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Convergence of Bi-Virus Epidemic Models with
Non-Linear Rates on Networks - A Monotone

Dynamical Systems Approach
Vishwaraj Doshi, Shailaja Mallick, and Do Young Eun

Abstract—We study convergence properties of competing epi-
demic models of the Susceptible-Infected-Susceptible (SIS) type.
The SIS epidemic model has seen widespread popularity in
modelling the spreading dynamics of contagions such as viruses,
infectious diseases, or even rumors/opinions over contact net-
works (graphs). We analyze the case of two such viruses spreading
on overlaid graphs, with non-linear rates of infection spread
and recovery. We call this the non-linear bi-virus model and,
building upon recent results, obtain precise conditions for global
convergence of the solutions to a trichotomy of possible outcomes:
a virus-free state, a single-virus state, and to a coexistence state.
Our techniques are based on the theory of monotone dynam-
ical systems (MDS), in contrast to Lyapunov based techniques
that have only seen partial success in determining convergence
properties in the setting of competing epidemics. We demonstrate
how the existing works have been unsuccessful in characterizing a
large subset of the model parameter space for bi-virus epidemics,
including all scenarios leading to coexistence of the epidemics. To
the best of our knowledge, our results are the first in providing
complete convergence analysis for the bi-virus system with non-
linear infection and recovery rates on general graphs.

Index Terms—Epidemics on networks, bi-virus models, multi-
layer graphs, monotone dynamical systems.

I. INTRODUCTION AND OVERVIEW

Graph-based epidemic models are widely employed to
analyze the spread of real world phenomena such as com-
municable diseases [2], [3], computer viruses, malware [4]–
[6], product adoption [7]–[9], opinions, and rumors [10]–[13].
The propagation of such phenomenon (which we cumulatively
refer to as epidemics or viruses) usually takes place via
processes such as human contact, word-of-mouth, exchange
of emails or even in social media platforms. Graph based
techniques, with edge based mechanisms to model information
spread, have therefore proven to be effective in capturing such
epidemic dynamics, and have been a research focus over the
past few decades [14]–[17]. In recent years, the development
of models which capture the competition of two or more of
such epidemics has seen a surge of interest. In particular,
models capturing the behavior of two competing epidemics of
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the Susceptible-Infected-Susceptible (SIS) types, also known
as the bi-virus or bi-SIS models, have garnered significant
attention over the years [8], [18]–[21].

Epidemic models take the form of ordinary differential
equations (ODEs) and their analysis involves the identification
of fixed points of the system, their uniqueness properties, and
ultimately showing the convergence of the solution trajectories
to those fixed points. The technique via Lyapunov functions
has historically been a popular method to prove convergence
to fixed points and was also used in epidemiology literature to
derive the convergence properties of the SIS epidemic model.
The SIS model was originally introduced in [2] to capture
the spread of Gonorrhea due to contact between individuals
in a population, and was further developed in [22]–[29].
The central result for SIS epidemics, originally proved using
Lyapunov functions in [2], is a dichotomy arising from the
relation between model parameter (τ > 0) representing the
effective infection rate or strength of the virus,1 and a threshold
value (τ∗ > 0). When τ ≤ τ∗, the virus spread is not strong
enough and the system converges to a ‘virus-free’ state. When
τ > τ∗, it converges to a state where the virus infects a
non-zero portion of the population. Attempts have also been
made to perform similar convergence analysis for the bi-virus
epidemic model [8], [19]–[21]. The key questions posed in
such literature are: Can both competing epidemics coexist over
the network? If not, which one prevails? Or do both die out?
This trichotomy of possible results is what the recent literature
has been trying to characterize.

When the propagation of the two epidemics occurs over
the same network [8], [30], it has been established that
coexistence of two viruses is impossible except in the rare
cases where their effective strengths (τ1, τ2 > 0 for viruses
1, 2, respectively) are equal [8], [18]–[21]; the virus with
the larger effective strength otherwise wiping out the other,
a phenomenon sometimes referred to as winner takes all
[8]. The situation is much more complicated when the two
viruses spread over two distinct networks overlaid on the same
set of nodes. This modeling approach is more representative
of the real world, where competing rumors/products/memes
may not use the same platforms to propagate, though they
target the same individuals. Recent works [18]–[21], [31]–[34]
therefore consider this more general setting, but unfortunately,
a complete characterization of the trichotomy of outcomes has
still proven to be elusive and remains open as of now.

1τ = β/δ, where β > 0 stands for the infection rate of the virus and δ > 0
the recovery rate from the virus. Section II provides a detailed explanation.
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While the original SIS model introduced in [2] had the
aggregate infection and recovery rates of a node as linear
functions of the number of infected neighbors, there has been a
push towards studying more generalized models where these
rates are made heterogeneous (across nodes) and non-linear
[35]–[39]. Realistic assumptions such as infection rates tend-
ing to saturation with continual increase in neighborhood in-
fection [40]–[43] have become more commonplace, implying
that the models employing strictly linear spreading dynamics
often provide overestimates to the real world infection rates
[20], [24]. This paper does not concern itself with answering
which non-linear infection rate best captures the exact dynam-
ics, but we direct the readers to [20] which provides simula-
tion results comparing non-linear rate functions to the exact
Markovian dynamics for some special randomly generated
graph topologies. In some special cases, non-linear recovery
rates also have an interpretation linking them to reliability
theory in the form infection duration with increasing failure
rates (failure here being the recovery of an infected node).
Allowing for non-linear infection and recovery rates leads to a
more general version of the bi-virus model on overlaid graphs,
albeit much more complicated, and the complete convergence
criterion is yet to be fully established [19], [20]. It should
be noted that while we extensively refer to the infection and
recovery rates being either linear or non-linear in this paper,
the bi-virus epidemic model itself will always be a system of
non-linear ODEs.

Limitations of existing works: Of all the recent works
concerning the spread of SIS type bi-virus epidemics on
overlaid networks, [20] and [19] provide conditions under
which the system globally converges to the state where one
virus survives while the other dies out. [20] approaches the
problem of showing global convergence by employing the
classic technique via Lyapunov functions. However, finding
appropriate Lyapunov functions is a highly non-trivial task,
and as mentioned in [19], is even more difficult due to the
coupled nature of the bi-virus ODE system. This can be seen in
the condition they derive in [20] for the case where, say, Virus
1 dies out and Virus 2 survives. When τ1 and τ2 represent
the effective strengths of Virus 1 and Virus 2, respectively,
their condition translates to τ1≤τ∗1 where τ∗1 is the threshold
corresponding to the single-virus case, meaning that Virus 1
would not have survived even if it was the only epidemic
present on the network. More importantly, [20] is unable to
characterize convergence properties for τ1>τ∗1 and τ2>τ∗2 .

The authors in [19] take a different approach and tackle
this problem by applying their ‘qualitative analysis’ technique,
which uses results from other dynamical systems that bound
the solutions of the bi-virus ODE; and provide conditions
under which the system globally converges to single-virus
equilibria. As we show later in Section V-B, however, their
conditions not only characterize just a subset of the actual
space of parameters that lead to global convergence to the
single-virus equilibria (which they themselves pointed out),
but the size of this subset is highly sensitive to the graph
topology, often much smaller than what it should be in general.
In other words, a complete characterization of the entire space

of model parameters, on which the system globally converges
to one of the trichotomic states, has still been recognized as
an open problem in the bi-virus literature [19]–[21].

Our contributions: In this paper, we analyze the bi-virus
model with non-linear infection and recovery rates (or the
non-linear bi-virus model in short) and provide the complete
characterization of the trichotomy of the outcomes with neces-
sary and sufficient conditions under which the system globally
converges to one of the three possible points: (i) a ‘virus-free’
state, (ii) a ‘single-virus’ equilibrium, or (iii) an equilibrium
where both viruses coexist over the network. While the result
for convergence to the virus-free state of the bi-SIS model
is not new for non-linear infection and linear recovery rates,
our proof for the same is the most general form known to
date, covering the case with both infection and recovery rates
being non-linear. The proof of convergence to the virus-free
state of the bi-virus model is straightforward, and directly
follows from the convergence criterion for the single-virus SIS
model with non-linear rates. However, the convergence results
for fixed points where only one of the two viruses survives,
or to the equilibrium where both viruses coexist, are not as
straightforward to establish, rendering the typical Lyapunov
based approach largely inapplicable.

In proving these results, we first show, using a specially
constructed cone based partial ordering, that the bi-virus epi-
demic model possesses some inherent monotonicity properties.
We then use novel techniques from the theory of monotone
dynamical systems (MDS) [44] to prove our main results. In re-
cent control systems literature [45]–[49], techniques based on
the construction of cone based partial orderings that leverage
the monotonicity properties of dynamical systems have indeed
been studied. Dynamical systems exhibiting such monotonicity
properties are also sometimes called deferentially positive
systems [50] and cooperative systems [51] in the ODE set-
ting, with interesting applications in consensus problems for
distributed systems [52] and even neural networks [53]. In this
paper, we utilize these MDS techniques in the setting of com-
peting epidemics, and as a result demonstrate an alternative to
Lyapunov based approaches to analyze convergence properties
of epidemic models. The novelty of using the MDS approach
for analysis also lies with [54], which uses similar techniques
to analyze the bi-virus system for the special case of linear
infection and recovery rates, and was developed concurrently
and independently with the initial version of this work [1].
This further highlights the utility of MDS techniques for the
analysis of epidemic models on graphs.

This paper is an extension of our previous work [1], which
gives necessary and sufficient conditions for convergence to
the three types of equilibria only for the special case of the
bi-virus model with linear infection and recovery rates (or
the linear bi-virus model in short). Our conditions therein
take a more precise form in terms of the model parameters
τ1 and τ2 and one can visualize an exact partition of the
model parameter space into regions corresponding to various
convergence outcomes. We note that this partition of the model
parameter space coincides with that in [18], wherein they
employed only local stability results via bifurcation analysis
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– concerning only solution trajectories that originate from a
small neighborhood of those fixed points. In contrast, our
results in this paper concern global stability of the system with
any combination of linear as well as more general, non-linear
infection and recovery rates.

Structure of the paper: In Section II, we first introduce
the basic notation used throughout the paper, along with the
classical (single-virus) SIS model and the bi-virus model.
We then provide the generalization to non-linear infection
and recovery rates in Section III with some key assumptions
on the infection and recovery rate functions, complimented
by a discussion in Appendix C regarding a special class of
recovery rates. In Section IV, we provide a primer to the
MDS theory, and establish monotonicity results for the single-
virus SIS model, proving the convergence result for the single-
virus model with non-linear infection and recovery rates whose
proofs are deferred to Appendix E. We then go on to show
in Section V-A that the non-linear bi-virus model is also
a monotone dynamical system with respect to a specially
constructed cone-based partial ordering, and include the main
convergence results in Section V-B. In Section VI we take the
opportunity to provide a more intuitive version of our results
by considering the special case of linear infection and recovery
rates, along with brief comparisons with the existing literature.
In Section VII, we provide numerical results which confirm
our theoretical findings. We then conclude in Section VIII.

For better readability of the paper, all technical proofs of
the main results are deferred to Appendix F. The appendices
also include some selected definitions and results from matrix
theory (Appendix A), ODE theory (Appendix B), and from
MDS theory (Appendix D), which we use as part of our proofs
of the Theorems in Section V-B.

II. PRELIMINARIES

A. Basic Notations

We standardize the notations of vectors and matrices by
using lower case, bold-faced letters to denote vectors (v ∈
RN ), and upper case, bold-faced letters to denote matrices
(M∈RN×N ). We denote by λ(M) the largest real part2 of
all eigenvalues of a square matrix M. We use diag(v) or Dv

to denote the N×N diagonal matrix with entries of vector
v ∈ RN on the diagonal. Also, we denote 1 , [1,· · ·, 1]T

and 0, [0,· · ·, 0]T , the N -dimensional vector of all ones and
zeros, respectively. For vectors, we write x≤y to indicate that
xi ≤ yi for all i; x< y if x≤ y and x 6= y; x� y when all
entries satisfy xi<yi. We use G(N , E) to represent a general,
undirected, connected graph with N , {1, 2, · · · , N} being
the set of nodes and E being the set of edges. When we refer
to a matrix A= [aij ] as the adjacency matrix of some graph
G(N , E), it satisfies aij , 1{(i,j)∈E} for any i, j ∈ N ; we use
dmin(A) and dmax(A) to denote the minimum and maximum
degrees of the nodes of the corresponding graph. Since we
only consider connected graphs, all the adjacency matrices in

2We use the λ notation instead of something like λRe, since it will mostly
be used in cases where the largest eigenvalue is real, for which λ itself is the
largest real eigenvalue. For example, λ(A) becomes the spectral radius for
any non-negative matrix A [55], [56].

this paper are automatically considered to be irreducible (see
Definition A.1 in Appendix A).

B. SIS Model with Linear rates

Consider the graph G(N , E), and assume that at any given
time t ≥ 0, each node i ∈ N of the graph is either in an
infected (I), or in a susceptible (S) state. An infected node can
infect each of its susceptible neighbors with rate β > 0.3 It can
also, with rate δ > 0, be cured from its infection and revert to
being susceptible again. We write x(t) = [xi(t)] ∈ RN , where
xi(t) represents the probability that node i ∈ N is infected at
any given time t ≥ 0. Then, the dynamics of the SIS model
can be captured via the system of ODEs given by

dxi(t)

dt
, β(1− xi(t))

∑
j∈N

aijxj(t)− δxi(t) (1)

for all i ∈ N and t ≥ 0. In a matrix-vector form, this can be
written as

dx

dt
, βdiag(1− x)Ax− δx (2)

where we suppress the (t) notation for brevity. The system (2)
is positively invariant in the set [0, 1]N , and has 0 as a fixed
point (the virus-free equilibrium). The following result is well
known from [2], which we will generalize in Section IV-B.

Theorem 2.1 (Theorem 3.1 in [2]): Let τ,β/δ. Then,

(i) either τ ≤ 1/λ(A), and x∗ = 0 is a globally asymptot-
ically stable fixed point of (2);

(ii) or τ > 1/λ(A), and there exists a unique, strictly
positive fixed point x∗ ∈ (0, 1)N such that x∗ is globally
asymptotically stable in [0, 1]N \ {0}. �

C. Bi-Virus Model with Linear rates

Consider two graphs G1(N , E1) and G2(N , E2), on the same
set of nodes N but with different edge sets E1 and E2. At
any given time t ≥ 0, a node i ∈ N is either infected by
Virus 1, infected by Virus 2, or is susceptible. A node infected
by Virus 1 infects each of its susceptible neighbors with rate
β1 > 0, just like in the SIS model, but does so only to nodes
which are its neighbors with respect to the graph G1(N , E1).
Nodes infected by Virus 1 also recover with rate δ1 > 0,
after which they enter the susceptible state. Similarly, nodes
infected by Virus 2 infect their susceptible neighbors, this time
with respect to the graph G2(N , E2), with rate β2 > 0, while
recovering with rate δ2 > 0. This competing bi-virus model
of epidemic spread, also referred to as the SI1I2S model, can
be represented by the following ODE system:

dxi
dt
, β1 (1− xi − yi)

∑
j∈N

aijxj − δ1xi

dyi
dt
, β2 (1− xi − yi)

∑
j∈N

bijyj − δ2yi
(3)

3We say an event occurs with some rate α > 0 if it occurs after a random
amount of time, exponentially distributed with parameter α > 0.
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for all i ∈ N and t ≥ 0. In matrix-vector form, (3) becomes:

dx

dt
, β1diag (1− x− y)Ax− δ1x

dy

dt
, β2diag (1− x− y)By − δ2y,

(4)

where A = [aij ] and B = [bij ] are the adjacency matrices of
graphs G1(N , E1) and G2(N , E2), respectively.

III. EPIDEMIC MODELS WITH NON-LINEAR INFECTION
AND RECOVERY RATES

In this section, we introduce the single-virus and bi-virus
SIS models with non-linear infection and recovery rates. Non-
linearities can be attributed to the spread and recovery from
the virus being related to the susceptibility of the disease
(or its prevalence in the population) in a more complicated
manner. This is more general than simply exponential random
variables with constant rates used to model the spreading and
recovery processes, which in aggregate scale linearly with
the infection probabilities.4 This is shown to be limiting in
accurately modelling the trajectories of an infection spread;
the linear scaling of the infection and recovery rates shown to
being an overestimate to what is observed in reality [20], [37].
Many works thus argue for the modelling of these spreading
processes with non-linear functions [35], [36], [38], [40]. We
first present the more general single-virus SIS model with a set
of intuitive assumptions (A1)–(A5) for the non-linear infection
and recovery rates.

A. SIS Model with Non-linear rates

In (1) the term
∑
j∈N aijxj(t) denotes the overall rate at

which a susceptible node i ∈ N gets infected by its neighbors.
In what follows, we replace this by a generic function fi(x(t)),
thereby allowing the overall infection rate for each node to
be any non-linear function of xj(t) for all neighbors j of i.
Similarly, we replace the term δxi(t), denoting the overall
recovery rate for any node i ∈ N , by a non-linear function
qi(x(t)). This generic version of the SIS model, allowing for
non-linear infection and recovery rates, is given by the ODE

dxi(t)

dt
= f̄i(x(t)) , (1− xi(t))fi(x(t))− qi(x(t)) (5)

for all i ∈ N and t ≥ 0. In a matrix-vector form, this can be
written as

dx

dt
= F̄ (x) , diag(1− x)F (x)−Q(x) (6)

where F (x) = [fi(x)] ∈ RN , and Q(x) = [qi(x)] ∈ RN are
the vectors of non-linear infection and recovery rate functions,
respectively. We assume that they are continuous and twice
differentiable in [0, 1]N , with JF (x) and JQ(x) denoting the
Jacobians of F and Q respectively, evaluated at any point
x ∈ [0, 1]N . We now make the following key assumptions:

4‘Aggregate’ here refers to the mean field approximation which is one way
to derive SIS-type ODEs. Another way is the large population mean field
limit of a stochastic process, where the connection to the corresponding ODE
system is formed via the Kurtz’s theorem [16]. In this case, linearity is induced
by the uniform or homogeneous mixing assumption which is also a subject
of criticism in epidemiology literature [35]–[38].

(A1) F (0) = 0 and Q(0) = 0;

(A2) [JF (x)]ij = ∂fi(x)
∂xj

> 0 ∀i 6= j with aij > 0, otherwise
[JF (x)]ij = 0;

(A3) [JQ(x)]ii=
∂qi(x)
∂xi

>0, and [JQ(x)]ij = ∂qi(x)
∂xj

≤0 for all
i 6=j, x ∈ [0, 1]N . Moreover,

∑
j 6=i

[JQ(x)]ij< [JQ(x)]ii;

(A4) fi(x) is concave in [0, 1]N, that is, ∂2fi
∂xj∂xk

≤ 0 for all
i,j,k∈N ;

(A5) qi(x) is convex function of xi ∈ [0, 1]N , and a concave
function of xj for all j 6= i. That is, ∂2qi

∂2xi
≥ 0 and

∂2qi
∂xj∂xk

≤ 0 for all i∈N , and j, k∈N \{i}.

Assumption (A1) ensures that the virus-free state is a fixed
point of (6), while (A2) is a proximity assumption that models
infection spread only through edges of the underlying graph.
Assumption (A3) concerns with the recovery rate, allowing
it to be reduced by infected neighbors while still being no-
negative. (A4) and (A5) assume concavity properties of the
functions fi(x) and qi(x) in xj for any neighbor j of i. This
allows the effect of neighborhood infection xj to saturate5

as xj increases. Assumption (A5) also assumes convexity of
qi(x) in local infection xi, which means that increase in
recovery rate caused by xi can be larger as xi increases.

Examples for non-linear infection rates satisfying
(A1)–(A5) include logarithmic functions fi(x) =∑
j aij ln (1 + xj), similar to those in [20]. Examples

of non-linear recovery rates include polynomial functions
such as qi(x) = (1 + xi)

k − 1 for any k ≥ 1. A special
class of the permissible non-linear recovery rates, where the
infection duration is dependent solely on local infection xi,
is related to processes that have decreasing failure rates
(DFR)6. This special class of recovery processes that are
DFR also includes the case of linear recovery rates. Note that
our assumptions allow fi(x) and qi(x) to be heterogeneous
across all nodes i ∈ N , and the case with linear rates in (2)
readily satisfies (A1)–(A5). This also extends to the linear
bi-virus model (4) being a special case of the non-linear
bi-virus model introduced in the next subsection, with
infection and recovery rate functions therein satisfying the
same assumptions (A1)–(A5).

B. Bi-Virus Model with Non-linear rates

The Bi-Virus model with non-linear infection and recovery
rates is given by the following coupled system of ODEs:

dxi
dt

= ḡi(x,y) , (1− xi − yi) gi(x(t))− ri(x)

dyi
dt

= h̄i(x,y) , (1− xi − yi)hi(y(t))− si(y)

(7)

5As xj increases for any neighbor j of node i, the magnitude of the
resulting change in both infection rate fi(x) and recovery rate qi(x)
decreases. This is similar to the case of diminishing returns.

6Failure rate for a non-negative random variable is defined as the ratio be-
tween its probability density function (PDF) and its complimentary cumulative
distribution function (CCDF). In the context of infection duration, decreasing
failure rate means that nodes recover at a decreased rate the longer they stay
continuously infected. A more detailed discussion regarding the connection
to SIS recovery rates can be found in Appendix C.
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Fig. 1. Bi-Virus epidemic spread across overlaid graphs sharing the same set
of nodes. Red and Blue arrows denote the spread of Virus 1 and 2, respectively
from infected nodes j and k (coloured Red and Blue) to the susceptible node
i (uncoloured) with the instantaneous rates as shown. The infected Red and
Blue nodes also recover with a total rate of ri(x) and si(y) for any node
i ∈ N , respectively.

for all i ∈ N and t ≥ 0. In a matrix-vector form, (7) becomes:

dx

dt
= Ḡ(x,y) , diag (1− x− y)G(x)−R(x)

dy

dt
= H̄(x,y) , diag (1− x− y)H(y)− S(y),

(8)

Where G(x) = [gi(x)], R(x) = [ri(x)], and H(y) = [hi(y)],
S(y) = [si(y)] are the non-linear infection and recovery
rate functions for viruses 1 and 2, respectively. The pairs
(G,R) and (H,S) each satisfy the assumptions (A1)–(A5);
where G and H specifically satisfy (A2) with respect to
their corresponding graphs with adjacency matrices A and
B, respectively. Figure 1 illustrates of how these competing
epidemics spread over the corresponding overlaid graphs.

Assumptions (A1)–(A5) are also more general (weaker)
than those assumed in [19], [20], where the recovery rates are
restricted to being linear functions and are thus a special case
of our model. We emphasize that while the set off assumptions
for non-linear rates are mostly similar to (slightly more general
than) those in literature, the characterization of all convergence
scenarios for their respective bi-virus models is incomplete, as
we shall discuss later in Section VI.

IV. MONOTONE DYNAMICAL SYSTEMS AND THE SINGLE
VIRUS EPIDEMIC

In this section, we provide a succinct introduction to
monotone dynamical systems (MDS) and some important
definitions therein. We go on to show that the SIS model (6)
is a monotone dynamical system (specifically a cooperative
system) and briefly apply these MDS techniques to epidemic
models by deriving the exact convergence result of the non-
linear SIS model. We also observe that Theorem 2.1 is a
special case for when the infection and recovery rates are
linear.

A. Monotone Dynamical Systems - A Primer

A well known result from real analysis is that monotone
sequences in compact (closed and bounded) subsets of Rn
converge in Rn [57]. This simple, yet powerful result has

been fully integrated with the theory of dynamical systems
in a series of works [51], [58]–[66], which cumulatively
form the theory of monotone dynamical systems (MDS). The
foundations of MDS were laid down in [51], [58]–[61] which
study ordinary differential equations, specifically cooperative
ODE systems. We here provide a brief, informal introduction
to such ODE systems, with more details in Appendix D.

A central tool in the theory of MDS is the notion of
generalized cone-orderings, which extends the concept of
monotonicity in vector spaces.

Definition 4.1: Given a convex cone K ⊂ X for any vector
space X , the cone-ordering ≤K (<K , �K) generated by K
is an order relation that satisfies

(i) x≤K y ⇐⇒ (y−x) ∈ K;
(ii) x<K y ⇐⇒ x≤K y and x 6=y; and

(iii) x�K y ⇐⇒ (y−x) ∈ int(K), for any x,y ∈ X .

Note that, ‘�K’ implies ‘<K’ and is a stronger relation. Cone-
orderings generated by the positive orthant K=Rn+ are simply
denoted by ≤ (<,�), that is, without the ‘K’ notation.

Let φt(x) denote the solution of a dynamical system at some
time t>0 starting from an initial point φ0(x)=x∈Rn.

Definition 4.2: Given a cone-ordering ≤K (<K , �K), the
dynamical system is said to be monotone if for every x,y∈Rn
such that x≤K y, we have φt(x)≤K φt(y) for all t>0. The
system is called strongly monotone if for all x,y ∈Rn such
that x<K y, we have φt(x)�K φt(y) for all t>0.

The main result from MDS theory says that (almost) every
solution trajectory of a strongly monotone system always con-
verges to some equilibrium point of the system [44], [58], [64],
[65]. If the system has only one stable fixed point, then this
in itself is enough to prove global convergence. Monotonicity
properties of a dynamical system can therefore be leveraged
as an alternative to constructing Lyapunov functions, which is
often intractable.

Consider the following autonomous ODE system

ẋ = F̄ (x), (9)

where F̄ (x) = [f̄i(x)] ∈ Rn is the vector field. If φt(x) is the
solution of this ODE system, we say the system is co-operative
if it is monotone. There are ways to find out whether an ODE
system is co-operative or not. In particular, one can answer
this by observing the Jacobian of the vector field [67]. The
so-called Kamke condition [66] says that (9) is co-operative
with respect to the cone-ordering generated by the positive
orthant K = Rn+ if and only if

∂f̄i
∂xi
≥ 0, for all i 6= j. (10)

While it is not straightforward to obtain such a clean condition
for any general convex cone K, one can still deduce the co-
operative property of the ODE with respect to any one of
the other orthants of Rn by observing the signed entries of
the Jacobian. We will show how this is done for the bi-virus
system (4) later in Section V-A.

If the Jacobian of an ODE system is an irreducible matrix
in a subset D of the state space, we say that the ODE system
is irreducible in D (Definition D.2 in Appendix D). If the
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ODE system is co-operative in D as well as irreducible in D,
then it is strongly monotone in D (Theorem D.4 in Appendix
D). To prove convergence properties, we should ideally be
able to show that our system is strongly monotone in the
entirety of the state space it is contained in, for which we can
directly apply the main MDS convergence result. However,
this is often not the case, and one needs additional results
from MDS literature to prove convergence. These details are
deferred to Appendix D.

B. Monotonicity and convergence of SIS epidemic models
The following proposition establishes the monotonicity of

the single-virus SIS model with non-linear infection and
recovery rates with respect to the regular ordering relationship
(cone-ordering generated by RN+ ).

Proposition 4.3: The ODE system (6) is cooperative in
[0, 1]N and irreducible in (0, 1)N with respect to the cone-
ordering generated by the positive orthant RN+ . �

We now state the convergence criterion for the non-linear
single-virus SIS model.

Theorem 4.4: Let JF (x) and JQ(x) denote the Jacobian
matrices of the vector valued infection and recovery rate
functions F (x) and Q(x) from (6), respectively. Then,

(i) either λ(JF (0)−JQ(0)) ≤ 0, and x∗ = 0 is the globally
asymptotically stable fixed point of (6);

(ii) or λ(JF (0) − JQ(0)) > 0, and there exists a unique,
strictly positive fixed point x∗ � 0 such that x∗ is
globally asymptotically stable in [0, 1]N \ {0}. �

The proof for Theorem 4.4 utilizes a result from the mono-
tone dynamical systems literature, provided as Theorem E.1
in Appendix E. It was originally proved and applied to linear
SIS epidemics in [68] as an alternate proof of the convergence
properties of the model for Gonorrhea spread in [2], which is
a special case of our non-linear model (6). We can also see
this in the following remark.

Remark 4.5: For the single-virus SIS model with linear
infection and recovery rates (2), the conditions derived in
Theorem 4.4 reduce to those in Theorem 2.1.

Proof: By substituting F (x) = βAx and Q(x) = δx
in (21) (Jacobian of the single-virus system (6), mentioned in
the proof of Theorem 4.4) and evaluating at x = 0, we get
JF̄ (0) = JF (0)−JQ(0) = βA−δI. The condition λ(JF (0)−
JQ(0)) = λ(βA−δI) > 0 (≤ 0) can be rewritten as τ >
1/λ(A) (≤ 1/λ(A)) where τ = β/δ, which as the same as
in Theorem 2.1.

While Theorem 4.4 could be proved using the steps in
[2], which were recreated again in [20], it requires first the
application of two different Lyapunov functions and also
requires proving the uniqueness of the positive fixed point.
Alternatively, one could apply Theorem 1 in [69] to establish
the uniqueness of the positive fixed point by first showing that
the Jacobian of F̄ (x) evaluated at any point x� 0 satisfying
F̄ (x) = 0, is Hurwitz. This, combined with Proposition
4.3, could then provide the necessary convergence criterion.
However, we maintain that using Theorem E.1 would be a
simpler way to derive the same results, whose proof is deferred
to Appendix E.

V. MAIN RESULTS FOR THE NON-LINEAR BI-VIRUS
MODEL

We provide the necessary and sufficient results on the non-
linear infection and recovery rates of the bi-virus system
(8) for convergence to each of the three different kinds of
equilibria: the virus-free, the single-virus equilibrium, and the
co-existence equilibrium. However, before stating the main
convergence results (proofs deferred to Appendix F in [70]),
we establish the monotonicity of the non-linear bi-virus model.

A. Monotonicity of the Bi-Virus epidemic models

We first revisit the Kamke condition from Section IV-A, in
this instance given for a the southeast cone-ordering as stated
below.

Southeast cone-ordering and the Kamke condition:
Consider the cone-ordering generated by the convex cone
K = {RN+ × RN−} ⊂ R2N . This cone is one of the orthants
of R2N , and for N = 1, it would correspond to the southeast
orthant of R2

(
K = {R+ × R−} ⊂ R2

)
. For any two points

(x,y), (x̄, ȳ) ∈ R2N , it satisfies the following:
(i) (x,y)≤K (x̄, ȳ) ⇐⇒ xi≤ x̄i and yi≥ ȳi for all i∈N ;

(ii) (x,y)<K(x̄, ȳ)⇐⇒ (x,y)≤K(x̄, ȳ) and (x,y) 6=(x̄, ȳ);
(iii) (x,y)�K (x̄, ȳ) ⇐⇒ xi<x̄i and yi>ȳi for all i∈N .
This type of cone-ordering is often referred to as the southeast
cone-ordering, and the corresponding cone K is the southeast
orthant of R2N . As shown in [67], the Kamke condition for
determining whether an ODE system is cooperative or not
with respect to the positive orthant R2N

+ can be generalised
for cone-orderings generated by any orthant of R2N , including
the southeast orthant. Once again, this is done by observing
the Jacobian of the respective ODE system. Consider the 2N
dimensional system given by

ẋ = Ḡ(x,y) and ẏ = H̄(x,y),

where Ḡ(x,y) = [ḡi(x,y)] and H̄(x,y) = [h̄i(x,y)] are
vector-valued functions in RN . The Kamke condition for this
system with respect to the southeast cone-ordering [67] is

∂ḡi
∂xj
≥ 0,

∂h̄i
∂yj
≥ 0, ∀i 6= j, and

∂ḡi
∂yj
≤ 0,

∂h̄i
∂xj
≤ 0, ∀i, j.

Roughly speaking, the Jacobian JGH(x,y) of the system,
evaluated at all points in the state space, should be in the
following block matrix form (where the signs are not strict):

JḠH̄ =


∗ + + − − −
+ ∗ + − − −
+ + ∗ − − −
− − − ∗ + +
− − − + ∗ +
− − − + + ∗

 (11)

Note that the state space of the ODE system (4) is given by
D ,

{
(x,y) ∈ [0, 1]2N | x + y ≤ 1

}
.

Proposition 5.1: The ODE system (8) (the non-linear bi-
virus model) is cooperative in D with respect to the southeast
cone-ordering. It is also irreducible in Int(D).
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Proof: For all (x,y) ∈ D and i 6= j ∈ N , we have

∂ḡi(x,y)

∂xj
= (1− xi − yi)

∂gi(x)

∂xj
− ∂ri(x)

∂xj
≥ 0,

∂h̄i(x,y)

∂yj
= (1− xi − yi)

∂hi(y)

∂yj
− ∂si(x)

∂yj
≥ 0

since ∂gi(x)
∂xj

≥ 0, ∂ri(x)
∂xj

≤ 0 and ∂hi(y)
∂yj

≥ 0, ∂si(y)
∂yj

≤ 0 from
assumptions (A2) and (A3), and (1− xi − yi) ≥ 0. Moreover
for all i ∈ N ,

∂ḡi
∂yi

= −gi(x) ≤ 0 and
∂h̄i
∂xi

= −hi(y) ≤ 0,

with ∂ḡi/∂yj = ∂h̄i/∂xj = 0. Thus, the Kamke conditions
are satisfied and the system is cooperative in D.

The Jacobian JḠH̄(x,y) of system (4) is written as

JḠH̄(x,y) =[
SxyJG(x)−DG(x)−JR(x) −DG(x)

−DH(y) SxyJH(y)−DH(y)−JS(y)

]
,

(12)

where Sx,y , diag(1 − x − y), DG(x) , diag(G(x)) and

DH(y) , diag(H(y)). Since the infection rate functions
satisfy assumption (A2) for their corresponding underlying
graphs, JG(x) and JH(y) follow the sign structure of A and
B respectively and are irreducible. The off-diagonal blocks
of JḠH̄(x,y) are diagonal matrices with non-zero diagonal
entries for (x,y) ∈ Int(D), and there does not exist a
permutation matrix that would transform this into a block
upper triangular matrix. Hence, by Definition D.2, the system
is irreducible in Int(D), and this completes the proof.

From Proposition 5.1, we deduce that the non-linear bi-virus
system of ODEs (8) is co-operative in D, and thus strongly
monotone in Int(D) in view of Theorem D.4 in Appendix D.
This property also extends to the linear bi-virus system (4)
which is a special case of (8).

B. Convergence and Coexistence properties of the Bi-Virus
model

We are now ready to establish results on convergence
properties of the bi-virus model and provide conditions for
coexistence of two viruses in the non-linear bi-virus model as
in (8).

Let x∗ and y∗ be the globally attractive fixed points of the
single-virus SIS models that system (8) would reduce to when
Virus 2 and 1, respectively, are not present over the network.
These systems are given by

ẋ = F x(x) , Ḡ(x,0) = diag(1− x)G(x)−R(x), (13)

ẏ = F y(y) , H̄(0,y) = diag(1− y)H(y)− S(y); (14)

and by Theorem 4.4, x∗=0 (y∗=0) if λ (JG(0)−JR(0))≤0
(if λ (JH(0)−JS(0))≤0), and x∗�0 (y∗�0) otherwise.

We first state the result when the virus-free equilibrium
is globally attractive. We prove this by presenting simple
arguments which require only Theorem 4.4 for SIS model
along with the monotonicity properties derived in the previous
section, eliminating the need of a Lyapunov based approach.

𝐱

𝐲

𝟎

(𝐱𝑟1, 𝐲𝑠1)

(𝐱𝑟2, 𝐲𝑠2)

𝑝2

𝑝1

𝐱

𝐲

𝟎

𝐲∗

(𝐱𝑟1, 𝐲𝑠1)

(𝐱𝑟2, 𝐲𝑠2)

𝐱∗
𝑝2

𝑝1

𝐲∗

𝐱∗

(a) For every point pk , there is
a point (xrk,ysk) starting from
which, trajectories converge mono-
tonically (≤K) to (x∗, 0).

𝐱

𝐲

𝟎

(𝐱𝑟1, 𝐲𝑠1)

(𝐱𝑟2, 𝐲𝑠2)

𝑝2

𝑝1

𝐱

𝐲

𝟎

𝐲∗

(𝐱𝑟1, 𝐲𝑠1)

(𝐱𝑟2, 𝐲𝑠2)

𝐱∗
𝑝2

𝑝1

𝐲∗

𝐱∗

(b) Trajectories starting from pk
eventually bounded by (xrk,ysk);
monotonicity of the system gives
convergence to (x∗, 0).

Fig. 2. Illustration of the convergence to (x∗, 0)

Theorem 5.2 (Convergence to virus-free equilibria): If
λ (JG(0)−JR(0))≤0 and λ (JH(0)−JS(0))≤0, trajectories
of (8) starting from any point in D converge to (0,0). �

We next characterize the conditions when the system glob-
ally converges to equilibria when only one of the viruses
survives over the network. Let Sx , diag(1 − x) and
Sy , diag(1− y) for any x,y ∈ RN . Also denote by
Bx , {(x,y) ∈ D | x>0} the set of all points (x,y) ∈
D for which xi > 0 for some i ∈ N, and let By ,
{(x,y) ∈ D | y>0} be a similar set for the yi entries.

Theorem 5.3 (Convergence to single-virus equilibria): When
λ(Sy∗JG(0)−JR(0)) > 0 and λ(Sx∗JH(0)−JS(0)) ≤ 0,
(x∗,0) is globally attractive in Bx;7 that is, every trajectory
of system (8) starting from points in Bx converges to (x∗,0).

Similarly, when λ (Sy∗JG(0)− JR(0)) ≤ 0 and
λ (Sx∗JH(0)− JS(0)) > 0 is globally attractive in By . �

Sketch of the proof (convergence to (x∗,0)): The idea
behind the proof is illustrated in Figure 2. For every (x,y)∈
Bx (for example p1 and p2 in Figure 2), we construct a point
(xr,ys) which eventually bounds the trajectory starting from
(x,y); that is, we have (xr,ys)�K φt1(x,y)≤K (x∗,0)8 for
some t1≥0. From the monotonicity shown in Proposition 5.1,
we have φt(xr,ys)�K φt+t1(x,y)≤K (x∗,0) for all time t≥
0. We prove that the trajectory starting from (xr,ys) converges
to (x∗, 0) monotonically, with respect to the southeast cone-
ordering (Figure 2(a)). Using this, we show the convergence
of trajectories starting from (x,y) via a sandwich argument
(Figure 2(b)). See Appendix F in [70] for detailed proof.

Finally, we give the necessary and sufficient conditions that
guarantee the co-existence of the two viruses in the long run.
Let E denote the set of all fixed points of the system in (8).

Theorem 5.4 (Convergence to coexistence equilibria): If
λ (Sy∗JG(0)−JR(0)) > 0 and λ (Sx∗JH(0)−JS(0)) > 0,
there exist fixed points of system (8) (x̂, ŷ) � (0,0) and
(x̄, ȳ)�(0,0) such that

(0,y∗)�K (x̂, ŷ) ≤K (x̄, ȳ)�K (x∗,0),

with the possibility that (x̂, ŷ) = (x̄, ȳ). All tra-
jectories of system (8) starting from Bx ∩ By con-

7We consider Bx as the global domain of attraction instead of D because
x = 0 for all points in the set D \Bx. Starting from such points the system
is no longer a bi-virus epidemic, but a single-virus SIS system for Virus 2.

8φt(x,y) denotes the solution of (4) at t≥0, with initial point (x,y).
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(b) Complete characterization of the convergence trichotomy.

Fig. 3. Characterization of the parameter space

verge to the set of coexistence fixed points S ,
{(xe,ye)∈E | (x̂, ŷ)≤K (xe,ye)≤K (x̄, ȳ)}. �

The proof of Theorem 5.4 follows similar arguments to that
of the previous theorem, and is the first convergence result
for coexistence fixed points in the competing SIS literature.
Note that while we have convergence to ‘a’ coexistence
equilibrium, it may or may not be unique in the state space.
The global convergence is therefore to the set of possible
coexistence equilibria, and not necessarily a singular point.
Thus, via Theorems 5.2, 5.3 and 5.4 we cover all possible
convergence scenarios of the bi-virus SIS system (8), and
successfully establish the complete theoretical characterization
for the trichotomy of possible outcomes.

VI. LINEAR INFECTION AND RECOVERY RATES -
DISCUSSION AND COMPARISON TO LITERATURE

We now take a look at the special case of the bi-virus epi-
demic model where infection and recovery rates scale linearly
with the local infection probability. This is the most commonly
analysed setting in literature [21], [31]–[34], [54], and allows
us to provide a comprehensive discussion on the related
works. With the exception of [54], a line of work seemingly
developed concurrently to ours, we observe that most existing
works only provide limited results regarding convergence to
coexistence equilibria. In what follows, we provide corollaries
of Theorems 5.2, 5.3 and 5.4 which characterize convergence
to the trichotomy of possible outcomes for the special case
of linear infection and recovery rates. These results, along
with Figure 3, are reproduced here as they originally were in
our previous work [1] which focused only on characterizing
the convergence properties in the case of linear infection and
recovery rates.

The model considered in this section is the bi-virus system
(4) with homogeneous infection and recovery rates9. While
at first this may seem too simplistic compared to the case

9every infected node i ∈ N infects its susceptible neighbor with the same
rate β1 > 0 or β2 > 0, and in turn recovers with the same rate δ1 > 0 or
δ2 > 0, depending on whether it is infected by Virus 1 or 2 respectively.

of linear, heterogeneous rates10, and even generic, non-linear
rates analyzed in literature [19]–[21], [31]–[34], [54], the dis-
cussions in the ‘Comparison to existing ilterature’ subsection
will still hold for these more general cases. We only stick to
the bi-virus system with homogeneous rates as in (4) to be
able to illustrate our results in the form of Figure 3; the axes
capturing the parameters of the system. This enables us to
better explain our contribution, using visual aids in the form
of Figure 3, helping us compare our work with some of the
existing literature more effectively, as opposed to presenting
any other special case of the bi-virus model.

Consider the linear bi-virus system (4). By setting G(x) =
β1Ax, R(x) = δ1x and H(y) = β2By, S(y) = δ2y, we get

JG(0)=β1A, JR(0)=δ1I,

and
JH(0)=β2B, JS(0)=δ2I.

Defining τ1 , β1/δ1, τ2 = 4β2/δ2, and plugging in the
above expressions for the Jacobians in Theorems 5.2 and 5.3,
we have the following Corollaries.

Corollary 6.1: If τ1λ(A)≤ 1 and τ2λ(B)≤ 1, trajectories
of (4) starting from any point in D converge to (0,0). �

Corollary 6.2: When τ1λ(Sy∗A)> 1 and τ2λ(Sx∗B)≤ 1,
(x∗,0) is globally attractive in Bx;11 that is, every trajectory
of system (4) starting from points in Bx converges to (x∗,0).

Similarly, when τ1λ(Sy∗A)≤1 and τ2λ(Sx∗B)>1, (0,y∗)
is globally attractive in By . �

From Corollary 6.2, we can deduce that the threshold values
for τ1 and τ2 below which each of the viruses will die out are
given by the equations τ1 =1/λ(Sy∗A) and τ2 =1/λ(Sx∗B),
respectively. Figure 3(b) plots these threshold values for Virus
1 (in blue) and Virus 2 (in red) for varying values of τ1
and τ2, and partitions the entire parameter space into regions
R1 – R6 as shown. When τ1 > 1/λ(A) and τ2 > 1/λ(B),

10The adjacency matrices A and B in (4) can be symmetric, irreducible,
weighted; with aij , bij ≥ 0 (not necessarily 0/1 valued) multiplied by β1
and β2 respectively, being the infection rates from node j → i for Viruses
1 and 2. Recovery rates can similarly be heterogenized as δ1 = [δi1] and
δ2 = [δi2] for Viruses 1 and 2; written as recovery rate matrices diag(δ1)
and diag(δ1), respectively.

11We consider Bx as the global domain of attraction instead of D because
x = 0 for all points in the set D \Bx. Starting from such points the system
is no longer a bi-virus epidemic, but a single-virus SIS system for Virus 2.
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for which values of τ1, τ2 do not lie in regions R1, R2 or
R3, the blue curve lies above the red curve as in Figure
3(b). This was originally shown in [18] by deducing that
the ratio of slopes of the red and blue curves at point
(τ1, τ2) = (1/λ(A), 1/λ(B)) is less than one. This means
there exist combinations of τ1, τ2 for which τ1 lies to the
right of the blue curve (τ1λ(Sy∗A)>1), and τ2 lies above the
red curve (τ2λ(Sx∗B)> 1).12 This corresponds to region R6
in Figure 3(b), and our final corollary (derived from Theorem
5.4) shows that for values of τ1, τ2 which lie in R6, we observe
convergence to coexistence equilibria.

Corollary 6.3 (Convergence to coexistence equilibria): If
τ1λ(Sy∗A)> 1 and τ2λ(Sx∗B)> 1, there exist fixed points
of system (4) (x̂, ŷ)�(0,0) and (x̄, ȳ)�(0,0) such that

(0,y∗)�K (x̂, ŷ) ≤K (x̄, ȳ)�K (x∗,0),

with the possibility that (x̂, ŷ) = (x̄, ȳ). All tra-
jectories of system (4) starting from Bx ∩ By con-
verge to the set of coexistence fixed points S ,
{(xe,ye)∈E | (x̂, ŷ)≤K (xe,ye)≤K (x̄, ȳ)}. �

Comparison to existing literature: Now that we have estab-
lished all our results, we briefly compare our work with results
from [19], [20], which also talk about global convergence
to single-virus equilibria. To this end, we first illustrate the
limitations of the existing conditions for global convergence
in [19], [20] in Figure 3(a); and use Figure 3(b), where we
provide complete characterization of the parameter space, to
draw comparisons with our results. We then discuss the works
[31]–[34] which consider more general models where there
can be more than two viruses, but present sharper results in
the bi-virus setting. Finally, we will briefly comment on the
finiteness of the coexistence equilibria, citing results from [54].

When translated to the setting of linear infection and
recovery rates as in 4, the result from [19] says that when
τ1dmin(A)>τ2dmax(B), the Virus 2 is sure to die out (Virus
1 could persist or die out), and similarly when τ1dmax(A)<
τ2dmin(B), the Virus 1 is sure to die out. We illustrate these
conditions in Figure 3(a), where Virus 1 (Virus 2) is sure
to die out if parameters (τ1, τ2) lie above (below) the blue
(red) line. Therefore, the entire yellow-shaded region in Figure
3(a), between the blue and red lines, is left uncharacterized
in [19]. When A and B are regular graphs with the same
degree (dmin = dmax = d), the blue and red lines coincide,
making coexistence infeasible. This is also mentioned in [18]
where they show that for regular graphs with same degree,
the system behaves as if the two graphs were the same -
rendering coexistence impossible (which is also in line with
results in [8]). In contrast, the maximum degree of graphs can
also be much larger than the minimum degree (e.g., power
law graphs), causing the yellow-shaded space to become very
large, possibly spanning almost the entire parameter space.

The main result in [20], when similarly translated to our
setting as above, says that when τ1λ(A) > 1 and τ2λ(B)≤

12Note that τ1λ(Sy∗A)≤1 and τ2λ(Sx∗B)≤1 is only possible in region
R1, since it is the only region where τ1 can lie to the left of the blue curve,
and τ2 can lie below the red curve. This effectively reduces the expressions to
τ1λ(A)≤1 and τ2λ(B)≤1, the conditions for convergence to the virus-free
equilibrium as in Corollary 6.1.

1, Virus 1 survives and Virus 2 dies out. Similarly, when
τ2λ(B)>1 and τ1λ(A)≤1, Virus 2 survives and Virus 1 dies
out. These correspond to regions R2 and R3 in Figure 3(b).
However, their results do not cover the convergence properties
for τ1, τ2 which lie in regions R4 – R6. Our Theorems 5.3
and 5.4, through their corresponding corollaries, do account
for these values of τ1, τ2, and show convergence to (0,y∗),
(x∗,0) or to a coexistence fixed point whenever they lie in
regions R4, R5, or R6, respectively.

The works [32], [33] consider the bi-virus epidemic model
with heterogeneous linear infection and recovery rates as a
special case of their respective multi-virus models. Corollary
2 in [33], a more general version of Theorem 5 in [32]
which considers the case where N = 2, establishes existence
conditions for the coexistence equilibria. These conditions are
identical to the ones emerging out of Theorem 5.4 when
applied to the bi-virus model considered therein (also identical
to the conditions in Corollary 6.3 for the special case of
homogeneous, linear infection and recovery rates), and our
result can therefore be considered as an extension of those in
[32], [33]; providing convergence results in addition to their
existence results. Theorem 6 in [34] (Theorem 8 in [31]) is
another interesting result concerning coexistence equilibria,
where they show for the special case of viruses spreading
over the same (possibly weighted) graph that the survival
probability vectors of both the viruses are the same up to a
constant multiple; that is, they are parallel.

The finiteness of the number of single-virus equilibria
is evident from Theorem 4.4, which proves its uniqueness.
However, Theorem 5.4 and Corollary 6.3 do not explicitly
show that coexistence equilibria are finitely many, let alone
uniqueness13. For linear, heterogeneous infection and recov-
ery rates, Theorem 3.6 in [54] uses novel techniques from
algebraic geometry to prove that the coexistence equilibria are
finitely many for all possible values of infection and recovery
rates that do not lie in an algebraic set of measure zero.
However, this remains an open problem for general, non-linear
infection and recovery rate functions satisfying (A1)–(A5).

In summary, without our Theorems 5.3 and 5.4, convergence
results from literature fail to characterize a sizeable portion
of the parameter space as shown in Figure 3(a) by the ‘?’
region (part of the shaded region surrounded by the arrows).
The parameters leading to coexistence are entirely contained
in this region as well - explaining the dearth of convergence
results for such equilibria in the existing literature.

VII. NUMERICAL RESULTS

In this section, we present simulation results to support our
theoretical findings for the bi-virus SIS model for combina-
tions of non-linear as well as linear infection and recovery
rates. To this end, we consider an undirected, connected graph
(103 nodes, 239 edges), called Autonomous System (AS-
733), from the SNAP repository [71]. For both the linear and
non-linear bi-virus model, we generate an additional graph,
overlaid on the same set of nodes, by modifying the original

13In Section VII, we show with the aid of simulation results that the
coexistence equilibria are indeed not unique in general.
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gi(x) hi(y) ri(x) si(y)
CASE 1

∑
j aijxj

∑
j bijyj δ1xi δ2yi

CASE 2
∑
j aij ln(1 + α1xj)

∑
j bij ln(1 + α2yj) δ1xi δ2yi

CASE 3
∑
j aij ln(1 + α1xj)

∑
j bij ln(1 + α2yj) (1 + xi)

2 − 1 (1 + yi)
2 − 1

Table I
SUMMARY OF INFECTION AND RECOVERY RATE FUNCTIONS CHOSEN.

graph (AS-733-A with λ(A) = 12.16), removing and adding
edges while ensuring connectivity between the nodes. The new
additional graph, AS-733-B, has 741 edges with λ(B)=15.53.
Note that since our theoretical results hold for any general
graphs, we only use this set as example graphs to numerically
demonstrate the convergence properties. Similar numerical
results can indeed be obtained for any other networks (such
as social networks).

We test the convergence dynamics of the bi-virus model
over a range of combinations of linear and non-linear infection
and recovery rates. To this end, we consider three different bi-
virus models, and Table I summarizes the three cases with
the corresponding infection and recovery rate functions as
shown. Note that for non-linear infection and recovery rates,
we consider the logarithmic and polynomial functions briefly
mentioned in Section III, to ensure that our three cases satisfy
assumptions (A1)–(A5).

For each of the three cases, we construct combinations
of parameters (τ1 or τ2 for linear rates, and α1 or α2 for
non-linear rates), to develop three convergence scenarios, that
satisfy the assumptions of Theorems 5.3 and 5.4. These three
scenarios correspond to global convergence of the bi-virus
system to fixed points where (a) Virus 1 is the surviving
epidemic (which spreads on graph AS-733-A), (b) Virus 2 is
the surviving epidemic (which spreads on graph AS-733-B),
(c) both viruses coexist, (where Virus 1 spreads on graph AS-
733-A and Virus 2 on AS-733-B). Parameters corresponding
to these three scenarios are provided in the table inset in
Figures 4–6(a)–(c) corresponding to the three cases.

To visualize our system in two dimensions, we use avgX,
(1/N)

∑
i∈N xi on the x-axis, and avgY , (1/N)

∑
i∈N yi

on the y-axis. We plot trajectories of the bi-virus system
starting from different initial points in the state space D to
observe their convergence, with red arrows representing the
trajectories’ direction of movement at various time intervals.
Here, the state space D is the region that lies below the dotted-
line (for example, in Figure 4), ensuring xi + yi ≤ 1 for all
i ∈ N , for every initial point. To ensure that the convergences
observed in our phase plots match the conditions laid out
in Theorems 5.3 and 5.4, we track the eigenvalues λ(U) ,
λ(Sy∗JG(0) − JR(0)) and λ(V) , λ(Sx∗JH(0) − JS(0)).
λ(U) (λ(V)) being positive or negative corresponds to Virus
1 (Virus 2) surviving or dying out, respectively.

In Figures 4–6(a)–(c), we show numerical results for the
three cases, respectively. Figures 4–6(a) and 4–6(b) show
convergence to the two different single-virus equilibria, where
the parameters therein satisfy the two set of conditions as
in Theorem 5.3. Figures 4–6(c) show convergence to the
coexistence equilibria, which also satisfies the coexistence
conditions as outlined in Theorem 5.4. We observe a unique

coexistence equilibrium when the viruses are competing over
graphs AS-733-A and AS-733-B, for which the eigenvalues
λ(A) and λ(B) are significantly different. Interestingly, we
also observe multiple coexistence equilibria as shown in
Figure 7. We obtain this result by creating another additional
graph by modifying the original graph AS-733-A such that
the eigenvalue of this new graph is as close to the original
one where this new graph AS-733-C has 259 edges with
λ(C)=12.26. The ‘upper left’ and ‘lower right’ coexistence
fixed points characterize the set S of all such equilibria, as in
Theorem 5.4. This can be seen more closely in the inset in
Figure 7, where the number beside each fixed point (in red)
corresponds to the different initial starting points (in blue) of
the trajectories. Thus, convergence to set S occurs globally
over the state space, but exactly which coexistence fixed point
the system converges to is dependent on the initial point. We
are thus able to observe all possible convergence scenarios
from Section V-B, including multiple coexistence equilibria.

VIII. CONCLUDING REMARKS

By utilizing the techniques from Monotone Dynamical
Systems (MDS), in this paper, we show that a generic bi-
virus epidemic model with non-linear infection and recovery
rates is monotone with respect to a specially constructed partial
ordering. This monotonicity allows us to give necessary and
sufficient conditions on the non-linear infection and recovery
rates, and thus completely characterize the entire parameter
space of the bi-virus system, a contrast to the usual Lyapunov
based approach. We bridge the gap between linear stability
properties and global convergence results (or lack thereof)
for the bi-virus model with non-linear rates (including the
special case with linear rates) in the literature, and succeed
in providing a complete characterization of the trichotomy
of possible outcomes for such competing epidemics - a well
known open problem. Our results demonstrate how powerful
these alternative proving techniques can be, compared to clas-
sical Lyapunov approaches; and we note that it may be worth
exploring such monotonicity properties in other dynamics
on graphs as well, where competition is a general theme.
Additionally, establishing a rigorous relationship between the
SIS ODE models with non-linear rates as studied in this paper,
and the correct probabilistic dynamics describing these non-
linear rates, is of interest in order to complete the theoretical
pictures for SIS models with non-linear rates.
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APPENDIX A
BASIC DEFINITIONS AND RESULTS FROM MATRIX THEORY

We first provide some well known results surrounding
irreducible square matrices.

Definition A.1: [55] A square matrix A is reducible if there
exists a permutation matrix P such that PTAP is a block
diagonal matrix. If no such permutation matrix exists, we say
that A is irreducible.
One way to check if a matrix is irreducible is by observing
the underlying directed graph, where there is an edge between
two nodes only if aij 6= 0. The matrix A is irreducible if and
only if this underlying directed graph is strongly connected.

Definition A.2: [56] A M-matrix is a matrix with non-
positive off-diagonal elements with eigenvalues whose real
parts are non-negative.
We use the following well known result for non-negative,
irreducible matrices heavily throughout the paper.

Theorem A.3: (Perron-Frobenius)[55] Let A be a non-
negative, irreducible matrix. Then, λ(A) is a strictly positive
real number, and the corresponding eigenvector v where
Av = λ(A)v is also strictly positive. We call λ(A) > 0
and v � 0 the PF eigenvalue and PF eigenvector of the
matrix respectively. �
The following result is on irreducible M-matrices.

Lemma A.4: [56] Given an irreducible and non-singular M-
matrix M, its inverse M−1 has strictly positive entries. �

APPENDIX B
DEFINITIONS AND RESULTS FROM ODE LITERATURE

We use the following definitions and results from the ODE
literature throughout the paper.

Definition B.1: The ‘flow’ of a dynamical system in a metric
space X is a map φ : X×R→X such that for any x0∈X and
all s, t ∈ R, we have φ0(x0)=x0 and φs (φt(x0))=φt+s(x0).

Definition B.2: A flow φ : X × R → X is positively
invariant in set P ⊂ X if for every x0 ∈ P , φt(x0) ∈ P
for all t > 0.

Definition B.3: Given a flow φ, an ‘equilibrium’ or a ‘fixed
point’ of the system is a point x∗ ∈ X such that {x∗} is a
positively invariant set. For the ODE system ẋ = F (x), we
have F (x∗) = 0 at the equilibrium.

For an equilibrium point x∗ ∈ X we say that the trajectory
starting at x0 ∈ X converges to x∗ if limt→∞ φt(x0) = x∗.
The following result is true for stable fixed points of the ODE
system from Definition B.1.

Proposition B.4: [72] Let JF (x0) be the Jacobian of the
ODE system evaluated at a fixed point x0 and assume it to
be an irreducible matrix. Let λ (JF (x0)) < 0 and suppose
the corresponding eigenvalue v is strictly positive (v � 0).
Then, there exists an ε > 0 such that F (x0 + rv)� 0 for all
r ∈ (0, ε] and F (x0 + rv)� 0 for all r ∈ (0,−ε]14. �

APPENDIX C
DFR PROCESSES AS NON-LINEAR RECOVERY RATES

In this appendix, we form the connection between failure
rates from reliability theory [73], and the infection duration
at any node in SIS type epidemics. To this end, we start by
formally defining the term failure rate.

Definition C.1: [73] Let T > 0 be any continuous random
variable with distribution FT (s) = P(T ≤ s), and density
function fT (s) for all s > 0, with F̄T (s) = 1 − FT (s) =
P(T > s). Then, the failure rate at any given time s > 0 is
defined as

rT (s) ,
fT (s)

F̄T (s)
. (15)

We say T has a decreasing/increasing failure rate (DFR/IFR)
if rT (s) is a decreasing/increasing function of s > 0.

When T is the lifetime of a system, the DFR case corre-
sponds to the system aging negatively. This means that as time
elapses, the residual time (time till the system fails) is more
likely to increase rather than decrease. T could also have an
interpretation in the context of node recovery. For the linear
SIS epidemic model as in (1), consider an infected node i ∈ N
and define T , time taken for node i to recover (random), with
fT (s) and F̄T (s) as in Definition C.1. Loosely speaking, we
can ignore the infection rate terms in (1) to take a closer look
at the recovery process via the ODE

ẋi(s) = −δxi(s), (16)

with the initial condition xi(0) = 1 (implying that node i
is last infected at time s = 0). The ODE (16) has an exact
solution for all s > 0, given by xi(s) = e−δs. This solution
allows us to interpret xi as the cumulative distribution function
(CCDF) of an exponential random variable15 with rate δ >
0. Using this interpretation, we have xi(s) = P (T > s) =
F̄T (s), and −ẋi(s) = fT (s). (16) can then be rewritten as

rT (s) =
−ẋi(s)
xi(s)

= δ,

for any s > 0. T is thus exponentially distributed, and has a
constant failure rate (it is both DFR and IFR).

We now consider the case where the random variable T is
defined for the more general SIS epidemic model with non-

14In other words eigenvector v is tangent to the stable manifold of the
ODE system at the stable fixed points x0.

15When T ∼ exp(δ), we have F̄T (s) = P (T > s) = e−δs.

https://math.la.asu.edu/~halsmith/identifyMDS.pdf
http://snap.stanford.edu/data
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linear recovery rate qi(xi) for node i.16 Ignoring the infection
rate terms in (5) like before, we obtain

ẋi(s) = −qi (xi(s)) , (17)

retaining the previous interpretation of xi as the CCDF of T .
This can be further rearranged to obtain an expression for the
failure rate as

rT (s) =
−ẋi(s)
xi(s)

=
qi (xi(s))

xi(s)

for any s > 0. From Definition C.1 we know T is DFR if
rT (s) is decreasing in s > 0. Supposing qi is such that T is
indeed DFR, log(rT (s)) is also decreases in s, and we get

d

ds
log (rT (s)) =

q′i(xi(s))ẋi(s)

q(xi(s))
− ẋi(s)

xi(s)
≤ 0,

where q′i(xi(s)) denotes the derivative with respect to xi.
Since ẋi(s) = −qi(xi(s)) from (17) and q′i(x(s)) ≥ 0 from
(A3), rearranging the previous equation gives us following the
condition for T to be DFR

xiq
′
i(xi)− qi(xi) ≥ 0. (18)

In (18), the (s) notation has been suppressed for clarity. Since
qi(0) = 0, the convexity of qi with respect to xi implies (18).

Roughly speaking, the DFR case (which also includes linear
recovery rates as in (1)) is a subclass of recovery rate functions
qi(x) satisfying assumptions (A1)–(A5). Even though the
above steps may not be exact, they provide intuition on how
infections which fester and grow worse with time form part
of our modelling assumptions in Section III.

APPENDIX D
RESULTS FROM MDS AND COOPERATIVE SYSTEMS

Definition D.1: [44], [51], [62] A flow φ is said to be
monotone if for all x,y ∈ Rn such that x ≤K y and any
t ≥ 0, we have φt(x) ≤K φt(y).

If the flow represents the solution of an ODE system, we
say that the ODE system is co-operative.

Definition D.2: Consider the system (9) and let JF (x) ,
[dfi(x)/dxj ] be the Jacobian of the right hand side evaluated
at any point x∈Rn. We say that (9) is an irreducible ODE in
set D ∈ Rn if for all x ∈ D, JF (x) is an irreducible matrix.

Definition D.3: [44], [62], [66] The flow φ is said to be
strongly monotone if it is monotone, and for all x,y ∈ Rn
such that x <K y, and time t ≥ 0, we have φt(x)�k φt(y).

Theorem D.4: [44], [62], [66] Let (9) be irreducible and co-
operative in some set D ⊂ Rn. Then the solution φ (restricted
to t ≥ 0) is strongly monotone. �
As part of the main result of monotone dynamical systems,
trajectories of strongly monotone systems, starting from almost
anywhere (in the measure theoretic sense) in the state space,
converge to the set of equilibrium points [44], [58], [64], [65].
However, often the systems are strongly monotone only in the
interior of the state spaces instead of the entirety of the state
space. In such cases, the following results are useful.

16Note that this is the special case where qi is only a function of xi, not
of xj for neighbors j of node i.

Proposition D.5: (Proposition 3.2.1 in [66]) Consider the
ODE system (9) which is cooperative in a compact set
D ⊂ Rn with respect to some cone-ordering, and let <r
stand for any of the order relations ≤K , <K ,�K . Then,
P+ , {x∈D | 0<rF (x)} and P− , {x∈D | F (x)<r 0}
are positively invariant, and the trajectory {φt(x)}t≥0 for any
point x∈P+ or x∈P− converges to an equilibrium. �

Theorem D.6: (Theorem 4.3.3 in [66]) Let (9) be cooperative
(with respect to some cone-ordering ≤K) in a compact set
D ⊂ Rn and let x0 ∈ D be an equilibrium point. Suppose
that s , λ(JF (x0)) > 0 (i.e. x0 is an unstable fixed point)
and there is an eigenvector v�K 0 such that JF (x0)v = sv.
Then, there exists ε0 ∈ (0, ε] and another equilibrium point xe
such that for each r ∈ (0, ε0], the solution φt(xr) has the
following properties:
(1) xr�K φt1(xr)�K φt2(xr)�K xe, for any 0<t1<t2.
(2) dφt(xr)/dt�K 0, for any t > 0.
(3) φt(xr)→ xe, as t→∞. �

APPENDIX E
PROOFS OF THE RESULTS IN SECTION IV

Proof of Proposition 4.3: To prove that system (6) is
co-operative with respect to the positive orthant, we show that
it satisfies Kamke’s condition in (10). Differentiating the right
hand side of (5) with respect to xj , we get

∂f̄i(x)

∂xj
= (1− xi)

∂fi(x)

∂xj
=
∂qi(x)

∂xj
.

This corresponds to the (ij)’th off-diagonal entry of the
Jacobian JF̄ (x) evaluated at x ∈ [0, 1]N . It is non-negative
for any i 6= j ∈ N since (1− xi) ≥ 0 and due to assumption
(A3), and the ODE (6) is therefore co-operative in [0, 1]N with
respect to the regular cone ordering.

From assumption (A3), JF̄ (x)ij is also strictly positive for
any x ∈ (0, 1)N whenever aij > 0. This means that JF̄ (x),
and as a consequence the ODE system, is irreducible for any
x ∈ (0, 1)N .

To derive the convergence properties of the non-linear SIS
model, we make use of a result form [68], rewritten below in
a simpler form suitable for our setting.

Theorem E.1: (Theorem 4 in [68]) Consider a generic ODE
system (9) invariant to some subset S ⊂ RN+ , and let JF̄ stand
for its Jacobian matrix. Suppose that:

(C1) fi(x) ≥ 0 for all x ≥ 0 with xi = 0;
(C2) for all x � 0 in S, α ∈ (0, 1), it satisfies JF̄ (x)ij ≤

JF̄ (αx)ij for all i, j ∈ N , with strict inequality for at
least one pair of i, j;

(C3) for all u� w in S, it satisfies JF̄ (w) ≤ JF̄ (u);
(C4) it is co-operative in S with respect to the regular ordering

relation, and irreducible in Int(S).
Then, exactly one of the following outcomes occurs:

(i) φt(x) is unbounded for all x ∈ S \ {0};
(ii) φt(x)→ 0 as t→∞, for all x ∈ S \ {0};

(iii) There exists a unique, strictly positive fixed point x∗ �
0 such that φt(x)→ x∗ as t→∞, for all x ∈ S\{0}.�

We now use the above to prove Theorem 4.4.
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Proof of Theorem 4.4: We prove Theorem 4.4 by
showing that it satisfies conditions (C1)-(C4) of Theorem E.1,
and then performing stability analysis to evaluate conditions
for each of the three possible outcomes therein.

From Proposition (4.3), we know that (6) already satisfies
(C4). The right hand side of (5) satisfies (C1) because qi(xi) =
0 when xi = 0, and because (1 − xi) and fi(x) are all non-
negative for any x ∈ [0, 1]N . To check whether (C2) and (C3)
is satisfied, observe that from assumptions (A2)–(A5), we have

JF (u) > JF (w) (19)
JQ(u) < JQ(w) (20)

for all u < w.17 Here, JQ is a diagonal matrix since
∂qi/∂xj = 0 for all i 6= j ∈ N .

Denote by JF̄ the Jacobian matrix of system (6). Note that
for any point x ∈ [0, 1]N , we have

JF̄ (x) = diag(1− x)JF (x)− diag (F (x))− JQ(x) (21)

Combining the above with (19) and (20), we have for any
points u < w that

JF̄ (u) = diag(1− u)JF (u)− diag (F (u))− JQ(u)

> diag(1−w)JF (w)− diag (F (u))− JQ(w)

≥ diag(1−w)JF (w)− diag (F (w))− JQ(w)

= JF̄ (w),

where the first inequality is due to (1−u) > (1−w) and (19)
and (20). The second inequality is from the non-negativity and
monotonicity assumptions (A2) and (A3) implying F (u) ≤
F (w). Since JF̄ (u) > JF̄ (w) for any u < w, this is enough
to satisfy both conditions (C2) and (C3).

Since system (6) satisfies (C1)–(C4), Theorem E.1 applies.
Since the system is invariant in [0, 1]N , which is a bounded
subset of RN , outcome (i) of Theorem E.1 never occurs. From
assumption (A1), the vector 0 = [0, · · · , 0]T (the virus-free
equilibrium) is always a fixed point of the system. We now
find conditions under which trajectories of (6) starting from
anywhere in [0, 1]N \ {0} converge to either zero, or to a
unique strictly positive fixed point (outcomes (ii) and (iii) in
Theorem E.1 respectively), by check the stability properties of
the system.

The virus-free fixed point zero is unstable [72] when
λ(JF̄ (0)) = λ(JF (0) − JQ(0)) ≤ 0. Under this condition,
outcome (ii) in Theorem E.1 is not possible, and there exists
a unique, strictly positive fixed point x∗ � 0 which is
globally asymptotically stable in [0, 1]N \ {0}. Conversely
when zero is a stable fixed point, that is when λ(JF̄ (0)) =
λ(JF (0)− JQ(0)) > 0, it is globally attractive.

APPENDIX F
PROOFS OF THE MAIN RESULTS

Throughout this Section, we use φt(x0,y0) to represent the
solution of (8) at time t ≥ 0, starting from (x0,y0) ∈ D. We
will need the following results to prove the theorems from
Section V-B.

17Here, the ordering between matrices Ma < Mb means Ma
ij ≤ Mb

ij
with the inequality being strict for at least one pair of i, j.

Proposition F.1: Starting from any point D \ {(0,0)},
trajectories of (8) converge to the set

Z , {(u,w) ∈ D | (0,y∗) ≤K (u,w) ≤K (x∗,0)} .

Proof: For any (r, s) ∈ D \ {(0,0)}, there exists
points x,y ∈ [0, 1]N such that (0,y) ≤K (r, s) ≤K
(x,0). Then, from Definition D.1 of a monotone system, we
have φt(0,y) ≤K φt(r, s) ≤K φt(x,0) for any t > 0.
Since φt(x,0) → (x∗,0) and φt(0,y) → (0,y∗), we get
(0,y∗) ≤K limt→∞ φt(r, s) ≤K (x∗,0). Thus the trajectory
{φt(r, s)}t≥0 converges to Z, completing the proof.

Since the set Z depends on x∗ and y∗, the fixed points of
systems (13) and (14), and we can determine when these fixed
points are positive or zero, Proposition F.1 helps us to quickly
point out a subset of the state space to which trajectories
starting from any point in D\{(0,0)} converge.

Proof of Theorem 5.2: When λ (JG(0)− JR(0)) ≤
0 and λ (JH(0)− JS(0)) ≤ 0, we know from Theorem
4.4 that x∗ = y∗ = 0. Therefore, trajectories of (8)
starting from any point in D \ {(0,0)} converge to the
set Z , {(u,w) ∈ D | (0,0) ≤K (u,w) ≤K (0,0)} =
{(0,0)}. Hence, the virus-free equilibrium is globally asymp-
totically stable in D, which completes the proof.

Proposition F.1 can also be applied to show that (x∗,0)
where x∗�0 is globally attractive when λ (JG(0)−JR(0))>
0 and λ (JH(0)−JS(0))≤ 0. This is because from Theorem
4.4, we know that x∗ � 0 and y∗ = 0. We then have
Z , {(u,w) ∈ D | (0,0) ≤K (u,w) ≤K (x∗,0)}, implying
that the system (8) ultimately reduces to the single SIS
system (13), which we know globally converges to x∗. By
a symmetric argument, we also have that (0,y∗) where
y∗ � 0 is globally attractive when λ (JG(0)−JR(0)) ≤
0 and λ (JH(0)−JS(0)) > 0. Therefore these cases are
easily analyzed by applying Proposition F.1 in conjunction
with Theorem 4.4. In terms of the linear bi-virus model
whose parameters are easier to visualize, values of τ1 and
τ2 which satisfy these conditions, lie in regions R2 and R3
of Figure 3(b) and we henceforth exclude them from our
analysis, considering only those values of τ1 and τ2 for which
τ1λ(A) > 1 and τ2λ(B) > 1 always holds; equivalently
considering only the cases where λ (JG(0)− JR(0)) > 0 and
λ (JH(0)− JS(0)) > 0 always hold for nonlinear infection
and recovery rates. Thus, x∗ and y∗ are henceforth implied to
be strictly positive vectors.

Before formally proving Theorems 5.3 and 5.4, we provide
some additional constructions and notations which will help
simplify the proofs. As in the proof of Theorem 4.4, the
Jacobians JF x(x) and JF y(y) of systems (13) and (14),
respectively, are

JF x(x) = diag(1−x)JG(x)− diag(G(x))− JR(x),

JF y(y) = diag(1−y)JH(y)− diag(H(y))− JS(y),

for all x,y ∈ [0, 1]N . Now recall the Jacobian JḠH̄(x,y) of
the bi-virus ODE (8) from (12). When evaluated at (x∗,0)
and at (0,y∗), we get

JḠH̄(x∗,0) =

[
JF x(x∗) K

0 Jy

]
(22)
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where K=−diag(G(vx∗)), Jy=diag(1−x∗)JH(0)−JS(0),
and

JḠH̄(0,y∗) =

[
Jx 0
L JF y(y∗)

]
(23)

where L =−diag(H(y∗)), Jx = diag(1−y∗)JG(0)−JR(0).
This leads us to the following proposition, where the ordering
≤K (<K ,�K) stands for the south east cone-ordering.

Proposition F.2: When λ(Sy∗JG(0)−JR(0))>0, we have
λ (JḠH̄(0,y∗))=λ(Jx)>0, and the corresponding eigenvec-
tor (u,v)∈R2N of JḠH̄(0,y∗) satisfies (u,v)�K (0,0).

Proof: First, recall that y∗ � 0 is the asymptotically
stable fixed point of (14). This implies that the real parts of
all eigenvalues of the Jacobian JF y(y∗) of (14) evaluated
at y∗ are negative. Since JF y(y∗) is an irreducible matrix
as discussed in Section V-A, with non-negative off-diagonal
elements, its PF eigenvalue (obtained by perturbing with a
large multiple of the identity matrix) is real and negative, that
is λ (JF y(y∗)) < 0.

From the assumption, we have λ (Sy∗JG(0)− JR(0)) =
λ(Jx) > 0. Since JḠH̄(0,y∗) is a block triangle matrix, we
have λ (JḠH̄(0,y∗)) = max{λ(Jx), λ (JF y(y∗))}, and since
λ (JF y(y∗)) < 0, we obtain λ (JḠH̄(0,y∗)) = λ(Jx) > 0.
Then, the corresponding eigenvector (u,v) satisfies

Jxu=λ(Jx)u and Lu+JF y(y∗)v=λ(Jx)v.

From the first equation, we can tell that u is the eigenvector
of Jx corresponding to its PF eigenvalue, and thus satisfies
u � 0. Now recall that JF y(y∗) had eigenvalues with
strictly negative real parts. λ(Jx)I−JF y(y∗) is then a matrix
with eigenvalues having strictly positive real parts (since
λ(Jx) > 0). The matrix M , λ(Jx)I−JF y(y∗) is then,
by Definition A.2, an M-matrix. By construction, it is also
irreducible and invertible and from Lemma A.4, we obtain that
M−1 is a (strictly) positive matrix. The second equation in the
above can then be rewritten as v = M−1Lu� 0, where the
inequality is because L=−diag(H(y∗)) has strictly negative
diagonal elements (H(y∗) being positive from assumptions
(A2) and (A3)). Therefore, since u� 0 and v� 0, we have
(u,v)�K 0, completing the proof.

The intention behind introducing Proposition F.2 was to
satisfy the assumptions of Theorem D.6. In particular, when
λ (Sy∗JG(0)− JR(0))>0, (0,y∗) is an unstable fixed point;
by Proposition F.2 and Theorem D.6, there exists an ε1 > 0
and another fixed point (xe,ye) such that for any point
(xr,yr) , (0,y∗) + r(u,v) where r ∈ (0, ε1], we have

(0,y∗)�(xr,yr)�K φt(xr,yr)�K φs(xr,yr)≤K (x∗,0)

for all s>t>0. Moreover, for all (x,y) such that (0,y∗)�K

(x,y)≤K (xe,ye), there exists an r∈ (0, ε] sufficiently small
such that (xr,yr)≤K (x,y)≤K (xe,ye). Since φt(xr,yr)→
(xe,ye), monotonicity implies φt(x,y)→(xe,ye) as t→∞.

Now, we can either have (xe,ye) = (x∗,0), which oc-
curs when (x∗,0) is the other stable fixed point of (8), or
(xe,ye) = (x̂, ŷ) � 0 which occurs when (x∗,0) is an
unstable fixed point. Note that (x∗,0) is stable (unstable) if
and only if λ (Sy∗JG(0)− JR(0)) ≤ 0 (> 0). We will talk

about both these possibilities one by one and exploring these
will eventually lead to Theorems 5.3 and 5.4. But before
we do that, we first prove the following proposition about
convergence to the fixed point (xe,ye) (whichever of the two
it may be).

Proposition F.3: Trajectories of the system (4) starting from
any point (x,y) such that (0,y∗) <K (x,y) ≤K (xe,ye)
converge to (xe,ye). �

Proof: Recall that we already know that for all
(0,y∗)�K (x,y)≤ (x∗,y∗), φt(x,y)→ (x∗,0). We would
however like to show this for all (x,y) ∈ Z \ (0,y∗), that
is even when (x,y) satisfies (0,y∗) <K (x,y) ≤ (x∗,0).
To do this, we create a set of points which converge to
(x∗,0), just like we created (xr,yr) before, and then use
a monotonicity argument to show convergence to (0,y∗) of
trajectories starting for all points (x,y) satisfying (0,y∗) <K
(x,y) ≤ (x∗,0).

Recall that, y∗ is an asymptotically stable fixed point of
(14), and from the proof of Proposition F.2 we know that
λ (JF y(y∗)) < 0. Let w � 0 be the corresponding PF
eigenvector. Then by Proposition B.4, there exists an ε2 > 0
such that for all s ∈ (0, ε2], F y(y∗ + sw)� 0. We can then
define points (xr,ys) , (ru,y∗ + sw) for any r ∈ (0, ε1]
and s ∈ (0, ε2], where u � 0 is the eigenvector of Jx from
Proposition F.2. We will first show that trajectories starting
from these points converge to (xe,ye). By rearranging the
terms of (8), we can rewrite it as

ẋ = diag(1− y∗)G(x)−R(x) + diag(y∗ − x− y)G(x)

= diag(1− y∗)JG(0)x− JR(0)x

+ diag(y∗ − x− y)G(x) +O
(
‖x‖2

)
= Jxx +O (‖x‖ [‖y − y∗‖+ ‖x‖]) ,

ẏ = diag(1− y)H(y)− S(y)− diag(x)H(y)

= F y(y) +O (‖y‖) ,

for all (x,y) ∈ D,18where the first equality is from a
Taylor series expansion of G and R around 0. For any point
(xr,ys) = (ru,y∗+ sw), the above equations can be written
as

ẋ = rλ(Jx)u + rO (‖u‖ [s‖w‖+ r‖u‖])
= r [λ(Jx)u +O(r + s)]

ẏ = F y(y∗ + sw) +O (‖sy‖)
= F y(y∗ + sw) +O (s) .

For sufficiently small r and s, we have ẋ � 0 (since
λ(Jx) > 0 and u� 0) and ẏ� 0 (since F y(y∗ + sw)� 0
for all s ∈ (0, ε2]). This satisfies the conditions for Proposi-
tion D.5, and trajectories starting from such points will be
monotonically increasing (according to the south-east cone
ordering), eventually converging to the fixed point (xe,ye).

Now see that for any point (x,y) such that (0,y∗) <K
(x,y) ≤K (xe,ye), where x > 0 and y ≤ y∗, by the nature
of the ODE system (4) all zero entries of the x term will
eventually become positive (if it isn’t already). Therefore, there
exists a time t1 > 0 such that x(t1)�0, and there exist r, s

18Here, O(x) is used to represent terms which satisfy O(x)→ 0 as x→ 0.
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small enough such that (xr,ys)�K φt1(x,y) ≤K (xe,ye).
Again by monotonicity, since φt(xr,ys)→ (xe,ye), we have
φt+t1(x,y)→ (xe,ye) as t→∞, completing the proof.

We now consider the case where (xe,ye) = (x∗,0) and
give the proof for Theorem 5.3. We prove it only for when
τ1λ(Sy∗A) > 1 and τ2λ(Sx∗B) ≤ 1, since the other case
follows by a symmetric argument.

Proof of Theorem 5.3: When λ (JH(0)−JS(0)) ≤ 0,
(x∗,0) is a stable fixed point of system (8), since all eigen-
values of JḠH̄(x∗,0) have non-positive real parts, and we
have (xe,ye) = (x∗,0). Proposition F.3 then implies that
trajectories starting from all points in Z \ {(0,y∗)} converge
to (x∗,0). According to Proposition F.1, trajectories starting
from all points (x,y) ∈ Bx in the system eventually enter
the set Z, thereby eventually converging to (x∗,0), giving us
global convergence in Bx.

Similarly, we use Propositon F.3 to prove Theorem 5.4.
Proof of Theorem 5.4: When λ (JG(0)−JR(0))>0 and

λ (JH(0)−JS(0))>0, both (0,y∗) and (x∗,0) are unstable
fixed points, and (xe,ye) takes the form of a positive fixed
point (x̂, ŷ) � 0 (it cannot be (x∗,0), which is unstable).
Then from Proposition F.3, it attracts trajectories beginning
from all points (x,y) satisfying (0,y∗)<K (x,y)≤K (x̂, ŷ).

Similarly, we have a symmetric result beginning from
τ2λ(Sx∗B)>1 (symmetric to Proposition F.2 which assumes
τ1λ(Sy∗A) > 1 instead), and we can say that there exists
another fixed point (x̄, ȳ)�0 which attracts all points (x,y)
satisfying (x̄, ȳ) ≤K (x,y) <K (x∗,0). By construction, we
then have (x̂, ŷ)≤K (x̄, ȳ), with the possibility of being equal.

To prove global convergence of the system to the set
S = {(xe,ye)∈E | (x̂, x̂)≤K (xe,ye)≤K (x̄, ȳ)}, observe
first that as part of the proof of Proposition F.3 we showed
that for trajectories starting from any point (x,y) in the state
space, there exists r > 0 and s> 0 small enough, and t1 > 0
such that (xr,ys) �K φt1(x,y) ≤K (x̂, ŷ) where (xr,ys)
is a point very close to (x∗,0). By a parallel argument, we
can find a similar point (xp,yq) very close to (0,y∗) and
a time t2 such that (x̄, ȳ)≤K φt2(x,y)�K (xp,yq). Then,
we have (xr,ys)�K φmax{t1,t2}(x,y)�K (xp,yq). Since
φt(xr,ys)→ (x̂, x̂) ∈ S, and φt(xp,yq) → (x̄, x̄) ∈ S, we
can once again, due to monotonicity of the system and by
invoking a sandwich argument, say that φt+max{t1,t2}(x,y)
converges to an equilibrium point in S as t → ∞. This
completes the proof.
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