbE8pkjmGjmbkVkgjUm1sVTcSEEqy+vk06jHlzVg4dGrdks4ijDGZzDJQRwDU24gxa0gcAEnuEV3jzhvXjv3seyteQVM6fwB97nDxKSjkA=</latexit>

Miss

<latexit sha1_base64="d2XnOtFuQRqNuRlYJlQ16nLK4CE=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5SGMuATcqI5gOSI+xt9pIle3vH7pwQjvwEGwtFbP1Fdv4bN8kVmvhg4PHeDDPzgkQKg6777RS2tnd294r7pYPDo+OT8ulZx8SpZrzNYhnrXkANl0LxNgqUvJdoTqNA8m4wvVv43SeujYjVI84S7kd0rEQoGEUrPTQFDssVt+ouQTaJl5MK5GgNy1+DUczSiCtkkhrT99wE/YxqFEzyeWmQGp5QNqVj3rdU0YgbP1ueOidXVhmRMNa2FJKl+nsio5ExsyiwnRHFiVn3FuJ/Xj/F8NbPhEpS5IqtFoWpJBiTxd9kJDRnKGeWUKaFvZWwCdWUoU2nZEPw1l/eJJ1a1bupeve1SqORx1GEC7iEa/CgDg1oQgvawGAMz/AKb450Xpx352PVWnDymXP4A+fzBzgMjb8=</latexit>

Hit

<latexit sha1_base64="a5vUEiKpAyAt5c6WNy1DDTzGSA0=">AAACPXicbVBNS8MwGE79nPVr6tFLcCjbwdGKqBdh6MXjhH3BWkqapltYmpYkFUbpH/Pif/DmzYsHRbx6NfsA5+YLgYfngzfv4yeMSmVZL8bS8srq2nphw9zc2t7ZLe7tt2ScCkyaOGax6PhIEkY5aSqqGOkkgqDIZ6TtD25HevuBCElj3lDDhLgR6nEaUoyUprxiw4m1PEpnTpTmXkbzMq/Ak2voKMqCWfbUrkDHMSH8jdTnzPWJzSuWrKo1HrgI7CkogenUveKzE8Q4jQhXmCEpu7aVKDdDQlHMSG46qSQJwgPUI10NOYqIdLPx9Tk81kwAw1joxxUcs7OJDEVSDiNfOyOk+nJeG5H/ad1UhVduRnmSKsLxZFGYMqhiOKoSBlQQrNhQA4QF1X+FuI8EwkoXbuoS7PmTF0HrrGpfVO3781LtZlpHARyCI1AGNrgENXAH6qAJMHgEr+AdfBhPxpvxaXxNrEvGNHMA/ozx/QOd86zx</latexit>

µi(n) = µ̃i(n � 1)

P (n) = P̃ (n � 1)

Figure 3. HLB workflow overview. Step 1© and 2© represent the decision
making process on arrival of new flows. In step a©− c©, HLB collects
networking observations and periodically learns server load states.

• Actively probing server load information allows an LB to
obtain accurate but delayed server occupancies. Higher
probing frequencies may increase load balancing fairness
– but maintaining additional communications incurs man-
agement traffic and complexity [6].

While it is possible to avoid inaccuracies due to partial or
delayed observations (as in [23], [27]), this requires server
modifications to accommodate further feedback mechanisms.

Apart from partial observations and delayed updates, it is
hard to determine the optimal weights for different applications
that rely on different resources [43]. Besides, explicit weights
configuration cannot capture or adapt to the dynamic network-
ing environment. “Correctly” assigning weights to servers is
therefore challenging in cloud DCs because:
• servers may have different provisioned resources;
• colocated workloads not captured by the LB may reduce

available resources [31] on shared infrastructures;
• applications may have different profiles (e.g., CPU-

intensive, IO-intensive) and consume provisioned re-
sources differently, whose impact is hard to quantify [44].

IV. HLB DESIGN

HLB dynamically distributes workloads on servers using
estimations of both server occupancies and processing speeds.
HLB estimates server weights and queue occupation from
passive observations on network connections, by sampling
flow durations and counting ongoing connections, respectively.
HLB minimizes: (i) instant server load state estimation errors
due to inaccurate observations, (ii) mismatches between as-
signed server weights and actual server processing speeds, and
(iii) performance and management overhead, to improve load
balancing performance.

HLB consists of two components: (i) a server state obser-
vation mechanism, and (ii) an algorithm that uses observed
server states to place the incoming connection onto a server.

The first component tracks connection states using reserved
memory locations (buckets) in flow tables, and extracts server
state observations, without additional control or signaling. As
depicted in Figure 3, on receipt of new packets, HLB:

a© inspects headers, and passively gathers observations
(numbers of ongoing flows l̃i and flow durations τ),

5

b© gathers statistical flow duration distributions on each
server with reservoir sampling,

c© at each time-step n, periodically learns from gathered
flow durations and updates estimated processing speeds
of each server with Kalman filters.

For the second component, when receiving 1 a new
connection request, HLB 2 computes the hash digest of the
connection ID and maps the connection to a corresponding
bucket in its flow table. HLB then integrates estimated server
occupancies and processing speeds using the SED rule, to
generate server state estimations, for all servers. The server
with the lowest estimated load then receives the connection.
HLB uses an adaptive approach based on passively collected
observations of network connections, with no additional mon-
itoring or management overhead – in contrast to SED, which
relies on manual server weight configurations.

A. Observation Extraction from The Data Plane

As the LB sees only traffic from clients and to servers
within the DC, and not the return-traffic, HLB statefully
maintains connection states using flow tables, and estimates
(i) server occupancies (l̃i) by counting the number of ongoing
connections per server, and (ii) server processing speeds by
collecting flow durations on each server.

1) Stateful Observation Extraction: TCP connections are
identified by their 5-tuples and are statefully tracked in flow
tables. As depicted in Figure 4a, for the purpose of the LB,
a connection exists in one of the three states. On receipt of
the first TCP SYN packet from the client, the LB selects a
server si to which the new connection is assigned. The LB also
registers the connection state SYN, along with the connection
ID and other corresponding information, in a bucket in its flow
table. Once the connection is established, its state is updated
to CONN (connected) on reception of the first data packet. On
connection termination (reception of FIN or RST packets), or
in the case of connection timeout, the connection state is reset
to NULL to evict the registered connection from the flow table,
and the bucket is available for a new connection.

The state machine in Figure 4a allows dynamically (i) track-
ing the number of ongoing connections l̃i when connections
transit from SYN to CONN or from CONN to NULL, and (ii)
collecting samples of flow durations from connections in state
CONN, without interrupting the data plane.

2) Flow Table Workflow: HLB stores connection states in
a flow table (Figure 4b). Each bucket comprises: (i) the hash
digest of the TCP 5-tuple (hash) as connection ID, (ii) the
target server ID assigned by the LB (DIP), (iii) connection
“liveness”, renewed on receipt of new packets (timeout),
(iv) the first data packet arrival time (T0), for computing flow
durations, and (v) the state of the connection (state).

A new connection is hashed and registered in corresponding
bucket in the flow table, along with its assigned DIPs. Subse-
quent packets of the established connection are encapsulated
with the target DIP as destination and forwarded to the
corresponding server. When a bucket is not available on receipt
of a new connection request, the connection gets a “miss” and

…

#1

StateHash TimeoutDIP T0

CONN

#0 SYN

NULL#2

Flow Table

#1

DIP
#0

#2

ECMP
Buckets

Bucket Bucket
<latexit sha1_base64="GsYtUgSCkmK2zB+Ykz1Ed+ifsmk=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BFvBU8kWRI8FLx4ruK3QLiWbZtvQbHZJskJZ+hu8eFDEqz/Im//GtN2Dtj4YeLw3w8y8MJXCWEK+UWljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3rbCSP6aa0ziUvBtObud+94lrIxL1YKcpD2I6UiISjFon+XUzIPVBtUYaZAG8TryC1KBAe1D96g8TlsVcWSapMT2PpDbIqbaCST6r9DPDU8omdMR7jioacxPki2Nn+MIpQxwl2pWyeKH+nshpbMw0Dl1nTO3YrHpz8T+vl9noJsiFSjPLFVsuijKJbYLnn+Oh0JxZOXWEMi3crZiNqabMunwqLgRv9eV10mk2vKsGuW/WWqSIowxncA6X4ME1tOAO2uADAwHP8ApvSKEX9I4+lq0lVMycwh+gzx+2Wo3m</latexit>s0

<latexit sha1_base64="RRHHt5ACce7mDVTm+wdCoe7Qve4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI8FLx4rmFZoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhL1GFKNgkv0DTcCH1OFNA4FdsPJ7dzvPqHSPJEPZppiENOR5BFn1FjJr+uBVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTa8q4Z736y13CKOMpzBOVyCB9fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+3343n</latexit>s1

<latexit sha1_base64="Pyz31P/LQoDNaE6/sF3eh+cleVY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI8FLx4rmFZoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O6WNza3tnfJuZW//4PCoenzSMUmmGfdZIhP9GFLDpVDcR4GSP6aa0ziUvBtObud+94lrIxL1gNOUBzEdKREJRtFKft0MmvVBteY23AXIOvEKUoMC7UH1qz9MWBZzhUxSY3qem2KQU42CST6r9DPDU8omdMR7lioacxPki2Nn5MIqQxIl2pZCslB/T+Q0NmYah7Yzpjg2q95c/M/rZRjdBLlQaYZcseWiKJMEEzL/nAyF5gzl1BLKtLC3EjammjK0+VRsCN7qy+uk02x4Vw33vllruUUcZTiDc7gED66hBXfQBh8YCHiGV3hzlPPivDsfy9aSU8ycwh84nz+5ZI3o</latexit>s2

…

EncapsulateRX TX

<latexit sha1_base64="GsYtUgSCkmK2zB+Ykz1Ed+ifsmk=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BFvBU8kWRI8FLx4ruK3QLiWbZtvQbHZJskJZ+hu8eFDEqz/Im//GtN2Dtj4YeLw3w8y8MJXCWEK+UWljc2t7p7xb2ds/ODyqHp90TJJpxn2WyEQ/htRwKRT3rbCSP6aa0ziUvBtObud+94lrIxL1YKcpD2I6UiISjFon+XUzIPVBtUYaZAG8TryC1KBAe1D96g8TlsVcWSapMT2PpDbIqbaCST6r9DPDU8omdMR7jioacxPki2Nn+MIpQxwl2pWyeKH+nshpbMw0Dl1nTO3YrHpz8T+vl9noJsiFSjPLFVsuijKJbYLnn+Oh0JxZOXWEMi3crZiNqabMunwqLgRv9eV10mk2vKsGuW/WWqSIowxncA6X4ME1tOAO2uADAwHP8ApvSKEX9I4+lq0lVMycwh+gzx+2Wo3m</latexit>s0

<latexit sha1_base64="RRHHt5ACce7mDVTm+wdCoe7Qve4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI8FLx4rmFZoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhL1GFKNgkv0DTcCH1OFNA4FdsPJ7dzvPqHSPJEPZppiENOR5BFn1FjJr+uBVx9Ua27DXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSaTa8q4Z736y13CKOMpzBOVyCB9fQgjtogw8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx+3343n</latexit>s1

Hit

Miss

New Connection Established Connection Hash Collision

(a) State transitions. (b) Flow table workflow.
collect

<latexit sha1_base64="ENr+jaLw05AKAQgElwj7HvLLsdI=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LLZCTyUpiB4LXjxWsK3QhrLZbtq1m03YnQgl9D948aCIV/+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYz1Q0ANl0LxNgqU/CHRnEaB5N1gcjP3u09cGxGre5wm3I/oSIlQMIpW6lT7SNPqoFxx6+4CZJ14OalAjtag/NUfxiyNuEImqTE9z03Qz6hGwSSflfqp4QllEzriPUsVjbjxs8W1M3JhlSEJY21LIVmovycyGhkzjQLbGVEcm1VvLv7n9VIMr/1MqCRFrthyUZhKgjGZv06GQnOGcmoJZVrYWwkbU00Z2oBKNgRv9eV10mnUvcu6e9eoNGt5HEU4g3OogQdX0IRbaEEbGDzCM7zCmxM7L86787FsLTj5zCn8gfP5A9Ndjow=</latexit>⌧Receiving data packet

R
ec

ei
vi

ng
fir

st
 d

at
a

Pa
ck

et
s

Receiving FIN
or RST/Timeout

<latexit sha1_base64="jDFqWkknS+Y8BNQKXStiPuHixBc=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WWyFQqEkBdFjwYvHCrYV2hA2m027dvPB7kYsIX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zM8xLOpLKsb6O0sbm1vVPereztHxwemcfVvoxTQWiPxDwW9x6WlLOI9hRTnN4nguLQ43TgTa/n/uCRCsni6E7NEuqEeByxgBGstOSa1fpIMe7TjOduxh7yZrPumjWrZS2A1oldkBoU6Lrm18iPSRrSSBGOpRzaVqKcDAvFCKd5ZZRKmmAyxWM61DTCIZVOtrg9R+da8VEQC12RQgv190SGQylnoac7Q6wmctWbi/95w1QFV07GoiRVNCLLRUHKkYrRPAjkM0GJ4jNNMBFM34rIBAtMlI6rokOwV19eJ/12y75oWbftWqdRxFGGUziDBthwCR24gS70gMATPMMrvBm58WK8Gx/L1pJRzJzAHxifP1KFk+E=</latexit> l̃ i
j
+

+

Receiving SYN
<latexit sha1_base64="cFm6cm6VfBT9iDWAjfeSqfsaBwQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI8FLx4rmFZoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhL1GFKNgkv0DTcCH1OFNA4FdsPJ7dzvPqHSPJEPZppiENOR5BFn1FjJr+sBrw+qNbfhLkDWiVeQGhRoD6pf/WHCshilYYJq3fPc1AQ5VYYzgbNKP9OYUjahI+xZKmmMOsgXx87IhVWGJEqULWnIQv09kdNY62kc2s6YmrFe9ebif14vM9FNkHOZZgYlWy6KMkFMQuafkyFXyIyYWkKZ4vZWwsZUUWZsPhUbgrf68jrpNBveVcO9b9ZabhFHGc7gHC7Bg2towR20wQcGHJ7hFd4c6bw4787HsrXkFDOn8AfO5w8NBo4f</latexit>siForward to

Receiving FIN

or RST/Timeout

<latexit sha1_base64="DMdejRH60OYaXqX2idq+zhi56VA=">AAAB+3icbVBNS8NAEJ3Ur1q/Yj16WWyFXlqSguix4MVjBdsKbQibzaZdu/lgdyOWkL/ixYMiXv0j3vw3btsctPXBwOO9GWbmeQlnUlnWt1Ha2Nza3invVvb2Dw6PzONqX8apILRHYh6Lew9LyllEe4opTu8TQXHocTrwptdzf/BIhWRxdKdmCXVCPI5YwAhWWnLNan2kGPdpxnM3Yw95s1l3zZrVshZA68QuSA0KdF3za+THJA1ppAjHUg5tK1FOhoVihNO8MkolTTCZ4jEdahrhkEonW9yeo3Ot+CiIha5IoYX6eyLDoZSz0NOdIVYTuerNxf+8YaqCKydjUZIqGpHloiDlSMVoHgTymaBE8ZkmmAimb0VkggUmSsdV0SHYqy+vk367ZV+0rNt2rdMo4ijDKZxBA2y4hA7cQBd6QOAJnuEV3ozceDHejY9la8koZk7gD4zPH1ibk+U=</latexit>

l̃ij ��

SYN
Received

Connected

NULL

Figure 4. HLB’s observation collection mechanism.

is excluded by both the observation extraction and the load-
aware load balancing process. In that case (hash collision5),
HLB falls back to ECMP for the “miss”-ed connection yet
guarantees PCC. A “miss” can happen in 2 cases:
• if there is no available entry for new connections;
• if no matched entry is found for established connections;

where available buckets have NULL state. For connections
registered in buckets that have SYN/CONN states, the counter
of ongoing connections l̃i is not incremented until the first data
packet is received, so that the counter is not corrupted under
SYN flooding attacks. l̃i is decremented only if the connection
ends and its state transits from CONN to NULL6.

B. Load-Aware Load Balancing Algorithm

HLB estimates server occupancies, and server processing
speeds, with li and τi, respectively, extracted from the data
plane as described in Section IV-A. To minimize the addi-
tional processing and memory overhead, HLB uses reservoir
sampling to collect flow durations for each server. HLB
then processes collected flow duration samples using Kalman
filters, to smoothly adapt server weights w̃i(n) at each time-
step n, and uses both parameters, l̃i and w̃i, for making load-
aware load balancing decisions.

1) Sampling Flow Durations to Estimate Processing
Speeds: HLB collects flow duration information on each
server using reservoir sampling, which is a statistical mech-
anism that helps gather a representative group of samples,
in fix-sized buffers from a stream, with minimized compu-
tational overhead and memory usage for high-performance
data planes [45], [46]. Reservoir sampling collects an
exponentially-distributed number of samples over time and
gives more importance to “fresher” observations.

The procedure of reservoir sampling that implements the
state machine from Figure 4a, which collects flow durations
in connection state CONN, is shown in Algorithm 1. The arrival
times t of data packets received from an established connection
with server si are compared with the arrival time of the first
packet t0 stored in t0Table to compute flow durations τ .
These flow durations τ , along with their corresponding packet
arrival times t, are stored in a fix-sized buffer tauBuf of the

5To reduce hash collision probability, each bucket can have multiple entries.
The implementation detail is omitted since it is out of the scope of this paper.

6Similar DDoS mitigation mechanism using flow tables is proposed in [19],
but it is out of the scope of this paper.

6

Algorithm 1 Collect flow durations with reservoir sampling
N ← number of servers
k ← reservoir buffer size
L← flow table size
buf ← [(0, 0), . . . , (0, 0)] . Size of k

5: tauBuf ← [buf, . . . , buf] . Size of N
t0Table← [0, . . . , 0] . Size of L
stateTable← [0, . . . , 0] . Size of L
for each packet (towards si from query q arriving at t) do
qid← Hash5Tuple(q)

10: i← si.id
if t0Table[qid] == 0 and SYN packet then
t0Table[qid]← t . store t0
stateTable[qid]← SYN

else if t0Table[qid] ! = 0 and not SYN packet then
15: lastState← stateTable[qid]

if lastState == CONN then
randomId← rand()
idx← randomId%N . randomly select one index
τ ← t− t0Table[qid] . calculate duration

20: tauBuf [i][idx]← (t, τ) . register τ in buffer
else
stateTable[qid]← CONN

end if
if FIN packet then

25: t0Table[qid]← 0 . evict finished query
if lastState == CONN then
stateTable[qid]← NULL

end if
end if

30: end if
end for

corresponding server si. These buffers thus serve as a snapshot
that captures a statistical distribution of flow durations on each
server, and are made available for data processing.

HLB uses flow durations to estimate and infer server
processing speeds for the following reasons. First, since
connections addressed to the same network application are
expected to terminate with FCTs of a certain distribution
T (q) given sufficient privisioned resources, observed flow
durations are correlated to server processing speeds depending
on available resources in each server (e.g., overloaded CPUs,
drained memory space, congested IO). Second, flow duration
is collected on receipt of each new packet of the connection in
state CONN, thus provides measurements with high granularity
(update frequency) and reduced delay. Third, as an estimator
of server processing speeds, flow duration can be generalized
for connection-less transport protocols (e.g., UDP).

2) Periodic Processing Speed Inference with Kalman Fil-
ter: With flow durations gathered in reservoir buffers, HLB
computes the average flow duration τ i on server i as observed
by the LB, and then derives the normalized server processing
duration measurement z̃i(n) = τ̄i

1
N

∑
si∈S τ̄i

at each time-step
n. Between different time-steps, the samples of z̃i may have
high variance, and their values can change significantly. As a
function of flow duration τi, z̃i is correlated to server process-
ing speeds. In addition, z̃i also depends on the distribution of
T (q), which may vary in time. To decouple the possibly abrupt
variations of T (q), and adapt to actual server states, HLB
uses Kalman filters F to smoothly update server processing
duration estimations µ̃i(n) at step n:

µ̃i(n) =

{
µ̃i(0) n = 0
F (z̃i, µ̃i(n− 1)) n > 0

,

where µ̃i(0) is initialised as 0.5 on all servers.

The Kalman filter takes streams of measurements observed
over time and tracks estimated system state as well as the level
of uncertainty. It works in the following 2-step process:
• Prediction update:

µi(n) = µ̃i(n− 1)

P (n) = P̃ (n− 1),

• Measurement update:

K(n) = P (n)(P (n) +R)−1

µ̃i(n) = µi(n) +K(n)(zi(n)− µi(n))
P̃ (n) = (1−K(n))P (n),

where µi is the predicted processing duration, P is the
expected prediction error, R is the measurement variance, P̃
is the expected estimation error, and K is the Kalman gain.

The only parameter to be tuned is the measurement variance
R, which can be configured based on the expected noise in
measurements zi. The value of R can be increased if the
flow durations of input traffic vary a lot. To avoid manual
configuration, R can be adaptively estimated using the vari-
ance of measurements σ2(zi), and can be smoothly updated
as R(n) = (1 − α)R(n − 1) + ασ2(zi(n)), where α = 0.01
helps regularize the variation in zi.

3) Merging Occupancy and Processing Speed: The server
processing duration estimation from the latest step µ̃i(n) is
used to calculate the weight w̃i assigned to each server in the
following form:

w̃i(n) =
e−µ̃i(n)∑
si∈S e

−µ̃i(n)
∈ (0, 1),

which normalizes the negation of server processing duration
estimations, and creates a probability distribution centered
around the servers with higher estimated processing speeds.

After obtaining both measurements, i.e., server occupancy
l̃i and inferred processing speed w̃i(n), a score is computed
from these two factors using SED. During the time interval of
a step n, the target server si is selected by:

argmin
si∈S

l̃i + 1

w̃i(n)
,

where the added 1 on the numerator takes the new incoming
connection into account. This form gives priority to servers
with high estimated processing speeds and low occupancies.

V. EXPERIMENTAL SETUPS

To evaluate LB performances in different realistic setups,
subject to both partial traffic observations and potential server
weights misconfigurations as described in Section III, a phys-
ical testbed is configured and deployed, and an event-based
simulator is implemented. This allows testing with realistic
network traces – when available – and large-scale simulated
scenarios.

A. Testbed

Experiments are conducted on a testbed running network
traces on physical servers. The experimental platform consists
of VMs representing clients, an edge router, load-balancers,
and Apache HTTP server agents as depicted in Figure 5.

7

Clients Edge Router

4-
C

PU

Se
rv

er
sLoad Balancers

2-
C

PU

Se
rv

er
s

Figure 5. An example of network topology with two groups of 7 servers.

1) Load-Balancers: HLB, along with other LB algorithms,
is implemented as a plugin to VPP (the Vector Packet Proces-
sor) [46], a performant packet-processing stack that runs on
commodity CPUs. The number of buckets (160 bits/entry) in
the flow table for stateful LB algorithms is set to 65536. Each
load balancer is connected to all application servers.

2) Apache HTTP Servers: Running on each server VM,
Apache HTTP servers gather two metrics every 200ms as
“ground truth”-s for the occupancies: CPU utilisation, and the
number of busy Apache worker threads7. The Apache servers
use the mpm_prefork module to boost performance. Each
server has 32 worker threads, and the TCP backlog is set to
128. In the Linux kernel, the tcp_abort_on_overflow
parameter is enabled, so that a TCP RST will be triggered
when the queue capacity of TCP connection backlog is ex-
ceeded, instead of silently dropping the packet and waiting
for a SYN retransmit. With this configuration, similar to [5],
[23], the FCT measures application response delays rather than
potential TCP SYN retransmit delays. Servers are organized
into 2 groups, where server capacities within a group are
identical, yet may be different between the 2 groups.

3) System Platform: Depending on the scale of experi-
ments, the testbed resides on 2 to 4 physical machines, each
with a 48-CPU Intel Xeon E5-2690 CPU. An 8-CPU traffic
generator, representing the clients, and a 4-CPU edge router
node, run on one machine. The other machine hosts 4-CPU
VMs running LB instances on VPP. The number of CPUs of
Apache HTTP servers may vary from 2 to 8 under different
configurations. All VMs are on the same Layer-2 link, with
statically configured routing tables. The mean round-trip-time
(RTT) between 2 network nodes is 0.322ms and the standard
deviation of RTT is 0.037ms.

4) Wikipedia Replay: In order to evaluate LB performance
under realistic workloads, LB algorithms are evaluated in a
DC setup that provides typical Web services. To emulate
Wikipedia server clusters, on each server instance, an instance
of MediaWiki8 of version 1.30 is installed along with the
memcached daemon and a MySQL database server. The
database server is populated by a copy of the English version
of Wikipedia database dump [40]. The sizes of Wiki pages
follow a long-tail distribution, whose average and standard
deviation are both 12KiB. With the configured WikiLoader
tool [47], each server is an independent replication of the
Wikipedia server. The traffic generator is used to generate a
MediaWiki access trace and to record page response times.

7CPU utilization is calculated from the file /proc/stat and the amount
of Apache busy threads is assessed via Apache’s scoreboard shared memory.

8https://www.mediawiki.org/wiki/Download

CPU IO

Application Server

Client

RX

TX

Figure 6. Illustration of the processing states of connection requests. Solid
and dashed arrows represent deterministic and non-deterministic procedures
respectively.

B. Simulator

To compare and contrast the performance of load balancing
algorithms in various scenarios, in particular those difficult
or where no network trace exists to evaluate in testbeds
(e.g., large-scale DC networks), an event-driven simulator is
implemented, based on hypotheses described in Section II. The
simulator implements the network topology as in Figure 5,
where each load balancer is connected to all servers.

Real-world network applications can be CPU-bound or IO-
bound [48], [49]. The simulator allows configuring applica-
tions that require multi-stage processes switching between
CPU/IO queues (Figure 6). For instance, a connection request
for a 2-stage application is first processed in the CPU queue,
then in the IO queue, before being sent back to the client.

Two different processing models are used for CPU and
IO queues, respectively. A FIFO model is defined for CPU
queues, and connections that arrive when no CPU is available
will be blocked in a backlog queue until there is an available
CPU. IO is simulated as a simple processor sharing model,
in which the instantaneous processing speed is the inverse
of the number of connections in the IO queue. The backlog
queue length of each server is configured as 64. Connections
that arrive when the backlog queues are full will be rejected,
with 40s timeout. Communication latency between 2 nodes is
uniformly distributed between 0.1ms and 1ms.

C. Benchmark LB Algorithms

All the 6 LB algorithms described in Section I-B are
implemented to be evaluated in the simulator. Similarly to
SED, AWCMP is implemented to be aware of the server speed
difference ratio, and with the server occupancies (i.e., queue
lengths) on each server polled periodically. The default update
frequencies of server weights are the same for AWCMP and
HLB (every 0.5s).

In the simulator, an Oracle LB algorithm is implemented,
which distributes connections to the server which is expected
to finish all its job with the lowest delay (including the new
connection). The Oracle LB is aware of the remaining time of
each connection, which is otherwise not observable for layer-
4 LBs. By adding the Oracle LB, the load balancing perfor-
mance of HLB and other LB algorithms can be compared to
the potential upper bound of performance, corresponding to
“perfect” network and server state observations.

For algorithms that consider instant server occupancies,
power-of-2-choices can be applied additionally. Besides
GSQ2, the simulator thus also implements LSQ2, SED2,
HLB2, and Oracle2, to study the impact of partial observations
and suboptimal load balancing decisions.

8

Figure 7. [Testbed] 24-hour Wikipedia trace replayed using different LB
algorithms. Average FCTs (top), ratio between weights assigned to the 2
groups of servers by HLB (middle), and traffic rate (bottom) are depicted.

VI. EVALUATION

Simulations and experiments are conducted (≥ 10 runs for
each setup) to answer the following questions:
• How does the performance of HLB, when subjected to

different traffic rates, compare with existing LB algo-
rithms (Section VI-A);

• What is the impact of heterogeneity in server capacities
on load balancing performances (Section VI-B);

• Are partially observed server occupancies representative
of server load states (Section VI-C);

• How does HLB perform using different configurations of
system parameters (Section VI-D);

• Can HLB adaptively react to dynamic networking envi-
ronments (Section VI-E);

• What is the performance overhead (Section VI-F).

A. Performance with Different Traffic Rates

This section presents an overall performance evaluation of
HLB, compared to other LB algorithms, when subjected to
different traffic rates with both a real-world network trace
replay and a large-scale simulation.

1) 24-Hour Trace Evaluation: Samples of 600s duration
are extracted from the 24-hour Wikipedia trace and replayed
on the testbed. The results are depicted in Figure 7.

During the off-peak period from 5:00 to 11:00 UTC
when servers are under-utilised, all LB algorithms show
similar performances. As traffic rates grow, HLB sees less
increase in FCT compared with other LB algorithms, which
is indicative of improved resource utilisation and performance
gains achieved by the load balancing decisions using HLB.

LSQ and GSQ2 assume all servers have the same processing
capacities, and aim at maintaining equal queue lengths on
all servers. Under heavier traffic, servers with less processing
capacities receive more workloads than they can process, and

10 2 10 1 1000.0

0.5

1.0

W
ik

i P
ag

es

SED
HLB

LSQ
GSQ2

AWCMP
WCMP

ECMP

10 3 10 2 10 1 100

FCT (s)
0.0

0.5

1.0

St
at

ic
Pa

ge
sFC

T
CD

F

Figure 8. [Testbed] FCT CDF comparisons for two types of requests in the
24-hour Wikipedia replay.

their queues grow full. LSQ and GSQ2 thus become less
performant than SED and HLB during peak period.

As depicted in the middle plot in Figure 7, HLB has no
a-priori knowledge of server capacity differences (the ratio
of CPU numbers between the 2 server groups is 2), yet it is
able to passively learn these differences from observations,
and achieve similar performance as SED. During off-peak
hours, as servers have enough processing capacities, thus no
additional queuing delay occurs, HLB does not differentiate
server processing speeds. When subjected to heavier traffic
rates, less powerful servers become “overloaded” and see
higher queuing delays, which increase their corresponding
flow durations. The increased flow durations thus inform HLB
of the server processing speed differences.

Figure 8 depicts the FCT CDF of each LB algorithm for
two types of requests: (i) static pages, and (ii) Wiki pages9.
For both types of requests, HLB, SED, LSQ and GSQ2
show notable performance gain when compared with other
LB algorithms. For Wiki pages, which are more computation-
ally expensive (CPU-bound) to load than static pages, HLB
achieves 23.66% and 26.43% less 90p FCT than LSQ and
GSQ2 respectively. Of particular note is to mention, that HLB
achieves the same performance as SED with no requirement
of manual configurations of server weights. For static pages,
which are IO-bound, HLB achieves 38.22% less 90p FCT than
SED.

2) Workloads Distribution: To understand the workload
distribution, this section studies 6 resource utilisation metrics:
mean CPU usage, fairness, overprovision factor, mean number
of busy threads, fairness of number of busy threads, and finally
the average FCT. Given a random variable X , the fairness of
X is defined as F = E(X)2

E(X2) ∈ [0, 1] [50]. The overprovision
factor of X is computed as the maximum load over the average
load at each time step max(X)

X
∈ [1,∞) [4].

The performances of the 4 best performing LB algorithms
in the 24-hour trace evaluation, are further analysed – still
on a test platform with servers of different capacities. As
depicted in Figure 9, SED achieves balanced average CPU
usage between the 2 server groups, thus SED balances the
average FCT, since it is aware of both server occupancies and

9Wiki pages are identifiable by the string /wiki/index.php/ in URLs.

9

50

100
Avg. CPU (%)

4-CPU 2-CPU

0

10
Avg. #Thread

0.9

1.0
CPU Fairness

0.75

1.00#Thread Fairness

LSQ GSQ2 SED HLB
1.0

1.5
CPU Overprovision

LSQ GSQ2 SED HLB 0.01
0.04
0.07
0.10Avg. FCT (s)

Figure 9. [Testbed] Comparison on server resource utilisations using network
traces from hour 20:00 (800 queries/s) in the 24-hour Wikipedia replay.

processing speeds, thus assigns 2.3x connections to 4-CPU
servers than to 2-CPU servers. Unlike SED, LSQ and GSQ2
balance queue lengths between the two server groups. They
ignore the capacity differences, and overloads 2-CPU servers
which experience FCTs increased by 71% and 131%, using
LSQ and GSQ2 respectively, over FCTs on 4-CPU servers.
HLB learns to give less aggressive weights than SED without
any a-priori knowledge and assigns 35% more requests to 4-
CPU servers than to 2-CPU ones. The queue lengths between
the 2 groups of servers are less imbalanced than SED yet more
proportional to their processing speeds than LSQ and GSQ2.

3) Large-Scale Simulation: To study LB performance in
large-scale DC networks, simulations are conducted in a setup
with 4 LBs and 128 servers, half of which has 1 CPU each,
while the other half has 2.

The input traffic is a Poisson stream of single-stage CPU-
bound application queries. The exponential distribution of
FCTs, T (q) ∼ Exp(0.5), has an average of 500ms. Traffic
rates are normalized with respect to the total provisioned
resrouces. Results are obtained from multiple runs, each
consisting of 80k network connection requests10.

As depicted in Figure 10, the server occupancy is the
dominant factor of LB performance when traffic rates are
heavier, and LB algorithms that are occupancy-aware achieve
better performance. Consistent with the testbed experiments
in Section VI-A1, HLB yields a lower FCT than other LB
algorithms – even though HLB has no a-priori knowledge
about the server capacity difference. HLB achieves similar
performance to the Oracle from moderate traffic rates up to
90% expected resource utilisation – when the average FCT
becomes more than 5x higher than the expected FCT (200ms)
– which covers most cases in DC networks [31]. Under
88.5% expected resource utilisation, HLB achieves 24.64%
and 25.59% less 90p FCT than LSQ and SED respectively.

The take-away for these experiments and the subsequent
simulations is that, even without manual a-priori configura-
tions, HLB achieves better load balancing performance by

10There are 5 runs in total. From each run, only results from the interquartile
range of the simulation time are used for analysis, to guarantee that all the
metrics are collected under the Poisson stream of input traffic.

TABLE III
CONFIGURATIONS WITH DIFFERENT SERVER CAPACITY RATIOS.

Capacity Ratio n 1x 2x 4x
Testbed Group 1 5× 2-CPU 4× 2-CPU 2× 2-CPU
Testbed Group 2 5× 2-CPU 3× 4-CPU 2× 8-CPU

Simulator Group 1 64× 1-CPU 64× 1-CPU 64× 1-CPU
Simulator Group 2 64× 1-CPU 64× 2-CPU 64× 4-CPU

20 30 40 50 60 70 80 90 100

100

101

Av
g.

 F
CT

 (s
)

Oracle
HLB

SED
LSQ

GSQ2
AWCMP

WCMP
ECMP

20 30 40 50 60 70 80 90 100

101

FC
T

99
p

(s
)

10 1 100 101

FCT (s) under 88.5% Expected Resource Utilization
0.0

0.5

1.0

CD
F

Expected Resource Utilization (%)

Figure 10. [Simulator] FCT comparison using 2x server capacity ratio under
various traffic rates.

learning server capacity differences, which allows fair distri-
bution of workloads to servers. Tracking server occupancies
further allows HLB to improve load balancing performance,
when the servers are subjected to heavy traffic rates.

B. The Impact of Heterogeneity in Server Capacities

In view of the results from Section VI-A, this section will
further explore the impact of heterogeneity in server capacity.

1) Testbed Experiments: 3 different configurations of server
with a total of 20 CPUs, as per Table III, are tested with all
the different LB algorithms.

As depicted in Figure 11, for larger differences between
server processing capacities, SED and HLB outperform LSQ
and GSQ2. The ratio of server weights computed by HLB
between the two groups of servers11 are lower than the ratio
of provisioned resources. This is because the estimation of
server processing capacities is based on flow durations, which
capture not only the server processing time, but also the
queuing delays, which are not proportional to server pro-
cessing capacities. This causes HLB to “under-estimate” the
server processing speed differences between the two groups of
servers, yet HLB still achieves lower FCT than SED, since the
traffic rate does not push the resource utilisation to the limit.

2) Large-Scale Simulation: Two Poisson streams of input
traffic with T (q) ∼ Exp(0.5) are applied and consume
respectively 70% and 90% provisioned resources on average.

11If not specified, the ratios used in this paper are calculated as the average
value of the second group of servers over the average value of the first group
of servers.

10

10 3 10 1

FCT (s)
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1x CPU Diff.

SED
HLB

LSQ
GSQ2

AWCMP
WCMP

ECMP

10 3 10 1

FCT (s)

2x CPU Diff.

10 3 10 1

FCT (s)

4x CPU Diff.

(a) (b)

Figure 11. [Testbed] Comparison using different server capacity ratios using
trace from hour 23:00 (680 queries/s). Figure (a) compares FCT CDF
under 3 ratio configurations of CPU capacity differences using different LB
algorithms. Figure (b) compares the server weights ratio between the two
server groups generated by HLB with the actual provisioned server capacity
ratios.

Orac
leHLBSE
DLSQGSQ
2

AWCMPWCMPEC
MP

1x CPU Diff. 2x CPU Diff.

70
%

 T
ra

ffi
c

4x CPU Diff.

10 1 100

FCT (s)Orac
leHLBSE
DLSQGSQ
2

AWCMPWCMPEC
MP

10 1 100

FCT (s)
10 1 100

FCT (s)

90
%

 T
ra

ffi
c

(a) (b)

Figure 12. [Simulator] Comparison using different server capacity ratios
under 70% (top) and 90% (bottom) expected resource utilisation. Figure (a)
compares the FCT distribution and figure (b) compares the ratio of weights
and load distribution between two groups of servers.

Three setups are configured as per Table III, with the results
of the simulation depicted in Figure 12.

The results, when subjected to moderate traffic rates, show
similar trends as the experiments in Section VI-A. As depicted
in Figure 12a12, when all servers have the same processing
capacity, SED exhibits performance equivalent to LSQ.

With moderate traffic rate (70% expected resource utilisa-
tion), HLB and SED are the optimal LB algorithms, especially
when the server capacity differences grow. With heavy traffic
rate (90% expected resource utilisation), however, LSQ be-
comes better than SED. This is because the FCT is composed
of the network delay, the queuing delay, and the server
processing delay. At high resource utilisation, the queuing
delay becomes dominant, whereas at low resource utilisation,
the server processing time becomes significant.

Another observation that can be obtained from Figure 12a is
the performance degradation of SED at high resource utilisa-
tion. This is because the partial observations on network traffic
in presence of 4 LBs, make the server load state evaluation

12The boxplots used in this paper are standard boxplots, showing the
interquartile ranges and the medians.

10 1

100

101

FC
T(

s)
-4

LB
s

Oracle
Oracle2GSQ

GSQ2 HLB HLB2 LSQ LSQ2 SED SED2
WCMP

AWCMP
10 1

100

101

FC
T(

s)
-8

LB
s

Figure 13. [Simulator] The impact of the application of power-of-2-choices
on load balancing performance under 90% expected resource utilisation.

function of SED de-correlated from the actual server load state.
For instance, when the provisioned resource difference ratio is
1 : 4, SED assigns 12.14 times more workloads to powerful
servers, causing them to be overloaded. This will be studied
further in Section VI-C.

As depicted in Figure 12b, HLB achieves better perfor-
mance in all the tested scenarios, by dynamically adjusting
weights based on the inferred server states: the ratio of server
weights calculated by HLB between the two server groups is
correlated to, yet lower than, the actual ratio of provisioned
resources. When comparing the number of distributed network
flows, while HLB uses a different strategy than the Oracle, and
prioritizes the servers with higher processing capacities, HLB
is adaptive and achieves good performance under different
scenarios.

The take-away from this set of experiments and simulations
is, that when an LB algorithm considers server processing
capacities when making decisions, it is important that this
information is accurate – at least in as much as the provisioned
resource difference ratio is accurate. This can be done either
through a-priori configurations (as in SED), or through ob-
serving and learning (as in HLB). Likewise, as the simulations
showed that the impact of the provisioned resources (number
of CPUs) on a server on the FCT depends on the overall
resource utilisation, it is important that the weight for a given
server can be adaptive also to the traffic rate; especially when
LBs have only partial observations on server load states.

C. The Representativeness of Partial Observations

As learned in Section VI-B2, that when there are multiple
LBs, the performance of SED degrades. This section therefore
studies the representativeness of partial observations of the
server occupancies and suboptimality of power-of-2-choices.

1) Partial Observations on a Large-Scale: Following the
Section VI-B2, this section uses the 2x simulator configuration
in Table III to study the impact of partial observations in
a large-scale DC network. Two configurations with 4 and
8 LBs are applied to compare different degrees of partial
observations. The FCT of the input traffic has the same
distribution as in Section VI-B2, i.e., T (q) ∼ Exp(0.5). In
addition to the studied LB algorithms, this section also studies
the power-of-2-choices variants of LB algorithms, that take
the server occupancies into considerations: GSQ, HLB, LSQ,

11

Figure 14. [Simulator] Different numbers of LBs give different levels of
partial observations, which impact the weights ratio between the two groups
of servers computed by HLB (left), and the ratio of queue lengths between
the two groups of servers under different traffic rates (middle and right).

(a) SED score l̃i+1
wi

. (b) HLB score l̃i+1
w̃i

.

Figure 15. [Simulator] With 8 LBs, under a traffic rate that consumes 90%
resource utilisation, the correlation between normalized residual processing
time and computed server scores using SED and HLB.

SED, and the Oracle, since they may be potentially impacted
by partial observations.

Figure 13 depicts the FCT distributions using different LB
algorithms. As expected, the application of power-of-2-choices
degrades the performance of GSQ, LSQ, and HLB for saving
compute cycles. SED, however, shows the opposite results and
achieves lower FCT with SED2 when there are 8 LBs.

2) Understanding Workloads Distribution for SED and
HLB: Figure 14 depicts the queue length ratios between the
two groups of servers when using SED and HLB, along
with the server weights computed by HLB. SED prioritizes,
and steers most workloads to servers with higher weights.
With more LB nodes, the server occupancy observations
become more partial and less representative of the actual
server occupancies, and the estimations computed by SED
are not correlated to the actual workloads on the servers
(Figure 15a). Based on this incorrect estimation, SED assigns
74.2% network traffic to more powerful servers in presence of
8 LBs, leading to worse results than the randomness induced
by the power-of-2-choices of SED2. The estimations of HLB,
on the other hand, are more accurate and make the two groups
of servers undertake similar workloads (Figure 15b).

3) Partial Observations on Experimental Testbed: To ver-
ify the observations obtained from Section VI-C1 and Sec-
tion VI-C2, the 2x testbed configuration in Table III is
used with various numbes of LBs. This section applies 600s
Wikipedia trace with an average traffic rate of 680 queries
per second. As depicted in Figure 16a, the performances of
SED and LSQ degrade when the presence of more LBs make
their observations on server occupancies more partial and
less representative of the actual server occupancies. AWCMP

HLB SED LSQ GSQ2 AWCMP WCMP ECMP
LB Method

10 1

100

FC
T

(s
)

Number of LBs
1 2 3

(a) Average FCTs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Homogeneity

0

5

10

PD
F

Connections

1 LB
2 LBs
3 LBs

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Homogeneity

0

5

10

Flow Duration

1 LB
2 LBs
3 LBs

(b) HLB observation homogeneity (the closer to 1 the better).

Figure 16. [Testbed] Comparison using different number of LB nodes.

1

2

FC
T

(s
)

AWCMP HLB WCMP avg median

0.1 0.2 0.5 1.0 2.0
Update Period (s)

10 2

10 1

Ka
lm

an
 G

ai
n

Figure 17. [Simulator] Comparison using different weights updating fre-
quency under 90% expected resource utilisation.

obtains better performance since the presence of more LBs
increases the polling frequency of the group of LBs thus
improving observation granularity. Normalising statistically
significant measurements across servers, HLB is less impacted
by the factor of partial observations among all LB algorithms.
In a setup with M LBs passively observing N servers, denote
zij =

xij∑
j xij

where xij is the measurement of server j made
by LB i at a given time step. The distribution of M zij∑

i zij
is compared in Figure 16b to measure the HLB observation
homogeneity across LBs w.r.t. global measurement distribu-
tion. The homogeneity of number of ongoing connections is
less centered and has increased outliers with more LBs, yet
the one of flow durations is less sensitive to the growth of
LB node numbers, which helps HLB gainfully use observed
information for server load ranking.

The take-away from these experiments and simulations is
that, more partial observations can be less representative of the
measured system. When having only partial observations on
server occupancies available, such as is the case for a multi-
LB set-up, the superiority of combined metrics when using
HLB emerges. Using Kalman filters, HLB accumulates reliable
observations on server processing speeds over time in the
history, and predicts the server processing speeds at the next
time-step. Integrating both server occupancy and processing
speed, HLB is less sensitive to partial observations.

D. Sensitivity Analysis

This section studies the potential impacts on LB perfor-
mances of different conditions and system parameters, namely,
(i) weights update frequency, (ii) flow table size, and (iii) RTT
between clients and servers.

12

100
FC

T
(s

) =0.5, =0.5

10 1

100

FC
T

(s
) =0.5, =1.0

OracleHLB
HLB-FIXSED LSQ

GSQ2
AWCMP

WCMP
ECMP

100

101

FC
T

(s
) =1.0, =0.5

(a) Measured FCT Distribution (s).

10 2

10 1

10 2

10 1

0 500 1000
Step

10 2

10 1Fixed
Adapt

(b) Kalman Gain.

Figure 18. [Simulator] Different input traffic FCT distributions under 90%
expected resource utilisation.

1) Weights Update Frequency: AWCMP and HLB periodi-
cally update server weights. The intervals between two consec-
utive updates is a system parameter. In this section, 5 periods
are applied to study their impacts. Figure 17 shows that higher
weight updating periods degrade AWCMP performance. Since
AWCMP uses the same set of weights during a complete time
interval, the correlation between server weights and server
load states decreases, until the next update. HLB on the other
hand, is less affected by the update interval because of its
adaptive Kalman gain. When the update interval is short, HLB
generates higher Kalman gains, and assigns more weights to
the newly computed load state estimations to catch up with
the dynamics of the environment.

The adaptive Kalman filter also allows adapting server
weights accordingly when facing input traffic with different
FCT distributions. Three lognormal distributions of FCTs are
applied on the 2x simulator configuration as in Table III
with 4 LBs. As depicted in Figure 18, when facing input
traffic with different FCT distributions, HLB is able to achieve
performance close to the Oracle, without manual configuration
or additional control messages. The measurement noise R of
HLB-FIX is configured as 0.5 while HLB has no hard-coded
R. As depicted in Figure 18b, HLB has different convergence
of Kalman gain corresponding to different FCT distributions.
It helps HLB achieve better performance than HLB-FIX when
the average FCT of input traffic is higher.

2) Pitfalls of Statefulness: LSQ, SED, and HLB track
connection states in flow tables, and the number of buckets in
flow tables is another system parameter. Flow tables with more
buckets can store more connection states, and can therefore
enable higher observation accuracy. Untracked connections
will be statelessly forwarded to a random server by looking up
ECMP bucket tables, without considering server load states.
However, managing large flow tables consumes more memory
space, which is costly on dedicated hardware [12], [27].

To investigate performance degradation when memory space
is limited, simulations are conducted on a DC network with 4
LBs and 256 servers. Half of the servers have 2 CPUs while
the other half have 4 CPUs. Reducing bucket sizes from 65536
to 1024 leads to more untracked flows, and thus degraded load
balancing performance. Figure 19 shows that HLB is more
robust to traffic rate changes and less sensitive to the flow

0.26

0.28

0.30

Av
g.

 F
CT

 (s
) 70% Expected Resource Utilization

LSQ SED HLB

1024 2048 4096 8192 16384 32768 65536
Bucket Size

0.30

0.35

Av
g.

 F
CT

 (s
) 90% Expected Resource Utilization

(a) Average FCTs achieved using different bucket sizes in flow tables.

0 500 1000 1500 2000 2500
Untracked

0.26

0.28

0.30

0.32

0.34

Av
g.

 F
CT

 (s
)

LB Method
HLB
LSQ
SED

(b) 70% resource utilisation.

0 500 1000 1500 2000 2500 3000
Untracked

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Av
g.

 F
CT

 (s
)

LB Method
HLB
LSQ
SED

(c) 90% resource utilisation.

Figure 19. [Simulator] Comparison using different flow table bucket size.

20 40 60 80 100
Avg. RTT (ms)

0.75
1.00

FC
T

(s
) stddev=10ms

SED LSQ HLB

5 10 15 20 25
RTT StdDev. (ms)

0.8

1.0 avg=60ms

Figure 20. [Testbed] FCT (avg. ± stddev) comparison under different RTT
distributions between clients and servers.

table size than is LSQ and SED. LSQ and SED use only the
observations of server occupancies, while HLB can infer server
processing speeds based on measured flow durations, and thus
it is less impacted by untracked flows. HLB achieves the best
performance with the minimal bucket size, which makes it an
interesting candidate for hardware implementations.

3) RTT Between Clients and Servers: Evaluations above
have demonstrated that HLB can improve load balancing
performance for intra-DC services, where clients locate within
the same DC network. To understand whether HLB can benefit
the use cases where clients connect to servers through the
Internet, this section studies the impact of different distribu-
tions of RTT between clients and servers. Intuitively, given
a request from a client, the load balancing decision is not
biased by the RTT between this client and the server cluster.
HLB makes load balancing decisions and assigns servers based
on its estimations of server load states, which depends on
the distribution of sampled flow durations. The flow duration
measurements consist of server processing time and RTT
between clients and servers. Since requests with different
RTTs are indiscriminately distributed across servers yet server
processing time varies depending on instant server load states,
HLB normalises flow durations across servers and reserves
the variance of server processing speeds. Therefore HLB is
not sensitive to different RTT distributions.

13

359 683101

102
Wiki Trace

LB Method
HLB SED LSQ GSQ2 AWCMP WCMP ECMP

30 50
2 × 102
3 × 1024 × 102
6 × 102

103

2 × 102
3 × 1024 × 102
6 × 102

FC
T

(m
s) For-Loop Trace

150 250
Rate (queries/s)

1.2 × 101

1.3 × 101
1.4 × 101
1.5 × 101

File Trace

Figure 21. [Testbed] Comparison with different types of network applications.

0.
3 1 3 10

FCT (s)
Orac

leHLB
SE

DLSQ
GSQ

2AWCMPWCMPEC
MP

Pure CPU

0.
3 1 5

FCT (s)

CPU Intensive

0.
5 1 3 10

FCT (s)

Balanced

1 10 50

FCT (s)

IO Intensive

(a) FCT distribution for different types of applications

Pure CPU CPU Intensive Balanced IO Intensive
1.0

1.5

2.0

w
2C

PU

w
1C

PU

CPU Diff. Ratio
IO Diff. Ratio

(b) Server weight ratio between two server groups assigned by HLB.

Figure 22. [Simulator] Simulation results with 3-stage application queries
under 90% expected resource utilisation.

To provide an empirical study, using the same setup as in
Secion VI-A1, the RTT between clients and the edge router
is shaped using netem to follow Pareto normal distributions
with different means and standard deviations [51]. Added
delays have 25% dependency on their previous values. As
depicted in Figure 20, the FCT grows linearly with the
increase of the mean RTT. With the combination of reservoir
sampling and Kalman filters, HLB removes the unimodal RTT
distribution so that the processed flow durations still reflect
server processing speed differences. In all scenarios, HLB
remains superior to LSQ and SED. This shows that HLB is not
sensitive to the change of RTT between clients and servers.

The take-away in this section is, that HLB is less sensitive
to server weights updating frequency than are active LB algo-
rithms. It also requires less memory space than other stateful
LB algorithms, which makes it more hardware-friendly. HLB
is not sensitive to RTT between clients and servers thus it can
potentially benefit more than just intra-DC applications.

E. Response to Heterogeneous and Dynamic Environments

This section studies the adaptability of HLB when facing
heterogeneous traffic and dynamic DC setups.

1) Adaption to Different Types of Input Traffic: This section
studies the adaptivity of HLB for different types of network
applications. Besides Wikipedia trace, another two types of

TABLE IV
FOUR CONFIGURATIONS WITH DIFFERENT APPLICATION TYPES.

Application
Type

Pure
CPU

CPU
Intensive Balanced IO

Intensive
Avg. CPU Time (s) 1. 0.75 0.5 0.25
Avg. IO Time (s) 0. 0.25 0.5 0.75

poisson traffic are applied. A PHP for-loop script that
runs for a given number of iterations, simulates CPU-bound
applications with T (q) ∼ Exp(0.2). To simulate IO-bound
applications, a farm of static files with different sizes13 are
created and queried. Moderate and high traffic rates are applied
for the 3 types of applications in testbed as in Figure 5. As
depicted in Figure 21, LSQ achieves similar performance as
SED and HLB for for-loop trace but does not perform better
than ECMP for the file trace. AWCMP achieves lower FCT
under CPU-bound traffic, especially when traffic rate is high.
SED and HLB have the best performance for all traces.

Though flow duration is affected by many factors including
expected workloads, instant server occupancy and different
types of provisioned resources (e.g. CPU, IO, networking
conditions), by collecting multiple samples (128 per server)
of flow durations for the same VIP (and thus for the same
application), we obtain a statistical representation of the flow
duration distribution on each server. This allows to derive and
compare the overall server processing speed for the given
application. Using flow duration as an indicator of server
load states saves us from profiling different applications (e.g.
resource dependencies) and allows to generalize to different
types of applications.

On a larger scale, simulations are conducted with 4 LBs and
128 servers using the 2x configuration as in Table III. In this
section, a 3-stage application whose queries follow CPU-IO-
CPU processing stages is compared with a pure CPU appli-
cation. Both CPU and IO processing time follow exponential
distributions and the aggregated average FCT is 1s. The four
different types of network applications are configured as in
Table IV. As depicted in Figure 22, with different provisioned
resource ratios for CPU (2x) and IO (1x) queues, HLB has
better performance for all types of applications, with weights
adaptive to the requirements of different types of applications.

2) Adaption to Processing Speed Changes: This section
shows the ability of HLB to detect changes in server pro-
cessing speeds, e.g., when VMs are migrated to a new server.
Using the 2x testbed configuration with 2 LBs, additional
CPU-bound workloads are applied on the 4-CPU server group
starting from 30s. As depicted in Figure 23, under heavy
Wikipedia traffic, HLB adapts server weights over time and
achieves better performance than other LB algorithms. It is
able to infer that the processing speeds of the two groups of
servers become similar to each other after 30s.

F. Overhead Analysis

To compare the additional processing latency of HLB, one
4-CPU LB and a 176-CPU server cluster is deployed on 4
physical machines. The number of CPU cycles per packet and

13The sizes of files are 100KB, 200KB, 500KB, 750KB, 1MB, 2MB, and
5MB. 50 files are randomly generated for each size.

14

0

200

400
Av

ai
la

bl
e

CP
U

(%
)

4-CPU Servers
2-CPU Servers

HLB
SED

LSQ
GSQ2

AWCMP
WCMP

ECMP

0
250
500
750

1000

Qu
er

ie
s/

s

0.5

1.0

1.5

2.0

Se
rv

er
 W

ei
gh

t
Ra

tio

10 1

100

Av
g.

 F
CT

(s
)

0 10 20 30 40 50 60
Time (s)

0
8

16
24
32

#T
hr

ea
d

(a) Additional workloads are applied on servers with 4 CPUs after 30s.

10 1 100
0.0

0.5

1.0

W
ik

i P
ag

es

HLB SED LSQ GSQ2 AWCMP WCMP ECMP

10 2 10 1 100

FCT (s)

0.0

0.5

1.0

St
at

ic
Pa

ge
sFC

T
CD

F

(b) FCT CDF comparisons for two types of requests.

Figure 23. [Testbed] HLB is able to adapt to changed environments without
manual configurations or additional control messages.

250 1000 2000 3000 40000.0

0.5

1.0

CD
F

First Packet

ECMP/WCMP AWCMP LSQ GSQ2 SED HLB

35 40 45 50 55 60

CD
F

CPU (%)

250 1000 2000 3000 4000
Number of CPU Cycles Per Packet

0.0

0.5

1.0

CD
F

Data Packet

1.28 1.29 1.30 1.31 1.32 1.33
Resource Consumption

CD
F

RAM (GiB)

(a) Processing latency and resource consumption comparison.

0 0.5 1 1.5
Mpps

ECMP/WCMP
AWCMP

LSQ
GSQ2

SED
HLB

(b) Throughput comparison.

Figure 24. [Testbed] Overhead analysis.

resource consumption are compared in Figure 24a under 10
runs of 2000 queries/s of Poisson traffic (more than 1150.76
average concurrent connections). The first packets are those
that register new-coming connections in the flow table while
the data packets are the subsequent packets that are matched in
the flow table. As HLB calculates and compares the score of
each server when assigning servers to connections, it consumes
on average 871 cycles (0.34µs on 2.6GHz CPU) more than

does ECMP for each connection. Compared with ECMP,
HLB incurs on average 8% additional CPU usage and 31MiB
additional RAM usage. Assuming LBs see one SYN packet,
one data packet and one FIN packet in each connection, the
average packet throughput for each LB algorithm on a 2.6GHz
CPU are compared as depicted in Figure 24b. HLB achieves
87.38% throughput of ECMP.

VII. CONCLUSION

This paper has proposed, and studied the performance of
HLB – a load-aware Layer-4 LB. Based on passively gathered
networking observations extracted from the data plane, HLB
is able to estimate both server occupancies and processing
speeds, which are identified in this paper as two key factors
in load balancing performance, with no a-priori knowledge
or manual configurations. HLB can be deployed without
modifications on the target network, since it requires no
additional management traffic or active signaling. Evaluated in
both simulations and testbed experiments, HLB offers better
load balancing performance than existing LB algorithms. It is
also able to adapt to dynamic DC environments and variant
workloads.

REFERENCES

[1] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, no. 2011, 2011,
pp. 22–22.

[2] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and Ulterior Software Engineering. Springer, 2017,
pp. 195–216.

[3] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu et al., “Ananta: Cloud scale load
balancing,” ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4, pp. 207–218, 2013.

[4] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-
Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and J. D. Hosein,
“Maglev: A fast and reliable software network load balancer.” in NSDI,
2016, pp. 523–535.

[5] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. Clausen,
“Srlb: The power of choices in load balancing with segment routing,” in
Distributed Computing Systems (ICDCS), 2017 IEEE 37th International
Conference on. IEEE, 2017, pp. 2011–2016.

[6] A. Aghdai, C.-Y. Chu, Y. Xu, D. Dai, J. Xu, and J. Chao, “Spotlight:
Scalable transport layer load balancing for data center networks,” IEEE
Transactions on Cloud Computing, 2020.

[7] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. Maguire Jr, P. Pa-
padimitratos, and M. Chiesa, “A high-speed load-balancer design with
guaranteed per-connection-consistency,” in 17th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 20), 2020,
pp. 667–683.

[8] P. Patel, A. H. Ranabahu, and A. P. Sheth, “Service level agreement in
cloud computing,” Cloud Workshops at OOPSLA09, [Online] Available:
https://corescholar.libraries.wright.edu/knoesis/78, 2009.

[9] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: towards a cloud definition,” ACM Sigcomm computer
communication review, vol. 39, no. 1, pp. 50–55, 2008.

[10] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al.,
“Azure accelerated networking: Smartnics in the public cloud,” in 15th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 18), 2018, pp. 51–66.

[11] R. Gandhi, Y. C. Hu, C.-K. Koh, H. H. Liu, and M. Zhang, “Rubik:
Unlocking the power of locality and end-point flexibility in cloud scale
load balancing.” in USENIX Annual Technical Conference, 2015, pp.
473–485.

https://corescholar.libraries.wright.edu/knoesis/78

15

[12] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, 2017, pp. 15–28.

[13] Facebook, “Katran,” [Online] Available: https://github.com/
facebookincubator/katran, 2018.

[14] S. Shi, Y. Yu, M. Xie, X. Li, X. Li, Y. Zhang, and C. Qian, “Concury:
A fast and light-weight software cloud load balancer,” p. 14, 2020.

[15] V. Olteanu and C. Raiciu, “Datacenter scale load balancing for multipath
transport,” in Proceedings of the 2016 Workshop on Hot Topics in
Middleboxes and Network Function Virtualization, ser. HotMIddlebox
’16. ACM, 2016, p. 20–25, event-place: Florianopolis, Brazil.

[16] J. T. Araújo, L. Saino, L. Buytenhek, and R. Landa, “Balancing on
the edge: Transport affinity without network state,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18), 2018, pp. 111–124.

[17] GitHub, “GLB Director,” [Online] Available: https://github.com/github/
glb-director, 2020.

[18] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu, “Stateless data-
center load-balancing with beamer,” in 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18), 2018, pp.
125–139.

[19] R. Cohen, M. Kadosh, A. Lo, and Q. Sayah, “Lb scalability: Achieving
the right balance between being stateful and stateless,” IEEE/ACM
Transactions on Networking, 2021.

[20] ——, “Hardware syn attack protection for high performance load bal-
ancers,” in 2021 IEEE Symposium on High-Performance Interconnects
(HOTI). IEEE, 2021, pp. 9–16.

[21] W. Zhang et al., “Linux virtual server for scalable network services,” in
Ottawa Linux Symposium, vol. 2000, 2000.

[22] A. Aghdai, M. I.-C. Wang, Y. Xu, C. H.-P. Wenz, and H. J. Chao, “In-
network congestion-aware load balancing at transport layer,” in 2019
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). IEEE, 2019, pp. 1–6.

[23] Y. Desmouceaux, P. Pfister, J. Tollet, M. Townsley, and T. Clausen, “6lb:
Scalable and application-aware load balancing with segment routing,”
IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp. 819–834,
2018.

[24] J. Zhang, S. Wen, J. Zhang, H. Chai, T. Pan, T. Huang, L. Zhang, Y. Liu,
and F. R. Yu, “Fast switch-based load balancer considering application
server states,” IEEE/ACM Transactions on Networking, p. 1–14, 2020.

[25] G. Goren, S. Vargaftik, and Y. Moses, “Distributed dispatching in
the parallel server model,” arXiv:2008.00793 [cs], Aug 2020, arXiv:
2008.00793.

[26] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and
software,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 27–38, 2015.

[27] B. Pit-Claudel, Y. Desmouceaux, P. Pfister, M. Townsley, and T. Clausen,
“Stateless load-aware load balancing in p4,” in 2018 IEEE 26th Inter-
national Conference on Network Protocols (ICNP). IEEE, 2018, pp.
418–423.

[28] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15. ACM, 2015, p. 123–137, event-place: London, United
Kingdom.

[29] W. Wang and G. Casale, “Evaluating weighted round robin load bal-
ancing for cloud web services,” in 2014 16th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing. IEEE,
2014, pp. 393–400.

[30] R. Gandhi, Y. C. Hu, and M. Zhang, “Yoda: a highly available layer-7
load balancer,” in Proceedings of the Eleventh European Conference on
Computer Systems. ACM, 2016, p. 21.

[31] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, and L. Mao, “Who
limits the resource efficiency of my datacenter: An analysis of alibaba
datacenter traces,” p. 10, 2019.

[32] A. Kumar, I. Narayanan, T. Zhu, and A. Sivasubramaniam, “The fast
and the frugal: Tail latency aware provisioning for coping with load
variations,” in Proceedings of The Web Conference 2020, 2020, pp. 314–
326.

[33] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “Wcmp: Weighted cost multipathing for improved fairness
in data centers,” in Proceedings of the Ninth European Conference on
Computer Systems. ACM, 2014, p. 5.

[34] M. Shafiee and J. Ghaderi, “A simple congestion-aware algorithm for
load balancing in datacenter networks,” IEEE/ACM Transactions on
Networking (TON), vol. 25, no. 6, pp. 3670–3682, 2017.

[35] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 12, no. 10, pp. 1094–1104, 2001.

[36] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced alloca-
tions,” SIAM journal on computing, vol. 29, no. 1, pp. 180–200, 1999.

[37] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and P. Francois,
“The segment routing architecture,” in 2015 IEEE Global Communica-
tions Conference (GLOBECOM). IEEE, 2015, pp. 1–6.

[38] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67,
1970.

[39] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Combin-
ing Diverse Anomaly Detectors for Automated Anomaly Labeling and
Performance Benchmarking,” in ACM CoNEXT ’10, Philadelphia, PA,
December 2010.

[40] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Elsevier Computer Networks, vol. 53, no. 11,
pp. 1830–1845, July 2009.

[41] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
conference of the ACM special interest group on data communication,
2017, pp. 183–196.

[42] Facebook Engineering, “Reinventing Facebook’s data center network,”
Mar 2019.

[43] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang,
“Quality-of-service in cloud computing: modeling techniques and their
applications,” Journal of Internet Services and Applications, vol. 5, no. 1,
pp. 1–17, 2014.

[44] L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep rein-
forcement learning for datacenter-scale automatic traffic optimization,”
in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication. ACM, 2018, pp. 191–205.

[45] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems (TOCS),
vol. 18, no. 3, pp. 263–297, 2000.

[46] The Fast Data Project (fd.io), “Vector Packet Processing (VPP),” [On-
line] Available: https://wiki.fd.io/view/VPP, 2017.

[47] E.-J. van Baaren, “Wikibench: A distributed, wikipedia based web appli-
cation benchmark,” Master’s thesis, Dept. Comput. Sci., VU University
Amsterdam, Amsterdam, The Netherlands, 2009.

[48] A. Hadoop, “Apache hadoop,” URL http://hadoop. apache. org, 2011.
[49] A. Spark, “Apache spark,” Retrieved January, vol. 17, p. 2018, 2018.
[50] R. K. Jain, D.-M. W. Chiu, W. R. Hawe et al., “A quantitative measure

of fairness and discrimination,” Eastern Research Laboratory, Digital
Equipment Corporation, Hudson, MA, vol. 21, 1984.

[51] X. Chen, H. Kim, J. M. Aman, W. Chang, M. Lee, and J. Rexford,
“Measuring tcp round-trip time in the data plane,” in Proceedings of the
Workshop on Secure Programmable Network Infrastructure, 2020, pp.
35–41.

https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://github.com/github/glb-director
https://github.com/github/glb-director
https://wiki.fd.io/view/VPP

16

Zhiyuan Yao received the M.Sc.T from École Poly-
technique, Palaiseau, France, in 2019. He is cur-
rently pursuing an industrial Ph.D. jointly between
École Polytechnique’s networking team and Cisco
Systems PIRL, under supervision of Mark Towns-
ley (Cisco Systems) and Thomas Clausen (École
Polytechnique). His research interests include high-
performance networking, load-balancing, data-center
optimization algorithms, and machine learning for
systems.

Yoann Desmouceaux received the Diplôme d’Ingé-
nieur from École Polytechnique, Palaiseau, France,
in 2014, the M.Sc. degree in Advanced Computing
from Imperial College, London, U.K., in 2015, and
the Ph.D. degree in computer networking from Uni-
versité Paris-Saclay, France, in 2019. He is currently
working as a Software Engineer with Cisco Systems.
His research interests include high-performance net-
working, IPv6-centric protocols, load-balancing, re-
liable multicast, and data-center optimization algo-
rithms.

Juan-Antonio Cordero-Fuertes is an associate pro-
fessor at École polytechnique. He graduated in
Mathematics (“Licenciatura”, M.Sc) and Telecom-
munication Engineering (B.Sc+M.Sc, “Ingenierı́a
Superior”) at the Technical University of Catalonia
(UPC, Spain) in 2006 and 2007, respectively. He got
his Ph.D. at École polytechnique in 2011, with a
dissertation on the optimization of link-state routing
protocols for operation in MANETs and compound
(wired/wireless) Autonomous Systems. He was a
postdoctoral researcher at the Université catholique

de Louvain (UCL, Belgium) and the Hong Kong Polytechnic University (Hong
Kong SAR, PRC), before joining faculty at École polytechnique, in 2016.
His research and scientific interests include routing protocols and information
dissemination algorithms, and the modeling, analysis and optimization of
distributed, adaptive systems in dynamic, heterogeneous networking scenarios.

Mark Townsley is a Cisco Fellow, Professor Chargé
de Cours at École Polytechnique, and co-founder
of the Paris Innovation and Research Laboratory
(PIRL). Before Joining Cisco in 1997, he held
positions at IBM, the Institute for Systems Research
(ISR) and the Center for Satellite and Hybrid Com-
munications Networks (CSHCN) at the University of
Maryland. Mark served as IETF Internet Area Di-
rector from 2005-2009, IETF L2TP Working Group
Chair from 1999-2005, IESG Liaison to the Internet
Architecture Board (IAB), and IETF Pseudowire

WG Technical Advisor. Mark was the lead developer of the original imple-
mentation of L2TP in Cisco IOS as well as lead author of IETF L2TP protocol
specification (RFC 2661). One of the original architects of the World IPv6
Day and Launch, Mark contributed significantly to the deployment of IPv6
on the internet, including lead author of RFC 5969, IPv6 Rapid Deployment
(6RD). In 2011, Mark co-founded the IETF Homenet Working Group, and
served as chair until 2017. In addition to his Faculty appointment at École
Polytechnique, Mark lectures on Future Internet Architectures at Telecom
Paris Tech (TPT), and serves on the steering committee for the joint TPT-
Polytechnique Advanced Computer Networking master’s degree. Mark holds
a Bachelor of Science (summa cum laude) degree in Electrical Engineering
from Auburn University and a Master’s degree in Computer Science (magna
cum laude) from the Johns Hopkins University Applied Physics Laboratory.

Thomas Clausen is a graduate of Aalborg Uni-
versity, Denmark (M.Sc., PhD – civilingeniør,
cand.polyt), and has, since 2004 been on faculty
at Ecole Polytechnique, France’s premiere technical
and scientific university, where as a professor, he
holds the Cisco endowed “Internet of Everything”
academic chaire. At Ecole Polytechnique, Thomas
leads the computer networking research group. He
has developed, and coordinates, the computer net-
working curriculum, and coordinates the M.Sc.T
programme “IoT: Innovation and Management”. He

has published more than 100 peer-reviewed academic publications, and has
authored and edited 24 IETF Standards. Thomas has also consulted for the
development of IEEE 802.11s, and has contributed the routing portions of
the ITU-T G.9903 standard for G3-PLC networks – upon which, e.g., the
current SmartGrid & ConnectedEnergy initiatives are built. Thomas is a
senior member of the IEEE, and was named an “IEEE Computer Society
Distinguished Contributor”, as part of the 2021 inaugural class.

	Introduction
	Statement of Purpose
	Related Work
	Paper Outline

	Problem Space
	Analysis of Existing LB Algorithms
	Stochastic Modeling and Simulation
	Challenges

	HLB Design
	Observation Extraction from The Data Plane
	Stateful Observation Extraction
	Flow Table Workflow

	Load-Aware Load Balancing Algorithm
	Sampling Flow Durations to Estimate Processing Speeds
	Periodic Processing Speed Inference with Kalman Filter
	Merging Occupancy and Processing Speed

	Experimental Setups
	Testbed
	Load-Balancers
	Apache HTTP Servers
	System Platform
	Wikipedia Replay

	Simulator
	Benchmark LB Algorithms

	Evaluation
	Performance with Different Traffic Rates
	24-Hour Trace Evaluation
	Workloads Distribution
	Large-Scale Simulation

	The Impact of Heterogeneity in Server Capacities
	Testbed Experiments
	Large-Scale Simulation

	The Representativeness of Partial Observations
	Partial Observations on a Large-Scale
	Understanding Workloads Distribution for SED and HLB
	Partial Observations on Experimental Testbed

	Sensitivity Analysis
	Weights Update Frequency
	Pitfalls of Statefulness
	RTT Between Clients and Servers

	Response to Heterogeneous and Dynamic Environments
	Adaption to Different Types of Input Traffic
	Adaption to Processing Speed Changes

	Overhead Analysis

	Conclusion
	References
	Biographies
	Zhiyuan Yao
	Yoann Desmouceaux
	Juan-Antonio Cordero-Fuertes
	Mark Townsley
	Thomas Clausen

