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Abstract—Packet replication and elimination functions are used by time-sensitive networks (as in the context of IEEE TSN and IETF
DetNet) to increase the reliability of the network. Packets are replicated onto redundant paths by a replication function. Later the paths
merge again and an elimination function removes the duplicates. This redundancy scheme has an effect on the timing behavior of
time-sensitive networks and many challenges arise from conducting timing analyses. The replication can induce a burstiness increase
along the paths of replicates, as well as packet mis-ordering that could increase the delays in the crossed bridges or routers. The
induced packet mis-ordering could also negatively affect the interactions between the redundancy and scheduling mechanisms such as
traffic regulators (as with per-flow regulators and interleaved regulators, implemented by TSN asynchronous traffic shaping). Using the
network calculus framework, we provide a method of worst-case timing analysis for time-sensitive networks that implement redundancy
mechanisms in the general use case, i.e., at end-devices and/or intermediate nodes. We first provide a network calculus toolbox for
bounding the burstiness increase and the amount of reordering caused by the elimination function of duplicate packets. We then
analyze the interactions with traffic regulators and show that their shaping-for-free property does not hold when placed after a packet
elimination function. We provide a bound for the delay penalty when using per-flow regulators and prove that the penalty is not
bounded with interleaved regulators. Finally, we use an industrial use-case to show the applicability and the benefits of our findings.

Index Terms—Network Calculus, Time-Sensitive Networking (TSN), Deterministic Networking (DetNet), Packet Replication Elimination
and Ordering Functions (PREOF), Frame Replication and Elimination for Redundancy (FRER), Asynchronous Traffic Shaping (ATS)
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1 INTRODUCTION

T IME-SENSITIVE NETWORKS were specified by the de-
terministic networking (DetNet) working group of the

Internet Engineering Task Force (IETF), as well as the time-
sensitive networking (TSN) task group of the Institute of
Electrical and Electronics Engineers (IEEE), for support-
ing safety-critical applications in several domains, such as
aerospace [1], automation [2] and automotive [3].

As opposed to the best-effort service, safety-critical appli-
cations require a deterministic service [4, §3.1] [5] with zero
congestion loss, high levels of reliability, bounded out-of-
order delivery and guarantees on the end-to-end latency of
each flow. Time-sensitive networks provide this service by
relying on a set of redundancy and scheduling mechanisms.
The former reduce the probability of end-to-end losses
whereas the later aim to guarantee latency bounds [5].

Verifying these bounds on a network is a known in-
tractable issue for simulators and real-life experiments be-
cause worst-case situations are not captured by stochastic
metrics [6, §1]. Therefore, both the TSN and the DetNet
working groups recommend using analytical tools for con-
ducting worst-case timing analyses and for proving the
determinism of the network’s service [7, §L.3, §N.2] [8].
Among them, the network-calculus framework [9] com-
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putes latency, jitter, and backlog bounds, assuming that
the sources [resp., the servers] respect some contract of
maximum traffic generation [resp., of minimum service]. It
has been used to prove certification requirements in avionics
[10]. The worst-case timing performance of time-sensitive
networks, when focusing only on scheduling mechanisms,
has been widely analyzed in the literature [11]–[16].

The main issue addressed in this paper is the effect of the
redundancy mechanisms on the delay guarantees in time-
sensitive networks. These redundancy mechanisms, such as
frame replication and elimination for redundancy (FRER) [18] in
TSN and packet replication, elimination and ordering functions
(PREOFs) [4] in DetNet, decrease the end-to-end packet-
loss ratio by distributing “the contents of [. . . ] flows over
multiple paths in time and/or space, so that the loss of some of
the paths does need not cause the loss of any packets” [4]. To do
so, the DetNet packet-replication function (PRF) replicates

TABLE 1
Main Acronyms Used in the Paper and Comparison with the Terms of

the Working Groups.

In this paper Term used in DetNet [4] Term used in TSN [17]

PREFs
Packet replication
and elimination
functions

Packet replication and
elimination functions

FRER: Frame replication
and elimination for
redundancy [18]

PRF Packet replication
function

Packet replication
function

Stream splitting function
[18, §7.7]

PEF Packet elimination
function

Packet elimination
function

Sequence recovery
function [18, §7.4.2]

POF Packet ordering
function

Packet ordering function Does not exist in TSN
(March 2022)

REG Traffic regulator Shapers [19, §2.3.3] ATS: Asynchronous
traffic shaping [20]
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Source

Replication of
content (PRF)

Elimination of
duplicates (PEF)

Destination

P1

P2

Before the
replication Redundant part

After the duplicate
elimination

Fig. 1. The three sections of a replicate’s path: before, in, and after the
redundant part.

each incoming packet into several outgoing packets that
can take different paths (Fig. 1). The paths then merge and
multiple copies of the packet (the replicates) reach a packet-
elimination function (PEF) that forwards only the first repli-
cate and eliminates the subsequent ones (the duplicates).
The PEF generally relies on a sequence number in the packet
header to identify the replicates [4]. In Table 1, we compare
the terms used in IETF DetNet and IEEE TSN. The main
acronyms used thorough the paper are also listed in Table 1.

The packet replication and elimination functions (PREFs)
could increase the worst-case end-to-end latency of the
flows: [4, §3.1] recalls that their use is “constrained by the
need to meet the users’ latency requirements”. Therefore, un-
derstanding how PREFs affect the worst-case latency guar-
antees is fundamental to: (i) determine the applicability
of PREFs in industrial networks; (ii) perform trade-offs
between latency and loss-ratio requirements; and (iii) design
networks with stringent requirements on both aspects.

Three main challenges arise from conducting worst-case
timing analyses of PREFs. First, the replication of packets
through the network can induce a burstiness increase along
the paths of replicate packets, which leads to increasing
delay and backlog bounds in the crossed nodes. Second,
the traffic exiting the PEF can exhibit both an increased
burstiness and a mis-ordering of the packets. This can lead
to increased delay bounds in the nodes placed after the PEF.
Third, the coexistence of the packet mis-ordering with the
burstiness increase could negatively affect the behavior of
the devices that have been designed for tackling each issue
individually. For example, packet-ordering functions (POFs)
have been specified in IETF DetNet for removing only the
packet mis-ordering. Similarly, traffic regulators (also called
shapers) are scheduling mechanisms designed for removing
only the burstiness increase. If a traffic regulator (as in
TSN ATS, asynchronous traffic shaping) is placed after the
PEF for removing the burstiness increase caused by the
redundancy, then the packet mis-ordering that coexists with
this burstiness increase could negatively affect the behavior
of the traffic regulator.

The existing worst-case timing analyses of redundancy
mechanisms in time-sensitive networks [21], [22] are limited
to the assumption of using redundancy mechanisms at the
end-systems as with Avionics Full-dupleX switched Ethernet
(AFDX) [10] and Parallel Redundancy Protocol (PRP) [23]. This
assumption discards the main challenges detailed above.
More recent works [21, §4.3.2] [24] based on simulation
consider redundancy mechanisms at intermediate nodes.
However, firm conclusions are difficult to draw from sim-
ulations as they not cover the worst-case behavior.

Therefore, our primary goal in this paper is to bridge
these gaps and to provide a method of worst-case timing
analysis for time-sensitive networks that implement redun-
dancy mechanisms in the general use-case, i.e., at end-
systems and/or intermediate nodes. Specifically:
• We provide a network-calculus toolbox that enables

the computation of upper bounds on the burstiness
increase (Theorem 1) and on the amount of reordering
(Theorem 2) due to the elimination of duplicate packets.
Theorem 1 is useful for computing delay bounds in
the nodes located after the elimination of duplicates,
whereas the bound from Theorem 2 can be compared to
the application’s requirements to decide if the packets
should be reordered prior to their delivery.

• We analyze the interactions between redundancy mech-
anisms and traffic regulators. We show that the packet
mis-ordering due to the elimination of duplicates leads
to a bounded increase of the worst-case delay with per-
flow regulators (PFRs) (Theorem 3) and to unbounded
delays with interleaved regulators (IRs) (e.g., TSN ATS)
(Theorem 4). The problem goes away if the packets are
re-ordered after the elimination and before the regula-
tor (Theorem 5).

• We conduct performance analyses for an industrial
use-case that highlight the interest of our introduced
approach to tighten the delay bounds in comparison to
intuitive computation approaches.

In Section 2, we illustrate the issues posed by PREFs
using a toy example. In Section 3, we relate our proposed
approach to the state of the art, and we describe the system
model in Section 4. Our main theoretical contributions are
detailed in Sections 5 and 6, that cover the network-calculus
toolbox for redundancy mechanisms and the analysis of the
interaction between such mechanisms and traffic regulators.
Finally, we validate our approach on an industrial use-case
in Section 7.

2 ILLUSTRATION OF THE ISSUES POSED BY
PACKET REPLICATION AND ELIMINATION

In this section, we illustrate the issues posed by packet repli-
cation and elimination functions (PREFs) in time-sensitive
networks, as identified in the Introduction. We first detail
the burstiness increase and the mis-ordering introduced by
PREFs. Afterwards, we focus on the problems arising from
the interactions between PREFs and traffic regulators.

2.1 Burstiness and Misordering Introduced by PREFs
To highlight the effect of PREFs on the burstiness and packet
order, we consider the toy example in Fig. 2: a periodic flow

Packet
Replication

Function (PRF)

[0, 1]

[6, 7]

Packet
Elimination

Function (PEF)

D

C

outC

outD

F
B

in out

Fig. 2. Toy example used thorough the paper. A flow is replicated on
two paths, C and D, with different delay bounds. The paths then merge
into F , that removes the duplicates.
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Fig. 3. An example trajectory on the toy example of Fig. 2 causing a
double-rate output of the PEF.

with a rate r0 of one packet per every time unit is replicated
at the output of the vertex B and sent over two paths: C
[resp., D], with a minimum delay of zero time units [resp.,
six time units] and a maximum delay of one time unit [resp.,
seven time units]. A possible trace of packets for the toy
example is given in Fig. 3. Here, the path through C drops
all Data Units 1 to 6: they are only received through D with
a latency of seven time units (7 t.u.). After 7 t.u., the link
through C is available again and the Data Units 7 to 14 are
received through both C and D, with a latency of 1 [resp.,
7] t.u. The PEF receives the sum of “outC” and “outD”. It
drops the duplicates but forwards the packets that contain
not-already-seen data units. Its output is on the Line “out”.

We observe that the traffic after the PEF is much
more bursty than before the replication function: between
t.u. 8 and t.u. 13, the PEF simultaneously outputs the
“older” packets 1-6 received through the “long” path and
the “newer” packets 7-12 received through the now-active
“short“ path. This increases the load on the downstream link
with a doubled rate, 2r0, for a duration of 6 t.u.

The toy example hence suggests that packet replication
and elimination functions (PREFs) can significantly increase
the flows’ burstiness, which could further worsen the con-
gestion and the worst-case delay in the downstream nodes.
Obtaining a bound on this burstiness increase is important
for computing the end-to-end latency of the flow. Indeed, a
delay bound for the flow in the third section of Fig. 1 (after
the PEF) can be obtained from such an upper bound on the
flow’s worst-case traffic at the output of the PEF and from
a lower bound on the minimum service provided by the
nodes located after the PEF.

A first approach for bounding the traffic of the flow
after the PEF, which we denote as intuitive, consists in
doing as if the PEF would never drop a packet (i.e., even
the duplicates are forwarded). This approach requires the
network engineer to dimension all the downstream nodes
in order to support a sustained double rate. In Theorem 1,
we provide a better bound for the traffic at the output of
the PEF. It leads to better end-to-end latency bounds, as we
show in Sec. 7.

We also observe that PREFs can create a mis-ordering: In
the toy example, Data Unit 6 exits the PEF five time units
after Data Unit 7. Obtaining an upper bound for this mis-
ordering is important for comparing it to the application’s
requirements. We provide such bound in Theorem 2.

Packet
Replication

Function (PRF)
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Fig. 4. The toy example of Fig. 2 extended with POF and REG to deal
with the mis-ordering and burstiness increase issues due to PEF.

2.2 Interactions Between PREF and Other Devices
If either the end-to-end latency bound or the mis-ordering
bound does not meet the system requirements, then we can
use one of the devices specified by the working groups for
tackling the corresponding issue.

For example, if the receiving application does not tol-
erate any mis-ordering, then the DetNet packet-ordering
function (POF) [4, §3.2.2.2] can be used after the PEF to
correct the mis-ordering introduced by PREFs. Similarly,
if the end-to-end latency of a flow does not meet its re-
quirements due to a high worst-case delay in the third
section of Figure 1, then using traffic regulators [20] just
after the PEF appears as a natural choice: Traffic regulators
(REGs) have been designed for removing the burstiness
increase [11], [12] thus for reducing the worst-case delay
in downstream nodes. They come in two flavors: per-flow
regulators (PFRs) process each flow individually whereas
interleaved regulators (IRs) process flow aggregates.

To the best of our knowledge, the interactions between
PREFs and other devices such as POFs and regulators have
not yet been analyzed. For instance, many properties of the
regulators rely on the assumption that the upstream system
is first in, first out (FIFO) [12]. As observed on the toy
example, this assumption does not hold with PREFs.

Assume, for example, that the traffic regulator in Fig. 4
shapes the traffic back to the profile it had at the input “in”.
In terms of burstiness, this makes the middle section in Fig. 1
transparent to the third section. The regulator processes the
traffic from the “out” line of Fig. 3 and forces the packets to
be as spaced as in the “in” line by delaying and storing the
packets if required. Clearly, the upstream system between
“in” and “out” in Fig. 3 is not FIFO, because the packets
exit the PEF out of order. Thus the properties of the regu-
lators that depend on this assumption might not hold and
the cohabitation of the PEF and the REG could negatively
affect the latency bounds. A packet-ordering function (POF)
(dashed box in Fig. 4) can be used after the PEF and before
the regulator to force the upstream system to be FIFO. If
such POF is placed, then we would expect to retrieve all the
properties of regulators.

In Sec. 6, we analyze the interactions between PREFs and
regulators. We observe that the conclusions depend on the
type of the regulator: either PFR or IR (as with TSN ATS).

3 RELATED WORK

The most relevant timing analyses of redundancy mecha-
nisms in time-sensitive networks can mainly be categorized
according to the assumption of where to enable the packet
replication and elimination functions.

The existing approaches in this area considering the
packet replication and elimination only at the end-devices
concern mainly High-availability Seamless Redundancy (HSR)
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TABLE 2
Notations

Term Definition
G The graph of the network for the class of interest.
f A flow.

G(f) The graph of flow f .
EP-vertex

in G(f)
A vertex at which the duplicates of f have not
been eliminated yet.

Diamond
ancestor

of n in G(f)
A vertex that is not an EP-vertex of G(f) and that is
contained in any paths of f between its source and n.

da→nf
[resp., Da→nf ]

Lower [resp., upper] delay bound for f between a
and n, along any possible path a→ n within G(f).

PEFn(f)
Packet-elimination function at output-port n
that eliminates the duplicates of flow f .

POFn(F , o)
Packet-ordering function at n that uses reference o
to force the order of the data units of the aggregate F .

REGn(F , o)
Regulator (either interleaved or per-flow) that shapes
the flows within F in a FIFO manner.

σn,f Shaping curve for f at the regulator within n.
αf,n∗

[resp., αf,FUN∗ ]
For n a vertex in G [resp., FUN a function], the arrival
curve of f at the output of n [resp., of the function FUN].

γr,b : t 7→ rt+ b Leaky-bucket arrival curve with rate r and burst b

δD :

{
t 7→ ∞

if t > D
Service-curve of a D-bounded-Delay element

|x|+ = max(0, x)
t.u. Time unit (arbitrary unit used in the examples)

d.u. Data unit (arbitrary unit used in the examples)

and Parallel Redundancy Protocol (PRP) [23, §4]. Both mecha-
nisms eliminate the duplicates only at the destination; thus
their analysis does not require to bound the traffic at the
output of the PEF and discards the mis-ordering issue. In
[22], worst-case delay bounds are computed in HSR-based
networks by using network calculus. The idea consists in
taking the maximum of the delay bounds along each of the
redundant paths. In [25], model checking is used to analyze
how well PEF algorithms based on sequence numbers can
detect duplicates in AFDX, a PRP-based network.

On the other hand, there exist only few seminal works in
the literature considering the packet replication and elimina-
tion anywhere in the network. These works mainly concern
FRER [18], which is the first mechanism enabling such an as-
sumption. As mentioned in [18, §C.9] and further illustrated
in Sec. 2, the elimination of duplicates within the network
raises issues in computing the end-to-end delay bounds.
In [26], further concerns about FRER have been discussed.
In [27], a simulation framework based on OMNeT++ has
been developed for TSN mechanisms, including FRER [21,
§4.3.2]. However there is no specific experiment for assess-
ing the effect of FRER on latency bounds. Furthermore,
obtaining the worst-case delay bounds with simulators is
a known intractable problem [6, §I].

Thus, as stated above, there are no formal analyses of
delay bounds of redundancy mechanisms, such as TSN
FRER or DetNet PREOF, when the packet replication and
elimination is performed anywhere in the network, or on
the interactions between redundancy and scheduling mech-
anisms.

4 SYSTEM MODEL

Our system model is divided into three abstraction levels. It
results from an analysis of the TSN and DetNet documents
and Appendix A details its applicability for these standards.
Notations used thorough the paper are listed in Table 2.

A B

C

D

F G

E

Fig. 5. Example of a flow graph G(f) (Sec. 4.1) of flow f with a source
A, destinations E and G and redundant paths to reach G.
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Fig. 6. F might receive the data unit m twice (in the dashed green
and the dotted blue packets). (a) F contains a PEF, it drops the dotted
blue packet that contains the already-seen data unit m. (b) Only the
destination G contains a PEF, it receives the data unit twice and drops
the dotted blue packet.

4.1 Network and Flow Model

Type of network: We consider an asynchronous packet-
switching full-duplex store-and-forward network that trans-
ports data units between applications. We assume that there
is one or several classes of traffic and that flows are statically
assigned to a class. We focus on one class and denote by G
the underlying graph for this class [6, Chap. 12]. G contains
one vertex per output port in the network (see Sec. 4.2 for
the exact mapping between the two notions) and (a, b) is
a directed edge of G if at least one flow crosses b just after
a. The network does not need to be feed-forward, it can
contain cyclic dependencies (i.e., G can contain cycles) [13].
Data unit versus packet: At any time, a data unit can be
transported by several packets located at several locations.
A flow f is a coherent sequence of data units that originate
from a unique source and that follow a directed acyclic sub-
graph of G to reach one or several destinations. An example
of such a flow graph, noted G(f), is shown in Fig. 5.
Flow constraints: We assume that each flow is constrained
by a network-calculus arrival curve α0

f at the output of its
source application. For an observation point M (that can be
a vertex or a function), we note αf,M the arrival curve of
f at M . For n a vertex of G(f) [resp., for FUN a function],
we note αf,n∗ [resp., αf,FUN∗ ] the arrival curve of f at the
output of vertex n [resp., at the output of the function FUN].
Position of PRF, PEF in a flow graph: When a vertex, such
as B in Fig. 5, has several children, we consider that an
implicit PRF has been installed on B for the flow f : it sends
a copy of each incoming data unit to each child. When a
vertex has several parents, such as F in Fig. 5, this means
that it can receive the same data unit several times, within
different packets. However, this does not necessarily mean
that it implements a PEF. If a PEF is present on such a vertex
(case of F in Fig. 6a), then it forwards only the first received
packet that contains the data unit. If the vertex does not
contain a PEF (case of F in Fig. 6b), then it forwards all
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Fig. 7. Model of two devices in the network (in gray dashed boxes) and
their relation with the flow graph (vertices in thick red).

the packets, and might consequently forward the same data
unit several times. Packets that transport already-seen data
units at a given location are called duplicates.
Assumption on the elimination of duplicates: When several
paths of a flow merge, we assume that the duplicates are
eliminated before the path can split again. We believe that
this assumption does not restrict the analysis of industrial
systems. Indeed, the main use-case for having a PEF a few
hops after the merge point (as in Fig. 6b) is when the edge
router does not support PEF. The edge router then forwards
all the received packets to the end-system, that is responsible
for removing the duplicates.
EP-vertex: elimination-pending (EP) vertices of G(f) are the
only vertices that can observe a data unit of f more than
once. Formally, if a vertex, that does not contain a PEF for
f , has several parents in G(f) (vertex F in Fig. 6b), then we
qualify it as an EP-vertex of G(f). An EP-vertex can have at
most one child in G(f). Additionally, a vertex that does not
contain a PEF for f and is a child of an EP-vertex is also an
EP-vertex of G(f).
Diamond ancestor: For any two vertices a and n in a flow
graph G(f), we say that a is a diamond ancestor of n in G(f) if
a is not an EP-vertex in G(f) and all paths in G(f) from the
source of f to n contain a. In Fig. 5, B is a diamond ancestor
of F because B is not an EP-vertex of G(f) and any paths
from A (source of f ) to F contain B.
Lost data unit: We say that a data-unit m of a flow f is lost
for a vertex n [resp., for a function FUN] if the vertex n in
G(f) [resp., the function FUN] never observes the data unit
m in any packet. In Fig. 5, if the link B → C fails, then a
data unit m is lost for E but not necessarily for G. The main
purpose of PREFs is to reduce the probability of losing a
data unit for any destinations of the flow.
Worst-case latency: Let f be a flow and d one of the destina-
tions of f ; the end-to-end (ETE) upper [resp., lower] latency
bound of f for d is an upper bound [resp., lower bound] on
the maximum [resp., minimum] delay that each data unit m
of f takes to reach d, assuming that m is not lost for d.

4.2 Device Model

Device: The model for each device in the network is illus-
trated in Fig. 7: it consists of input ports, output ports, and a
switching fabric. The vertices in the network’s graph G, such
as vertex F in thick red in Fig. 7, are made of the output port
on one device, followed by the input port on the subsequent
device. The devices are connected through transmission links
that can lose packets.
Input port: We assume that each input port contains a store-
and-forward step that we model as a network-calculus pack-
etizer [9, §1.7.2], [13, Thm. 1]. Any additional processing

Was m−1 already forwarded ?

mm ∈ F

Storage
(non-FIFO)

Forward m
No

Store until:
m−1 is forwarded OR
T seconds have elapsed

POFn(F , o)

Yes
m

Release m+1

without delay

Fig. 8. Functional model of the packet-ordering function POFn(F , o). For
a data unit m, m−1 [resp., m+1] refers to the data unit of the aggregate
F that exited the reference o just before [resp., just after] m.

delay (e.g., decryption, CRC check, etc.) is assumed to be
bounded between known values and is modeled using the
network-calculus bounded-delay element [9, Prop. 1.3.3].
Switching fabric: As illustrated in Fig. 7, the switching fabric
between vertices C and F forwards packets of flow f from
the input port within C to the output port within F if
and only if C → F is an edge in G(f). The switching
fabric implements the PRF. When a packet is forwarded
from one input port to two or more output ports, we
say that the data unit contained in the incoming packet is
replicated and transported by several new packets (one per
recipient output port). Any delay within the switching fabric
is assumed to be bounded and is modeled by using the
network-calculus bounded-delay element [9, Prop. 1.3.3].
Output port: We model each output port as in Fig. 7. It
contains a FIFO-per-class class-based queuing subsystem
(CBQS). We assume that, for each vertex n, we know a
network-caclulus service curve βn that the CBQS offers in
a FIFO manner to the class of interest. The service curve can
be obtained through an analysis of the scheduling policy
[15] and includes any additional technological latency. The
CBQS can be preceded by a set of optional functions.
Packetized streams: Within a device, between the output of
the input port (that contains the packetizer) and the input
of the CBQS, the stream of bits for each flow is packetized.

4.3 Model for the Functions

PEF: For a flow f crossing n, the output port in n can contain
a packet-elimination function (PEF) for flow f , noted PEFn(f).
For each incoming packet of f , we assume that PEFn(f)
determines without any delay if the data unit contained in
the packet has already been observed by PEFn(f). If so, the
packet is identified as a duplicate and is discarded. For the
stream of packets that contains never-seen data units of f ,
the PEFn(f) is transparent: FIFO and without any delay.
POF: Consider a set of flows F crossing n such that for
each flow f ∈ F , o is a diamond ancestor of n in G(f). The
output port in n can contain a packet-ordering function (POF)
for the aggregate F with reference o, noted POFn(F , o). We
assume that POFn(F , o) has the knowledge of the order in
which the data units belonging to the aggregate F exited the
reference o. POFn(F , o) then enforces the same order at its
own output, by delaying the packets that are out of order.

However, a data unitm cannot be delayed by POFn(F , o)
for a duration longer than the POF’s timeout parameter
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Fig. 9. Model of a regulator REGn(F , o), with shaping curves {σn,f}f .

T : After being stored for a duration T , m is immediately
released, even if the previously-expected data unit has not
been received so far. The timeout allows the POF to recover
from losses without blocking the following data units for-
ever [28], [29]. We assume that the timeout value of every
POF conforms with the recommendations of [28, §IV.B]. As
a consequence, the timeout cannot only be triggered when
one of the data units m of F is lost for the POF.

The model of POF is illustrated in Fig. 8. A possible
implementation is given in [28, §3.4] and [29]. A POF cannot
be placed at an EP-vertex: we always assume that the
duplicates are eliminated before the flow is handed to the
POF, which is consistent with the assumptions in [29, §4.1].
REG: Consider a set of flows F crossing n such that, for
each flow f ∈ F , o is a diamond ancestor of n in G(f).
The output port in n can contain a regulator (REG) for
the aggregate F with reference o, noted REGn(F , o). The
regulator is configured with a set of shaping curves, one
per flow f of the aggregate F , which we note {σn,f}f∈F .
For each f ∈ F , σn,f must be concave and must be an
arrival curve of f at the output of the reference vertex o.
The regulator then puts all the packets of the aggregate F
in a FIFO queue (Fig. 9) and examines only the head-of-
line packet. It releases the head-of-line packet as soon as
doing so does not violate the shaping curve σn,f , where f
is the flow of the head-of-line packet. When the regulator
processes a single flow, F = {f}, we model it as a per-flow
regulator (PFR) [9, §1.7.4]. When F contains two or more
flows, we model it as an interleaved regulator (IR) [12].

We consider that each output port contains a forward-
ing pipeline before the CBQS with the following optional
functions, in this order: PEFs→ POFs→ REGs.

Example: Consider two flows f, g, both with the same
flow graph of Fig. 5 and a PEF at F . The output port F
processes streams of packets coming from both parents C
and D. A first possible example of the organization of the
functions before the CBQS within vertex F is shown in

CBQS
REGF

({f, g}, B)
POFF

({f, g}, B)

PEFF (f)

PEFF (g)

Fig. 10. Example of an organization of the optional functions within an
output port. After their respective PEF, the two flows share the same
POF and the same regulator (REG).

CBQS
REGF ({f}, B)POFF ({f}, B)PEFF (f)

REGF ({g}, B)POFF ({g}, B)PEFF (g)

Fig. 11. Example of an the organization of the optional functions within
an output port with one POF and one REG per flow.

Fig. 10. Each flow is first processed by its respective PEF,
then both duplicate-free flows are reordered as an aggregate
by using POFF ({f, g}, B). This function enforces the same
order for the aggregate as the one at the output of B, i.e.,
before the redundant section. Last, they are both processed
by the same interleaved regulator that enforces two different
contracts for f and for g, but that keeps the aggregate
{f, g} FIFO. A variant of this situation is shown in Fig. 11.
After elimination, each flow is now independent from the
other one, where the POFs enforce per-flow order and the
two REGs are per-flow regulators (PFRs). This situation
is different from Fig. 10 because a packet of f cannot be
delayed by a packet of g. In addition, this configuration
could have a higher hardware cost than in Fig. 10.
FIFO assumptions: With the exception of POF, each network
element is assumed to be FIFO for the class of interest.
Assumptions on losses: With the exception of PEF, each
function, each CBQS, each switching fabric, each input port
and each internal connection within a device is assumed
to be lossless (does not lose any packets). Packets can be
lost on the transmission links between devices. This model
covers various failures, including random media losses, the
shutdown of an output port (equivalent to its out-going
link losing all packets) and the shutdown of an input port
(equivalent to its in-going link losing all packets).

As packets can be lost on transmission links, the network
is not assumed to be lossless. Of course, the latency bounds
computed in this paper are only valid for the non-lost data
units (the data units for which at least one replicate reaches
the destination), but these bounds remain valid even if some
other data units are lost in the network.

5 TOOLBOX FOR THE DETERMINISTIC ANALYSIS
OF PACKET REPLICATION AND ELIMINATION

Network calculus [9] is a mathematical framework for
computing deterministic latency bounds. It relies on the
concepts of arrival and service curves. An arrival curve
αf,M at a specific observation point M and for a specific
flow f is a constraint on the maximum amount of traffic
of flow f that can cross M over any periods of time [s, t],
which is equivalent to: ∀s ≤ t, R(t)−R(s) ≤ α(t− s), with
R(t) the amount of data of flow f crossing M between 0
and t. Also, a service curve βS of a specific network element
S is a constraint on the minimum amount of traffic that the
network element must serve. Network calculus gives delay
and backlog bounds in network elements given the arrival-
curve and service-curve constraints [9], [30].

In this section, we compute an upper bound of the bursti-
ness increase caused by PREFs by computing an arrival
curve αf,PEF∗ for the flow f at the output of the packet-
elimination function. The arrival curve αf,PEF∗ can then
be combined with the service curves of the downstream
elements (that can be found in [15], [31]) to compute a delay
bound in the last section of Fig. 1. This delay bound is useful
for validating the system’s latency requirements.

We also quantify the amount of mis-ordering introduced
by the redundancy. This bound can be compared to the
application’s requirement to decide if reordering is required
before delivering the data to the application. If so, the same
bound can be combined with the results of [28] to configure
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the packet-ordering function (POF) that corrects this mis-
ordering. The consequences of such reordering on the flow’s
delay and burstiness are also analyzed.

5.1 Output Arrival Curve of a PEF
Theorem 1 (Output arrival curve of a PEF). Let PEFn(f)
be a packet-elimination function for flow f at the output
port of vertex n ∈ vertices(G(f)). Assume that αf,PEFin is
an arrival curve of f at the input of PEFn(f). Then
1/ αf,PEFin is an arrival curve for the flow at the output of

the PEF.
2/ For every diamond ancestor a of n in G(f), assume

that αf,a∗ is an arrival curve for f at the output of a
and denote by da→nf [resp., Da→n

f ] a minimum [resp.,
maximum] delay bound for f between the output of
a and the input of PEFn(f), along any possible paths
a→ n within the graph G(f). Then

αa→nf , αf,a∗ � δ(Da→n
f )−(da→n

f ) (1)

is an arrival curve for f at the output of the PEF.
Furthermore, the min-plus convolution of all above arrival
curves

αf,PEF∗ = αf,PEFin ⊗ αa1→nf ⊗ αa2→nf ⊗ αa3→nf ⊗ . . . (2)

for any set of diamond ancestors a1, a2, a3, . . . of n in G(f)
is also an arrival curve for f at the output of the PEF, where
⊗ denote the min-plus convolution1.

The result is proved as follows: Item 1/ is a direct
consequence of the fact that the PEF has no delay. Item 2/
is obtained by considering the entire system made of the
portion of the graph G(f) between the diamond ancestor
a and n. This system is neither lossless nor FIFO, but
several classical network-calculus results remain applicable,
as we discuss in Appendix B. αf,PEF∗ is finally obtained by
applying [9, Lemma 1.2.4]. A formal proof of Theorem 1 is
given in Appendix C.1.

Application to the Toy Example: An arrival curve
αf,PEF∗ for f at the output of the PEF within F (Fig. 2) is
shown in Fig. 12 with a solid red line.

The first constituent, αf,PEFin is the arrival curve at f at
the input of the PEF (as per Theorem 1, Item 1). To obtain
it, we first observe that the periodic profile of the flow f at
the output of B (as on the Line “in” of Fig. 3) is constrained
by the leaky-bucket arrival curve αf,B∗ = γr0,b0 with a rate
of one data unit per unit of time (r0 = 1 d.u./t.u.) and
a burst of one data unit (b0 = 1 d.u.). By using the jitter
bound within C and D and Proposition 3 in Appendix B,
we obtain that the arrival curves of f at the output of C
and D, αf,C∗ and αf,D∗ , equal to the same leaky-bucket
arrival curve γr0,2b0 with a burst 2b0 of two units of data.
As f enters F from both C and D, we obtain αf,PEFin =
αf,C∗ + αf,D∗ = γ2r0,4b0 , a leaky-bucket arrival curve with
a rate 2r0 and a burst 4b0.

The second constituent of αf,PEF∗ in Fig. 12 is obtained by
applying the Equation (1) of Theorem 1, Item 2/ with a = B.
From Fig. 2, we obtain that a delay lower-bound [resp., an
upper-bound] for f from B to F along any possible paths

1. f ⊗ g : t 7→ infs≥0(f(s) + g(t − s)). The min-plus convolution is
associative and commutative [6, §2.1.3].

1 2 3 4 5 6 7

5

10

15

7
8
1
2

9
3

10
4

11
5

12
6

13
14

αf,PEFin

2r0 r0

αB
→F
f

4b0

8b0

αf,PEF∗ = αf,PEFin ⊗ αB→Ff

= min
(
αf,PEFin , αB→Ff

)

Fig. 12. Solid red: αf,PEF∗ , arrival curve of f on the toy example, at the
output of the packet-elimination function PEFF (f), obtained by applying
Theorem 1. Dashed blue: Cumulative arrival function obtained with the
trajectory of Fig. 14, which shows the tightness of the result.

within G(f) is dB→Ff = 0 t.u. (through C) [resp., DB→F
f = 7

t.u, throughD]. We obtain αB→Ff = αf,B∗�δDB→F
f −dB→F

f
=

γr0,b0 � δ7, i.e., αB→Ff = γr0,8b0 .
If we assumes that the PEF does not delete any packet,

as in the intuitive approach mentioned in Section 2, we only
know that f has the arrival curve αf,PEFin at the output of
the PEF (Item 1 of the Theorem). This arrival curve shows
that the traffic can exhibits a burst of 4b0 and a rate 2r0 twice
as big as the normal source rate.

But our theorem goes beyond the intuitive approach: its
second item applied with a = B provides a second arrival
curve for f : αB→Ff . In the network-calculus framework,
we can combine the knowledge of two arrival curves by
computing their min-plus convolution: αf,PEF∗ = αf,PEFin ⊗
αB→Ff is also an arrival curve for f at the output of the PEF.
With the leaky-bucket arrival curves of the toy example, the
min-plus convolution is simply the minimum of the two
curves, shown with a solid red line on Fig. 12. We observe
that Theorem 1 provides a better upper-bound of the traffic
than the intuitive approach. For example, αf,PEF∗ indicates
that the double rate 2r0 is only a peak rate that the traffic
cannot exhibits forever: flow f keeps a sustained rate r0,
but with a much higher burst 8b0. In network calculus, the
arrival curves that describe flows with a peek rate (2r0) and
a sustained rate (r0) are called variable-bit-rate (VBR) arrival
curves. Theorem 1 provides for the toy example the best
possible VBR arrival curve, as we prove later.

Remark: Theorem 1 does not require to identify pairs
of replication/elimination functions, with one PRF and one
PEF in each pair. Therefore, Theorem 1 is suited for complex
flow graphs, including graphs with repeated patterns of
redundancy, with meshes, as well as graphs where the
packet-elimination function is not located at the merge point
of the paths. When pairs of PRF/PEF can be identified as in
Fig. 1, the following simpler corollary can be used.

Corollary 1 (Application of the theorem to a unique re-
dundant section with parallel systems). Consider a flow f
with an arrival curve αf that is replicated and sent into
N systems {Si}i∈J1,NK and then processed by a packet-
elimination function PEF(f), as in Fig. 13. Note that each
Si is not necessary a single network element but can be any
combination of network elements. Assume that the packets
forwarded through Si (i.e., the ones not lost) have a delay
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Replication

S1

S2

. . .

SN

PEFn(f)f
αf α∗f

Fig. 13. Notations of Corollary 1. Flow f is replicated and sent to N
parallel systems. Corollary 1 gives the arrival curve α∗f at the output of
the packet-elimination function PEFn(f).

through Si that is bounded within [di, Di]. Then,

α∗f =
(∑

i∈J1,NK αf � δ(Di−di)

)
⊗

αf � δ(
max

i∈J1,NK
Di− min

j∈J1,NK
dj

)


(3)
is an arrival curve for f at the output of PEF(f).

Corollary 1 is a direct application of Theorem 1. A formal
proof is given in Appendix C.2. The corollary is of interest
for two reasons. First, its simpler notation is likely to cover
many industrial applications containing a unique redundant
portion with parallel systems. Second, Corollary 1 is tight in
the following sense.

Proposition 1 (The result in Corollary 1 is tight with N = 2
and leaky-bucket-constrained flows, in the family of vari-
able-bit-rate (VBR) arrival curves.). For any leaky-bucket
arrival curve γr,b, for any set of values d1, D1, d2, D2 ∈ R
such that d1 ≤ D1 and d2 ≤ D2,

there exists a flow f with arrival-curve αf = γr,b and
no minimum packet length whose content is replicated and
sent to two systems S1 and S2 in which the packets of f
suffer a delay bounded in [d1, D1] and [d2, D2] respectively;
the sum of the outputs of the two systems is then processed
by a packet-elimination function PEFn(f),

such that, the arrival curve α∗f defined in (3) is the best
VBR arrival curve for f at the output of PEFn(f).

Note that, due to the inherent nature of the PEF process-
ing packets, there could exist staircase arrival-curves that fit
the worst-case traffic even better than the arrival curve pro-
vided in Corollary 1. However, deterministic computational
tools process concave piecewise-linear arrival-curves better
than staircase arrival-curves [32]. Proposition 1 proves that
we obtain the best arrival-curve in the family of concave
piecewise-linear arrival-curves with two segments or less.

Intuition of the Proof with the Toy Example: We give
an intuition of the proof of Proposition 1 by using the toy
example of Fig. 2. Our goal is to obtain a cumulative func-
tion R∗(t) at the output of PEF such that t 7→ R∗(t)−R∗(s)
“perfectly fits” the arrival curve γ2r0,4b0 ⊗ γr0,8b0 , for some
observation starting time s (as in Fig. 12). In the scenario
of Fig. 3, we already achieved a peak rate of 2r0 by using
a disconnection of the short link for a duration equal to the
delay difference between the two paths. To obtain the worst-
case burst, we now simply need to use the jitter within each
path and synchronize the moments when the maximum
burst on each path reaches the PEF.

This is done by using the trajectory shown in Fig. 14.
Here, Packet 1 suffers the maximal delay on the long path
and the following packets suffer only 6 t.u. This causes
Packets 1 and 2 to exit D at the same time. We do the

1 2 3 4 5 6 7 8 9 10 11 12 13 14
. . .

in

outC

7,8 9 10 11 12 13 14
. . .

outD

1,2 3 4 5 6 7 8
. . .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

out

7,8,1,2 9,3 10,4 11,5 12,6 13 14
. . .

Fig. 14. Trajectory showing that the results of Corollary 1 is tight for the
toy example. The cumulative function of f , starting at Time Unit 8 in the
above trajectory, is given as a dashed blue line in Fig. 12.

same with Packets 7 and 8 through C and we synchronize
these two events at the same time, so that four packets
simultaneously exit the PEF at t.u. 8. In the figure we spread
the packets within t.u. 8 for ease of reading, but they exit
at the exact same time (t.u. 8). Because of this, we can also
put an arbitrary order of arrivals among them (in a real-life
system it means that there exists a very small difference in
their reception instants).

If we start counting the packets at Time Unit 8, we
observe the cumulative arrival function shown in dashed
blue in Fig. 12, for which it is clear that the arrival curve
in solid red is the best concave piecewise-linear envelope
with two segments. The formal proof of Proposition 1 in
Appendix C.3 extends the intuition for any choice of values
for r, b, d1, d2, D1, D2 (assuming no minimal packet length).

5.2 Reordering Introduced by the Packet Replication
and Elimination Functions
In Sec. 5.1 we provide a characterization of the traffic at
the output of a PEF in the form of an arrival curve. The
arrival curve can then be used to compute delay and backlog
bounds on subsequent vertices, from which we can obtain
the ETE delay bounds. However, as we can observe in the
toy example (Figures 3 and 14), the data units at the output
of the PEF are out-of-order compared to the input. The mis-
ordering of the flow’s data units cannot be captured by
arrival curves. As described in Sec. 2, it still has an effect
on the performances of time-sensitive networks [28].

Two metrics are of interest when quantifying mis-
ordering in time-sensitive networks: the reordering late time
offset (RTO) and the reordering byte offset (RBO) [28], [33].
In this paper we focus on the mis-ordering as a consequence
of the redundancy. Thus we are only interested in defining
reordering metrics after the PEF, relative to a reference order
defined before the PRF.

For a flow f and two vertices n [resp., o] containing the
observation points v [resp., w] such that f is packetized at
v and w, n is not an EP-vertex of G(f) and o is a diamond
ancestor of n in G(f), we denote by λv(f, w) the RTO of
the data units of flow f at the observation point v, with
respect to their order at w, as defined in [28], [33]. With the
restrictions on v and w, λv(f, w) is well defined from [28],
[33] because each data unit of f is observed at most once at
w and v, thus the arrival instant of each data unit at w and
v is well defined. Similarly, with v and w meeting the same
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conditions, we denote by πv(f, w) the RBO, as defined in
[28], [33] of the data units of flow f at v with respect to their
order at the reference w.

If POFn({f}, o) is a packet-ordering function that forces
the data units of f to be in the same order as their or-
der at the output of o, then with v being the input of
POFn, λv(f, o∗) gives the minimum value for the time-
out parameter T of POF algorithm and πv(f, o

∗) gives its
required buffer size [28, §IV.B]. In general, if a destina-
tion d does not support any mis-ordering, then a function
POFd({f}, source(f)) that uses the reference o = source(f)
is placed just before delivery to the application. The end-to-
end RTO and RBO λd(f, source(f)), πd(f, source(f)) must
be obtained to correctly configure this POF.

Proposition 2 (RBO ≤ α(RTO)). For a flow f , and two
observations points v, w meeting the above conditions, if
λv(f, w) < +∞, then

πv(f, w) ≤ αv,f (λv(f, w)) (4)

The result is directly obtained by writing the definitions
of the two notions. Its formal proof is in Appendix C.4.
Proposition 2 combined with our results from Sec. 5.1 show
that we can focus on the effect of the PEF on the RTO to also
obtain a bound on the RBO.

Theorem 2 (RTO at the output of a PEF). Consider a flow f ,
a vertex n containing a packet-elimination function PEFn(f)
and a diamond ancestor a of n in G(f). Denote by da→nf

[resp., Da→n
f ] a lower [resp., upper] delay bound for f

between the output of a and the input of PEFn(f), along
any possible path in the graph G(f). Then λPEFn(f)∗(f, a),
the reordering late time offset (RTO) of f at the output of
the PEF, with respect to a, verifies

λPEFn(f)∗(f, a
∗) ≤

∣∣∣Da→n
f − da→nf − α↓a∗(2Lmin)

∣∣∣+ (5)

where |x|+ , max(0, x), αf,a∗ is an arrival curve for f at
the output of the input port within a and α↓f,a∗ is its lower
pseudo-inverse2 defined in [34, §10].

Theorem 2 is a direct application of [28, Thm. 5] for
the system located between the diamond ancestor and the
output of the PEF, see Appendix C.5.

Application to the Toy Example: The lower-pseudo
inverse of αf,B∗ = γr0,b0 in the toy example of Fig. 2 is
α↓f,B∗ : x 7→ |x − b0|+/r0. In the toy example, all packets
have the same size of one d.u., so α↓f,B∗(2Lmin) = 1 t.u.
Applying Theorem 2 proves that the RTO at the output
of the PEF within F in Fig. 2 is bounded by 6 t.u. In the
trajectory of Fig. 14, we observe that d.u. 6 is late by 4
t.u. with respect to d.u. 7. The worst-case RTO is hence
comprised between 4 and 6 t.u.

Assume now that we place, after the PEF, the function
POFF ({f}, B), a packet-ordering function enforcing for f
the order defined at B (Fig. 15). With Theorem 2, we know
that its timeout T should be of at least 6 time units and
it requires a buffer of at least 14 d.u. (Proposition 2 and
Fig. 12). In the trajectory of Fig. 14, the POF receives the

2. For f : R → R ∪ {−∞,+∞} a wide-sense increasing function, its
lower pseudo inverse f↓ is defined by f↓(y) = inf{x|f(x) ≥ y}.

Packet
Replication

Function (PRF)

[0, 1]

[6, 7]

PEFF (f) POFF ({f}, B)

D

C

outC

outD

F
B

in out outPof

Fig. 15. Toy example of Fig. 2, with a packet-ordering function (POF)
placed after the PEF to correct the mis-ordering caused by the redun-
dancy.

7 8 9 10 11 12 13 14 15

outPof

1 2 3 4 5

6,7,8,9,
10,11,12 13 14

. . .

Fig. 16. Trajectory of the packets at the output of the POF of Fig. 15
when the POF processes the packets from the trajectory of Fig. 14.

traffic from the Line “out” and forces the data units to be in
the same order as on the Line “in”. The resulting output is
given in Fig. 16. We observe two main characteristics of the
POF; they have been widely studied in [28].

First, we note that all data units continue to have a delay
upper-bounded by 7 t.u. Indeed, none of the data units has
been lost for the POF thus the POF does not increase the
end-to-end (ETE) latency of the data units [28, Thm. 4].

Second, we observe that the traffic at the output of the
POF (Fig. 16) is much more bursty than the traffic at the
output of the PEF (Line “out”, Fig. 14). We observe that
seven d.u. exit the POF at the same time (t.u. 12). The traffic
is hence no more constrained by αPEF∗ = γ2r0,4b0 ⊗γr0,8b0 ,
the arrival curve of the flow at the output of the PEF,
obtained by applying Theorem 1 (Sec. 5.1). We apply Corol-
lary 1 of [28]: If none of the data units is lost for the POF (at
least one replicate of each data unit reaches the PEF), then
αPOF∗ = γr0,8b0 is an arrival curve of f at the output of the
POF. The trajectory in Fig. 16 is indeed γr0,8b0 -constrained.
If both replicates of a data unit can be lost, then γr0,8b0+Tr0
is an arrival curve for f at the output of the POF, with T
being the timeout parameter of the POF.

Placing a POF after a PEF hence comes with benefits and
drawbacks, as summarized on the first line of Table 3.

6 ANALYSIS OF THE INTERACTIONS BETWEEN
PREFS AND TRAFFIC REGULATORS

Sec. 5.2 shows that a packet-ordering function (POF) can be
used after a PEF to remove the mis-ordering caused by the
redundancy. Similarly, regulators can be used after a PEF to
remove the burstiness increase caused by the redundancy,
especially if the downstream systems cannot support the
worst-case traffic of the PEF output (Theorem 1).

Traffic regulators come in two flavors: per-flow regula-
tors (PFRs) and interleaved regulators (IRs). Both are config-
ured with per-flow contracts, {σf,n}f , and force each flow
f to be σf,n-compliant, delaying the packets if required.

Hence, when the shaping curve σf,n for each flow f
equals the arrival curve that the flow had before the re-
dundant section, then the regulators remove any burstiness
increase caused by the redundancy, thus making the re-
dundancy transparent to the downstream nodes. However,
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Fig. 17. Notations for the analysis of the interactions between PEF and
a PFR for a flow f . Vertices of G(f) are shown in dashed circles/ovals
and edges are shown with dotted arrows.

regulators are themselves queuing systems and their effect
on the worst-case ETE delay should be accounted for.

In this section, we first analyze the interactions between
PEF and a regulator placed directly after. We evaluate how
these interactions affect the ETE delay guarantees of the
flows, and we show that the conclusions highly depend on
the nature of the regulator (either PFR or IR). We last analyze
the effect of a POF placed after the PEF and before the REG.

6.1 Delay Bound Analysis of PREFs Combined with
Per-Flow Regulators

Consider a vertex n containing a function PEFn(f) and con-
sider a diamond ancestor a of n in G(f) (Fig. 17). Between
a and n, the flow follows G(f), with potentially multiple
vertices and multiple paths. Consider the system S between
the output of a and the output of PEFn(f) (solid box in
Fig. 17). Due to all the possible paths with different lengths,
S is neither FIFO nor lossless in the general case. We denote
by d [resp., D] a delay lower-bound [resp., upper-bound]
for each forwarded d.u. through S . The delays d and D are
well-defined because the data units are seen at most once
at the output of the PEF. Note that the PEF has no delay,
hence d [resp., D] verifies d = da→nf [resp., D = Da→n

f ], i.e.,
a delay bound along any possible paths a → n is a delay
bound through S .

After S , and still within vertex n (dashed oval on the
right of Fig. 17), we place a PFR: REGn({f}, a) with shaping
curve σn,f , αf,a∗ . We now consider the system S ′ made
of S followed by the PFR, and we are interested in the
delay bounds [d′, D′] for the non-lost data units through
S ′. If S was FIFO, we could use the essential shaping-for-free
property of regulators [9], [12]: As f is σf,n-constrained at
the input of S , the regulator would not have increased the
ETE delay of the data units; we write this as D′ = D. But, as
S is not FIFO, the PFR does not guarantee the shaping-for-free
property, as we show on the toy example.

Application to the Toy Example: Fig. 18 considers
the toy example from Fig. 2, to which we add the PFR
REGn({f}, B) within vertex F (dashed oval on the right
in Fig. 18), just after the function PEFF (f). With the above
notations, system S is between the observation points “in”
and “outPEF”, with the delay bounds [d,D] = [0, 7] t.u.
System S ′ is between the observation points “in” and
“outPFR”, and we seek to obtain a delay-bound D′ for S ′.
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Fig. 18. Toy example of Fig. 2 with a per-flow regulator (PFR) placed
after the PEF to remove the burstiness increase caused by the redun-
dancy.
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Fig. 19. An acceptable trajectory on the toy example, which shows that
the delay bound D′ through S′ is at least 14 t.u. The delay of the data
units from “in” to the observation points are given on the left of the
packets.

Fig. 19 presents an acceptable trajectory at the different
observation points using the same input “in” as in Fig. 3.
The path through vertex C forwards all packets with a
constant delay of 7 t.u., whereas the path through vertex
D drops Packets 1 to 6, then forwards Packet 7 with a
delay of 1 t.u. (its worst-case delay) and finally forwards
the following packets with a delay of 0 t.u. (its best-case
delay). The line “outPEF” gives the resulting trajectory at
the output of the PEF that removes any duplicates.

Based on its input (“outPEF”) and on its shaping curve
(σf,F = αf,B∗ = γr0,b0 ), the PFR outputs the packets
as shown on the Line “outPFR”. Recall that the PFR
REGn({f}, a) is itself a FIFO system (model in Sec. 4.3).

We observe that the d.u. 6 suffers through S ′ a total delay
of 14 t.u.; this is twice the delay upper-bound D through
S alone. We note that this high delay for d.u. 6 can be
explained by the time needed by the PFR to process d.u. 1
to 5 and 7 to 13 that arrived before d.u. 6 and to pace them
as required by the shaping curve. This is done even though
d.u.s 7 to 13 are out of order (“too early”) with respect to
d.u. 6. At “outPFR”, the packet containing d.u. 6 is late with
respect to d.u. 7 by 12 t.u. Hence, the reordering late time
offset (RTO) of the flow through S ′ (i.e., at the output of S ′,
using the input of S ′ as reference) is at least 12 t.u., while it
was bounded by only 6 t.u. through S alone (Sec. 5.2).

We observe that the output of the PEF is bursty and
out of order, and the PFR placed afterwards paces the
packets to remove the burstiness. But, by doing so, the PFR
worsens the mis-ordering of the packets (12 instead of 6)
and increases the delay of the late packets (Packet 6), thus
increasing the worst-case ETE delay (at least 14 t.u.). As
such, the regulator comes with a delay penalty. With PFRs
configured with leaky-bucket shaping curves, we can upper-
bound this delay penalty for any networks.

Theorem 3 ( Bound on the delay penalty of a PFR placed af-
ter a PEF). Assume that the PFR REGn({f}, a) is configured
with a leaky-bucket shaping curve σn,f = γr,b, and that σn,f
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Fig. 20. Notations for the analysis of the interactions between PEFs and
an interleaved regulator (IR) for an aggregate of flows F = {fi}i∈J1,qK.

is an arrival curve of f at the input of S . If d [resp., D] is
a lower [resp., an upper] bound on the delay of f through
the system S (Fig. 17), then d′ = d [resp., D′ = 2D − d] is a
lower [resp., an upper] bound on the delay of f through S ′.

The proof combines Theorem 1 with the service-curve
characterization of a PFR [9, §1.7.3] to obtain a delay bound
within the PFR, see Appendix C.6. Combined with [28,
Thm. 7], we directly obtain the following result.

Corollary 2 (Bound on the RTO at the output of a PFR placed
after a PEF). With the notations of Theorem 3, the RTO of f
at the output of PFRn({f}, a), with reference a, verifies

λn,PFR∗(f, a) ≤ λn,PEF∗(f, a) +D − d

with λn,PEF∗(f, a) the RTO of f at the output of the PEF,
again with respect to the order of the data units at a.

Application to the Toy Example: Applying Theorem 3
shows that 2D−d = 14 t.u. is an upper delay bound through
S ′. As it is achieved by d.u. 6 in Fig. 19, it is also the worst-
case delay. Applying Corollary 2 to the toy example gives
that 13 t.u. is an upper-bound on the RTO of the flow at the
output of the PFR, with respect to the order of the packets at
B. Data Unit 6 in the trajectory achieves a reordering offset
of 12 t.u. (with respect to d.u. 7), thus the worst-case RTO at
the output of S ′ in the toy example is between 12 and 13 t.u.

When a PFR is used after a PEF, the current subsection
shows that the shaping-for-free property does not hold, but
Theorem 3 captures the delay penalty by using the service-
curve characterization of PFRs, combined with the arrival
curve obtained from Theorem 1. As we do not know any
service-curve characterization for an IR, we cannot apply
the Theorem 3 to interleaved regulators (IRs).

6.2 Instability of the Interleaved Regulator Placed after
a Set of PEFs
With an interleaved regulator (IR), several flows F =
{fi}1≤i≤q , sharing the same redundant section a → n are
processed by the same IR REGn(F , a), after their respective
elimination function PEFn(fi) for i ∈ J1,mK (see Fig. 20).

When the aggregate contains a unique flow, then the IR
is a PFR. Therefore, we do not expect the shaping-for-free
property to be valid with the IR either. However, as opposed
to the PFR, we exhibit an adversarial model in which any
IR placed after the PEFs and processing several flows yields
unbounded latencies.

Theorem 4 (Instability of the IR placed after the PEFs).
Consider a network with graph G and consider q ∈ N flows

f1, . . . , fq (see Fig. 20). Take two vertices a and n such that,
for each i ∈ J1, qK, a is a diamond ancestor of n in G(fi).
Assume that
(a) for each i ∈ J1, qK, vertex n contains PEFn(fi), a PEF

for fi,
(b) vertex n contains REGn({fi}i∈J1,qK, a), an interleaved

regulator (IR) for the aggregate, placed after the PEFs,
with the same leaky-bucket shaping curve for each
flow: ∀i ∈ J1, qK, σfi,n = γr,b,

(c) all graphs {G(fi)}i∈J1,qK share at least two different
paths P1, P2 to reach n from a.

For q ∈ N and r, b, d1, d2, D1, D2 ∈ R+ with d1 ≤ D1,
d2 ≤ D2 and D1 ≤ D2 (flipping the indexes if required), if
(d) b is greater than the minimum packet length,
(e) d1, D1, d2, D2 are not all equal, and
(f) q ≥ qmin with

qmin ,

⌊
2r |d2 −D1|+

b
+ 2

⌋
+ 1

then there exists an adversarial traffic arrival at a for each of
the q flows and an adversarial implementation of the paths
{Pj}j such that
1/ each flow fi is γr,b-constrained at a,
2/ for each data unit m belonging to one of the flows
{fi}i∈J1,qK, if m is not lost on P1 [resp., on P2], then
its delay along P1 [resp., along P2] is within [d1, D1]
[resp., within [d2, D2]],

3/ flows {fi}i have an unbounded latency within the IR,
4/ P1 and P2 are both FIFO,
5/ the system S made of the sub-graph of G between a

and the output of the PEFs (Fig. 20) remains lossless
and FIFO-per-flow for each fi.

The proof is in Appendix C.7. It relies on the trajectory
developed for the proof of [14, Prop. 7.3]. The main idea is
to use the mis-ordering caused by PREFs and the property
that the IR looks only at the head-of-line packet to generate
blocking situations with always-increasing packet delays.

Note that only Properties 1/ to 3/ of Theorem 4 are
required to prove the validity of the adversarial model.
However, our adversarial model provides additional Prop-
erties 4/ and 5/; they are of interest when considering the
solutions for preventing the instability, as we illustrate in
Sec. 6.3. Theorem 4 also provides a mean to obtain the
following wider result, whose proof is in Appendix C.8.

Corollary 3 ( Instability of the interleaved regulator after a
non-FIFO system, even if the system is FIFO-per-flow and
lossless). For any Dmax > 0, r > 0, b greater than the
minimum packet length, and for any IR that processes 3
or more flows {fi}i using the same leaky-bucket shaping
curve γr,b, there exists a lossless FIFO-per-flow system S
and a γr,b-constrained adversarial generation of each flow
at the input of S such that, when the IR is placed after S ,
the delay of the flows through S is upper-bounded by Dmax

but the delay of the flows through the IR is not bounded.

6.3 Effect of the Packet-Ordering Function on the Com-
bination of a PEF with Traffic Regulators
Table 3 summarizes the benefits and drawbacks of using
regulators after a PEF, as analyzed in Sections 6.1 and 6.2.
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TABLE 3
Benefits and Drawbacks of Several Configurations, Compared to the Situation with the PEF(s) only.

Configuration Benefits with respect to the PEF alone Drawbacks with respect to the PEF alone

PEF + POF
• Destination receives the data units in order.
• Reordering-for-free: the POF does not increase the end-to-end
delay bounds (when at least one replicate per d.u. is received).

• The POF worsens the arrival curve; this can lead to
higher delay bounds in downstream nodes.
• Increased hardware complexity (Figure 8).

PEF + REG
• Output traffic keeps the arrival constraints it had before the
redundant section, resulting in smaller delay bounds in down-
stream nodes.

• Delay penalty due to mis-ordering:
With PFR: delay penalty with a guaranteed maximum
delay. With IR: unbounded delay.
• Increased hardware complexity (Figure 9).

PEF + POF + REG

• Destination receives the data units in order.
• Reordering-for-free and shaping-for-free: [POF + REG] does not
increase the delay bounds (when at least one replicate per data
unit is received).
• Output traffic keeps the same arrival constraints as it had before
the redundant section.

• Increased hardware complexity (Figures 8 and 9).
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Fig. 21. Toy example of Fig. 2, to which we added a POF followed by a
PFR.
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Fig. 22. Output of the POF and of the PFR of Fig. 21 when they process
the trajectory of Fig. 19.

We observe that the drawbacks of the regulators appear
symmetrical with respect to those of the POF. For example,
a main issue of the POF is the burstiness of the traffic at its
output; this can be corrected by using a regulator. A main
issue of the REGs is the delay penalty caused by the out-of-
order input; this can be solved by placing a POF just before.

The combination PEF + POF + REG appears as a po-
tential solution for keeping the benefits of both the POF and
the REG without their main drawbacks. We first analyze this
new configuration on the toy example.

Application to the Toy Example: Let us first add a POF
before the PFR of the single-flow situation in Fig. 18. It gives
the situation presented in Fig. 21. The POF enforces the
order of the data units as seen atB. Assume for example that
it receives the traffic defined by the line “outPEF” of Fig. 19.
Then the POF outputs the data units as on Line “outPOF”
of Fig. 22. The PFR further processes this trajectory to spread
the data units as per the flow’s contract and outputs them
as on the Line “outPFR” of Fig. 22. The resulting traffic is
compliant with the initial arrival curve αr0,b0 . We observe
that all the data units have kept an ETE delay below 7 t.u.

When using an interleaved regulator, Property 5/ of
Theorem 4 shows that the re-sequencing must be performed
globally on the aggregate processed by the IR, and not for
each flow individually. The above observations are summa-
rized in the following result, valid for both PFRs and IRs.

Theorem 5 ( Elimination-resequencing-reshaping is for
free). Consider a network with graph G and consider a set
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Fig. 23. Notations of Theorem 5. An aggregate re-sequencing followed
by a REG is placed after the PEFs. We are interested in the delay
bounds through system S′.

of one or more flows F . Take a and n two vertices of G
such that for each flow f ∈ F , a is a diamond ancestor
of n in G(f) (see Fig. 23). Assume that the CBQS within n
is preceded by the following functions, in this order: a set
of parallel packet-elimination functions {PEFn(f)}f∈F , fol-
lowed by a unique packet-ordering function with configura-
tion POFn(F , a), and finally a regulator with configuration
REGn(F , a). Denote by d [resp., D] a lower bound [resp., an
upper bound] for the delay of the non-lost data units of F
through the system S between a and the output of the PEFs.
• If S is lossless for F (i.e. for every data unit m of

the aggregate, at least one packet containing m reaches
the PEFs), then d [resp., D] is also a lower bound [resp.,
an upper bound] for the delay of the non-lost data units
through S ′, which we note [d′, D′] = [d,D].
• Otherwise, denote by T the timeout value of the POF

[28, §III.D]. Then d [resp., D + T ] is a lower bound [resp.,
an upper bound] for the delay of the data units through S ′,
i.e., [d′, D′] = [d,D + T ].

The proof in Appendix C.9 first applies [28, Theorem 4]
to obtain the delay bounds through the system S† on Fig. 23.
This system is FIFO thus [9, Thm. 5] can be applied.

Therefore, the “PEF + POF + REG” configuration pro-
vides all the benefits on the network performance bounds
associated with the “PEF + POF” and the “PEF + REG”
configurations, removing most of their drawbacks. This is
summarized on the last line of Table 3. Only the hardware
cost remains a drawback, as the models of Figures 8 and 9
must be implemented.

7 EVALUATION OF THE FRAMEWORK ON AN IN-
DUSTRIAL USE-CASE

In this section, we use a modified version of FP-TFA [13,
§VI] that implements the results from Sections 5 and 6
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Fig. 24. Simplified physical topology of the Volvo core TSN Network.
From [35].

TABLE 4
Traffic Profiles. Realistic Use-Case Based on the Values for Command

and Control Flows in [35, Page 13].

Name Payload size Period at source Deadline
S 64B 0.5ms 0.2ms
M1 92B 2ms 0.8ms
M2 120B 3.5ms 1.4ms
B 150B 5ms 2ms

to compute end-to-end delay bounds in a representative
industrial use-case that contains PREFs. FP-TFA has been
chosen because it can compute delay bounds for general
topologies, i.e. even for those with cyclic dependencies [13].

Network Description: We consider the Volvo core TSN
network [35]. Its physical topology is given in Fig. 24.
The network contains two redundant control units P1 and
P2 [35, Page 4]. Each of the four micro-controller units
(MCUs) acts as a gateway between the core TSN network
and the local networks running on legacy protocols. We
hence assume that the MCUs are legacy devices that support
only 100Mbps full-duplex links and cannot implement the
recent technologies of TSN or DetNet, such as PREOFs. We
assume that their applications cannot handle any duplicate.

Flow Description: We focus on the Command and Control
class and consider four different periodic traffic profiles
within the class. Their characteristics are based on [35,
Page 13] and listed in Table 4. For each traffic profile and
for each MCU, there exist a multicast flow that carries the
sensor data from the MCU to both P1 and P2 and a unicast
flow per control unit (2 in total) that carries the commands
from the control unit to the MCU (see Table 5).

To meet stringent loss-ratio requirements, flows are re-
dounded by using PREFs, whenever two alternative paths
can be found for a (source, destination) tuple. In total, the
network contains 48 flows, including 40 redounded flows,
16 of which are also multicast.

Service Description: As the class of interest is of high-
est priority, each CBQS offers to the aggregate a service

TABLE 5
Flow Path for i ∈ {1,2,3,4}, p ∈ {S,M1,M2,B}.

Name Source Dest. Redundancy

C_MCUi_P12_p MCUi P1, P2 For C_MCU3_P12_p [resp., C_MCU4_P12_p],
dest. P2 [resp., P1] is not protected

C_P1_MCUi_p P1 MCUi Except for C_P1_MCU1_p
C_P2_MCUi_p P2 MCUi Except for C_P2_MCU3_p
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Fig. 25. Comparison of the guaranteed end-to-end (ETE) latency in-
tervals (upper and lower bounds) for each flow and each destination,
obtained by using either the intuitive approach or the tight model.

rate equal to the capacity of the transmission link (either
100Mbps or 1Gbps). We also assume that the technological
latency within each output port is below 2µs, and we
neglect input-port and switching-fabric latencies.

Comparison of the Analytical Models: We first set
the load of the network at 5.2%. We compare the intuitive
approach from Sec. 2.1 with the tight model that relies on
Theorem 1. In Fig. 25, we provide the deterministic lower
and upper bounds of the latency of each flow for each of
its destinations. The delay upper-bounds are obtained by
using the fix-point version of FP-TFA [13, § VI.C], modified
for taking into account the effect of PREFs with either
the intuitive approach or the tight model. The exact best-
case and worst-case latencies for the flow are guaranteed
to be within the provided interval, thus the smaller the
guaranteed interval the better the model.

We observe that an analysis of the network by using the
tight model concludes that all flows meet their deadline,
whereas the same analysis that uses the intuitive approach
shows that four flows may violate their deadlines. The
delay bounds for all flows, including those that are not
redounded by PREFs, are improved with the tight model.
For example, the flow in a box in Fig. 25, from P2 to
MCU3, is not redounded, but the tight model still computes
a guaranteed delay interval tighter than with the intuitive
approach. Indeed, the flow shares the link SWA → SW3 and
SW3 → MCU3 with redounded flows, for which the burst
bounds obtained with the tight model are smaller. Hence,
the delay that this flow suffers in SWA and SW3 has a better
bound with the tight model than with the intuitive one.

Comparison of the Technological Solutions: Fig. 25
shows that, at low network load, the network edges with-
stand the peak rate an increased burstiness at the output of
the PEFs, even if they rely only on 100Mbps links.

We now consider the same network but we increase the
load up to 88% by reducing the period of each flow. We focus
on the four redounded flows from P2 to MCU1. Each of them
is processed by a PEF within SWB to eliminate the duplicates
coming from SW2 and SWA and each of them present a peak
rate and and increased burstiness after its PEF.

We evaluate the opportunity to shape the four flows with
their source profile before they compete with the four other
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Fig. 26. Comparison of the guaranteed ETE latency intervals with sev-
eral technological choices. Delay bounds without any REG are shown in
the middle. The bars on the left are the guaranteed intervals when the
flows are regulated after the PEF, but without any POF. When a POF is
additionally placed between the PEF and the REG, we obtain the results
on the right of the baseline.

flows coming from P1 in the output port of SWB. We can
either use four per-flow regulators (PFRs) (each processing
a unique flow), or we can use a unique interleaved regulator
(IR), because they all share the same reference point P2.

Fig. 26 focuses on flow C_P2_MCU1_S. The baseline
guaranteed delay interval (in the middle) is obtained from
the application of the tight model without any regulator. We
note that the flow is schedulable, but as the network load is
higher, its safety margin is reduced with respect to Fig. 25.

The dotted bars on the left of the baseline represent the
guaranteed delay intervals obtained when the flows are pro-
cessed, either with an IR (far-left), or with four independent
PFRs, but without using any POF. For the IR, no guarantee
can be obtained per Theorem 4. For the PFR, the flow remain
schedulable but its safety margin is drastically reduced by
the delay penalty of the PFR (Theorem 3).

The dashed bars on the right of the baseline represent
the guaranteed delay bounds when using the combination
POF+REG after the PEF, assuming that for each data unit,
at least one replicate is not lost. On the far-right, the delay
bounds with four per-flow POFs placed before the PFRs (as
in Fig. 11), and the other bar represents the delay bounds
with a unique POF for the aggregate before the IR (as
in Fig. 10). The shaping-for-free property holds in both
cases, thus their delay bounds are equal. They represent a
13% improvement with respect to the baseline. Indeed, the
regulators reduce the downstream burst, thus reducing the
worst-case delay in the low-capacity link SW1→MCU1.

8 CONCLUSION

9 CONCLUSION

We provide a toolbox of network-calculus results that
give theoretical foundations for the worst-case analysis of
DetNet PREOF (packet replication, elimination and ordering
functions) and TSN FRER (frame replication and elimination for
redundancy). The toolbox contains an output-arrival-curve
characterization of the packet-elimination function that is
tighter than any other variable-bit-rate or leaky-bucket ar-
rival curves. It also contains a quantification of the amount
of mis-ordering caused by the redundancy.

We further analyze the interactions between the packet-
elimination function, the packet-ordering function and traf-
fic regulators. We show that the latter can cancel the
burstiness increase caused by the redundancy. But when
traffic regulators are placed immediately after the packet-
elimination function, they do not enjoy the shaping-for-free
property: Per-flow regulators induce a delay penalty that we
upper-bound, whereas interleaved regulators (such as TSN
Asynchronous Traffic Shapers) induce unbounded latencies.
Shaping-for-free can be retrieved if the data units are re-
ordered after the elimination function and prior to shaping.

The users of TSN FRER and TSN asynchronous traffic
shaping (ATS) are invited to bear in mind the conflicting
interactions outlined in this paper, as no packet-ordering
function is available within TSN at the time of writing.

We finally apply our theoretical and practical results
on a representative industrial use-case. The latency bounds
obtained with the toolbox are significantly tighter than those
obtained with an intuitive approach. We also highlight the
end-to-end latency gain obtained on the use-case when
traffic regulators are placed after the redundant section with
a reordering function in between.
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APPENDIX A
DISCUSSION ON THE RELATIONSHIP BETWEEN OUR
SYSTEM MODEL AND THE TSN AND DETNET DOC-
UMENTS.
The system model proposed in Section 4 results from an
analysis of both the DetNet PREOFs [4] and the TSN
FRER [18] documents. The present appendix can be used
by the TSN and the DetNet communities for evaluating the
applicability of our results in the TSN and DetNet contexts.
The appendix highlights the similarities and the differences
between the terms, the notions and the assumptions used
in our system model with those that are used in the DetNet
and TSN documents.

The IETF DetNet documents focus on the network-layer
mechanisms whereas IEEE TSN documents focus on the
link-layer mechanisms. A notion can hence have different
terms depending on the considered layer. For example,
within DetNet, data units are encapsulated within packets
and a coherent sequence of them that originates also from
a single source is a DetNet flow [4, §2.1]. Within TSN, data
units are carried by frames, and a coherent sequence of them
that originates from the same source is a stream [18, §3]. In
the paper, we use the terms packets and flows.

A.1 Directed Acyclic Graphs (DAGs) versus Compound
and Member Flows.
When defining the redundancy that protects a flow, the
working groups of DetNet and TSN use the terms compound
and member flows. For example, DetNet PREOFs specifies
that, “A DetNet compound flow is a DetNet flow that has been
separated into multiple duplicate DetNet member flows for service
protection [. . . ]. Member flows are merged back into a single
DetNet compound flow [. . . ]” [4, §2.1]. Similarly, TSN FRER
indicates that, “A Compound Stream is a Stream composed of one
or more Member Streams linked together via Frame Replication
and Elimination for Reliability (FRER)” [18, §3].

These two adjectives are not used in our paper. Indeed,
the model of Section 4 is based on directed acyclic graphs
(DAGs) and on the knowledge of positions of the elimina-
tion points. This model is compatible with the compound
and member terms but is also more versatile. For example,
take the flow f defined by the graph in Figure 5 and by
the knowledge that F contains a PEF for f . If we focus on
destination G, we could say that the compound flow with

path A → B is separated into duplicate member flows with
paths B → C → F and B → D → F and that these
member flows are merged back into the compound flow for
path F → G. But the previous distinction between compound
and member flows cannot be applied for destination E.
Neither the DetNet documents nor the TSN documents
clarify that the compound/member distinction depends on
the destination that is considered. By focusing on DAGs
and by not using the two adjectives, we remove the above
ambiguity.

A.2 Replicates versus Duplicates
Neither [18] nor [4] provides a formal definition for repli-
cates and duplicates. The TSN FRER standard even use both
“eliminate duplicate packets” [18, §7.1.1] and “eliminates the
replicates” [18, §1.6]. However, both documents seem to
adhere to the following convention.
− Replicates are defined as identical copies of the same

packet (of the same piece of data).
− Duplicates are defined with respect to a given location

or for a given function (e.g., for a PEF): A packet is a
duplicate at a given location [resp., for a given function]
if an identical copy of itself (another replicate of the same
piece of data) has been observed previously at the location
[resp., by the function].

We re-use the same convention in our paper. The PEF is
hence a function that forwards the first replicate and drops
the duplicates, it eliminates the duplicates.

A.3 Considered Types of Failures
Within DetNet, PREOFs provide service protection that “aims
to mitigate or eliminate packet loss due to equipment failures,
including random media and/or memory faults.” [4, §3.2.2.].
Similarly, “FRER can substantially reduce the probability of
packet loss due to equipment failures” [18, §1.2].

In the paper, we consider only failures that cause packets
to be lost on the transmission links. As described in Sec-
tion 4.3, this can model various real-life failures that lose
packets but only if they do not affect the service provided to
the non-lost packets. For example, random media packet
losses fall within our model. Similarly, we can model a
device that shuts down: in this case, all its links lose all
packets. However, failures that cause a network element
to provide less service than its minimum-service contract
or that cause a source to generate more traffic than its
maximum-traffic contract are not considered in our model
but could be considered using tools from stochastic network
calculus (SNC)3.

A.4 Packet Replication Function (PRF) and Multicast
Mechanisms
In DetNet, “Flow replication [. . . ] can be performed by, for
example, techniques similar to ordinary multicast replication” [4,
§4.1.1]. In TSN, “no explicit Stream splitting function [. . . ] is
required. Frames in a single Compound Stream can be replicated
using the normal multicast mechanisms [. . . ]” [18, §8.1].

3. Y. Jiang and Y. Liu, Stochastic Network Calculus. Lon-
don: Springer-Verlag, 2008. https://www.springer.com/gp/book/
9781848001268.
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Our system model follows the same rationale. The
packet-replication function (PRF) is implemented by the
switching fabric that already handles the duplication of
packets for multicast flows. The rationale also motivates
the choice of DAGs for modeling flow paths. Indeed, DAGs
represent a natural extension of multicast trees.

A.5 Packet Ordering Function (POF) and its Position
with Respect to the PEF

In [4, §2.1], a packet-ordering function (POF) is defined as
a function that “reorders packets within a DetNet flow that are
received out of order”. In TSN, there exists no function with
similar goals as of March 2022. In fact, in-order-delivery was
a goal in an early draft version of the FRER standard, but it
was latter removed due to hardware considerations4.

In our model, we extend the definition of the DetNet
POF and allow the function to consider an aggregate of
flows. As we show in Section 6, this aggregate reordering is
necessary for obtaining delay bounds when interleaved reg-
ulators (IRs) are placed after the elimination function, and
per-flow reordering is not sufficient to guarantee bounded
latencies when an IR is placed after the PEF.

In [4, §3.2.2.2], the DetNet working group states that
the “order in which a DetNet node applies PEF [and] POF
[. . . ] to a DetNet flow is left open for implementations”. This is
however contradicted by both [4, §3.2.2.1.] and [18, §7.1.1.m]
where packet mis-ordering is seen as a side-effect of the
PEF, for which a POF is a remedy when placed after the
PEF. Additionally, the ongoing draft for the POF states that,
“the [POF] algorithm assumes that a Packet Elimination Function
(PEF) is performed on the incoming packets before they are handed
to the POF function. Hence, the sequence of incoming packets can
be out of order or incomplete but cannot contain duplicate packets”
[29, §4.1]. In our model, we follow the same assumption.

The internal algorithm of the packet-ordering func-
tion (POF) also relies on a timeout parameter, that is de-
noted by T in our paper and in [28] and that is called
“POFMaxDelay” in [29]. As its name suggest, it corresponds
to the maximum delay that a data unit can spend in the
POF, even if the previously-expected data unit has not been
received so far. The timeout prevents the POF from holding
forever a data unit if the previously-expected data unit has
been lost. To prevent spurious transmission of out-of-order
data units, the timeout T cannot take any value. In our
paper, we always assume that T follows the recommenda-
tions of [28, §IV.B], which are also consistent with [29, §4.3].
This configuration depends on the value of the reordering
late time offset (RTO) at the location of the POF and our
Theorem 2 provides this value for when the POF is placed
after a PEF.

The implications of an incomplete sequence of data units
for a POF are further analyzed in [28]. In our Theorem 5, we
reuse the results from [28] and apply them in the case of a
POF placed just after a PEF.

4. See Comment 29 at https://www.ieee802.org/1/files/private/
cb-drafts/d0/802-1CB-d0-3-dis.pdf. For the credentials, consult https:
//www.ietf.org/proceedings/52/slides/bridge-0/tsld003.htm.

A.6 Traffic Regulators (REGs) and their Position with
Respect to the Other Functions

Within TSN, asynchronous traffic shaping (ATS) [36] is a
building block that implements the interleaved regulator
(IR) model within the TSN bridges. In ATS, each IR (called
an ATS Scheduler Group in [36]) is in the form REGn(F , o)
where F is the set of flows that enter n from p, p is a
direct parent of n, and o is a direct parent of p. As such,
each ATS Scheduler Group can only cancel the burstiness
increase within the direct upstream parent p. Our model
authorizes more flexibility when defining the aggregate F
and the reference o. Within our model, an IR can cancel the
burstiness increase caused by any system made of several
network elements.

For example, in the industrial application in Section 7,
the IR placed in SWB cancel the burstiness increase caused
by the entire system that is located between P2 and SWB
(Figure 24) and that includes a packet-replication function
(PRF), two redundant paths with several devices for each,
and a packet-elimination function (PEF).

In the technical documents, there exists an uncertainty
on the relative order of the REG and the other PREOFs
functions within a device (especially with respect to PEF).
The TSN implementation of PEF (called FRER, see Table 1)
is defined in [18] whereas the TSN implementation of
regulators (ATS) is defined in [36]. Their pipeline models,
[18, Figure 8.2] and [36, Figure 8.13], place their respective
mechanisms exactly at the same position in the forward-
ing process (between IEEE802.1Q 8.6.5 Flow metering and
IEEE802.1Q 8.6.6 Queuing frames). As of August 2021, no
information has been provided on their relative order.

In our paper, traffic regulators are of particular interest
when they are placed after the PEFs, because they can shape
the traffic back to the profile it had at the input of the
redundant section (second section in Figure 1). Analyzing
the interactions between PREOFs and traffic regulators in
this configuration is one of our major objectives in the paper,
while placing a regulator before the PEF is equivalent to
shaping the traffic within a sub-path of a multicast flow, a
situation widely analyzed [11]–[13]. If regulators are placed
before the PEF, then their effects on the arrival curve of the
flow at the input of the PEF, αPEFin , can be computed. Then
Item 1/ of Theorem 1 can be applied to obtain the arrival
curve of the flow at the output of the PEF, as affected by the
regulators placed before.

Within DetNet, traffic shaping is also mentioned as one
of the mechanisms for providing bounded delivery [4, §4.5].
The DetNet working group refers to the traffic shapers of
DiffServ [19]. Thus, the traffic shapers that are mentioned
in DetNet follow the per-flow regulator (PFR) model, but
DetNet also indicates that the “actual queuing and shaping
mechanisms are typically provided by the underlying subnet” [4,
§4.1.1.]. There exists the same uncertainty as in TSN on the
relative order of the traffic shaper with the other functions
of DetNet.
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Sf
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Fig. 27. Notations for Appendix B. Flow f with input arrival curve α
enters system S and exits with an output arrival curve α∗.

APPENDIX B
WHAT NETWORK CALCULUS RESULTS REMAIN
VALID FOR NON-LOSSLESS NON-FIFO SYSTEMS ?
A main aspect of the network-calculus framework is the
capacity to combine its results in order to analyze a specific
property in a network. Assume for example that a flow f
goes through a lossless system S (Figure 27) and assume
that the delay of each bit of f through S is upper-bounded
by D. Furthermore, note α the arrival curve of f at the input
of S . Then, if we are interested in an arrival curve α∗ of f
at the output of S , we can use Proposition 1.3.7 of [9] to
obtain that δD is a service curve of S for f and combine it
with Theorem 1.4.3 of [9] to finally obtain α∗ = α� δD is an
arrival curve of f at the output of the system.

Clearly, if the system S can lose packets (is not lossless)
but continues to provide the guaranteed delay bound D
to the non-lost bits, then we expect the output traffic (that
contains only the bits of non-lost packets) to be also α∗-
constrained. Yet, [9, Prop. 1.3.7] applies only to lossless
systems, thus making it impossible to reuse the same com-
bination of results.

In this section, we provide a set of network-calculus re-
sults that remain valid with lossless and non-FIFO systems.
In the literature, Ciucu et al. introduce5 the concept of loss
processes to model non-lossless but FIFO systems using the
stochastic network calculus (SNC) framework. They focus
on the service curves and on the concatenation property
of services curves [9, Thm. 1.4.6], whereas we focus on
obtaining an output arrival curve in the framework of deter-
ministic network calculus (DNC). In the DNC framework,
Mohammadpour and Le Boudec obtain an output arrival
curve for a flow at the output of a non-FIFO system, when
the jitter of each packet is constrained [28, Lemma 1].

Our following result can be distinguished from the pre-
vious work as it applies to any systems that do not need to
be FIFO or lossless and in which the delay of each non-lost
bit is constrained in a bounded interval.

Proposition 3 (Arrival curve of a flow at the output of a
system with bounded delay). Consider a flow f entering
a system S . Assume that each bit of f that exits S suffers a
delay within S that is bounded within [d,D]. Finally assume
that α is an arrival curve for f at the input of S . S does not
need to be FIFO or lossless.

Then, α∗ = α � δD−d is an arrival curve for f at the
output of S .

Proof. Denote byRf the cumulative process of f at the input
of S (Figure 27). We decompose Rf = Ra +Rb, with Ra the

5. F. Ciucu, J. Schmitt, and H. Wang, “On expressing networks with
flow transformations in convolution-form,” in 2011 Proceedings IEEE
INFOCOM, pp. 1979–1987, Apr. 2011.

cumulative process, at the input, for the stream of bits of f
that are not lost inside S andRb = Rf−Ra.Ra(t) is defined
as the number of bits of f that eventually exit S (that are not
lost inside it) and that are observed at the input of S during
the interval [0, t]. Note that the cumulative functionsRa and
Rb are unknown in general: When a bit is observed at the
input of S , the real-life observer cannot infer whether it will
be lost within S or not. However, we can still work on the
unknown functions Ra and Rb.

We denote by R∗a [resp., R∗b ] the output cumulative
function related to the input process Ra [resp., Rb]. Hence,
R∗a(t) is defined as the number of bits of f that exit S (are
not lost inside it) and that are seen at the output of S during
the interval [0, t].

All cumulative functions are positive, wide-sense in-
creasing and defined for t ≥ 0 [9, §1.1.1]. We extend
their definition domain by using the convention that all
cumulative functions equal zero in R−: ∀t ≤ 0, Ra(t) =
Rb(t) = R∗a(t) = R∗b(t) = 0.

As α is an arrival curve for f at the input of S , the input
process Rf is α-constrained [9, Definition 1.2.1], thus for all
s ≤ t,

Rf (t)−Rf (s) ≤ α(t− s)
Ra(t) +Rb(t)−Ra(s) +Rb(s) ≤ α(t− s)

Ra(t)−Ra(s) ≤ α(t− s) +Rb(s)−Rb(t)

As s ≤ t, and Rb is wide-sense increasing, Rb(s)−Rb(t) ≤ 0
and Ra(t) − Ra(s) ≤ α(t − s) which shows that the
cumulative process Ra is also α-constrained.

By definition of Rb and R∗b , ∀t, R∗b(t) = 0 and

R∗a(t) = R∗f (t) (6)

The system S is not FIFO but the non-lost bits have a
maximum delay of D. Hence, all the bits of Ra that have
entered S at t have exited S by t+D,

R∗a(t+D) ≥ Ra(t) (7)

Equation (7) is valid for t < 0 because Ra(t) = 0 for t < 0
and R∗a is a positive function. Similarly, the minimum delay
of each data unit within S is d. As such, all the data units
that have exited S by t+ d must have entered S before t,

R∗a(t+ d) ≤ Ra(t) (8)

Equation (8) is again valid for t < 0: Ra(t) = 0 but R∗a(t+d)
also equals zero because the minimum time that a bit needs
to reach the output is d.

Then, ∀t ≥ s,

R∗a(t)−R∗a(s)

≤ Ra(t− d)−Ra(s−D) . (7) and (8)
≤ α(t− s+ (D − d)) . Ra is α-constrained
≤ (α� δD−d)(t− s)

Combining the above result with (6) shows, ∀t ≥ s

R∗f (t)−R∗f (s) ≤ (α� δD−d)(t− s) (9)

which proves that α∗ = α � δD−d is an arrival curve for f
at the output of S .

For a system with a constant delay or without any delay,
Proposition 3 is simplified as follows.
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Corollary 4 (A system with constant delay keeps the arrival
curves). If S is a system in which the non-lost bits of any
flow have a constant delay, then an arrival curve for a flow
or aggregate of flows at the input of S is also an arrival
curve for the same flow or aggregate of flows at the output
of S .

Proof. For the aggregate, we simply need to consider the
whole aggregate as a unique flow when applying Proposi-
tion 3.

APPENDIX C
PROOFS

C.1 Proof of Theorem 1

Proof of Theorem 1. Consider a vertex n and a flow f such
that n contains a PEF for f , noted PEFn(f). We first note
that flow f is packetized at both the input and the output of
PEFn(f).

Proof of Item 1/ As per the model in Section 4.3, PEFn(f)
is a network element that can lose packets but does not have
any delay for the forwarded packets. As a consequence,
it does not have any delay for the forwarded bits either
(both its input and its output are packetized). Applying
Corollary 4 proves that an arrival curve for f at the input of
the PEF, αf,PEFin , is also an arrival curve for f at the output
of the PEF.

Item 2/ Consider a diamond ancestor a of n. The ob-
servation point a∗ is located at the output of the input port
within a. As such, flow f is packetized at the observation
point a∗. As such, a bound on the per-bit delay between a∗

and either the PEF’s input or the PEF’s output PEF∗ is also a
per-packet delay bound on the delay between the same two
observation points, and vice versa.

Denote by PG(f)a,n the set of all possible paths from a to
n in G(f) and consider a data unit m of f such that m is
not lost for n. By definition of the diamond ancestor, a is not
an EP-vertex for f , thus the data unit m is observed exactly
once at a.

Denote by {Pmi }i∈I(m) the set of packets containing m
that reach PEFn(f), with I(m) a set to index them. I(m) is
not empty because m is not lost for n (at least one packet
containing m reaches n). Furthermore, I(m) is a finite set
because G(f) is finite and acyclic: m is replicated a finite
number of times.

For i in I(m), call ρi the path within G(f) that the
packet Pmi took from the source of f to n. By definition of a
diamond ancestor of n, this path crosses a and by definition
of PG(f)a,n , there exists a path pi ∈ PG(f)a,n such that packet Pmi
took path pi between a and n (pi is a sub-path of ρi).

Denote by dmi the delay of packet Pmi between the
output of a and the input of PEFn(f). By definition of the
notations Da→n

f and da→nf used in Theorem 1,

da→nf ≤ dmi ≤ Da→n
f (10)

The values da→nf andDa→n
f can be seen as the lower and

upper-bound of the non-lost data units through the system
located between the output of a and the input of PEFn(f).
This system is represented with a cloud in Figure 28.

a
αf,a∗

[da→nf , Da→n
f ] (Eq. 10)

P
E
F
n
(f

)

S

[da→nf , Da→n
f ] (Eq. 12)

Fig. 28. Notations for Appendix C.1: System from diamond ancestor a
to the PEF, focusing on the non-lost data units.

The data unit m exits PEFn(f) as soon as one of the the
packets {Pmi }i∈I(m) reaches the packet-elimination func-
tion. If we denote by dma→PEF∗ the delay of the data unit
m from the output of a to the output of the PEF, we have,
∀m ∈ f , m not lost for n,

∃i ∈ I(m), dma→PEF∗ = dmi (11)

Combining Equations (10) and (11) gives

∀m ∈ f,m not lost for n, da→nf ≤ dma∗→PEF∗ ≤ Da→n
f

(12)
Equation (12) proves that any non-lost data units of f

for n suffer through the system S in Figure 28 a delay
bounded in [da→nf , Da→n

f ]. As both a∗ and the output of
the PEF are packetized, this also proves that each bit of f
that is not lost within S (neither in the cloud of Figure 28
nor in the PEF) suffers a delay through S that is bounded
within [da→nf , Da→n

f ]. We apply Proposition 3 and obtain
that αf,a∗ � δ(Da→n

f )−(da→n
f ) is an arrival curve for f at the

output of the PEF.

C.2 Proof of Corollary 1
Proof of Corollary 1. The replication is performed by the
switching fabric, both its input and output are hence pack-
etized. The same remark applies for the PEF thus we con-
clude that both the input and the output of each system
Si is also packetized. Therefore, the per-bit delay of flow f
through Si is also bounded by [di, Di].

For each i ∈ J1, NK, the application of Proposition 3
gives the arrival curve for f at the output of Si

∀ ∈ J1, NK, αf,S∗i = αf � δDi−d1

We then obtain αf,PEFin

αf,PEFin =
∑

i∈J1,nK

αf,S∗i

=
∑

i∈J1,nK

αf � δDi−d1

We then apply Equation (1) with the ancestor a being
the input of the replication function in Figure 13. A lower
delay bound for f from the ancestor a to the input of the
PEF along any possible paths (i.e. through any Si) is

da→nf = min{di; i ∈ J1, NK}

Similarly,
Da→n
f = max{Di; i ∈ J1, NK}
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and (1) can be written

αa→nf = αf,a∗ � δDa→n
f −da→n

f

= αf � δmaxiDi−mini di

We apply Theorem 1: αf,PEF∗ = αf,PEFin ⊗αa→nf is an arrival
curve for f at the output of the PEF. Replacing with the
above expressions for αf,PEFin and αa→nf gives Equation (3)
of Corollary 1.

C.3 Proof of Proposition 1
Proof of Proposition 1. Take a leaky-bucket arrival curve γr,b.
And [d1, D1], [d2, D2] two intervals of R+.

We first prove the result when d2 −D1 ≥ b/r, we prove
the other situation afterwards.

C.3.1 Case d2 −D1 ≥ b/r:
Applying Corollary 1 with N = 2 systems S1, S2 with
bounded intervals [d1, D1] and [d2, D2] gives that

α∗ =

 ∑
i∈J1,2K

γr,b � δDi−di

⊗ (γr,b � δD2−d1)

=
(
γr,b+r(D1−d1) + γr,b+r(D2−d1)

)
⊗ γr,b+r(D2−d1)

= γ2r,2b+r(D1−d1+D2−d2) ⊗ γr,b+r(D2−d1)

(13)

is an arrival curve for f after the PEF in Figure 13.
In the following, we exhibit a trajectory with a γr,b-

constrained source for f and no minimal packet length. We
exhibit also two systems S1, S2, in which the delay of the
non-lost data-units is in the intervals [d1, D1] and [d2, D2].
The proof operates in several steps, as follows:

C.3.1.1 Definition of several constants used in the
proof: We define

χ1 ,

⌈
r(D1 − d1)

b

⌉
and χ2 ,

⌈
r(D2 − d2)

b

⌉
(14)

(Note that χ1 ≥ 1 and χ2 ≥ 1)
Last, we define

ψ =

⌈
r(d2 −D1)− b

b

⌉
(15)

and we also have ψ ≥ 1.
C.3.1.2 Description of the traffic generation at the

source: For the sake of clarity, we classify the data-units
generated by the source into four categories: I,B, S and X .
The category of a data-unit defines the role that the data-
unit has in the trajectory. Each of the three first categories
(I,B, S) has two sub-categories that we distinguish by us-
ing a superscript (e.g., I1 and I2). This sub-category notion
is used in order to distinguish the role of every system (S1

or S2) in the trajectory.
Subcategories do not infer the order with which data-

units are generated. The notions of categories and subcate-
gories are only used in the proof, they are not related to any
physical property of the packets (neither to their length nor
to any field in their header).

Category I : The source generates two “initiator” data-
units: I2 [resp., I1] at absolute time 0 [resp., (D2 −D1)], of
length b (see Table 6). Figure 29 shows the timeline of the
data-units I out of the source.

time

size

0

I2

D
2
−
D

1

I1
b

Fig. 29. Source output in the trajectory achieving the tightness of
Corollary 1. Two ”initiator” data units are sent at 0 and at D2 −D1.

TABLE 6
Generation of the Data-Units of Category I in the Trajectory that

Achieves the Tightness of Corollary 1.

Data unit m Size, size(m) Generation time, G(m)
I2 b 0
I1 b D2 −D1

Note: The role of the two data-units of category I is to
initiate the backlog period. In the next parts of the proof, we
create a situation where I1 and I2 exit the PEF of Figure 13
at the same time, creating the 2b part of the burst in the term
γ2r,2b+r(D1−d1+D2−d2) of (13).

Category B: In addition to the data-units of category I ,
the source generates χ2 data-units of subcategory B2 and
χ1 data-units of subcategory B1, as described in Table 7.
A possible output of the source when combining categories
I and B is shown in Figure 30. In the proposed situation,
we have χ1 = 1 (i.e., r(D1 − d1) ≤ b). Then the interval
J1, χ1 − 1K in Table 7 is empty and category B1 contains a
unique data-unit B1

1 = B1
χ1 of size r(D1 − d1) and sent at

time (D2 − D1) + (D1 − d1) = D2 − d1. In Figure 30, χ2

equals 2, and category B2 is made of two data-units: B2
1 , of

size b, released at time b/r; and B2
2 , of size r(D2 − d2) − b,

released at time (D2 − d2).
Note that for any value of χ1, χ2, by Table 7,

∀j ∈ {1, 2}
∑

k∈J1,χjK

size(Bjk) = r(Dj − dj) (16)

TABLE 7
Generation of the Data-Units of Category B in the Trajectory that

Achieves the Tightness of Corollary 1.

Data unit m Size, size(m) Generation time, G(m)

∀k ∈ J1, χ2 − 1K, B2
k b k b

r
B2
χ2 r(D2 − d2)− (χ2 − 1)b (D2 − d2)

∀k ∈ J1, χ1 − 1K, B1
k b (D2 −D1) + k b

r
B1
χ1 r(D1 − d1)− (χ1 − 1)b (D2 −D1) + (D1 − d1)

time

size size

0

I2

D
2
−
D

1

I1

b/
r

B2
1

D
2
−
d
2

B2
2

D
2
−
d
1

B1
1

b

r(D1 − d1)
r(D2 − d2)− b

Fig. 30. Example of the source output in the trajectory achieving the
tightness, focusing on categories I and B.
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TABLE 8
Generation of the Data-Units of Category S in the Trajectory that

Achieves the Tightness of Corollary 1.

Data unit m Size, size(m) Generation time, G(m)

∀k ∈ J1, ψ − 1K, S2
k b (D2 − d2) + k b

r
S2
ψ r(d2 −D1)− ψb (D2 −D1 − b

r
)

∀k ∈ J1, ψ − 1K, S1
k b (D2 − d1) + k b

r
S1
ψ r(d2 −D1)− ψb (D2 + d2)− (D1 + d1)− b

r

time

size

0

I2

D
2
−
D

1

I1

b/
r

B2
1

D
2
−
d
2

B2
2

D
2
−
d
1

B1
1

D
2
−
d
2

+
b/
r

S2
1

D
2
−
D

1
−
b/
r

S2
2

D
2
−
d
1

+
b/
r

S1
1

(D
2

+
d
2
)
−

(D
1

+
d
1
)
−
b/
r

S1
2

b

r(d2 −D1)− 2b

I2 B2 S2 I1 B1 S1

Fig. 31. Source output, with the three categories I, B and S of data-units

Note: The role of the data-units of category B is to participate
in the burst term of γ2r,2b+r(D1−d1+D2−d2) in (13). In the next
parts of the proof, we create a situation where all data-units
of category B (both subcategories B1 and B2) are released at
the same time, simultaneously with data-units I1 and I2. This
give the part r(D1 − d1 + D2 − d2) in the burst term of
γ2r,2b+r(D1−d1+D2−d2).

We now prove that data-units of subcategory B1 [resp.,
B2] are generated after data-units of subcategory I1 [resp.,
I2] and in the order of their lower-script index.
• If χ2 = 1, then the first data-unit ofB2 is sent atD2−d2

and D2 − d2 ≥ 0, so data-unit of B2 is generated after the
data-unit of I2.
• If χ2 ≥ 1, then the first data-unit of B2 is sent at

b/r ≥ 0, so data-units of B2 are generated after the data-
units of I2. Also, the data-units (B2

k)κ∈J1,χ2K are generated
in the same order as their index: this is clear for indexes up
to χ2 − 1. For the order between B2

χ2−1 and B2
χ2 , we note

that
⌈
r(D2−d2)

b

⌉
b
r −

b
r ≤ D2 − d2 by property of the ceiling

function.
• If χ1 = 1, then the first data-unit of B1 is sent at (D2−

d1) thus after the data-unit of I1 (as D1 ≥ d1).
• If χ1 ≥ 1, then by using the same reasoning for B2, we

obtain that data-units of B1 are generated after the initiator
I1 and they are released in the order of their lower-script
index.

Category S: In addition to the data-units of categories I
and B, the source generates ψ data-units of subcategory S2

and ψ data-units of subcategory S1, as described in Table 8.
A possible output of the source when adding category S to
Figure 30 is shown in Figure 31. In the proposed situation,
we have ψ = 2 and subcategories S1 and S2 are both made
of two data-units: S1

1 [resp., S2
1 ], of size b, released b

r after
the last data-unit of B1 [resp., B2] and S1

2 [resp., S2
2 ], of size

r(d2−D1)−2b, released at (D2 +d2)− (D1 +d1)− b
r [resp.,

D2 −D1 − b
r ].

TABLE 9
Generation of the Data-units of Category X in the Trajectory that

Achieves the Tightness of Corollary 1.

Data unit m Size, size(m) Generation time, G(m)

∀k ∈ N∗, Xk b (D2 + d2)− (D1 + d1) + (k − 1) b
r

Note that for any value of ψ, by Table 8,

∀j ∈ {1, 2}
∑

k∈J1,ψK

size(Sjk) = r(d2 −D1)− b (17)

Note: The role of the data-units of category S is to participate
in the peak-rate term of γ2r,2b+r(D1−d1+D2−d2) in (13). The
output traffic should maintain the peak rate for a sufficient
duration so that the obtained cumulative output intersects with
the curve γr,b+r(D2−d1). In the next parts of the proof, we create
a situation where each data unit of subcategory S1 is released at
the same time as its peer of subcategory S2. This creates a peak
rate 2r for a duration of at least d2 − D1 − b/r. The resulting
cumulative output intersects the curve γr,b+r(D2−d1).

We now check the order of the data data units of category
S.
• If ψ = 1, then the first data-unit of S2 is sent at D2 −

D1− b/r, whereas the last data-unit of B2 was sent at D2−
d2. By assumption, d2 − D1 ≥ b/r, so D2 − D1 − b/r ≥
D2 − d2 and the first data-unit of S2 is sent after the last
data-unit of B2.
• If ψ ≥ 1, then the first data-unit of S2 is sent b/r after

the last data-unit of B2. Also, the data-units (S2
k)κ∈J1,ψK are

generated in the same order as their index: this is clear for
indexes up to ψ − 1. For the order between S2

ψ−1 and S2
ψ ,

we note that (ψ − 1) br ≤ (d2 −D1)− b
r by properties of the

ceiling function and so (D2− d2) + (ψ− 1) br ≤ (D2− d2) +
(d2 −D1)− b

r , i.e., D2 − d2 + (ψ − 1) br ≤ D2 −D1 − b
r , i.e,

S2
ψ−1 is sent before S2

ψ

We then apply the same principles for S1. We thus prove
that data-units of subcategory S1 [resp., S2] are generated
after data-units of subcategory B1 [resp., B2] and in the
order of their index. We also observe that the last data-unit
of subcategory S2 is sent at D2 −D1 − b

r , whereas the data-
unit of subcategory I1 is sent atD2−D1, hence data-units of
subcategory S2 are sent before the data-unit of subcategory
I1.

Category X : After the data-units of subcategory S1, the
source generates for eternity data-units (Xn)n∈N∗ of size b
with a period b/r (see Table 9). The first one of these data-
units is sent b/r after the last data-unit of S1. Figure 32
presents the output of the source with all four categories.

Note: The role of category X is to generate the sustained rate
term in the curve γr,b+r(D2−d1) in (13).

C.3.1.3 Properties of the traffic generation at the
source: Now that we have described the profile of the traffic
generated by the source, we can prove that the generation is
γr,b-compliant. This is done with the following lemmas.

Lemma 1 (Size of the data-units). For any data-unit P
described in Paragraph C.3.1.2, 0 ≤ size(P ) ≤ b

Proof of Lemma 1. We focus on certain data-units.
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I2 B2 S2 I1 B1 S1 X

Fig. 32. Source output, with the four categories of data units: I, B, S and
X of data-units, in the trajectory achieving the tightness of Corollary 1.

• B2
χ2 : By property of the ceiling function:

r(D2 − d2)

b
≤ χ2 ≤ r(D2 − d2)

b
+ 1

r(D2 − d2)− b ≤ (χ2 − 1)b ≤ r(D2 − d2) . b > 0

−r(D2 − d2) + b ≥ −(χ2 − 1)b ≥ −r(D2 − d2)

b ≥ r(D2 − d2)− (χ2 − 1)b ≥ 0

• B1
χ1 : same idea

• S1
ψ and S2

ψ (they have the same size): By property of
the ceiling function:

r

b
(d2 −D1)− 1 ≤ ψ ≤ r

b
(d2 −D1)

−r(d2 −D1) + b ≥ −ψb ≥ −r(d2 −D1) . b > 0

b ≥ r(d2 −D1)− ψb ≥ 0

All the other data-units have the same size, equal to the
burst b.

Lemma 2 (Minimum time distance between two successive
data-units). Consider two successive data-unitsm,m′ in the
traffic described in Paragraph C.3.1.2, i.e.,m′ is the first data-
unit sent after m. Note G(m) and G(m′) the time at which
they are generated.

Then G(m′)− G(m) ≥ size(m′)
r

Proof of Lemma 2. We simply describe all the possible com-
binations:
• Case m = I2 and m′ = B2

1 :
We have G(m) = 0 (see Table 6). If χ2 = 1, then G(m′)−

G(m) = (D2 − d2), size(m′) = r(D2 − d2) (see Table 7)
and the result holds. If χ2 ≥ 2, then G(m′) − G(m) = b/r,
size(m′) = b and the result holds.
• Case m,m′ ∈ B2 (when χ2 ≥ 2):
There exists k ∈ J1, χ2 − 1 K such that m = B2

k and
m′ = B2

k+1. If k ≤ χ2 − 2, then G(m′) − G(m) = b/r,
size(m′) = b and the result holds. If k = χ2 − 1, then:

G(m′)− G(m) = (D2 − d2)− k b
r

= (D2 − d2)− (χ2 − 1)
b

r
= r · size(m′)

• Case m = B2
χ2 and m′ = S2

1 :

We have G(m) = D2 − d2 (Table 7). If ψ = 1, then m′ =
S2
ψ and

G(m′)− G(m) = D2 −D1 −
b

r
− (D2 − d2)

= d2 −D1 −
b

r

=
r(d2 −D1)− ψb

r
= size(m′)/r

If ψ ≥ 2, then G(m′)− G(m) = b/r (see Tables 7 and 8) and
size(m′) = b so the result holds.
• Case m,m′ ∈ S2 (when ψ ≥ 2):
There exists k ∈ J1, ψ − 1K such that m = S2

k and m′ =
S2
k+1. If k ≤ ψ−2, then G(m′)−G(m) = b/r and size(m′) =
b so the result holds. If k = ψ − 1, then

G(m′)− G(m) = d2 −D1 − ψ
b

r
= size(S2

ψ)/r = size(m′)/r

• Case m = S2
ψ and m′ = I1:

Then we have G(m) = D2−D1− b
r (Table 8) and G(m′) =

(D2 −D1) (Table 6). So G(m′)− G(m) = b/r = size(m′)/r.
• Case m = I1 and m′ ∈ B1:
We have G(m) = (D2 − D1) (see Table 6). If χ1 = 1,

then G(m′)−G(m) = (D1−d1), size(m′) = r(D1−d1) (see
Table 7) and the result holds. If χ1 ≥ 2, then G(m′)−G(m) =
b/r, size(m′) = b and the result holds also.
• Case m,m′ ∈ B1 (when χ1 ≥ 2):
There exists k ∈ J1, χ1 − 1 K such that m = B1

k and
m′ = B1

k+1. If k ≤ χ1 − 2, then G(m′) − G(m) = b/r,
size(m′) = b and the result holds. If k = χ1 − 1, then

G(m′)− G(m) = (D2 −D1) + (D1 − d1)− (D2 −D1)− k b
r

= (D1 − d1)− (χ1 − 1)
b

r
= r · size(m′)

• Case m = B1
χ1 and m′ = S1

1 :
We have G(m) = (D2 − d1) (Table 7). If ψ = 1, then

m′ = S1
ψ and

G(m′)− G(m) = D2 + d2 −D1 − d1 − b/r −D2 + d1

= d2 −D1 − b/r
= size(m′)/r

If ψ ≥ 2, then G(m′)− G(m) = b/r (see Tables 7 and 8) and
size(m′) = b so the result holds.
• Case m,m′ ∈ S1 (when ψ ≥ 2):
There exists k ∈ J1, ψ − 1K such that m = S1

k and m′ =
S1
k+1. If k ≤ ψ−2, then G(m′)−G(m) = b/r and size(m′) =
b so the result holds. If k = ψ − 1, then

G(m′)− G(m) = d2 −D1 − ψb/r
= size(m′)/r

• Case m ∈ S1, m′ ∈ X : clear (Table 9)
• Case m,m′ ∈ X : clear as well (Table 9)
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Lemma 3 (The source described in Paragraph C.3.1.2 com-
plies with the arrival curve γr,b). The traffic generation
described in Paragraph C.3.1.2 is γr,b-constrained.

Proof of Lemma 3. Consider any set of n consecutive data-
units generated by the source (Pv)v∈J1,nK. Then

G(Pn)− G(P1) ≥
∑

v∈J1,n−1K

G(Pv+1)− G(Pv)

≥
∑

v∈J1,n−1K

size(Pv+1)

r
. Lemma 2

r(G(Pn)− G(P1)) + b ≥
∑

v∈J1,n−1K

size(Pv+1) + b

≥
∑

v∈J2,nK

size(Pv) + b

Applying Lemma 2, size(P1) ≤ b, so we obtain

r(G(Pn)− G(P1)) + b ≥
∑

v∈J1,nK

size(Pv) (18)

Equation (18) is the max-plus representation of a packetized
flow constrained by an arrival curve γr,b [9, §3].

C.3.1.4 Description of the systems S1, S2: For a
data unit m, we note E1(m) [resp., E2(m)] the absolute
time at which the packet transporting m through S1 [resp.,
through S2], exits S1 [resp., exits S2]. For j ∈ {1, 2}, we
note Ej(m) = +∞ if and only if the packet transporting
data unit m through Sj is lost by system Sj . Systems S1 and
S2 release the packets generated by the source at the time
instants shown in Table 10.

Remark: We chose a system such that any packet transport-
ing a data unit of category I2, B2 or S2 is lost within S1

(E1(m) = +∞) and any packet transporting a data unit of
category I1, B1, S1 or X is lost within S2 (E2(m) = +∞).
This scheme keeps the proof simple but note that a similar proof
could be obtained assuming S2 is lossless. In that case, we would
only need to make sure that, for m in category I1, B1, S1 or X ,
the packet transporting m through S2 exits S2 after the packet
transporting m through S1 exits S1, i.e., E2(m) ≥ E1(m) for
any m.

As an illustration, Figure 33 shows the obtained cumu-
lative function at the output of the PEF when applying the
exit time instants of Table 10 on the example of Figure 32.
Dashed boxes represent values of interest that are further
detailed in Paragraph C.3.1.6. We also plot on top of it the
arrival curve at the output of the PEF, obtained in (13).
In the following paragraphs, we prove that there exists no
better VBR-arrival curve than this one for the shown output
cumulative function.

C.3.1.5 Properties of the systems S1, S2: We now
show the following properties of the above-described sys-
tems S1, S2.

Lemma 4 (The delay bounds through S1, S2). The delay of
any non-lost packet through S1 is bounded between d1 and
D1. The delay of any non-lost packet through S2 is bounded
between d2 and D2.

Proof of Lemma 4. From Table 10, the result is clear for pack-
ets transporting data-units of categories I, S and X

time

data

D
2

I2

B2
1

B2
2

I1

B1
1

2b
+r(D1 − d1)
+r(D2 − d2)

S2
1

S1
1

2r(d2 −D1)
+r(D1 − d1)
+r(D2 − d2)

D
2

+
b/
r

S2
2

S1
2

D
2

+
d
2
−
D

1
−
b/
r

X1

D
2

+
d
2
−
D

1

X2

D
2

+
d
2
−
D

1
+
b/
r

α
∗ from (13)

Fig. 33. Dashed blue: Cumulative function R∗ at the output of the
PEF, from the example trajectory of Figure 32. Dashed boxes: Values of
interest of the cumulative function, further detailed in Paragraph C.3.1.6.
Red dashdotted: Arrival curve obtained from Corollary 1 and recalled in
Equation (13).

We prove it for packets transporting data-units of cate-
gory B:

Through S1: for m a data unit of category B2, the packet
transporting m through S1 is lost. For m a data unit of
category B1, the packet transporting m through S1 verifies

G(B1
χ1) ≥ G(m) ≥ G(I1)

because data units of B1 are sent after I1 and before B1
χ1 .

D2 − (D2 − d1) ≤ E1(m)− G(m) ≤ D2 − (D2 −D1) (19)

per Table 10. Equation (19) proves that any packet transport-
ing a data unit of type B1 through S1 has a delay through
S1 bounded in [d1, D1].

Through S2: for m a data unit of category B1, the packet
transporting m through S2 is lost. For m a data unit of
category B2, the packet transporting m through S2 verifies

G(B2
χ2) ≥ G(m) ≥ G(I2)

because data units B2 are sent after I2 and before B2
χ2 .

D2 − (D2 − d2) ≤ E1(m)− G(m) ≤ D2 − 0 (20)

Equation (20) proves that any packet transporting a data
unit of type B2 through S2 has a delay through S2 bounded
in [d2, D2].

C.3.1.6 Properties of the output cumulative func-
tion: Call R∗ the output cumulative function of the flow
at the output of the PEF. Any data unit m is released as
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TABLE 10
Absolute Release Time for Each Packet at the Output of Each System S1, S2

Data unit, m G(m), generation time E1(m), exit time out of S1 for the packet E2(m), exit time out of S2 for the packet
transporting m through S1 transporting m through S2

I2 0 +∞ D2

∀k ∈ J1, χ2 − 1K, B2
k k b

r
+∞ D2

B2
χ2 D2 − d2 +∞ D2

∀k ∈ J1, ψ − 1K, S2
k D2 − d2 + k b

r
+∞ D2 + k b

r
S2
ψ D2 −D1 − b

r
+∞ D2 + d2 −D1 − b

r

I1 D2 −D1 D2 +∞
∀k ∈ J1, χ1 − 1K, B1

k D2 −D1 + k b
r

D2 +∞
B1
χ1 D2 − d1 D2 +∞

∀k ∈ J1, ψ − 1K, S1
k D2 − d1 + k b

r
D2 + k b

r
+∞

S1
ψ D2 + d2 −D1 − d1 − b

r
D2 + d2 −D1 − b

r
+∞

∀k ∈ N∗, Xk D2 + d2 −D1 − d1 + (k − 1) b
r

D2 + d2 −D1 + (k − 1) b
r

+∞

soon as the first packet containing m is received from either
S1 or S2. Therefore, for any time instant t,

R∗(t) =
∑

m
∣∣∣∣∣∣
E1(m) < t

or E2(m) < t


size(m) (21)

We apply Equation (21) to obtain the value of the cumu-
lative function at several time-instants of interest. We start
with t = D2.

R∗(D2) =
∑

m
∣∣∣∣∣∣
E1(m) < D2

or E2(m) < D2


size(m)

Per Table 10, we obtain

R∗(D2) = 0 (22)

We then continue with D2 + ε for ε > 0,

R∗(D2 + ε)

=
∑

min(E1(m),E2(m))<D2+ε

size(m)

≥
∑
m∈I

size(m) +
∑
m∈B1

size(m) +
∑
m∈B2

size(m)

. From Table 10

With (16), we obtain

∀ε > 0, R∗(D2+ε) ≥ 2b+r(D1−d1)+r(D2−d2) (23)

And finally, ∀ε > 0,

R∗(D2 + (d2 −D1)− b/r + ε)

=
∑

min(E1(m),E2(m))<D2+(d2−D1)−b/r+ε

size(m)

≥
∑
m∈I

size(m) +
∑
m∈B

size(m)

+
∑
m∈S1

size(m) +
∑
m∈S2

size(m)

. From Table 10

With (17), we obtain ∀ε > 0

R∗(D2 + (d2 −D1)− b/r + ε)

≥ r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1)
(24)

C.3.1.7 Properties of any candidate arrival curve for
f : Consider any VBR arrival curve α′ = SPEC(M ′, p′, r′, b′)
defined in [9, §1.2] and assume that α′ is an arrival curve for
f at the output of the PEF.

Consider also the piecewise-linear function α† defined
on R+ by

α† : t 7→ min(M ′ + ρ′t, b′ + r′t) (25)

By definition, we have, for all t ≥ 0

α′(t) =

{
α†(t) if t > 0

0 if t = 0
(26)

Note that α† is concave and wide-sense increasing. We
also have the following result

Lemma 5. For any s ≥ t ≥ 0, α†(s)− α†(t) ≥ r′(s− t)

Proof of Lemma 5. We simply break in all the possible cases:
• If both s ≤ M ′−b′

ρ′−r′ and t ≤ M ′−b′
ρ′−r′ then α†(s) − α†(t) =

ρ′(s− t) ≥ r′(s− t) because r′ ≥ ρ′.
• If t ≤ M ′−b′

ρ′−r′ , and s ≥ M ′−b′
ρ′−r′ , then α†(s) − α†(t) =

b′ −M ′ + r′s− ρ′t ≥ r′s− ρ′t ≥ r′(s− t) because b′ ≥M ′
and ρ′ ≥ r′.
• If both s ≥ M ′−b′

ρ′−r′ and t ≥ M ′−b′
ρ′−r′ then α†(s)− α†(t) =

r′(s− t).

We observe that after D2 + (d2 −D1), the output traffic
R∗ is made of the data units of category X with a size b
and a period b/r. Therefore, the long-term rate of the flow
at the output of the PEF is exactly r and any piece-wise
linear arrival curve for this flow must have a long-term rate
at least as big as r. For the VBR arrival curve α′, this gives

r′ ≥ r (27)

Then, as α′ is an arrival curve for f at the output of the
PEF, by [9, Definition 1.2.1], for any t, s ≥ 0, R∗(t + s) −
R(t) ≤ α′(s).

In particular, ∀ε > 0

α′(ε) ≥ R∗(D2 + ε)−R∗(D2)
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With (22) and (23) this gives, ∀ε > 0,

α′(ε) ≥ 2b+ r(D1 − d1 +D2 − d2) (28)

This is valid for any choice of ε > 0 thus limt→0 α
′(t) ≥

2b+ r(D1 − d1 +D2 − d2), which gives:

α†(0) ≥ 2b+ r(D1 − d1 +D2 − d2) (29)

Similarly, ∀ε > 0,

α′
(
d2 −D1 − b

r + ε
)
≥ R∗

(
D2 + d2 −D1 − b

r + ε
)
−R∗(D2)

(30)
with (22) and (24), we obtain, ∀ε > 0,

α′
(
d2 −D1 − b

r + ε
)
≥ r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1)

(31)
this is again valid for any value ε > 0 so limε→0 α

′(d2 −
D1− b

r + ε) ≥ r(D1−d1)+r(D2−d2)+2r(d2−D1), which
gives

α†
(
d2 −D1 −

b

r

)
= α′

(
d2 −D1 −

b

r

)
≥ r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1)

(32)
And using the above properties, we can prove the fol-

lowing result

Lemma 6. For any t > 0, α†(t) ≥ α∗(t) where α∗ is the VBR
obtained by applying Corollary 1 and given in (13).

Proof of Lemma 6. • If t > d2 −D1 − b
r , then

α†(t) = α†
(
d2 −D1 −

b

r

)
+ α†(t)− α†

(
d2 −D1 −

b

r

)
≥ α†

(
d2 −D1 −

b

r

)
+ r′(t− d2 +D1) + b . Lemma 5

≥ α†
(
d2 −D1 −

b

r

)
+ r(t− d2 +D1) + b . (27)

≥ r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1) + r(t− d2 +D1) + b . (32)
≥ b+ rD2 − rd1 + rt = α∗(t) . (13)

• If 0 < t < d2 −D1 − b
r , then we use the fact that α† is

concave on R+.
Define

x =
t

d2 −D1 − b
r

(33)

then, by definition of a concave function,

α†(t) ≥ xα†
(
d2 −D1 −

b

r

)
+ (1− x)α†(0)

≥ x (r(D1 − d1) + r(D2 − d2) + 2r(d2 −D1)) . (32)
+ (1− x) (2b+ r(D1 − d1 +D2 − d2)) . (29)

≥ 2rx

(
d2 −D1 −

b

r

)
+ 2b+ r(D1 − d1) + r(D2 − d2)

≥ 2rt+ 2b+ r(D1 − d1) + r(D2 − d2) = α∗(t) . (29) and (13)

By (26), Lemma 6 proves that ∀t > 0, α′(t) ≥ α∗(t) and
by definition of an arrival curve, α′(0) = α∗(0) = 0. We
hence have proved that α∗ is a better arrival curve for f at
the output of the PEF than α′. This is valid for any VBR
curve α′ that is an arrival curve for f at the output of the
PEF. Therefore α∗ obtained using Corollary 1 is the best VBR
arrival curve for f at the output of the PEF.

TABLE 11
Generation of the Data-Unit of Category I in the Trajectory that

Achieves the Tightness of Corollary 1, when d2 −D1 ≤ b/r.

Data unit m Size, size(m) Generation time, G(m)
I b t0

TABLE 12
Generation of the Data-Units of Category B in the Trajectory that

Achieves the Tightness of Corollary 1, when d2 −D1 ≤ b/r.

Data unit m Size, size(m) Generation time, G(m)

∀k ∈ J1, χ2 − 1K, B2
k b t0 −D2 +D1 + (k − 1) b

r
B2
χ2 r(D2 −D1)− (χ2 − 1)b t0 − b/r

∀k ∈ J1, χ1 − 1K, B1
k b t0 + k b

r
B1
χ1 r(D1 − d1)− (χ1 − 1)b t0 + (D1 − d1)

C.3.2 Case d2 −D1 ≤ b/r:
In this case, the leaky-bucket γ2r,2b+r(D1−d1+D2−d2) is al-
ways larger than γr,b+r(D2−d1). Thus the application of
Corollary 1 gives that the leaky-bucket α∗ = γr,b+r(D2−d1)
is an arrival curve for f at the output of the PEF in Figure 13.

Using the same rationale as for the previous case, we can
use a greedy source that generates packets with a long-term
rate of r, thus any arrival curve for f at the output of the
PEF must also have a long-term rate larger than r.

Therefore, the proof of tightness needs only to exhibit a
trajectory that creates a burst as big as b+ r(D2 − d1). This
is done as follows.

C.3.2.1 Definition of several constants: We define

χ1 ,

⌈
r(D1 − d1)

b

⌉
and χ2 ,

⌈
r(D2 −D1)

b

⌉
(34)

Note that both χ1 ≥ 1 and χ2 ≥ 1. We further consider a
time instant t0 such that t0 > D2 −D1.

C.3.2.2 Description of the traffic generation at the
source: We classify the data units generated by the source
into two categories: I , B. Category B is then subdivided
into subcategories B1 and B2. The category of a data unit
defines the role that the data unit has in the trajectory. This
notion is only used in the proof and does not relate to any
physical property of the data units.

Category I The source generates a unique data unit I at
absolute time t0, of length b (see Table 11).

Note: The role of the data unit I is to create the term b of
the burst b+ r(D2 − d1).

Category B In addition, the source generates χ1 data
units of subcategory B1 and χ2 data units of subcategory
B2, as described in Table 12.

A possible output of the source when combining cat-
egories I and B is shown in Figure 34. In the proposed
situation, we have χ1 = χ2 = 2. Both subcategories B1 and
B2 are made of two data units. The data units of B2 are sent
before I whereas the data units of B1 are sent after I .

We note that, for any value of χ1, χ2,∑
k∈J1,χ1K

size(B1
k) = r(D1 − d1)

and
∑

k∈J1,χ2K

size(B2
k) = r(D2 −D1)

(35)
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Fig. 34. Example of the source output in the trajectory achieving the
tightness, focusing on categories I and B.

C.3.2.3 Properties of the traffic generation at the
source: As for the previous case, we prove that Lemmas 1
and 2 hold for the traffic described in C.3.2.2. This is clear
for most pair of data units, let us show it for example for
data units B2

χ2−1 and B2
χ2 :

G(B2
χ2)− G(B2

χ2−1) = t0 −
b

r
− t0 +D2 −D1 − (χ2 − 1)

b

r
+
b

r

= D2 −D1 − (χ2 − 1)
b

r

≥
size(B2

χ2)

r

Therefore, Lemma 3 also holds for the traffic described
in C.3.2.2. The traffic described in the trajectory is γr,b-
constrained.

C.3.2.4 Description of the systems S1, S2: With the
same notations and conventions as for the previous case,
the systems S1 and S2 release the packets containing the
different data units at the time instants shown in Table 13.

C.3.2.5 Properties of the systems S1, S2: As for the
previous case, we can also prove that Lemma 4 holds for the
systems S1, S2 described above. This is clear from Table 13
for most data units. For example, the delay of the packet
transporting the data unit B2

χ2 through S2 is at least d2
because, by assumption, d2 −D1 ≤ b

r .
C.3.2.6 Properties of the output cumulative func-

tion: In the trajectory of Table 13, all data units exit the PEF
at t0 +D1. We hence have created a burst of size

size(I) +
∑

k∈J1,χ1K

size(B1
k) +

∑
k∈J1,χ2K

size(B2
k)

= b+ r(D1 − d1) + r(D2 −D1) . (35)
= b+ r(D2 − d1)

Therefore, any curve that is an arrival curve of f at the
output of the PEF should have a limit at 0 at least larger
than b+ r(D2− d1) and a long-term rate at least larger than
r. Thus any such curve that is in addition concave on R∗+
must hence be larger than the leaky-bucket arrival curve
γr,b+r(D2−d1). In particular, any VBR arrival curve (concave
on R∗+ by definition) is larger than γr,b+r(D2−d1).

C.4 Proof of Proposition 2
Proof of Proposition 2. Consider the flow f and two observa-
tion points v, w such that v is in vertex n, w is in vertex o, n
is not an EP-vertex of G(f), o is a diamond ancestor of n in
G(f), and the flow f is packetized at v, w.

As o is a diamond ancestor, it is not an EP-vertex, thus
each data unit of f is observed at most once at w. As done
in [28], the k-th data unit of f is defined as the data unit of
f that crosses w in the k-th position.

We note Ek the arrival time of the k-th data unit of f at
v, with the convention that Ek = +∞ if the k-th data unit of
f is lost for n. Ek is correctly defined because n is not an EP-
vertex, thus the k-th data unit of f can cross the observation
point v at most once. Furthermore, f is packetized at v, thus
all the bits of the k-th data unit cross v at the same time.

Then the reordering offset of the k-th data unit of f [28,
Eq. (4)], [33] is defined by

Πk =
∑

j|j>k,Ej<Ek

lj (36)

with lj the size of the packet transporting the j-th data unit
of f .

Denote by R the cumulative arrival function of flow f at
observation point v. By definition, R is the number of bits of
flow f that cross v over the time interval [0, t[. Thus for any
non-lost data unit k, R(Ek) is the number of bits of f that
cross v strictly before6 Ek. As f is packetized at v, R(Ek) is
hence the sum of the length of the packets for all data units
that arrived before the k-th data unit, excepted the k-th data
unit itself.

Thus Πk can be written

Πk =
∑

j|j>k,Ej<Ek

lj

= R(Ek)−R(min
j>k

Ej)

≤ αf,v(Ek −min
j>k

Ej)

because αf,v is an arrival curve of f at v. By definition,
Ek − minj>k Ej is the reordering late offset of data unit k
that we denote by Λk [28, Eq. (2)]. We hence obtain that for
all k such that Ek < +∞,

Πk ≤ αf,v(Λk) (37)

The RTO and the RBO of flow f are defined [28, §C] by

πv(f, o) , sup
k|Ek<+∞

Πk and λv(f, o) , sup
k|Ek<+∞

Λk

(38)
Equation (37) is valid for any k such that Ek < +∞,
αf,v is a wide-sense increasing function and supk|Ek<+∞ Λk
is bounded by assumption. We hence obtain πv(f, o) ≤
αf,v(λv(f, o)).

C.5 Proof of Theorem 2

Proof of Theorem 2. The section of the network between the
diamond ancestor a and the vertex n that contains the PEF
is a system (neither FIFO nor lossless in general) with a jitter
for f bounded by Da→n

f − da→nf . We apply [28, Thm 5] to
obtain the result.

6. Here we use the traditional convention that cumulative functions
are left-continuous. A discussion of this assumption is available in [9,
§1.1.1].

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See
https://www.ieee.org/publications/rights/index.html for more information.



TABLE 13
Absolute Release Time for Each Packet at the Output of Each System S1, S2, in the Case d2 −D1 ≤ b/r.

Data unit, m G(m), Generation time E1(m), exit time out of S1 for the packet E2(m), exit time out of S2 for the packet
transporting m through S1 transporting m through S2

∀k ∈ J1, χ2 − 1K, B2
k t0 −D2 +D1 + (k − 1) b

r
+∞ t0 +D1

B2
χ2 t0 − b/r +∞ t0 +D1

I t0 t0 +D1 +∞
∀k ∈ J1, χ1 − 1K, B1

k t0 + k b
r

t0 +D1 +∞
B1
χ1 t0 + (D1 − d1) t0 +D1 +∞

C.6 Proof of Theorem 3
Proof of Theorem 3. Applying Item 2/ of Theorem 1 with
diamond ancestor a gives that γr,b � δD−d = γr,b+r(D−d)
is an arrival-curve for f at the input of the PFR. From [9,
§1.7.4], a PFR with concave shaping curve σ is a network
element that offers σ as a service curve. The PFR is FIFO and
lossless, thus we can apply [9, Thm. 1.4.2] and we obtain that
D − d (the maximal horizontal distance between the input
arrival curve γr,b+r(D−d) and the service curve γr,b) is an
upper-bound on the delay of f through the PFR. Adding the
already-known delay bounds for S gives those for S ′.

C.7 Proof of Theorem 4
Proof of Theorem 4. Consider a system defined by Figure 20
and by Conditions (a) to (c) of Theorem 4. Take any r > 0,
b > 0 and d1, D1, d2, D2 such that Conditions (d) to (f) of
Theorem 4 are met. We first describe the adversarial model
applied when D1 < d2.

C.7.1 Adversarial model for the case D1 < d2
We exhibit an adversarial model MD1<d2 for the sources
and for the paths {Pj}j such that Properties 1/ to 5/ of
Theorem 4 hold forMD1<d2 .

C.7.1.1 Constants ofMD1<d2 : We define

J , d2 −D1 (39)

And
D , d2 d , D1 (40)

thus d < D. Note that q ≥ qmin can be written

q ≥ qmin =

⌊
2rJ

b
+ 2

⌋
+ 1

With J > 0. Note that q > 2rJ
b + 2 thus (q − 2) br > 2J .

Therefore, take any ε such that

min

(
b

r
− 2

q − 2
J, J

)
> ε > 0 (41)

We further define

I , max

(
q

q − 2
J,
b

r

)
(42)

φ , I − J + ε (43)

and
τ , qφ (44)

Finally, we consider a starting instant x1 > 0 and for i ∈
J1, qK, we define

xi , (i− 1)φ+ x1 (45)

C.7.1.2 Properties on the constants ofMD1<d2 : For
q > 3, q

q−2 > 1 thus by (42)

I > J > 0 (46)

thus we also have φ > 0 and τ > 0 by (43) and (44).
Furthermore,

τ − I = q(I − J) + qε− I . by (43), (44)

= (q − 2)I − qJ + qε+ I

≥ qJ − qJ + qε+ I . by (42)

> I . by (41)

combined again with (42), this gives

τ − I > b

r
(47)

For φ, we first have
φ < I (48)

because ε < J and

φ < I +
b

r
− q

q − 2
J (49)

because ε < b
r −

2
q−2J . By (42), I can take only one of two

values. If I = b
r , then (48) gives φ < b

r . If I = q
q−2J , then

(49) gives φ < b
r . We hence prove

φ <
b

r
(50)

C.7.1.3 Adversarial traffic generation at the source
in MD1<d2 : For each i ∈ J1, qK, the source a in Figure 20
sends7 a data unit m1

i,k, of size b at the time instant xi + kτ
andm2

j,k of size b at the time instant xi+kτ+I for all k ∈ N.
Figure 35 presents the traffic at the output of the

source, focusing on two successive flows: fi and fi+1 (with
i ≤ q − 1). Their source profiles are periodic with a
period τ and Figure 35 focuses on the k-th period. For the
flow fi (solid-blue data units), the source generates the data
unit m1

i,k at time xi + kτ , then sends m2
i,k after a duration

I and it finally waits for the next period (k + 1) before
it restarts the same profile and sends m1

i,k+1. The source
profile for flow fi+1 (dashed-red data units) is identical, but
shifted by φ with respect to the source profile for fi, because
xi+1 = xi +φ by (45). By (43) and (41), φ < I thus m1

i,k+1 is
sent before m2

i,k as shown in the figure.

7. If b is larger than the maximal packet length, then the source sends
several data units simultaneously such that the sum of their length
equal b. In this case, m1

i,k and m2
i,k represent the set of these data units.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.See
https://www.ieee.org/publications/rights/index.html for more information.



in

xi
+kτ

m1
i,k

xi
+kτ
+I

m2
i,k

xi
+kτ
+τ

m1
i,k+1

xi+1

+kτ

m1
i+1,k

xi+1

+kτ
+I

m2
i+1,k

xi+1

+kτ
+τ

m1
i+1,k+1

φ

I

τ

Fig. 35. Generation of data units for flows fi and fi+1 (i ≤ q− 1). Their
traffic profile is periodic with period τ . The source sends a data unit for
fi at xi + kτ for k ∈ N, then it sends another data unit after a duration
I and finally restarts at the next period. The profile for fi+1 is identical
and shifted by φ with respect to the one of fi (xi+1 = xi + φ).
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Fig. 36. Traffic profile for the flows fi and fi+1 at the output of the two
adversarial paths P1 and P2, in the model MD1<d2 . P1 drops all m1

data units whereas P2 drops all m2 data units.

C.7.1.4 Properties on the traffic generation at the
source in MD1<d2 : By (42) and (47), the minimum time
elapsed at the source between any two data units of fi is
larger than b/r, which shows that Property 1/ of Theorem 4
holds.

C.7.1.5 Adversarial paths inMD1<d2 :

- For any k ∈ N and any i ∈ J1, qK, path P1 drops the
packet containing the data unit m1

i,k and forwards the
packet containing the data unit m2

i,k with a delay d.
- For any k ∈ N and any i ∈ J1, qK, path P2 forwards

the packet containing the data unit m1
i,k with a delay D

and drops the packet containing the data unit m2
i,k.

- Any other path Pj with j ≥ 3 drops all packets.

Figure 36 shows the trajectory at the output the two ad-
versarial paths, focusing on period k and on flows fi and
fi+1. Path P1 drops the packets containing the data units
m1
i,k and m1

i+1,k. It forwards those that contain m2
i,k and

m2
i+1,k with a delay d. Similarly, P2 drops m2

i,k and m2
i+1,k

but forwards m1
i,k and m1

i+1,k with a delay D.
C.7.1.6 Properties of the paths in MD1<d2 : The

delay of the non-lost packets through P1 [resp., through P2]
equals d = D1 [resp., D = d2] that belongs to [d1, D1] [resp.,
to [d2, D2] ]. Thus the adversarial paths meet Properties 2/
and 4/ of Theorem 4.

outPEFs

m1
i,k

A1
i,k

m2
i,k

A2
i,k

m1
i+1,k

A1
i+1,k

m2
i+1,k

A2
i+1,k

I − J ε

outIR

D1
i,k D2

i+1,k

b/r b/r

ε

Fig. 37. Traffic profile for the flows fi and fi+1 at the input of the IR
(above) and at its output (below). To ease the lecture, the scale is not
the same as in Figures 35 and 36.

C.7.1.7 Effect of the PEFs in MD1<d2 : The set of
parallel PEFs in Figure 20 receive the sum of the two paths
outputs. As per its model in Section 4.3, each PEF forwards
the first packet containing the data unit. For i ∈ J1, qK, k ∈ N
and w ∈ {1, 2}, we denote by Awi,k the time instant at which
the unique packet containing the data unit mw

i,k exits the set
of parallel PEFs.

By construction of the adversarial paths, for i ∈ J1, qK
and k ∈ N, only path P1 forwards a packet containing the
data unit m2

i,k, released d after its emission by the source.
Thus m2

i,k exits the PEFs as soon as the packet exits P1. We
obtain

∀i ∈ J1, qK,∀k ∈ N A2
i,k = xi + kτ + I + d (51)

Similarly with m1
i,k that is only forwarded by P2,

∀i ∈ J1, qK,∀k ∈ N A1
i,k = xi + kτ +D (52)

The top line of Figure 37 shows the trajectory at the
output of the PEFs focusing on flows fi and fi+1 and on the
k-th period of the profile. Note that outPEFs is the output
of the system denoted by S in Section 6.2 and is also the
input of the IR (Figure 20).

C.7.1.8 Properties of the system S between in and
outPEFs inMD1<d2 : For i ∈ J1, qK and n ∈ N we note that

A2
i,k −A1

i,k = I + d−D . (51) and (52)

= I − J . (39)
> 0 . (46)

This proves that m2
i,k exit S after m1

i,k for any i ∈ J1, qK and
any k ∈ N. Also,

A1
i,k+1 −A2

i,k = τ +D − d− I . (51) and (52)

= τ − (I − J)

= (q − 1)(I − J) + qε . (44) and (43)
> 0 . q ≥ 3

And this proves that for any i ∈ J1, qK and any k ∈ N,
m2
i,k exits S before m1

i,k+1. Therefore, S is FIFO for fi, for
any i ∈ J1, qK. Furthermore, each data unit is transported
through exactly one path (either P1 or P2), thus S is also
lossless. This proves that Property 5/ of Theorem 4 holds.

Last, we note that

A1
i+1,k −A2

i,k = xi+1 − xi +D − d− I . (51) and (52)

= φ+ J − I . (39) and (45)
= ε > 0 . (43)

(53)
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Therefore, m1
i+1,k, the first packet of the flow fi+1 in the k-

th period exits the PEFs ε seconds after the second packet of
the flow fi in the k-th period, as described in Figure 37.

C.7.1.9 Output of the IR inMD1<d2 : For i ∈ J1, qK,
n ∈ N and w ∈ {1, 2}, we denote by Dw

i,k the absolute time
at which data unit mw

i,k leaves the IR.
The bottom line of Figure 37 shows the release time of

the data units out of the IR. Assume for example that the
source has been idle for a while, then the regulator is empty
and data unit m1

i,k can be released immediately without
violating the shaping curve for fi, thus D1

i,k = A1
i,k.

However, data unit m2
i,k arrives at the IR too soon with

respect to the shaping curve σfi . By applying the equations
of the IR [12], we note that the IR must delay m2

i,k and

∀i ∈ J1, qK,∀k ∈ N, D2
i,k ≥ D1

i,k + b/r (54)

By (53), data unit m1
i+1,k arrives after the data unit m2

i,k. As
the IR looks only at the head-of-line packet and is itself a
FIFO system, we obtain

∀i ∈ J1, qK,∀k ∈ N, D1
i+1,k ≥ D2

i,k (55)

Combining Equations (54) and (55) gives, by induction,

∀k ∈ N, D2
q,k ≥ D1

1,k + q
b

r
(56)

Now we note that

A1
1,k+1 = x1 + (k + 1)τ +D . (52)

= x1 + kτ + qφ+D . (44)
= xq + kτ + φ+D . (45)
= xq + kτ + I − J + ε+D . (43)
= xq + kτ + I + d+ ε . (39)

= A2
q,k + ε . (51)

Therefore, the first data unit of the (k + 1)-th period of
f1 arrives ε seconds after the second data unit of the k-th
period of the last flow fq . The IR being FIFO, we have

∀k ∈ N, D1
1,k+1 ≥ D2

q,k (57)

which, combined with (55), gives

∀k ∈ N, D1
1,k+1 ≥ D1

1,k + q
b

r
(58)

At period k = 0, the network is empty and D1
1,0 = A1

1,0 =
x1. The induction of (58) thus gives

∀k ∈ N, D1
1,k ≥ x1 + kq

b

r
(59)

And the delay, through the IR, suffered by the first data unit
of the k-th period of the first flow f1 is

D1
1,k −A1

1,k

≥ x1 + kq
b

r
− x1 − kτ −D . (59) and (52)

≥ −D + kq

(
b

r
− φ

)
. (44)

By (50), b
r − φ > 0. Thus the above delay lower-bound

diverges as k increases and Property 3/ of the Theorem
holds.

C.7.2 Adversarial model for the case d2 < D1

The adversarial modelMd2<D1 follows the same principle
as the adversarial model MD1<d2 described above. In the
following, we detail only the differences.

C.7.2.1 Constants ofMd2<D1 : By assumption,D1−
d2 > 0. Furthermore, qmin now equals 3 and q ≥ qmin,(
q−2
2

)
b
r > 0.

We hence select J such that

0 < J < min

(
q − 2

2

b

r
,D1 − d2

)
(60)

And we re-define

D , D1 d , D − J (61)

As J < D1 − d2=, J > 0, and D2 ≥ D1 by on the indexes,
we obtain D2 ≥ D1 > d > d2 thus

d ∈ [d2, D2] (62)

By definition, 2
q−2J < b

r , thus we define ε, I , φ, τ and
xi as in Appendix C.7.1.1, i.e., per Equations (41), (42), (43),
(44) and (45).

C.7.2.2 Properties on the constants of Md2<D1
:

None of the properties established in Appendix C.7.1.2
depends on the definition of J , d or D. They are all obtained
thanks to the definitions of the other constants. As we
re-use the same definitions, all the properties obtained in
Appendix C.7.1.2 are also valid forMd2<D1

.
C.7.2.3 Adversarial traffic generation at the source

in Md2<D1
: The adversarial model Md2<D1

uses the
same traffic generation as MD1<d2 . It is described in Ap-
pendix C.7.1.3 and summarized in Figure 35.

C.7.2.4 Properties on the traffic generation at the
source in Md2<D1

: The traffic generation is not modified,
thus the properties established in Appendix C.7.1.4 also
hold for Md2<D1

. In particular, Property 1/ of Theorem 4
holds.

C.7.2.5 Adversarial paths inMd2<D1
: With respect

to the modelMD1<d2 , the adversarial modelMd2<D1
sim-

ply flips the the roles of each paths. Specifically,
- For any k ∈ N and any i ∈ J1, qK, path P1 forwards

the packet containing the data unit m1
i,k with a delay D

and drops the packet containing the data unit m2
i,k.

- For any k ∈ N and any i ∈ J1, qK, path P2 drops the
packet containing the data unit m1

i,k and forwards the
packet containing the data unit m2

i,k with a delay d.
- Any other path Pj with j ≥ 3 drops all packets.

The output of both paths is shown in Figure 38. We can note
the symmetry with Figure 36.

C.7.2.6 Properties of the paths in Md2<D1
: The

packets not lost in P1 have the same delay through P1 equal
to D. Similarly, the packets not lost in P2 have the same
delay through P2 equal to d. Thus both P1 and P2 are FIFO
and Property 4/ of Theorem 4 hold.

Furthermore, by (61), D = D1 and by (62), d ∈ [d2, D2].
Thus Property 2/ holds.

C.7.2.7 Effect of the PEFs in Md2<D1
: As for the

MD1<d2 model, each data unit arrives in a unique packet at
the PEFs (m1 data units arrive only through P1 and m2 data
units arrive only through P 2). Thus the PEFs are transparent
and forward the sum of both output traffic, outP1 and
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Fig. 38. Traffic profile for the flows fi and fi+1 at the output of the two
adversarial paths P1 and P2, in the model Md2<D1

. P1 drops all m2

data units whereas P2 drops allm2 data units. With respect to Figure 36,
the roles of P1 and P2 have been exchanged.

outP2 from Figure 38. We observe that the sum of them
gives the same output as on the first line of Figure 37.

Therefore, all the remaining steps of the proof (properties
on the system S, output of the IR with diverging delays) can
be followed as in the modelMD1<d2 .

C.7.3 Adversarial model for the case d2 = D1

If d2 = D1, then qmin = 3. By Condition (e) of Theorem 4,
one of the two intervals [d1, D1] or [d2, D2] has a strictly
positive length. Assume for example that d2 < D2. Then we
simply select d′2 such that

d2 < d′2 < min

(
D2, D1 +

b

2r

)
(63)

We obtain ⌊
2r |d′2 −D1|+

b
+ 2

⌋
+ 1 = 3

because
2r |d′2 −D1|+

b
< 1

by choice of d′2. This means that we can apply model
Md′2<D1

with parameters q, r, b, d1, d′2, D1, D2 and the same
number of flows (q ≥ 3). This model will provide Prop-
erties 1/ to 5/ of Theorem 4 for the choice of parameters
q, r, b, d1, d

′
2, D1, D2, thus providing Properties 1/ to 5/ of

Theorem 4 for the choice parameters r, b, d1, d2, D1, D2.

C.8 Proof of Corollary 3

Proof of Corollary 3. We simply construct S as a system con-
taining a packet-replication function (PRF), two alternative
paths P1, P2 and a set of PEFs, as in Figure 20. We then
apply Theorem 4 with lossless and FIFO paths P1 and P2

that have both the same delay interval [d1, D1] = [d2, D2] =
[0, Dmax].

C.9 Proof of Theorem 5
Proof of Theorem 5. We denote by [d†, D†] the lower and
upper delay bounds of the non-lost data units through the
system S† between the output of a and the output of the
POF (Figure 23).

The output of a vertex corresponds to the output of the
packetizer, thus the flow aggregate F is packetized at the
output of vertex a. We can hence define the packet sequence
(A,L, F ) for the aggregate F as in [12, §II.A]:
• A is the sequence of the arrival times at the observation

point a∗ for the data units that belong to the flow
aggregate F .A is a wide-sense increasing sequence. I.e.,
An is the arrival time at a∗ of the n-th data unit of the
aggregate F .

• L is the sequence of packet length for the above data
units. I.e., Ln is the length of the packet that transports
the n-th data unit that arrives at a∗ and belongs to F .

• F is the sequence of flow identifiers for the above data
units. I.e., Fn = f means that the n-th data unit of the
aggregate F at a∗ belongs to flow f .

We also define the Πf regulator for each flow f of F that
corresponds to the shaping curve σf,n of the IR REGn(F , a)
[12, IV.A]. By configuration of REGn(F , a), each flow f of
the aggregate is σf,n-constrained thus Πf -regular at a∗, the
input of the systems S , S† and S′.
− If S is lossless for F , we apply [28, Theorem 4] and

obtain d† = d and D† = D.
Then, by definition of the POF and considering its con-

figuration POFn({f}, a), system S† is FIFO and lossless
for the aggregate F processed by the regulator. Therefore,
applying [12, Theorem 5] gives d′ = d† and D′ = D†.
− If S is not lossless for F , then the application of [28,

Theorem 4] gives d† = d and D† = D + T .
Then, by definition of the POF and considering its con-

figuration POFn({f}, a), system S† is FIFO but not lossless
for the aggregate F processed by the regulator.

Like in the proof of Proposition 3, we decompose the
packet sequence (A,L, F ) at the input of S† into the sub-
sequences (A1, L1, F1) and (A2, L2, F2) that correspond
respectively to the data units that are not lost inside S† and
to the data units that are lost inside S†.

We consider the cumulative functions Rf,1 and Rf,2 of
each flow f that correspond to the sequence (A1, L1, F1)
and (A2, L2, F2), respectively. Then, Rf , Rf,1 + Rf,2, the
overall cumulative function, corresponds to the sequence
(A,L, F ) for flow f thus Rf is σf,n-constrained. Re-using
an argument from the proof of Proposition 3, the cumulative
sub-function Rf,1 remains σf,n-constrained. Thus flow f in
sub-sequence (A1, L1, F1) remains Πf -regular.

Therefore, we apply [12, Theorem 5] on the sub-sequence
(A1, L1, F1) and we obtain that for the corresponding IR
output sequence (D1, L1, F1), the delay through S ′ verifies
d′ = d† and D′ = D†. The delay of the non-lost data units
through S ′ is hence within [d′, D′] = [d,D + T ].
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