
ar
X

iv
:2

10
1.

05
88

5v
1

 [
cs

.N
I]

 1
4

Ja
n

20
21

Accepted to be Published in: IEEE International Conference on Computer Communications (INFOCOM), May 10−13, 2021

Cocktail Edge Caching: Ride Dynamic Trends of

Content Popularity with Ensemble Learning

Tongyu Zong1, Chen Li1, Yuanyuan Lei1, Guangyu Li1, Houwei Cao2, and Yong Liu1

1Tandon School of Engineering, New York University, USA
2Department of Computer Science, New York Institute of Technology, USA

IEEE Copyright Notice

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Edge caching will play a critical role in facilitating
the emerging content-rich applications. However, it faces many
new challenges, in particular, the highly dynamic content pop-
ularity and the heterogeneous caching configurations. In this
paper, we propose Cocktail Edge Caching, that tackles the dy-
namic popularity and heterogeneity through ensemble learning.
Instead of trying to find a single dominating caching policy for
all the caching scenarios, we employ an ensemble of constituent
caching policies and adaptively select the best-performing policy
to control the cache. Towards this goal, we first show through
formal analysis and experiments that different variations of the
LFU and LRU policies have complementary performance in
different caching scenarios. We further develop a novel caching
algorithm that enhances LFU/LRU with deep recurrent neural
network (LSTM) based time-series analysis. Finally, we develop
a deep reinforcement learning agent that adaptively combines
base caching policies according to their virtual hit ratios on
parallel virtual caches. Through extensive experiments driven by
real content requests from two large video streaming platforms,
we demonstrate that CEC not only consistently outperforms all
single policies, but also improves the robustness of them. CEC
can be well generalized to different caching scenarios with low
computation overheads for deployment.

Index Terms—edge caching, video, deep reinforcement learn-
ing, LSTM

I. INTRODUCTION

Online services, ranging from web hosting, video streaming,

gaming, to Virtual/Augmented/Mixed Reality (VR/AR/MR),

etc., are increasingly dependent on the timely delivery of

rich media content over the global Internet. Content delivery

systems are facing new challenges. First of all, the emerging

new content requires orders of magnitude higher bandwidth. A

premium quality 360 degree video can easily consume a band-

width of multiple Gigabits-per-second (Gbps) [1]. Secondly,

many new multimedia applications also involve live interaction

between users, which requires low-latency content delivery.

Finally, content popularity becomes more and more dynamic.

User-Generated Content (UGC) has become tremendously

popular on platforms like TikTok, Twitch and YouTube, etc.

A new UGC item may suddenly go viral and attract a flash

crowd of viewers to watch it within a short time period.

Caching, an “old trick” from the early days of the Internet,

will continue to play a critical role in the contemporary content

delivery ecosystem [2]–[5]. By placing popular content at the

network edge, Edge Caching helps users retrieve content at

high throughput and low latency, while reducing the traffic

in the core network. Each edge cache box necessarily has

less resources, in particular smaller buffer, than the traditional

central cache server. The traditional caching policies are driven

by simple statistics of request history, e.g. the past request

frequencies or the time elapsed since the last request. When the

number of users served by a cache server is large, those simple

statistics serve as reliable future popularity predictors to drive

simple caching policies, such as Least-Frequently-Used (LFU)

or Least-Recently-Used (LRU), thanks to the “Law-of-Large-

Numbers” effect. An edge cache box only serves a small user

population, whose aggregate content consumption patterns are

much more volatile and highly non-stationary. To complicate

the matters further, caching scenarios at different levels of the

caching hierarchy are heterogeneous in terms of buffer sizes

and user/content mixtures. Simple static caching policies are

inadequate to deliver good edge caching performance.

In this study, we tackle the dynamic content popularity and

configuration heterogeneity problems in edge caching through

ensemble learning. The general idea of ensemble learning

is to strategically generate and combine multiple models to

improve the performance of a single model and/or reduce the

likelihood of selecting a poor model. It has wide applications

in model selection, data fusion, and confidence estimation,

as surveyed in [6]. As a closely-related example, the winner

of the famous Netflix Prize [7] used ensemble learning to

predict content preference of individual users, where several

base recommendation models were combined to predict a final

single user-content rating that exploits the strengths of each

model [8]. Cache hit ratio hinges on the accuracy of predicting

future content popularity among the group of users served by

a cache. We use ensemble learning to ride dynamic content

popularity trends and improve edge caching hit ratio.

Edge caching scenarios are complicated due to different

content and user mixtures, time-varying popularity evolution,

and heterogeneous cache configurations. Instead of trying to

find a single dominating caching policy for all the caching

scenarios, we employ an ensemble of constituent caching

policies that concurrently process content requests through

virtual caches, and adaptively select the best-performing

policy to control the primary cache by a Deep Reinforcement

Learning (DRL) agent. The DRL agent is trained to combine

the merits of constituent caching policies to address the com-

plicated caching scenarios. The high-level idea is similar to the

classic combination therapy, namely AIDS cocktail [9]. We

call our framework Cocktail Edge Caching (CEC). Towards

developing CEC, we made the following contributions:

1) We first formulate caching under dynamic content pop-

http://arxiv.org/abs/2101.05885v1

ularity as a future popularity estimation problem. We

then formally study the sliding-window based variations

of the classic LFU and LRU policies. Through analysis

and experiments, we demonstrate the impact of history

window size on the responsiveness and robustness of

caching performance. We also show that different base

caching policies have complementary performance in

different caching scenarios. (see Section III.)

2) We then employ a Deep Recurrent Neural Network,

specifically Long Short-Term Memory (LSTM), to mine

the temporal locality in content popularity evolution at

different time scales. LSTM-based time series analysis

can be applied to the number of requests/viewers or the

time interval till the next request. We show experimen-

tally that LSTM, especially when combined with LFU,

can often improve the performance of LFU and LRU,

but is still not dominant. (detail in Section IV.)

3) We present CEC, our DRL-based ensemble learning

framework in Section V. We propose to use virtual cache

to facilitate the parallel operations of ensemble caching

policies. We solve the DRL state-space-explosion prob-

lem by using virtual hit ratios as its input features, and

address the delayed-reward problem by emulating the

theoretically optimal caching policy with future request

oracle in the training phase.

4) Through extensive evaluations using two sets of real

video request traces, we demonstrate that CEC not only

can strategically select the most suitable caching policy

in realtime to achieve higher hit ratio than any single

policy, but also can improve the robustness against the

unexpected popularity changes that a single policy is not

designed for. CEC model can be well generalized to dif-

ferent cache scenarios with low computation overheads.

It has great potential for deployment in real edge cache

networks. (detail in Section VI.)

Since video accounts for more than 70% of fixed and mobile

Internet traffic today [10], we focus on video-on-demand

caching in the following analysis and experiments. But our

algorithms can be applied to caching of other content.

II. RELATED WORK

There is a rich research literature on caching. Many tra-

ditional caching algorithms have been proposed in different

contexts, such as RANDOM, LRU, First-In First-Out (FIFO),

LFU and Greedy-Dual-Size-Frequency (GDSF) [11]–[14]. In

the classical caching studies, content requests are assumed

to draw from a stationary popularity distribution, the so-

called Independent Reference Model (IRM) [15]–[17]. Recent

measurement studies have demonstrated that IRM cannot

model the intrinsic non-stationarity in online traffic [18],

[19]. For better adaptation to the time-varying popularity

patterns, forecast-based cache replacement policies have re-

cently been proposed [20], [21]. In [22], authors utilize Matrix

Factorization (MF) based user interest forecast to enhance

edge caching performance. There are also works on video

content caching [23] and mobile edge caching [24], [25].

Deep Reinforcement Learning has also recently been applied

to content caching area. For example, [26]–[36] use various

critical features to train DRL models in an evolving manner

so as to serve requests with popularity fluctuations and bursts.

While most existing DRL caching policies generate caching

decisions directly, our study focuses on DRL-based policy

combination.

III. PROBLEM DESCRIPTION AND BASE POLICIES

A. Caching under Dynamic Content Popularity

The core idea of caching is to place the most popular items

in the limited buffer space to maximally serve user requests.

To keep track of content popularity evolution, the cached

items are constantly updated in proactive and/or reactive

manners. The key to maximize caching gain is to accurately

predict and keep track of the future content popularity. From

this perspective, the traditional algorithms use simple content

request statistics to predict future popularity. For example,

the rationale behind LRU is that the more recently accessed

content will be more popular in the near future, while LFU

works under the assumption that the content accessed the most

in the past will remain to be the most popular in future. When

the user population handled by a cache server is large, such

simple prediction can achieve good performance because of

the stable content popularity distributions.

In real content delivery systems, both content and users are

highly dynamic: new items are constantly added to the catalog,

user interests are fast changing, and the active population

served by a cache box is time-varying, due to the temporal

variations of user activities and user mobility. As a result, the

content popularity presents strong and complicated temporal

variations. This is particularly evident for edge caching, where

the user population served by each cache box is small. A recent

study [37], [38] on YouTube video requests demonstrate that

requests for video content have diverse long-term and short-

term temporal locality. Shot noise model was proposed to

model the content popularity, where the average request rate

for content c at time t is modeled as Vcλ(t − τc), where τc
is the birth time for c and Vc is the total request volume, and

λ(·) characterizes the temporal evolution of popularity. Dif-

ferent types of content have different life-spans and different

popularity evolution patterns. For example, viral short videos

on social media tend to have large volumes, but relatively short

life-spans, while block-buster movies on Netflix can also have

large volumes and long life-spans.

B. Sliding-window based Caching Policies

To serve content with highly dynamic popularity, caching

algorithms have to learn and exploit the short-term and long-

term temporal locality in popularity evolution. Let C be the

set of items, i.e., the video catalog. At any given time t, let

R(c)(t) , {0 < τ
(c)
1 · · · τ

(c)
i , · · · τ

(c)

k(c)(t)
≤ t} be the request

history of c ∈ C up to t, where τ
(c)
i is the arrival time of the

i-th request out of k(c)(t) total requests for c up to t. We need

to estimate the future popularity of item c based on the request

history R(c)(t). For the caching purpose, what really matters

Fig. 1: Time Series Analysis by LFU-∆, LRU-n, LSTM-Req and LSTM-Int

is the relative ranking of the estimated future popularities of

all the items. Different caching algorithms calculate caching

scores differently, and make proactive or reactive caching

decisions based on caching scores.

1) LFU-∆ Variants: In the traditional LFU, the future

popularity of c is estimated as the total number of requests

up to t. In other words, the caching score S(c)(t) = k(c)(t),
and the item with the lowest caching score will be evicted.

When the content popularity is stationary, let λ(c) be the

average request rate for c, then S(c)(t) converges to λ(c)t
when t is large. LFU score is proportional to the stationary

popularity λ(c), and LFU is optimal under IRM. When the

content popularity is highly dynamic, the expected request rate

λ(c)(t) varies over time. The request patterns in distant history

will not be predictive for content popularity in the near future.

To deal with this, a natural fix is to use the number of requests

within a sliding recent history window of (t − ∆, t], instead

of the whole history, as the caching score:

S(c)(t,∆) = k(c)(t)− k(c)(t−∆). (1)

The expected caching score becomes:

E[S(c)(t,∆)] =

∫ t

t−∆

λ(c)(x)dx, (2)

which is proportional to the average request rate in (t−∆, t].
The illustration of LFU-∆ is shown in Fig. 1. However, it is

non-trivial to select the optimal ∆.

• It is obvious that ∆ should be dependent on how fast

λ(c)(x) changes overtime. For fast-varying popularity, i.e.

UGC with short lifespans, a small ∆ will make caching

respond quickly to popularity changes. On the other hand,

if ∆ is too small, the caching algorithm will be mostly

driven by the short-term popularity oscillations, and may

lead to too frequent content replacement. In addition, with

a small ∆, the number of requests within (t−∆, t] might

be too small and the caching score calculated using those

samples according to (1) is far way from its mean value

in (2), therefore cannot serve as a reliable popularity

estimator. This data-sparsity problem can be severe when

the content request rate is low.

• What is less obvious is that the choice of ∆ should also

consider the cache size. When the cache size is larger,

a content tends to stay in the cache for a longer time

period. As a result, the “gain” of caching c at time t is the

expected total number of hits of c in a longer future time

horizon till its eviction. It makes good sense to estimate

the caching gain for a larger cache size using larger

history window size ∆.

Using real content request traces (more details in Sec-

tion VI), we study LFU-∆’s performance on different caching

scenarios in Table I. History window size is measured by the

number of past requests within the window. Trace 1, 2, 3 are

requests generated over four days by users from three subnets

with different sizes. Each subnet can be served by a cache with

different buffer sizes of 50, 100, 500 videos 1. Each column is

the hit ratios of different window sizes for a trace-cache size

combination. The best performance is marked with bold fonts.

It is clear that window-based LFU is better than the traditional

LFU (∆ = ∞), and no single window size dominates in all

scenarios. It is difficult to come up with an optimal rule for

tuning ∆ without an accurate dynamic model of popularity

evolution. This motivates our model-free DRL approach that

adapts the history window of base caching policies, including

LFU, to optimize the final hit ratio.

2) LRU-n Variants: For reactive caching with the “ora-

cle” of complete future request arrivals, the sample-path-wise

optimal reactive caching strategy has been shown to be the

Farthest-in-Future (FIF) algorithm that evicts the content in the

cache that is not requested until the farthest in the future [39].

In other words, the FIF caching score is calculated as

S(c)(t) = t− τ
(c)

k(c)(t)+1
. (3)

FIF evicts the one with the lowest score (largest τ
(c)

k(c)(t)+1
).

In reality, the arrival time of the next request τ
(c)

k(c)(t)+1
is not

available, but can be estimated using different algorithms. In

the traditional LRU, the time till the next request arrival is

simply estimated as the time elapsed since the last arrival:

τ̂
(c)

k(c)(t)+1
− t = t− τ

(c)

k(c)(t)
.

1To focus on content popularity, we made the simplifying assumption that
all videos have the same size. In reality, videos with different sizes can be
stored in the units of chunks with the same size. And each video request can
be converted into multiple chunk requests, based on the video size.

TABLE I: Hit Ratios of LFU-∆ on Nine Different Caching Scenarios

Scenarios Cache Size= 50 Cache Size=100 Cache Size=500

∆ (requests) Trace 1 Trace 2 Trace 3 Trace 1 Trace 2 Trace 3 Trace 1 Trace 2 Trace 3

500 0.0858 0.0905 0.0737 0.1115 0.1125 0.0917 0.1906 0.1919 0.1674
5000 0.0660 0.0792 0.0722 0.0981 0.1132 0.1044 0.2281 0.2395 0.2216

50000 0.0616 0.0745 0.0714 0.0938 0.1070 0.1045 0.2399 0.2531 0.2483

∞ 0.055 0.0655 0.0623 0.0864 0.0985 0.095 0.2333 0.2441 0.2378

TABLE II: Hit Ratios of LRU-n on Nine Different Caching Scenarios

Scenarios Cache Size=50 Cache Size=100 Cache Size=500

n Trace 1 Trace 2 Trace 3 Trace 1 Trace 2 Trace 3 Trace 1 Trace 2 Trace 3

1 0.0808 0.0754 0.0577 0.1018 0.0985 0.0786 0.1925 0.1944 0.1694
2 0.0701 0.0803 0.0662 0.0953 0.1076 0.0934 0.2143 0.2291 0.2127
4 0.0625 0.0777 0.0675 0.0924 0.1086 0.0991 0.2283 0.2444 0.2352
8 0.0629 0.0755 0.0708 0.0947 0.1079 0.1036 0.2380 0.2512 0.2453

Accordingly, the caching score is calculated as S(c)(t) =

−(t − τ
(c)

k(c)(t)
), The least-recently requested content will be

evicted. If the content arrival process is Poisson with constant

rate λ(c), due to the memoryless property of Poisson process,

at any given time t, the time elapsed since the last arrival

follows the same exponential distribution with rate λ(c) as

the time till the next arrival. So t − τ
(c)

k(c)(t)
is an unbiased

estimator for τ
(c)

k(c)(t)+1
− t. And the expected caching score

becomes E(S(c)(t)) = − 1
λ(c) . Similar to LFU, LRU score

increases with stationary content popularity λ(c), and LRU is

also optimal under IRM in the expected sense.

However, the vanilla LRU score only takes into account

the timing of the previous one request of each item, which

cannot serve as a reliable estimator. To address this issue, one

can calculate caching scores based on the inter-arrivals of the

previous n requests:

S(c)(t, n) = t− τ
(c)

k(c)(t)
+

n−2
∑

i=0

(

τ
(c)

k(c)(t)−i
− τ

(c)

k(c)(t)−i−1

)

= t− τk(c)(t)−n+1. (4)

For stationary Poisson arrival with constant rate λ(c), the

expected LRU-n score becomes E[S(c)(t, n)] = − n

λ(c) . The

score based on n i.i.d inter-arrival samples is a more reliable

popularity indicator than the traditional LRU score based on

a single sample. For requests with time-varying popularity

λ(c)(t), the expected LRU-n score is:

E[S(c)(t, n)] = −

n−1
∑

i=0

1

λ(c)
(

τ
(c)

k(c)(t)−i

) , (5)

which is inversely proportional to the negation of the harmonic

mean of the expected arrival rate at the previous n arrivals.

Similar to the window size tradeoff in LFU-∆, the number

of previous requests to be considered by LRU-n tradeoffs the

responsiveness to popularity changes and continuity/stability

of content placement. The illustration of LRU-n is shown in

Fig. 1. LRU-n’s performance in the nine scenarios of Table I

are shown in Table II. Again, no single n value dominates.

IV. LSTM-BASED CACHING POLICIES

The sliding-window based caching algorithms presented

in the previous section aim at estimating the future content

popularity using requests within a finite time/request window.

However, all requests within the window have the same im-

portance weights in summation based estimations (2) and (5),

and request history outside of the window is totally ignored.

A. Time Series Analysis

To fully explore the temporal locality of popularity evolution

at different time scales, we need a more flexible prediction

framework that can adaptively choose the history window

size and determine the relative importances of history data

to maximize the prediction accuracy. We now study future

content popularity prediction as a time-series analysis problem.

Specifically, given the content request history, R(c)(t), we can

derive different types of time series {x(c)(i)} and predict the

future values of x(c)(i) to calculate the caching score for c.

B. LSTM-based Popularity Prediction

There are many methods for time series prediction, ranging

from simple averaging adopted by LFU-∆ and LRU-n, signal

processing approaches, such as Kalman filter [40] and Recur-

sive least squares (RLS) [41], to more sophisticated machine

learning methods, in particular Recurrent Neural Network

(RNN) for sequence model. For a dynamic system with input

x(t), RNN models the system evolution with hidden state h(t)
using a neural network parameterized by θ:

h(t) = f(x(t),h(t− 1); θ).

Due to the recurrent structure, system state h(t) contains infor-

mation of the whole sequence up to t. The output will be gen-

erated based on the system state: y(t) = g(h(t);φ). In princi-

ple, RNNs can exploit arbitrary long-term dependencies in the

input sequences to improve prediction accuracy. However, the

traditional RNNs are vulnerable to the “vanishing gradient”

problem, where the gradients vanish when back-propagating

for many steps. LSTM and GRU [42] were introduced to

partially solve the problem by introducing gate functions to

control the information flow within RNN. Through training,

LSTM/GRU can learn the correlation structures with the

TABLE III: Comparison between LFU, LRU and LSTM Policies on Different Caching Scenarios.

Scenarios Cache Size=50 Cache Size=100 Cache Size=500

Method Trace 1′ Trace 2′ Trace 3′ Trace 1′ Trace 2′ Trace 3′ Trace 1′ Trace 2′ Trace 3′

LFU-∆∗ 0.0779 0.0913 0.0725 0.1002 0.1173 0.1065 0.2425 0.2660 0.2490
LRU-n∗ 0.0700 0.0813 0.0708 0.0912 0.1110 0.1040 0.2446 0.2668 0.2474

LSTM-Req(b = 10) 0.0508 0.0721 0.0692 0.0726 0.0956 0.1007 0.2034 0.2265 0.2268
LSTM-Req(b = 5) 0.0480 0.0460 0.0660 0.0716 0.0649 0.0940 0.1855 0.1769 0.1992

LSTM-Int 0.0748 0.0912 0.0755 0.1108 0.1272 0.1122 0.2480 0.2702 0.2480

strongest prediction power for the target output. LSTM/GRU

have become the state-of-the-art tools in sequence modeling,

e.g. natural language model and time series analysis.

1) LSTM-Int – Estimating the Arrival Time of the Next

Request: Following the direction of emulating the optimal FIF

caching strategy, we use LSTM to estimate the arrival time of

the next request. Similar to LRU-n, we use LSTM to process

the time series of content request inter-arrivals {δ(c)(i)}. As

is shown in Fig. 1, the input of LSTM is the vector of the

previous w inter-arrivals, x(c)(i) = {δ(c)(i − 1), · · · , δ(c)(i −
w)}, the output is the scalar of the next inter-arrival y(c)(i) =

δ(c)(i). With the predicted next inter-arrival time δ̂
(c)

k(c)(t)+1
,

the caching score is calculated as

S(c)(t) = t− δ̂
(c)

k(c)(t)+1
− τ

(c)

k(c)(t)
. (6)

While w determines the number of past samples going to the

input vector, since LSTM memorizes history information using

its internal memory cell, it can capture temporal correlation

between δ(c)(i) even if w = 1. We set w = 2 in experiments.

2) LSTM-Req – Estimating the Number of Requests in

the Next Slot: Similar to LFU-∆, we use LSTM to process

the time series of the number of requests within each time

slot {r(c)(i)}. As is shown in Fig. 1, the input of LSTM

is the vector of request numbers in the previous w slots,

x(c)(i) = {r(c)(i−1), · · · , r(c)(i−w)}, the output is the scalar

of the number of requests in the next slot, y(c)(i) = r(c)(i).
The predicted request number in future time slot (t, t + b] is

directly used as the caching score. Similar to LSTM-Int, w is

not a critical parameter to tune. On the other hand, the time

slot length b controls the time-resolution of the time series

fed into LSTM, as well as the prediction time horizon. It is

an important parameter to tune, which is shown in Table III.

When the view duration of each request is also available, one

can generate the time series of the number of active viewers,

then LSTM can predict the number of viewers in the next time

slot similar to LSTM-Req.

C. Caching Implementation and Performance

The proposed LSTM models will be trained offline using

respective time series derived from request history. The trained

LSTM model will be run online to generate caching scores for

items in realtime. For LSTM-Int, upon a new request for item

c, the trained LSTM model will be called to predict the arrival

time of the next request for c and update its caching score,

which will be used for caching replacement. The LSTM online

inference time is at millisecond level. For LSTM-Req, at the

beginning of each time slot, the trained LSTM model will be

called once for each active item. For realtime operation, the

time slot can not be too short. In our experiments, when b > 1
minute, the LSTM inference can be done in realtime.

Due to the heterogeneity in popularity, the range of the

request inter-arrival time δ is quite large. If we directly use

the δ values as the input and output labels of LSTM, the

training loss will be dominated by the large δ of items that

are most likely not cacheable. To make LSTM model focus on

accurately predicting inter-arrival values of cacheable items,

we convert each δ value into a categorical label. Specifically,

based on the CDF of δ in the training set, we divide the value

range into P partitions, and the boundaries of the partitions

are set so that the fraction of δ samples following into each

partition is 1/P . We set P = 16 in experiments. Then we

convert each δ value into an one-hot vector corresponding to

the partition that it falls into. Similarly, each output label is the

corresponding one-hot vector of the actual inter-arrival value.

The goal of LSTM is to accurately predict the right partition

the next inter-arrival belongs to. The training loss function is

categorical cross-entropy.

For cold-start items without enough number of past re-

quests, LSTM-Int cannot generate caching scores for them.

In addition, if the predicted arrival time for the next request

has passed for a while, but the request has not arrived yet,

the caching score calculated by LSTM-Int prediction becomes

invalid. Finally, for large predicted δ values, their relative

ranking becomes less reliable than small values 2. For all the

aforementioned cases, we revert back to LFU-∆ to calculate

caching score. And content without valid LSTM-Int scores will

be evicted based on their LFU-∆ first. LSTM-Int is indeed a

combined policy between LSTM and LFU-∆.

In Table III, we compare the performance of LFU, LRU and

LSTM based policies on the nine scenarios used in Table I

and II. For each trace, we report the average hit ratio of the

first out of the four days. For each scenario, we pick the best

configuration for LFU and LRU according to Table I and II.

For LSTM-Req, we tried time slot lengths of 5 and 10 minutes.

LSTM-Int dominates LSTM-Req with different b values, and

it is the best-performing policy for six out of nine scenarios.

LFU with optimal window configuration is the best for the

other three scenarios. Due to the better performance and lower

computation overhead of LSTM, we use LSTM-Int policy to

represent LSTM based policies in the following.

2The partitions at the upper range are much wider than the partitions at the
lower range.

V. DRL-BASED COCKTAIL EDGE CACHING

We now present our Deep Reinforcement Learning (DRL)

based cocktail edge caching framework that adaptively selects

one out of an ensemble of caching policies that is most suitable

for handling the current content mix and popularity trends.

A. DRL for Caching

A cache processes content requests sequentially. There is

strong temporal correlation between consecutive caching de-

cisions. Given the content and user dynamics, optimal caching

can be studied as a stochastic optimal dynamic control prob-

lem. One direction is to develop dynamic system models, with

the cached content as its state, and state transition probability

determined by the content popularity profile following the

IRM model [15], and construct optimal caching policy to

maximize the long-term cache hit ratio. However, if the content

popularity is not stationary, the obtained caching policy will

not achieve the optimal performance [43].

It is therefore more promising to investigate dynamic

caching under the model-free optimal control framework

known as Reinforcement Learning (RL). Through “trial-and-

error” over a wide range of content request traces with

different content mix and popularity evolution patterns, a

RL agent can be trained to generate good caching policies

that generalize well in real operations. Deep Reinforcement

Learning (DRL) uses deep neural networks (DNN) to generate

action policy, which is more adaptive and extensible to com-

plicated problems than the traditional RL. DRL has recently

been applied to content caching, especially edge caching [26],

[27], [30]. The common challenge is to deal with the huge

catalog size in real systems. A DRL algorithm is characterized

by its 〈STATE,ACTION,REWARD〉 tuple. A naively-designed

DRL caching agent would take the complete request history

of all items {R(c)(t), c ∈ C} as its STATE, and generate

policies for ACTION on cache replacement to maximize the

REWARD of cache hit ratio. However the state space dimension

is Θ(|R(c)(t)||C|). Any reasonable catalog size |C| will lead

to the state space explosion problem.

We employ a two-level hierarchy to address this challenge.

The lower level is an ensemble of caching policies which

process the content requests and make caching decisions

in parallel. The upper level DRL agent does not directly

process requests, nor generate caching decisions. Instead, it

monitors the performance of the low-level policies as well

as summary statistics of current request patterns. Its action

is to dynamically select the caching policy that is the most

suitable to the current situation to control the cache. The DRL

agent is essentially an adaptive policy selector. This design

makes the state space of DRL agent well-manageable, and

can work with any cache system with arbitrary configuration

and request pattern. The DRL agent is trained to combine

the merits of constituent caching algorithms to address the

complicated content mix and dynamic popularity trends. The

high-level idea is similar to the classic combination therapy

for AIDS, namely AIDS cocktail [9]. We call our framework

Cocktail Edge Caching (CEC).

B. Policy Ensemble and Virtual Cache

Definition 1: Policy Ensemble E is an ensemble of

caching policies pre-selected based on their performance on

historical request traces. Some may work the best on certain

traces, while the others may work the best on other traces. No

policy is dominated by any other single policy on all traces.

Let {p1, p2, ..., p|E|} denote the pre-selected policies in E .

Definition 2: Primary Cache PC is the real cache used

for storing the items. The caching performance is measured

by the hit ratio of all the content requests.

To select the best policy, the DRL agent needs to know

the performance of all policies on the recent requests. Since

only one policy is selected to control the primary cache at

any given time, we set up Virtual Caches, one for each

constituent policy, to evaluate their performance. A virtual

cache does not have any buffer space to store real content.

It only maintains a simple dictionary that stores the identities

of the virtually cached items. A similar concept, called Ghost

cache, was proposed in [44], where cache lists of ghost caches

are combined to form the primary cache list. We only use

virtual caches to evaluate the performance of policies, and the

primary cache is controlled by one policy at any given time.

Whenever the primary cache receives a request, it broadcasts

the requested content ID to all the virtual caches, each of

which will check whether the ID is in its virtual cache list:

if yes, a virtual hit is logged; if not, a virtual miss is logged,

and some ID currently in the list will be evicted based on its

associated caching policy. Each cache periodically calculates

and reports its virtual hit ratio to the DRL agent. All virtual

caches receive the same request sequence as the primary cache.

Due to policy difference, the virtual cache lists will be different

from each other and the primary cache list. To control the

divergence, all virtual cache lists will be synchronized to the

primary cache list after certain number of requests. This is

another main difference from the traditional ghost caches [44].

C. DRL-based Policy Selection

As mentioned above, different policies dominate under

different scenarios, and it’s hard to tell exactly what factors

lead to the dominance of certain policy under certain scenario.

Due to the temporal locality in content popularity, the recent

performance of a policy can be used as an indicator for its

performance in the near future. Let {hq
1(t), h

q
2(t), ..., h

q

|E|(t)}
denote the virtual hit ratios of all the policies within time

window (t−q, t]. However, similar to the history window size

selection problem for LFU-∆, we don’t know exactly how far

we should look back, and how to assign different weights to

hit ratios within different mini-slots of the history window. We

resort to a DRL agent to learn how to select policy.

Other than the virtual performance of the virtual caches, we

also feed some summary context information to the DRL agent

to help its selection. First of all, recent content popularity

variations can definitely affect all policies’ performance and

their relative ranking. For example, when some newly gen-

erated items suddenly become popular, LFU reacts slower to

the sudden popularity surge, and performs worse than LFU-n

and LRU. But items with rather stable popularity are definitely

favorable to LFU. On the other hand, as shown in Table I and

II, the total request volume also has a significant influence

on the relative ranking of policies. Therefore, the two factors

are also used as state features for the DRL agent.

D. DRL Agent Development

Fig. 2 is the architecture of CEC system.

Fig. 2: CEC Architecture

Architecture:We use Double DQN (DDQN) [45], a clas-

sic DRL algorithm, to train the policy selector. The traditional

Deep Queue Network (DQN) learns the long-term reward

function Q(S, a) for taking action a under state S. The optimal

action policy can be obtained as π(S) = argmaxaQ(S, a).
The Q function is approximated by a deep neural network (Q-

network) parameterized by θ, which is updated in training to

minimize the difference between the target Q-value and the

estimated Q-value. DDQN is an extension of the traditional

DQN. It not only reduces the overestimation of DQN, but

also performs better than DQN on several test platforms [45].

DDQN employs two DNNs, i.e., online Q-network and target

Q-network. The online Q-network approximates the Q-value,

and is updated by each batch of training samples. The target

Q-network has the same structure as the online Q-network,

but is updated less frequently, which makes better estimation

of the target Q-value and stabilizes the training process.

STATE S: As mentioned above, the state features include the

virtual hit ratios of each policy in the previous 10 time slots,

with each time slot consisting of 100 requests. To measure the

popularity variations, we calculate the number of overlapped

items between the top-100 most frequently-requested items

of the previous two request windows (1, 000 requests within

each window). To summarize user activity level, we calculate

the total number of requests for all items in the previous five

minutes. The size of the state space is 10×|E|+2. The temporal

patterns in content popularity evolution will translate into the

temporal patterns of caching performance. To fully explore

such patterns, similar to LSTM-Int, the virtual hit ratio vector

is first processed by a LSTM layer before being fed into the

following fully-connected layers with the two context features.

The outputs of the following layer are Q-values.

ACTION a: DRL agent’s action is selecting one policy from

E . The action space size is |E|. The selected policy controls

the primary cache to decide which item to evict. If the active

caching policy is changed for each new request, the primary

cache will become unstable. In both training and testing, policy

selector is called once every n requests. The selected policy

controls primary cache for the next n requests.

REWARD r: In the training stage, the DRL agent is rein-

forced by the reward that its current action received from

the environment. Ideally, the REWARD function should give

accurate and timely feedback about the quality of the action.

The natural choice is to use the actual hit ratio of the selected

policy on the primary cache as its reward. However, as

stated earlier, the performance impact of adding/evicting an

item from cache can be fully observable after many future

requests, the delayed-reward problem, which will significantly

slow down the convergence and the solution quality of DRL.

Fortunately, in the training phase, we have the “oracle” of all

future request arrivals of all items, and can use the optimal

FIF caching strategy as the benchmark to evaluate the quality

of policy selection. Specifically, for a policy pi, if the item it

evicts is ci, we calculate ci’s FIF score, i.e., the negation of the

time till its next request, according to (3). Since FIF always

evicts the item with the lowest FIF score, to emulate FIF, the

DRL agent should select the policy whose evicted item has the

lowest FIF score among all the policies. For each request, we

rank all policies in the increasing order of the FIF scores of

their eviction candidates and sequentially assign policy scores

{|E|−1, |E|−2, ..., 0} to the sorted list. If there is a tie between

two policies, they get the same policy score. The reward for

selecting pi as the active policy is calculated as the sum of

pi’s policy scores for the next n requests.

VI. PERFORMANCE EVALUATION

We evaluate the performance of CEC using real video

request traces from two large video streaming platforms. They

are from two major companies providing Internet video-on-

demand services in China. Videos in the datasets range from

movies, TV series, to sports programs and news.

A. Experiment Setup

Dataset A [22] includes requests generated by users from

different provinces in China. Each request record consists of

request time, user IP address, content name, valid watching

time and video length. The video requests in dataset B [36]

are from a major city in China. The request record is similar

to the first one. Instead of IP address, it identifies each request

with user ID and longitude/latitude information.

To emulate different levels of edge caching hierarchy, for

dataset A, we group requests by IP prefix. All requests from

IP addresses sharing the same prefix at a particular length

belong to one edge subnet. The longer the prefix length, the

smaller the edge subnet. We use three different prefix lengths:

{8, 12, 18}. For each prefix length, there are many subnets,

from which we pick three most active ones. For dataset B,

we group requests based on geographic information at three

levels: {the whole city, two halves of the city, four quarters

100 300 500

cache size

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32
c
u

m
u

la
ti

v
e
 h

it
 r

a
ti

o
prefix length: 8

LFU-Inf

LFU-500

LFU-5000

LFU-50000

LRU-2

LRU-4

LRU-8

LSTM-Int

CEC

100 300 500

cache size

0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

c
u

m
u

la
ti

v
e
 h

it
 r

a
ti

o

prefix length: 12

LFU-Inf

LFU-500

LFU-5000

LFU-50000

LRU-2

LRU-4

LRU-8

LSTM-Int

CEC

100 300 500

cache size

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

c
u

m
u

la
ti

v
e
 h

it
 r

a
ti

o

prefix length: 18

LFU-Inf

LFU-500

LFU-5000

LFU-50000

LRU-2

LRU-4

LRU-8

LSTM-Int

CEC

Fig. 3: Cumulative Hit Ratio vs. Cache Size on dataset A at different prefix lengths

TABLE IV: Relative Hit Ratio Improvement of CEC over Base Policies on Scales of Subnets for Dataset A

Baselines

Prefix length LFU-Inf LFU-500 LFU-5000 LFU-50000 LRU-2 LRU-4 LRU-8 LSTM-Int

8 3.40% 45.79% 11.10% 2.40% 15.28% 4.81% 1.96% 2.35%
12 2.73% 51.59% 11.69% 2.27% 16.26% 5.52% 1.98% 1.63%
18 19.39% 11.66% 12.69% 14.84% 6.97% 8.53% 9.68% 4.37%

of the city}. For dataset A, there are about {150k, 100k,

30k} requests per day for the three levels respectively, while

for dataset B, there are about {100k, 30k, 20k} requests per

day. In our experiments, for each sub-dataset, we test with

three different cache sizes: {100, 300, 500} so as to evaluate

performance thoroughly. For each combination of (cache

size, subnet level, content provider), we train a

separate DRL model. Each DRL agent is trained using requests

from one subnet at that level, and tested on the other subnets

at the same level. For the “whole city” level in dataset B,

since there is only one network, we use 70% requests for

training, the remaining for testing. We use Python 3.7.6 and

PyTorch 1.4.0 to develop the training and testing experiments.

The training duration is about half day on a desktop computer

with Intel(R) Core(TM) i5-9400 CPU @ 2.90GHz.

Base policies in our ensemble include LFU-∆ and LRU-n
with multiple sliding-window sizes, as well as our proposed

LSTM-Int. Since the quality of the policies in the ensemble di-

rectly affects the quality of CEC, one may pre-tune parameters

of base policies based on their average hit ratios on a small

portion of traces before training. In our experiments, we pre-

select eight policies, LFU-Inf, LFU-500, LFU-5000,

LFU-50000, LRU-2, LRU-4, LRU-8 and LSTM-Int,

whose average hit ratios on a small portion of the training trace

are among the best, to make up the ensemble. In both training

and testing phases, CEC is called once every 100 requests and

the runtime per call is 4.12 ms on average and the selected

policy controls primary cache for the next 100 requests, which

indicates low computation overheads. We will show next that

no single policy dominates the other policies, however, CEC

can combine all the pre-selected constituent policies together

to boost the hit ratio evidently.

B. Experiment Results

Fig. 3 shows the average hit ratios of CEC and base policies

in all kinds of scenarios of dataset A. Table IV is the corre-

sponding relative hit ratio improvement of CEC compared over

all the constituent policies. From both Fig. 3 and Table IV,

we see CEC has the largest improvement on the smallest edge

subnet of prefix length 18. This echoes our initial motivation

that the traditional caching algorithms are inadequate for edge

cache boxes serving small user populations. Note that, the

improvement over our proposed LSTM-Int is not as large as

over the other policies. This is because LSTM-Int is already

a combined policy between LFU and LSTM. The fact that

CEC can further improve its performance demonstrates the

effectiveness of DRL-based ensemble learning.

Fig. 3 only plots the average hit ratio over the scenarios.

To illustrate how CEC adapts to the diurnal patterns in

content popularity evolution, we zoom in and create several

hundreds of mini-scenarios for different time periods during

daytime and nighttime. The duration of each mini-scenario

varies from 2 hours to a day. Fig. 4 shows how often CEC

selects each constituent policy under each cache size and

prefix length. y-axis is the fraction of selection of each policy.

When observing Fig. 3 and Fig. 4 together, we can see that

for a caching scenario, a constituent policy with a higher

average hit ratio is more likely to be selected by CEC. And

each policy has very different relative performance in the

ensemble, and consequently different rates of being selected

by CEC, under different scenarios. LSTM-Int performs very

well in most cases except when the cache size is 500 at

the smallest subnet level. LFU-500 and LRU-2 only play a

role when both the subnet size and the cache size are rather

small. LRU-8 performs pretty well when both the subnet and

cache size are very large. LFU-50000 is frequently selected,

except for the smallest subnet. Due to the dynamic trends of

content popularity, one cannot count on a single policy to

deal with all kinds of scenarios. CEC can serve as a general

framework to combine different ensembles of base policies pre-

selected/customized for different caching scenarios.

In Fig. 5, for a trace from a subnet of prefix 18 and cache

L
F
U

-I
n
f

L
F
U

-5
0
0

L
F
U

-5
k

L
F
U

-5
0
k

L
R

U
-2

L
R

U
-4

L
R

U
-8

L
S
T
M

-I
n
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
r
a
te

 o
f

s
e
le

c
ti

o
n

prefix length 8
cachesize 100

cachesize 300

cachesize 500

L
F
U

-I
n
f

L
F
U

-5
0
0

L
F
U

-5
k

L
F
U

-5
0
k

L
R

U
-2

L
R

U
-4

L
R

U
-8

L
S
T
M

-I
n
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r
a
te

 o
f

s
e
le

c
ti

o
n

prefix length 12
cachesize 100

cachesize 300

cachesize 500

L
F
U

-I
n
f

L
F
U

-5
0
0

L
F
U

-5
k

L
F
U

-5
0
k

L
R

U
-2

L
R

U
-4

L
R

U
-8

L
S
T
M

-I
n
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

r
a
te

 o
f

s
e
le

c
ti

o
n

prefix length 18
cachesize 100

cachesize 300

cachesize 500

Fig. 4: Rate of Selection of all policies on dataset A at different prefix lengths

TABLE V: Relative Hit Ratio Improvement of CEC over Base Policies on Different Scenarios of Dataset B

Baselines

Area LFU-Inf LFU-500 LFU-5000 LFU-50000 LRU-2 LRU-4 LRU-8 LSTM-Int

whole 5.57% 19.73% 3.53% 2.41% 7.56% 1.71% 1.18% 2.30%
half 14.75% 10.27% 4.64% 8.32% 5.31% 2.34% 2.92% 3.71%

quarter 17.57% 8.48% 6.55% 11.43% 4.92% 3.53% 4.33% 5.86%

0 5000 10000 15000 20000 25000 30000

time (in number of requests)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

in
s
ta

n
ta

n
e
o
u

s
 h

it
 r

a
ti

o

LFU-50000

LRU-2

LRU-4

LRU-8

LSTM-Int

CEC

Fig. 5: Instantaneous Hit Ratios of CEC and Top-5 base

policies on one testing trace

size 500, we zoom in and plot the temporal evolutions of the

instantaneous hit ratios of every 500 requests for CEC and

top-5 base policies for a total of 30, 000 requests. The relative

performance of base policies oscillates overtime, without a

dominating single policy. CEC always picks the most suitable

policy and maintains the highest hit ratio almost all the time.

0 10 20 30 40 50 60 70 80 90
scenarios

0.10

0.15

0.20

0.25

0.30

0.35

h
it

 r
a
ti

o

optimal selector

CEC

Fig. 6: Hit Ratios of Optimal Selector and CEC

To assess the quality of CEC policy selection, we compare

it with an unrealistic optimal policy selector that has access

to the “oracle” of future request arrival times. For each new

request, the optimal selector calculates the FIF scores accord-

ing to (3) of all the eviction candidates chosen by all the base

policies, and evicts the one with the lowest FIF score. Fig. 6

shows the hit ratios across almost one hundred mini-scenarios.

The x-axis represents the mini-scenario index, sorted in the

increasing order of the hit ratios of FIF policy selector.

For some easy scenarios, e.g. the popularity of contents is

relatively stable, CEC can closely match FIF. However, big

gaps are also observed for some more complicated scenarios.

There are several reasons: 1) FIF has access to the oracle

of future request arrivals; 2) FIF can change policy for each

request, whereas CEC only changes policy once every 100

requests; 3) DRL agent might need additional informative

context information to make better selection. We will improve

CEC to close the gap in future.

Due to the space limit, for dataset B, we only show the

relative improvement of CEC over base policies for different

scales of geographic areas: the whole city, a half of the city,

and a quarter of the city in Table V. The overall trends are quite

similar to dataset A. CEC achieves the largest improvement

on the smallest area scale, which further demonstrates the

advantages of CEC for edge caching.

VII. CONCLUSION

In this paper, we studied edge caching policies using ensem-

ble learning. We first showed through analysis and experiments

that the classical LFU and LRU policies can be enhanced

with more flexible time series analysis, in particular LSTM

based future popularity prediction to adapt better to dynamic

content popularity and heterogeneous caching scenarios. We

then developed a novel Cocktail Edge Caching framework

that strategically combines base caching policies using DRL

to achieve superior and more robust performance than any

single policy. In future, we will improve CEC by incorporating

more informative context features and adopting the constantly

evolving new DRL models.

REFERENCES

[1] Huawei, “Whitepaper on the VR-Oriented Bearer Network
Requirement(2016),” Huawei Technology, Tech. Rep., 2016, available
at http://www-file.huawei.com/∼ /media/CORPORATE/PDF/white%
20paper/whitepaper-on-the-vr-oriented-bearer-network-requirement-en.
pdf.

[2] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in Proceedings of the Second Edition
of the ICN Workshop on Information-centric Networking, ser. ICN ’12,
2012, pp. 55–60.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and

technologies. ACM, 2009, pp. 1–12.

[4] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless video content delivery through
distributed caching helpers,” in Proc. IEEE INFOCOM. IEEE, 2012.

[5] L. Sun, Y. Mao, T. Zong, Y. Liu, and Y. Wang, “Flocking-based
live streaming of 360-degree video,” in Proceedings of the 11th ACM

Multimedia Systems Conference, 2020, pp. 26–37.

[6] O. Sagi and L. Rokach, “Ensemble learning: A survey,” WIREs Data

Mining and Knowledge Discovery, vol. 8, no. 4, p. e1249, 2018.

[7] NetFlix. Netflix prize challenge wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Netflix Prize

[8] R. Bell, Y. Koren, and C. Volinsky, “The bellkor 2008 solution to the
netflix prize,” AT&T Research, 01 2008.

[9] J. Henkel, “Attacking aids with acocktail’therapy.” FDA consumer,
vol. 33, no. 4, pp. 12–17, 1999.

[10] V. Cisco, “Cisco visual networking index: Forecast and trends, 2017–
2022,” White Paper, 2018.

[11] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Analysis of ttl-based
cache networks,” in 6th International ICST Conference on Performance

Evaluation Methodologies and Tools, 2012, pp. 1–10.

[12] N. B. Melazzi, G. Bianchi, A. Caponi, and A. Detti, “A general, tractable
and accurate model for a cascade of lru caches,” IEEE Communications

Letters, vol. 18, no. 5, pp. 877–880, 2014.

[13] Chia-Tai Chan, Shuo-Cheng Hu, Pi-Chung Wang, and Yaw-Chung Chen,
“A fifo-based buffer management approach for the atm gfr services,”
IEEE Communications Letters, vol. 4, no. 6, pp. 205–207, 2000.

[14] L. Cherkasova, Improving WWW proxies performance with greedy-dual-

size-frequency caching policy. Hewlett-Packard Laboratories, 1998.

[15] E. G. Coffman, Jr. and P. J. Denning, Operating Systems Theory.
Prentice Hall Professional Technical Reference, 1973.

[16] P. R. Jelenkovic and A. Radovanovic, “The persistent-access-caching
algorithm,” Random Struct. Algorithms, vol. 33, no. 2, pp. 219–251,
2008.

[17] A. Dan and D. Towsley, “An approximate analysis of the lru and
fifo buffer replacement schemes,” in Proceedings of the 1990 ACM

SIGMETRICS Conference on Measurement and Modeling of Computer

Systems, ser. SIGMETRICS ’90, 1990.

[18] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content
caching,” in IEEE INFOCOM 2016-The 35th Annual IEEE International

Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[19] J. Song, M. Sheng, T. Q. Quek, C. Xu, and X. Wang, “Learning-based
content caching and sharing for wireless networks,” IEEE Transactions

on Communications, vol. 65, no. 10, pp. 4309–4324, 2017.

[20] G. Ma, Z. Wang, M. Zhang, J. Ye, M. Chen, and W. Zhu, “Understanding
performance of edge content caching for mobile video streaming,” IEEE
Journal on Selected Areas in Communications, vol. 35, no. 5, pp. 1076–
1089, 2017.

[21] C. Zhang, H. Pang, J. Liu, S. Tang, R. Zhang, D. Wang, and L. Sun,
“Toward edge-assisted video content intelligent caching with long short-
term memory learning,” IEEE Access, vol. 7, pp. 152 832–152 846, 2019.

[22] G. Li, Q. Shen, Y. Liu, H. Cao, Z. Han, F. Li, and J. Li, “Data-driven
approaches to edge caching,” in Proceedings of the 2018 Workshop on

Networking for Emerging Applications and Technologies, 2018, pp. 8–
14.

[23] K. Poularakis, G. Iosifidis, A. Argyriou, I. Koutsopoulos, and L. Tas-
siulas, “Caching and operator cooperation policies for layered video
content delivery,” in IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, 2016, pp. 1–9.

[24] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[25] A. S. Gomes, B. Sousa, D. Palma, V. Fonseca, Z. Zhao, E. Monteiro,
T. Braun, P. Simoes, and L. Cordeiro, “Edge caching with mobility
prediction in virtualized lte mobile networks,” Future Generation
Computer Systems, vol. 70, pp. 148 – 162, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X16302072

[26] S. O. Somuyiwa, A. György, and D. Gündüz, “A reinforcement-learning
approach to proactive caching in wireless networks,” IEEE Journal on

Selected Areas in Communications, vol. 36, no. 6, pp. 1331–1344, 2018.
[27] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A deep reinforcement

learning-based framework for content caching,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS). IEEE, 2018,
pp. 1–6.

[28] V. Kirilin, A. Sundarrajan, S. Gorinsky, and R. K. Sitaraman, “Rl-cache:
Learning-based cache admission for content delivery,” IEEE Journal on

Selected Areas in Communications, pp. 1–1, 2020.
[29] Q. Fan, J. Li, X. Li, Q. He, and S. Fu, “Pa-cache: Learning-based

popularity-aware content caching in edge networks,” 02 2020.
[30] A. Sadeghi, F. Sheikholeslami, A. G. Marques, and G. B. Giannakis,

“Reinforcement learning for adaptive caching with dynamic storage
pricing,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 10, pp. 2267–2281, 2019.

[31] A. Sengupta, S. Amuru, R. Tandon, R. M. Buehrer, and T. C. Clancy,
“Learning distributed caching strategies in small cell networks,” in 2014

11th International Symposium on Wireless Communications Systems
(ISWCS). IEEE, 2014, pp. 917–921.

[32] W. Jiang, G. Feng, S. Qin, T. S. P. Yum, and G. Cao, “Multi-agent
reinforcement learning for efficient content caching in mobile d2d
networks,” IEEE Transactions on Wireless Communications, vol. 18,
no. 3, pp. 1610–1622, 2019.

[33] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and
scalable caching for 5g using reinforcement learning of space-time
popularities,” IEEE Journal of Selected Topics in Signal Processing,
vol. 12, no. 1, pp. 180–190, 2017.

[34] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep reinforcement
learning for mobile edge caching: Review, new features, and open
issues,” IEEE Network, vol. 32, no. 6, pp. 50–57, 2018.

[35] P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic content
update for wireless edge caching via deep reinforcement learning,” IEEE
Communications Letters, vol. 23, no. 10, pp. 1773–1777, 2019.

[36] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent video
caching at network edge: A multi-agent deep reinforcement learning
approach,” in IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 2020, pp. 2499–2508.

[37] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Unravelling the impact of temporal and geographical
locality in content caching systems,” IEEE Transactions on Multimedia,
vol. 17, no. 10, pp. 1839–1854, 2015.

[38] ——, “Temporal locality in today’s content caching: why it matters and
how to model it,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 5, pp. 5–12, 2013.

[39] L. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[40] R. G. Brown and P. Y. C. Hwang, Introduction to random signals and
applied kalman filtering: with MATLAB exercises and solutions; 3rd ed.

New York, NY: Wiley, 1997.
[41] S. Haykin, Adaptive Filter Theory (3rd Ed.). Upper Saddle River, NJ,

USA: Prentice-Hall, Inc., 1996.
[42] F. A. Gers, J. A. Schmidhuber, and F. A. Cummins, “Learning to forget:

Continual prediction with lstm,” Neural Comput., vol. 12, no. 10, Oct.
2000.

[43] J. Li, S. Shakkottai, J. C. Lui, and V. Subramanian, “Accurate learning or
fast mixing? dynamic adaptability of caching algorithms,” IEEE Journal

on Selected Areas in Communications, vol. 36, no. 6, pp. 1314–1330,
2018.

[44] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead
replacement cache.” in Fast, vol. 3, no. 2003, 2003, pp. 115–130.

[45] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Thirtieth AAAI conference on artificial

intelligence, 2016.

