
Experimental Design Networks:
A Paradigm for Serving Heterogeneous Learners

under Networking Constraints
Yuezhou Liu*, Yuanyuan Li*, Lili Su, Edmund Yeh, Stratis Ioannidis

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
liu.yuez@northeastern.edu, yuanyuanli@ece.neu.edu, l.su@northeastern.edu, {eyeh, ioannidis}@ece.neu.edu

Abstract—Significant advances in edge computing capabilities
enable learning to occur at geographically diverse locations. In
general, the training data needed in those learning tasks are
not only heterogeneous but also not fully generated locally. In
this paper, we propose an experimental design network paradigm,
wherein learner nodes train possibly different Bayesian linear
regression models via consuming data streams generated by
data source nodes over a network. We formulate this problem
as a social welfare optimization problem in which the global
objective is defined as the sum of experimental design objectives
of individual learners, and the decision variables are the data
transmission strategies subject to network constraints. We first
show that, assuming Poisson data streams, the global objective
is a continuous DR-submodular function. We then propose a
Frank-Wolfe type algorithm that outputs a solution within a
1 − 1/e factor from the optimal. Our algorithm contains a
novel gradient estimation component which is carefully designed
based on Poisson tail bounds and sampling. Finally, we com-
plement our theoretical findings through extensive experiments.
Our numerical evaluation shows that the proposed algorithm
outperforms several baseline algorithms both in maximizing the
global objective and in the quality of the trained models.

I. INTRODUCTION

We study a network in which heterogeneous learners dis-
persed at different locations perform local learning tasks by
fetching relevant yet remote data. Concretely, data sources
generate data streams containing both features and la-
bels/responses, which are transmitted over the network (po-
tentially through several intermediate router nodes) towards
learner nodes. Generated data samples are used by learners
to train models locally. We are interested in the design of
rate allocation strategies that maximize the model training
quality of learner nodes, subject to network constraints. This
problem is relevant in practice. For example, in a mobile
edge computing network [1], [2], data are generated by end
devices such as mobile phones (data sources) and sent to
edge servers (learners) for model training, a relatively intensive
computation. In a smart city [3], [4], we can collect various
types of data such as image, temperature, humidity, traffic,
and seismic measurements, from different sensors. These data
could be used to forecast transportation traffic, the spread of
disease, pollution levels, the weather, and so on, while training
for each task could happen at different public service entities.

* Y. Liu and Y. Li contributed equally to the paper.

We quantify the impact that data samples have on learner
model training accuracy by leveraging objectives motivated by
experimental design [5], a classic problem in statistics and ma-
chine learning. This problem arises in many machine learning
and data mining settings, including recommender systems [6],
active learning [7], and data preparation [8], to name a few.
In standard experimental design, a learner decides on which
experiments to conduct so that, under budget constraints, an
objective modeling prediction accuracy is maximized. Learner
objectives are usually scalarizations of the estimation error
covariance.

In this paper, we propose experimental design networks,
a novel optimization framework that extends classic experi-
mental problems to maximize the sum of experimental design
objectives across networked learners. Assuming Poisson data
streams and Bayesian linear regression as the learning task,
we define the utility of a learner as the expectation of its
so-called D-optimal design objective [5], namely, the log-
determinant of the learner’s estimation error covariance matrix.
Our goal is to determine the data rate allocation of each
network edge that maximizes the aggregate utility across
learners. Extending experimental design to networked learners
is non-trivial. Literature on experimental design for machine
learning considers budgets imposed on the number of data
samples used to train the model [9]–[13]. Instead, we consider
far more complex constraints on the data transmission rates
across the network, as determined by network link capacities,
the network topology, and data generation rates at sources.

To the best of our knowledge, we are the first to study
such a networked learning problem, wherein learning tasks
at heterogeneous learners are coupled via data transmission
constraints over an arbitrary network topology. Our detailed
contributions are as follows:
• We are the first to introduce and formalise the experi-

mental design network problem, which enables the study
of multi-hop data transmission strategies for distributed
learning over arbitrary network topologies.

• We prove that, assuming Poisson data streams, Bayesian
linear regression as the learning task, and D-optimal
design objectives at the learners, our framework leads to
the maximization of continuous DR-submodular objective
subject to a lower-bounded convex constraint set.

1

ar
X

iv
:2

20
1.

04
83

0v
1 

 [
cs

.N
I]

  1
3 

Ja
n 

20
22



• Though the objective is not concave, we propose a
polynomial-time algorithm based on a variant of the
Frank-Wolfe algorithm [14]. To do so, we introduce and
analyse a novel gradient estimation procedure, tailored
to Poisson data streams. We show that the proposed
algorithm, coupled with our novel gradient estimation,
is guaranteed to produce a solution within a 1 − 1/e
approximation factor from the optimal.

• We conduct extensive evaluations over different network
topologies, showing that our proposed algorithm outper-
forms several baselines in both maximizing the objective
function and in the quality of trained target models.

The rest of this paper is organized as follows. In Sections II
and III, we review related work and provide technical prelim-
inaries. Section IV introduces our framework of experimental
design networks. Section V describes our proposed algorithm.
We discuss extensions in Section VI and present numerical
experiments in Section VII. We conclude in Section VIII.

II. RELATED WORK

Distributed Computing/Learning in Networks. Distribution
of computation tasks has been studied in hierarchical edge
cloud networks [15], multi-cell mobile networks [16], and joint
with data caching in arbitrary networks [17]. There is a rich
literature on distributing machine learning computations over
networks, including exchanging gradients in federated learn-
ing [18]–[20], states in reinforcement learning [21], and data
vs. model offloading [22] among collaborating neighbor nodes.
We depart from the aforementioned works in (a) considering
multiple learners with distinct learning tasks, (b) introducing
experimental design objectives, quite different from objectives
considered above, (c) studying a multi-hop network, and (d)
focusing on the optimization of streaming data movements, as
opposed to gradients or intermediate result computations.
Experimental Design. The experimental design problem is
classic and well-studied [5], [23]. Several works study the
D-optimality objective [9]–[12], [24] for a single learner
subject to budget constraints on the cost for conducting
the experiments. Departing from previous work, we study a
problem involving multiple learners subject to more complex
constraints, induced by the network. Our problem also falls
in the continuous DR-submodular setting, departing from the
discrete setting in prior work. In fact, our work is the first
to show that such an optimization, with Poisson data streams,
can be solved via continuous DR-submodularity techniques.
DR-submodular Optimization. Submodularity is tradition-
ally studied in the context of set functions [25], [26], but was
recently extended to functions over the integer lattice [27] and
the continuous domain [14]. Despite the non-convexity and the
general NP-hardness of the problem, when the constraint set
is down-closed and convex, maximizing monotone continuous
DR-submodular functions can be done in polynomial time via
a variant of the Frank-Wolfe algorithm. This yields a solution
within 1− 1/e from the optimal [14], [26], outperforming the
projected gradient ascent method, which provides 1/2 approx-
imation guarantee over arbitrary convex constraints [28].

The continuous greedy algorithm [26] maximizes a submod-
ular set function subject to matroid constraints: this first ap-
plies the aforementioned Frank-Wolfe variant to the so-called
multilinear relaxation of the discrete submodular function, and
subsequently uses rounding [29], [30]. The multilinear relax-
ation of a submodular function is in fact a canonical example
of a continuous DR-submodular function, whose optimization
comes with the aforementioned guarantees. Our objective
function results from a new continuous relaxation, which we
introduce in this paper for the first time. In particular, we
show that assuming a Poisson distribution on inputs on the
(integer lattice) DR-submodular function of D-optimal design
yields a continuous DR-submodular function. This “Poisson”
relaxation is directly motivated by our networking problem,
is distinct from the multilinear relaxation [26], [28], [31], and
requires a novel gradient estimation procedure. Our constraint
set also requires special treatment as it is not down-closed, as
required by the aforementioned Frank-Wolfe variant [14], [26];
nevertheless, we attain a 1 − 1/e approximation, improving
upon the 1/2 factor of projected gradient ascent [28].
Submodularity in Networking and Learning. Submodular
functions are widely encountered in studies of both networking
and machine learning. Submodular objectives appear in studies
of network caching [32], [33], routing [34], rate allocation
[35], sensor network design [36], as well as placement of
virtual network functions [37]. Submodular utilities are used
for data collection in sensor networks [38] and also the
design of incentive mechanisms for mobile phone sensing [39].
Many machine learning problems are submodular, including
structure learning, clustering, feature selection, and active
learning (see e.g., [40]). Our proposed experimental design
network paradigm expands this list in a novel way.

III. TECHNICAL PRELIMINARY

We begin with a technical preliminary on linear regression,
experimental design, and DR-submodularity. The contents of
this section are classic; for additional details, we refer the
interested reader to, e.g., [41], [42] for linear regression, [5]
for experimental design, and [14] for submodularity.

A. Bayesian Linear Regression

In the standard linear regression setting, a learner observes n
samples (xi, yi), i = 1, . . . , n, where xi ∈ Rd and yi ∈ R are
the feature vector and label of sample i, respectively. Labels
are assumed to be linearly related to the features; in particular,
there exists a model parameter vector β ∈ Rd such that

yi = x>i β + εi, for all i ∈ {1, . . . , n}, (1)

and εi are i.i.d. zero mean normal noise variables with variance
σ2 (i.e., εi ∼ N(0, σ2)).

The learner’s goal is to estimate the model parameter β
from samples {(xi, yi)}ni=1. In Bayesian linear regression,
it is additionaly assumed that β is sampled from a prior
normal distribution with mean β0 ∈ Rd and covariance
Σ0 ∈ Rd×d (i.e., β ∼ N(β0,Σ0)). Under this prior, given

2



dataset {(xi, yi)}ni=1, maximum a posteriori (MAP) estimation
of β amounts to [42]:

β̂MAP = (X>X + σ2Σ−1
0 )−1X>y

+ (X>X + σ2Σ−1
0 )−1σ2Σ−1

0 β0,
(2)

where X = [x>i ]ni=1 ∈ Rn×d is the matrix of features, y ∈ Rn
is the vector of labels, σ2 is the noise variance, and β0,Σ0

are the mean and covariance of the prior, respectively. We note
that, in practice, the inherent noise variance σ2 is often not
known, and is typically treated as a regularization parameter
and determined via cross-validation.

The quality of this estimator can be characterized by the
covariance of the estimation error difference β̂MAP − β (see,
e.g., Eq. (10.55) in [42]):

cov(β̂MAP − β) =
( 1

σ2
XTX + Σ−1

0

)−1 ∈ Rd×d. (3)

The covariance summarizes estimator quality in all directions
in Rd: given an unseen sample (x, y) ∈ Rd × R, also
obeying (1), the expected prediction error (EPE) is given by

E
[
(y − x>β̂MAP)

2
]

= σ2 + x>cov(β̂MAP − β)x. (4)

Hence, the eigenvalues of Eq. (3) capture the overall variability
of the expected prediction error in different directions.

B. Experimental Design

In experimental design, a learner determines which exper-
iments to conduct to learn the most accurate linear model.
Formally, given p possible experiment settings, each described
by feature vectors xi ∈ Rd, i = 1, . . . , p, the learner selects a
total of n experiments to conduct with these feature vectors,
possibly with repetitions,1 collects associated labels, and then
performs linear regression on these sample pairs. In classic
experimental design (see, e.g., [5]), the selection is formulated
as an optimization problem minimizing a scalarization of the
covariance (3). For example, in D-optimal design, the vector
n = [ni]

p
i=1 ∈ Np of the number of times each experiment is

to be performed is determined by minimizing

log det[cov(β̂MAP − β)]
(3)
= log det

[( p∑
i=1

ni
σ2
xix

>
i + Σ−1

0

)−1]
or, equivalently, by solving the maximization problem:

Max.: G(n;σ,Σ0) ≡ log det
(∑p

i=1
ni
σ2xix

>
i + Σ−1

0

)
, (5a)

s.t.:
∑p
i=1 ni = n. (5b)

In other words, n ∈ Np is selected in such a way so that
the log det[cov(β̂MAP−β)] is as small as possible. Intuitively,
this amounts to selecting the experiments that minimize the
product of the eigenvalues of the covariance;2 alternatively,

1Note that, due to the presence of noise in labels, repeating the same
experiment makes intuitive sense; formally, repetition of an experiment with
features xi reduces the EPE (4) in this direction.

2Other commonly encountered scalarizations [5] behave similarly. E.g., E-
optimality minimizes the maximum eigenvalue, while A-optimality minimizes
the sum of the eigenvalues.

Prob. (5) also maximizes the mutual information between the
labels y (to be collected) and β̂MAP; in both interpretations, the
selection aims to pick experiments in a way that minimizes the
variability of the resulting estimator β̂MAP.

C. DR-Submodularity

We introduce here diminishing-returns submodularity:

Definition 1 (DR-Submodularity [14], [27]). A function f :
Np → R is called diminishing-returns (DR) submodular iff for
all x,y ∈ Np such that x ≤ y and all k ∈ N,

f(x+kej)−f(x)≥f(y+kej)−f(y), for all j = 1, . . . , p, (6)

where ej is the j-th standard basis vector.
Moreover, if (6) holds for a real valued function f : Rp+ →

R for all x,y ∈ Rp such that x ≤ y and all k ∈ R+, the
function is called continuous DR-submodular.

The above definition generalizes the submodularity of set
functions (whose domain is {0, 1}p) to functions over integer
lattice (in the case of DR-submodularity), and continuous
functions (in the case of continuous DR-submodularity). Par-
ticularly for continuous functions, if f is differentiable, con-
tinuous DR-submodularity is equivalent to ∇f being antitone.
Moreover, if f is twice-differentialble, f is continuous DR-
submodular if all entries of its Hessian ∇2f are non-positive.
DR-submodularity is directly pertinent to D-optimal design:

Lemma 1 (Horel et al. [9]). Function G : Np → R+ in (5a)
is (a) monotone-increasing and (b) DR-submodular.

For completeness, we provide a proof in Appendix A. An
immediate consequence of this lemma is that polynomial-time
approximation algorithms exist to solve Prob. (5) with a 1−1/e
guarantee (see, e.g., [9], [31]), although Prob. (5) is a classic
NP-hard problem [9].

IV. PROBLEM FORMULATION

We consider a network that aims to facilitate a distributed
learning task. The network comprises (a) data source nodes
(e.g., sensors, test sites, experimental facilities, etc.) that
generate streams of data, (b) learner nodes, that consume data
with the purpose of training models, and (c) intermediate
nodes (e.g., routers), that facilitate the communication of
data from sources to learners. The data that learners wish
to consume is determined by experimental design objectives,
akin to the ones described in Sec. III-B. Our goal is to
design network communications in an optimal fashion, that
maximizes learner social welfare. We describe each of the
above system components in more detail below.

A. Network Model.

We model the above system as general multi-hop network
with a topology represented by a directed acyclic graph (DAG)
G(V, E), where V is the set of nodes and E ⊂ V × V is the
set of links. Each link e = (u, v) ∈ E can transmit data at a
maximum rate (i.e., link capacity) µe ≥ 0. Sources S ⊂ V of
the DAG (i.e., nodes with no incoming edges) generate data

3



streams, while learners L ⊂ V reside at DAG sinks (nodes
with no outgoing edges). We assume this for simplicity; we
discuss how to remove this assumption, and how to generalize
our analysis beyond DAGs, in Sec. VI.
Data Sources. Each data source s ∈ S generates a stream of
labeled data. In particular, we assume that there exists a finite3

set X ⊂ Rd of experiments every source can conduct. Once
experiment with features x ∈ X is conducted, the source can
label it with a label y ∈ R of type t out of a set of possible
types T . Intuitively, features x correspond to parameters set in
an experiment (e.g., pixel values in an image, etc.), label types
t ∈ T correspond to possible measurements (e.g., temperature,
radiation level, etc.), and labels y correspond to the actual
measurement value collected (e.g., 23◦C).

We assume that every source generates labeled pairs
(x, y) ∈ Rd × R of type t according to a Poisson process
of rate λsx,t ≥ 0. Moreover, we assume that generated data
follows a linear model (1); that is, for every type t ∈ T ,
there exists a βt ∈ Rd s.t. y = x>βt + εt where εt ∈ R are
i.i.d. zero mean normal noise variables with variance σ2

t > 0,
independent across experiments and sources s ∈ S.
Learners. Each learner ` ∈ L wishes to learn a model βt` for
some type t` ∈ T . We assume that each learner has a prior
N(β`,Σ`) on βt` . The learner wishes to use the network to
receive data pairs (x, y) of type t`, and subsequently estimate
βt` through the MAP estimator (2). Note that two learners `,
`′ may be interested to learn the same model (if t` = t`

′
).

Network Constraints. The different data pairs (x, y) ∈
Rd×R generated by sources are transmitted over edges in the
network along with their types t ∈ T and eventually delivered
to learners. Our network design aims at allocating network
capacity to different flows to meet learner needs.4 For each
edge e ∈ E , we denote the rate with which data pairs of type
t ∈ T with features x ∈ X are transmitted as λex,t ≥ 0. We
also denote by

λv,inx,t ≡

{
λvx,t, if v ∈ S,∑

(u,v)∈E λ
(u,v)
x,t , o.w.

(7)

the corresponding incoming traffic to node v ∈ V , and

λv,outx,t =
∑

(v,u)∈E

λ
(v,u)
x,t (8)

the corresponding outgoing traffic from v ∈ V . Specifically
for learners, we denote by

λ`x ≡ λ
`,in
x,t`

, and λ` = [λ`x]x∈X ∈ R|X |, for all ` ∈ L, (9)

the incoming traffic with different features x ∈ X of type t`

at ` ∈ L. To satisfy capacity constraints, we must have∑
x∈X ,t∈T

λex,t ≤ µe, for all e ∈ E , (10)

3We extend this to a setting where experiments are infinite in Sec. VI.
4We assume hop-by-hop routing; see Sec. VI for an extension to source

routing.

while flow bounds imply that

λv,outx,t ≤ λ
v,in
x,t , for all x ∈ X , t ∈ T , v ∈ V \ L, (11)

as data pairs can be dropped. We denote by

λ =
[
[λex,t]x∈X ,t∈T ,e∈E ; [λ`x]x∈X ,`∈L

]
(12)

the vector comprising edge and learner rates. Let

D =
{
λ ∈ R|X ||T ||E|+ × R|X ||L|+ that satisfy (9)–(11)

}
, (13)

be the feasible set of edge rates and learner rates. We make
following assumption on the network substrate:

Assumption 1. For λ ∈ D, the system is stable and, in steady
state, pairs (x, y) ∈ Rd×R of type t` arrive at learner ` ∈ L
according to |X | independent Poisson processes with rate λ`x.

This is satisfied, if, e.g., the network is a Kelly network [43]
of M/M/1 queues, M/M/c queues, etc., under FIFO, Last-In
First-Out (LIFO), and processor sharing service disciplines, or
other queues for which Burke’s theorem holds [42].

B. Networked Learning Problem

We consider a data acquisition time period T , at the end
of which each learner ` ∈ L estimates βt` based on the data
it has received during this period via MAP estimation. Under
Assumption 1, the arrivals of pertinent data pairs at learner
` form a Poisson process with rate λ`x. Let n`x ∈ N be the
cumulative number of times that a pair (x, y) of type t` was
collected by learner ` during this period, and n` = [n`x]x∈X
the vector of arrivals across all experiments. Then,

Pr[n` = n] =
∏
x∈X

(λ`xT )nxe−λ
`
xT

nx!
, (14)

for all n = [nx]x∈X ∈ N|X | and ` ∈ L. Motivated by standard
experimental design (see Sec. III-B), we define the utility at
learner ` ∈ L as the following expectation:

U `(λ`) = Eλ`
[
G`(n`)

]
=

∑
n∈N|X|

G`(n) ·Pr[n` = n], (15)

where G`(n`) ≡ G(n`;σt` ,Σ`) and G is given by (5a). We
wish to solve the following problem:

Maximize: U(λ) =
∑
`∈L

(U `(λ`)− U `(0)), (16a)

s.t. λ ∈ D. (16b)

Indexing flows by both type t and features x implies that, to
implement a solution λ ∈ D, routing decisions at intermediate
nodes should be based on both quantities. Problem (16) is non-
convex in general.5 Nevertheless, we construct a polynomial
time approximation algorithm in the next section.

5It is easy to construct instances of objective (16) that are non-concave.
For example, when |L| = 1, d = 1, X = {0.1618, 0.3116}, σ = 0.0422,
and Σ` = 0.2962, the Hessian matrix is not negative semi-definite.

4



Algorithm 1: Frank-Wolfe Variant
Input: U : D → R+, D, step-size δ ∈ (0, 1].

1 λ0 = 0, τ = 0, k = 0
2 while τ < 1 do

3 find vk s.t. vk = arg maxv∈D〈v, ∇̂U(λk)〉
4 γk = min{δ, 1− τ}
5 λk+1 = λk + γkv

k, τ = τ + γk, k = k + 1

6 return λK

V. MAIN RESULTS

Our main contribution is to show that there exists a
polynomial-time randomized algorithm that solves Prob. (16)
within a 1−1/e approximation ratio. We do so by establishing
that the objective function in Eq. (16a) is continuous DR-
submodular (see Definition 1).

A. Continuous DR-submodularity

Our first main result establishes the continuous DR-
submodularity of the objective (16a):

Theorem 1. The objective function U(λ) given by (16a) is
monotone increasing and continuous DR-submodular in λ ∈
R|X |×|T |×|E|+ . Moreover,

∂U

∂λ`x
= T

∞∑
n=0

∆`
x(λ`, n)Pr[n`x = n], (17)

where n` is distributed as in Eq. (14) and ∆`
x(λ`, n) is:

E
[
G`(n`)|n`x = n+ 1

]
− E

[
G`(n`)|n`x = n

]
> 0.

The proof can be found in Section V-C; we establish the
positivity of the gradient and non-positivity of the Hessian of
U . We note that Theorem 1 identifies a new type of continuous
relaxation to DR-submodular functions, via Poisson sampling;
this is in contrast to the multilinear relaxation [26], [28], [31],
which is ubiquitous in the literature and relies on Bernoulli
sampling. Finally, though our objective is monotone and
continuous DR-submodular, the constraint set D is not down-
closed. Hence, the analysis by Bian et al. [14] does not directly
apply, while using projected gradient ascent [28] would only
yield a 1/2 approximation guarantee.

B. Algorithm and Theoretical Guarantee

Our algorithm is summarized in Algorithm 1. We follow the
Frank-Wolfe variant for monotone DR-submodular function
maximization by Bian et al. [14], deviating both in the nature
of the constraint set D, but also, most importantly, in the way
we estimate the gradients of objective U .
Frank-Wolfe Variant. In the proposed Frank-Wolfe variant,
variables λk and vk denote the solution and update direction

at the k-th iteration, respectively. Starting from λ0 = 0 ∈ D,
the algorithm iterates as follows:

vk = arg max
v∈D

〈v, ∇̂U(λk)〉, (18a)

λk+1 = λk + γkv
k, (18b)

where γk ∈ (0, 1] is the stepsize with which we move along
direction vk, and ∇̂U(·) is an estimator of the gradient ∇U
w.r.t. [λ`x]x∈X ,`∈L. The step size is set to δ > 0 for all but
the last step, where it is selected so that the total sum of step
sizes equals 1.

We note that we face two challenges preventing us from
computing the gradient of ∇U directly via. Eq. (17): (a)
the gradient computation involves an infinite summation over
n ∈ N, and (b) conditional expectations in ∆`

x(λ`, n) require
further computing |X |−1 infinite sums. Using (17) directly in
Algorithm 1 would thus not yield a polynomial-time algorithm.
To that end, we replace the gradient ∇U(λk) used in the
standard Frank-Wolfe method by an estimator, which we
describe next.
Gradient Estimator. Our estimator addresses challenge (a)
above by truncating the infinite sum, and (b) via sampling. In
particular, for n′ ≥ λ`xT , we estimate partial derivatives via
the partial summation:

∂̂U

∂λ`x
≡ T

n′∑
n=0

̂∆`
x(λ`, n)Pr[n`x = n]. (19)

where estimate ̂∆`
x(λ`, n) is constructed via sampling as

follows. At each iteration, we generate N samples n`,j ,
j = 1, . . . , N of the random vector n` according to the
Poisson distribution in Eq. (14), parameterized by the current
solution vector λ`. We then compute the empirical average:

̂∆`
x(λ`, n) =

1

N

N∑
j=1

(
G`
(
n`,j |n`,jx =n+1

)
−G`

(
n`,j |n`,jx =n

))
,

(20)
where n`,j |n`,jx =n is equal to vector n`,j with n`,jx set to n.

Theoretical Guarantee. Extending the analysis of [14], and
using Theorem 1, we show that the Frank-Wolfe variant com-
bined with gradients estimated “well enough” yields a solution
within a constant approximation factor from the optimal:

Theorem 2. Let

λMAX ≡ max
λ∈D

∑
`∈L

||λ`||1, and (21)

GMAX ≡ max
`∈L,x∈X

(G`(ex)−G`(0)), (22)

where ex is the canonical basis. Then, for any 0 < ε0, ε1 <
1 and ε2 > 0, there exists a δ > 0 such that Algorithm 1
terminates in at most

K = O
(
(

√
2

2
|X ||L|Tλ2

MAX + 2λMAX)GMAX/ε2
)

5



iterations, and uses n′ = O(λMAXT + ln 1
ε1

) terms and N =

O(T 2n′K2 ln |X ||L|Kε0
) samples in estimator (19), so that with

probability 1− ε0, the output solution λK ∈ D satisfies:

U(λK) ≥ (1− eε1−1) max
λ∈D

U(λ)− ε2. (23)

The proof can be found in Section V-D. Theorem 2 implies
that, through an appropriate (but polynomial) selection of
the total number of iterations K, the number of terms n′

and samples N , we can obtain a solution λ that is within
1−e−1 ≈ 0.63 from the optimal. The proof crucially relies on
(and exploits) the continuous DR-submodularity of objective
U , in combination with an analysis of the quality of our
gradient estimator, given by Eq. (19).

C. Proof of Theorem 1
By the law of total expectation, we have:

U `(λ`) =

∞∑
n=0

E
[
G`(n`)|n`x = n

]
· (λ`xT )te−λ

`
xT

t!
.

Notably, ∂U
∂λ`x

= ∂U`(λ`)
∂λ`x

, for which the following is true:

∂U `(λ`)

∂λ`x
=

∞∑
n=0

E
[
G`(n`)|n`x = n

]
· ( n
λ`x
− T )

(λ`xT )ne−λ
`
xT

n!

=

∞∑
n=0

∆`
x(λ`, n) · T · Pr[n`x = n] ≥ 0,

where the last inequality is true because G is monotone-
increasing (Lemma 1).

Next, we compute the second partial derivatives ∂2U
∂λ`x∂λ

`′
x′

.

It is easy to see that for ` 6= `′, we have

∂2U

∂λ`x∂λ
`′
x′

= 0.

For ` = `′ and x = x′, it holds that ∂2U
∂(λ`x)2

= ∂2U`(λ`)
∂(λ`x)2

, where

∂2U `(λ`)

∂(λ`x)2
= ∆`

x(λ`, 0) · T 2e−λ
`
xT +

∞∑
n=1

∆`
x(λ`, n)(

(λ`x)n−1Tn+1

(n−1)! − (λ`x)nTn+2

n!

)
e−λ

`
xT

=

∞∑
n=0

(∆`
x(λ`, n+ 1)−∆`

x(λ`, n)) · Pr[n`x = n]T 2 ≤ 0,

and the last equality follows from the DR-submodularity of G
(Lemma 1).

For ` = `′ and x 6= x′, it holds that ∂2U
∂λ`x∂λ

`
x′

= ∂2U`(λ`)

∂λ`x∂λ
`
x′

,

∂2U `(λ`)

∂λ`x∂λ
`
x′

=

∞∑
n=0

∞∑
k=0

((
E
[
G`(n`)|n`x = n+ 1, n`x′ = k + 1

]
− E

[
G`(n`)|n`x = n, n`x′ = k + 1

])
−
(
E[G`(n`)|

n`x = n+ 1, n`x′ = k]− E
[
G`(n`)|n`x = n, n`x′ = k

]))
· Pr[n`x = n]Pr[n`x′ = k]T 2 ≤ 0, (24)

where the last inequality follows from the DR-submodularity
of G (Lemma 1).

D. Proof of Theorem 2

Our proof relies on a series of key lemmas; we state
them below. Full proofs of all lemmas can be found in
the appendix. We begin by associating the approximation
guarantee of Algorithm 1 to the quality of gradient estimation
∇̂U(·):

Lemma 2. Suppose we can construct an estimator ∇̂U(λk)
of the gradient ∇U(λk) at each iteration k such that

〈vk,∇U(λk)〉 ≥ a ·max
v∈D
〈v,∇U(λk)〉 − b, (25)

where vk is the update direction determined by (18a), a ∈
(0, 1] and b are positive constants. Then, the output solution
λK of Algorithm 1 satisfies λK ∈ D, and

U(λK) ≥ (1− e−a) max
λ∈D

U(λ)− L

2
λMAXδ − b, (26)

where L =
√

2p|L|TGMAX is the Lipschitz constant of ∇U ,
and λMAX and GMAX given by (21) and (22).

The proof, found in Appendix B, relies on the continuous
DR-submodularity of U , and follows [14]; we deviate from
their proof to handle the additional issue that D is not
downward closed (an assumption in [14]).

Next, we turn our attention to characterizing the quality
of our gradient estimator. To that end, use the following
subexponential tail bound:

Lemma 3 (Theorem 1 in [44]). Let n`x ∼ Poisson(λ`xT ), for
λ`x, T > 0. Then, for any z > λ`xT , we have

Pr[n`x ≥ z] ≤ e
− (z−λ`xT )2

2λ`xT
h(
z−λ`xT
λ`xT

)
, (27)

where h : [−1,∞) → R is the function defined by h(u) =

2 (1+u) ln (1+u)−u
u2 .

The expression for h(u) implies that the Poisson tail decays
slightly faster than a standard exponential random variable (by
a logarithmic factor). This lemma allows us to characterize the
effect of truncating Eq. (17) in estimation quality. In particular,
for n′ ≥ λ`xT , let:

HEAD`
x(n′) ≡ T

n′∑
n=0

∆`
x(λ`, t)Pr[n`x = n]. (28)

Then, this is guaranteed to be within a constant factor from
the true partial derivative:

Lemma 4. For h(u) = 2 (1+u) ln (1+u)−u
u2 and n′ ≥ λ`xT , we

have:

HEAD`
x(n′) ≥ (1− e−

(n′−λ`xT+1)2

2λ`xT
h(
n′−λ`xT+1

λ`xT
)
)
∂U

∂λ`x
. (29)

The proof can be found in Appendix C.
Next, by estimating ∆`

x(λ`, n) via sampling (see (20)), we
construct our final estimator given by (19). Putting together
Lemma 4 and along with a Chernoff bound [45], to attain

6



a guarantee on sampling, we can bound the quality of our
gradient estimator:

Lemma 5. At each iteration k, with probability greater than
1− 2p|L| · e−δ2N/2T 2(n′+1),

〈vk,∇U(λk)〉 ≥ a ·max
v∈D
〈v,∇U(λk)〉 − b, (30)

where

a = 1− max
k=1,...,K

PkMAX, and (31)

b = 2λMAXδ ·GMAX, (32)

for PkMAX = maxl∈L,x∈X P[n`,kx ≥ n′ + 1] (n`,kx is a Poisson
r.v. with parameter λ`,kx T ), and with λMAX and GMAX given
by Eq. (21) and (22).

The proof is in Appendix D.
Theorem 2 follows by combining Lemmas 2 and 5. In

particular, by Lemma 5 and a union bound, we have that
(30) is satisfied for all iterations with probability greater than
1−2|X ||L| ·e−δ2N/2T 2(n′+1). This, combined with Lemma 2,
implies that

U(λK) ≥(1− ePMAX−1) ·max
λ∈D

U(λ)

− (
√

2
2 |X ||L|Tλ

2
MAX + 2λMAX)GMAXδ,

is satisfied with the same probability. This implies that for any
0 < ε0, ε1 < 1 and ε2 > 0,

U(λK) ≥ (1− eε1−1) ·OPT− ε2,

with probability 1 − ε0. From Eq. (27), the probability is an
increasing function w.r.t. λ`x, and λMAX is an upper bound for
λ`x. Letting

u =
n′ − λMAXT

λMAXT
,

we have

PMAX ≤ e−
(n′−λMAXT )2

2λMAXT
h(
n′−λMAXT

λMAXT
)

= e−λMAXT ((1+u) ln(1+u)−u) = Ω(e−λMAXTu) = ε1,

where the last line holds because u lnu − u > u when u is
large enough, e.g., u ≥ e2. Thus, n′ = O(λMAXT + ln 1

ε1
).

We determine K and N by setting

(

√
2

2
|X ||L|Tλ2

MAX + 2λMAX)GMAX/K = ε2

and

2|X ||L|K · e−N/2T
2(n′+1)K2

= ε0.

Therefore, K = O((
√

2
2 |X ||L|Tλ

2
MAX + 2λMAX)GMAX/ε2),

and N = O(T 2n′K2 ln |X ||L|Kε0
).

VI. EXTENSIONS

Our model extends in many ways (e.g., to multiple types
per learner). We discuss three non-trivial extensions below.
Heterogeneous Noisy Sources. Our model and analysis di-
rectly generalizes to a heterogeneous (or heteroskedastic)
noise setting, in which the noise level varies across sources.
Formally, labels of type t at source s are generated via
y = x>βt + εt,s, where εt,s are zero-mean normal noise
variables with variance σ2

t,s. In this case, the estimator in
(2) needs to be replaced by Generalized Least Squares [46],
whereby every pair (x, y) ∈ Rd ×R of type t generated by s
is replaced by ( x

σt,s
, y
σt,s

) ∈ Rd×R prior to applying Eq. (2).
This, in turn, changes the D-optimality criterion objective, so
that σ2

t is replaced by σ2
t,s for vectors x ∈ X coming from

source s. In other words, data coming from noisy sources
are valued less by the learner. This rescaling preserves the
monotonicity and continuous DR-submodularity of our overall
objective, and our guarantees hold, mutatis mutandis.
Uncountable X . We assumed in our analysis that data features
are generated from a finite set X , and that transmission rates
per edge are parametrized by both the type t ∈ T and the
features x of the data pair transmitted. This a priori prevents
us from considering an infinite set of experiments X : this
would lead to an infinite set of constraints in Problem (16).
In practice, it would also make routing intractable, as routing
decisions depend on both t and x.

We can however extend our analysis to a setting where
experiments X are infinite, or even uncountable. To do so,
we can consider rates per edge e of the form λes,t, i.e.,
parameterized by type t and source s rather than features x.
In practice, this would mean that packets would be routed
based on the source and type, not inspecting the features of the
internal pairs, while constraints would be finite (depending on
|S|, not |X |). Data generation at source s can then be modelled
via a compound Poisson process with rate λs,t, at the epochs
of which the features x are sampled independently from some
probability distribution νs,t over Rd. The objective then would
be written as an expectation over not only arrivals at a learner
from source s (which will again be Poisson) but also the
distribution νs,t` of features. Sampling from the latter would
need to be used when estimating ∇U ; as long as Chernoff-
type bounds can be used to characterize the estimation quality
of such sampling (which would be the case if, e.g., νs,t
are Gaussian), our analysis would still hold, taking also the
number of sampled features into account.
Arbitrary (Non-DAG) Topology. For notational convenience,
we assumed that graph G was a DAG, with sources and sinks
corresponding to sets S and L respectively. Our analysis fur-
ther extends to more general (i.e., non-DAG) graphs, provided
that extra care is taken for flow constraints to prevent cycles.
This can be accomplished, e.g., via source routing. Given an
arbitrary graph, and arbitrary locations for data sources and
learners, we can extend our setting as follows: (a) flows from
a source s to a learner ` could follow source-path routing,
over one or more directed paths linking the two, and (b) flows

7



TABLE I
GRAPH TOPOLOGIES AND EXPERIMENT PARAMETERS

Graph |V | |E| |X | |T | |S| |L| UFW
synthetic topologies

Erdős-Rényi (ER) 100 1042 20 5 10 5 309.95
balanced-tree (BT) 341 680 20 5 10 5 196.68

hypercube (HC) 128 896 20 5 10 5 297.69
star 100 198 20 5 10 5 211.69
grid 100 360 20 5 10 5 260.12

small-world (SW) [47] 100 491 20 5 10 5 272.76
real backbone networks [48]

GEANT 22 66 20 3 3 3 214.30
Abilene 9 26 20 3 3 3 216.88

Deutsche Telekom 68 546 20 3 3 3 232.52(Dtelekom)

could be indexed by (and remain constant along) a path, in
addition to x and t, while also ensuring that (c) aggregate
flow across all paths that pass through an edge does not violate
capacity constraints. Such a formulation still yields a linear set
of constraints, and our analysis still holds. In fact, in this case,
the corresponding set D is downward closed, so the proof of
the corresponding Theorem 2 follows more directly from [14].

VII. NUMERICAL EVALUATION

To evaluate the proposed algorithm, we perform simulations
over a number of network topologies and with several different
network parameter settings, summarized in Table I.

A. Experiment Setting

We consider a finite feature set X that includes randomly
generated feature vectors with d = 100, and a set T that of
different Bayesian linear regression models with βt, t ∈ T .
Labels of each type are generated with Gaussian noise, whose
variance σt is uniformly at random (u.a.r.) chosen from 0.5 to
1. For each network, we u.a.r. select |L| learners and |S| data
sources, and remove incoming edges of sources and outgoing
edges of learners. Each learner has a target model βt` , t

` ∈ T
with a diagonal prior Σt` generated as follows. First, we
separate features into two classes: well-known and poorly-
known. Then, we set the corresponding prior covariance (i.e.,
the diagonal elements in Σt` ) to low (uniformly from 0
to 0.01) and high (uniformly from 100 to 200) values, for
well-known and poorly-known features, respectively. The link
capacity µe, e = (u, v) ∈ E is selected u.a.r. from 50 to 100,
and source s generates the data (x, y) of type t label with rate
λsx,t, uniformly distributed over [2,5].
Algorithms. We compare our proposed Frank-Wolfe based
algorithm (we denote it by FW) with several baseline data
transmission strategies derived in different ways:

• MaxSum: This maximizes the aggregate total useful
incoming traffic rates of learners, i.e., the objective is:

UMaxSum(λ) =
∑
`∈L

∑
x∈X

λ`x.

ER BT HC star geant abilene dtelekom grid SW
0.80

0.85

0.90

0.95

1.00

1.05

No
rm

al
ize

d 
Ut

ilit
y

FW MaxSum MaxAlpha PGA

(a) Normalized Aggregate Utility

ER BT HC star geant abilene dtelekom grid SW

0.6

0.8

1.0

1.2

1.4

Av
g.

 N
or

m
 o

f E
st

.
 E

rro
r p

er
 le

ar
ne

r

FW MaxSum MaxAlpha PGA

(b) Average Norm of Estimation Error per Learner

Fig. 1. Normalized aggregate utility and average norm of estimation error
per leaner in different networks. Utilities are normalized by the utility of
Algorithm 1 (FW) UFW, reported in Table I. We can observe that FW is the
best in terms of maximizing the utility and minimizing the estimation error
in all networks.

• MaxAlpha: This maximizes the aggregate α-fair utili-
ties [49] of the total useful incoming traffic at learners,
i.e., the objective is:

UMaxAlpha(λ) =
∑
`∈L

(
∑
x∈X

λ`x)1−α/(1− α).

We set α = 5.

We also compare with another algorithm for the proposed
experimental design networks:

• PGA: it also solves Prob. (16), as does our proposed
algorithm, via the projected gradient ascent [28]. As
PGA also requires gradients, we use our novel gradient
estimation (by Eq. (19)).

Note that projected gradient ascent finds a solution within
1/2 from the optimal if the true gradients are accessible [28];
its theoretical guarantee with estimated gradients is out of the
scope of this work.
Simulation Parameters. We run FW and PGA for K = 100
iterations with step size δ = 0.01. In each iteration, we
estimate the gradient according to Eq. (19) with N = 100,
and n′ = d2 max`,x λ

`
xT e, where λ`x is given by the current

solution. We consider a data acquisition time T = 10. Since
our objective function cannot be computed in closed-form,
we rely on sampling with 1000 samples. We also evaluate the
model training quality by the average norm of estimation error,
where the estimation error is the difference between the true
model and the MAP estimator, given by (2). We average over
1000 realizations of the label noise as well as the number of
data arrived at the learner {n`}`∈L.

8



1 2 3 4
Source Rate Scaling Factor

480

500

520

540

560

580
A

gg
re

ga
te

 U
til

ity

FW
MaxSum
MaxAlpha
PGA

(a) Utility - Source Rates

1 2 3 4
Source Rate Scaling Factor

5.4

5.6

5.8

6

6.2

6.4

A
vg

. N
or

m
 o

f E
st

. E
rr

or

FW
MaxSum
MaxAlpha
PGA

(b) Est. Error - Source Rates

1 2 3 4
Link Capacity Downsize Factor

450

460

470

480

490

500

510

A
gg

re
ga

te
 U

til
ity

FW
MaxSum
MaxAlpha
PGA

(c) Utility - Link Capacities

1 2 3 4
Link Capacity Downsize Factor

6

6.1

6.2

6.3

6.4

6.5

A
vg

. N
or

m
 o

f E
st

. E
rr

or

FW
MaxSum
MaxAlpha
PGA

(d) Est. Error - Link Capacities

Fig. 2. Algorithm comparison in abilene topology with different parameter
settings. The achieved aggregate utility and model estimation quality of dif-
ferent algorithms are evaluated with different source data rates and bottleneck
link capacities.

B. Results

Performance over Different Topologies. We first compare the
proposed algorithm (FW) with baselines in terms of the nor-
malized aggregated utility and model estimation quality over
several networks, shown in Figures 1(a) and 1(b), respectively.
Utilities in Fig. 1(a) are normalized by the aggregate utility of
FW, reported in Tab. I under UFW. Learners in these networks
have distinct target models to train. In all network topologies,
FW outperforms MaxSum and MaxAlpha in both aggregate
utility and average norm of estimation error. PGA, which also
is based on our experimental design framework, performs well
(second best) in most networks, except balanced tree, in which
it finds a bad stationary point.
Effect of Source Rates and Link Capacities. Next, we
evaluate how algorithm performance is affected by varying
source rates as well as link capacitites. We focus on the
Abilene network, having 3 sources and 3 learners, where
two of the learners have a same target training model. We
set the data acquisition time to T = 1, and labels are
generated with Gaussian noise with variance 1. Finally, we
again use diagonal prior covariances, and again split between
high-variance (selected uniformly between 1 and 3) and low-
variance (selected uniformly between 0 and 0.1) features.

Figures 2(a) and 2(b) plot the aggregate utility and average
total norm of estimation error across learners, with different
data source rates at the sources. The initial source rates are
sampled u.a.r. from 2 to 5, and we scale it by different
scaling factors. As the source rates increases, the aggregate
utility increases and the norm of estimation error decreases
for all algorithms. FW is always the best in both figures.
Moreover, the proposed experimental design framework can

significantly improve the training quality: algorithms based
on our proposed framework (FW and PGA) with source rates
scaled by 2 already outperform the other two algorithms
(MaxSum and MaxAlpha) with source rates scaled by 4. We
see reverse results of MaxSum and MaxAlpha in these two
figures compared with Figure 1, showing that the algorithm
which considers fairness (i.e., α-fair utilities), may perform
better if we have competing learners.

Figures 2(c) and 2(d) show performance in Abilene network
with different link capacities of several bottleneck links. The
capacities are initially sampled u.a.r. from 50 to 100, and we
divide it by different downsize factors. The overall trend is
that as the link capacities decrease, algorithms achieve smaller
aggregate network utility and get a higher average norm of
estimation error. The proposed algorithm is always the best
with different bottleneck link capacities in both figures.

VIII. CONCLUSION

We propose experimental design networks, to determine a
data transmission strategy that maximizes the quality of trained
models in a distributed learning system.6 The underlying
optimization problem can be approximated even though its
objective function is non-concave.

Beyond extensions we have already listed, our framework
can be used to explore other experimental design objectives
(e.g., A-optimality and E-optimality) as well as variants that
include data source generation costs. Distributed and adaptive
implementations of the rate allocation schemes we proposed
are also interesting future directions. Incorporating non-linear
learning tasks (e.g., deep neural networks) is also an open
avenue of exploration: though Bayesian posteriors are harder
to compute in closed-form for this case, techniques such as
variational inference [50] can be utilized to approach this
problem. Finally, an interesting extension of our model
involves a multi-stage setting, in which learners receive data in
one stage, update their posteriors, and use these as new priors
in the next stage. Studying the dynamics of such a system, as
well as how network design impacts these dynamics, is a very
interesting open problem.

ACKNOWLEDGMENT

The authors gratefully acknowledge support from the Na-
tional Science Foundation (grants 1718355, 2107062, and
2112471).

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[2] B. Yang, X. Cao, X. Li, Q. Zhang, and L. Qian, “Mobile-edge-
computing-based hierarchical machine learning tasks distribution for
iiot,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 2169–2180,
2019.

[3] V. Albino, U. Berardi, and R. M. Dangelico, “Smart cities: Definitions,
dimensions, performance, and initiatives,” Journal of urban technology,
vol. 22, no. 1, pp. 3–21, 2015.

6Our code and data are publicly available at https://github.com/neu-
spiral/Networked-Learning.

9

https://github.com/neu-spiral/Networked-Learning
https://github.com/neu-spiral/Networked-Learning


[4] M. Mohammadi and A. Al-Fuqaha, “Enabling cognitive smart cities
using big data and machine learning: Approaches and challenges,” IEEE
Communications Magazine, vol. 56, no. 2, pp. 94–101, 2018.

[5] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[6] Y. Deshpande and A. Montanari, “Linear bandits in high dimension and
recommendation systems,” in 2012 50th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE, 2012, pp.
1750–1754.

[7] B. Settles, Active learning literature survey. Computer Sciences
Technical Report 1648, University of Wisconsin-Madison, 2009.

[8] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data lifecycle
challenges in production machine learning: a survey,” ACM SIGMOD
Record, vol. 47, no. 2, pp. 17–28, 2018.

[9] T. Horel, S. Ioannidis, and S. Muthukrishnan, “Budget feasible mech-
anisms for experimental design,” in Latin American Symposium on
Theoretical Informatics. Springer, 2014, pp. 719–730.

[10] Y. Guo, J. Dy, D. Erdogmus, J. Kalpathy-Cramer, S. Ostmo, J. P.
Campbell, M. F. Chiang, and S. Ioannidis, “Accelerated experimental
design for pairwise comparisons,” in Proceedings of the 2019 SIAM
International Conference on Data Mining. SIAM, 2019, pp. 432–440.

[11] N. Gast, S. Ioannidis, P. Loiseau, and B. Roussillon, “Linear regression
from strategic data sources,” ACM Transactions on Economics and
Computation (TEAC), vol. 8, no. 2, pp. 1–24, 2020.

[12] Y. Guo, P. Tian, J. Kalpathy-Cramer, S. Ostmo, J. P. Campbell, M. F.
Chiang, D. Erdogmus, J. G. Dy, and S. Ioannidis, “Experimental design
under the bradley-terry model.” in IJCAI, 2018, pp. 2198–2204.

[13] P. Flaherty, A. Arkin, and M. I. Jordan, “Robust design of biological
experiments,” in Advances in neural information processing systems,
2006, pp. 363–370.

[14] A. A. Bian, B. Mirzasoleiman, J. Buhmann, and A. Krause, “Guaranteed
non-convex optimization: Submodular maximization over continuous
domains,” in Artificial Intelligence and Statistics. PMLR, 2017, pp.
111–120.

[15] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in IEEE INFOCOM 2016-IEEE International
Conference on Computer Communications, 2016, pp. 1–9.

[16] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, 2019, pp. 10–18.

[17] K. Kamran, E. Yeh, and Q. Ma, “Deco: Joint computation, caching and
forwarding in data-centric computing networks,” in Proceedings of the
Twentieth ACM International Symposium on Mobile Ad Hoc Networking
and Computing, 2019, pp. 111–120.

[18] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer
federated learning on graphs,” arXiv preprint arXiv:1901.11173, 2019.

[19] G. Neglia, G. Calbi, D. Towsley, and G. Vardoyan, “The role of network
topology for distributed machine learning,” in IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, 2019, pp. 2350–2358.

[20] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications, 2018, pp. 63–71.

[21] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Interna-
tional Conference on Machine Learning. PMLR, 2018, pp. 5872–5881.

[22] S. Wang, Y. Ruan, Y. Tu, S. Wagle, C. G. Brinton, and C. Joe-Wong,
“Network-aware optimization of distributed learning for fog computing,”
IEEE/ACM Transactions on Networking, 2021.

[23] F. Pukelsheim, Optimal design of experiments. Society for Industrial
and Applied Mathematics, 2006.

[24] X. Huan and Y. M. Marzouk, “Simulation-based optimal bayesian
experimental design for nonlinear systems,” Journal of Computational
Physics, vol. 232, no. 1, pp. 288–317, 2013.

[25] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—i,” Mathe-
matical programming, vol. 14, no. 1, pp. 265–294, 1978.

[26] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[27] T. Soma and Y. Yoshida, “A generalization of submodular cover via the
diminishing return property on the integer lattice,” Advances in neural
information processing systems, vol. 28, pp. 847–855, 2015.

[28] H. Hassani, M. Soltanolkotabi, and A. Karbasi, “Gradient methods for
submodular maximization,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp. 5843–
5853.

[29] A. A. Ageev and M. I. Sviridenko, “Pipage rounding: A new method of
constructing algorithms with proven performance guarantee,” Journal of
Combinatorial Optimization, vol. 8, no. 3, pp. 307–328, 2004.

[30] C. Chekuri, J. Vondrák, and R. Zenklusen, “Dependent randomized
rounding via exchange properties of combinatorial structures,” in 2010
IEEE 51st Annual Symposium on Foundations of Computer Science.
IEEE, 2010, pp. 575–584.

[31] T. Soma and Y. Yoshida, “Maximizing monotone submodular functions
over the integer lattice,” Mathematical Programming, vol. 172, no. 1,
pp. 539–563, 2018.

[32] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp.
737–750, 2018.

[33] K. Poularakis and L. Tassiulas, “On the complexity of optimal content
placement in hierarchical caching networks,” IEEE Transactions on
Communications, vol. 64, no. 5, pp. 2092–2103, 2016.

[34] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for
arbitrary network topologies,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 6, pp. 1258–1275, 2018.

[35] K. Kamran, A. Moharrer, S. Ioannidis, and E. Yeh, “Rate allocation and
content placement in cache networks,” in IEEE INFOCOM, 2021.

[36] T. Wu, P. Yang, H. Dai, W. Xu, and M. Xu, “Charging oriented
sensor placement and flexible scheduling in rechargeable wsns,” in
IEEE INFOCOM 2019-IEEE Conference on Computer Communications,
2019, pp. 73–81.

[37] G. Sallam and B. Ji, “Joint placement and allocation of virtual network
functions with budget and capacity constraints,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications, 2019, pp. 523–
531.

[38] Z. Zheng and N. B. Shroff, “Submodular utility maximization for dead-
line constrained data collection in sensor networks,” IEEE Transactions
on Automatic Control, vol. 59, no. 9, pp. 2400–2412, 2014.

[39] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones:
Incentive mechanism design for mobile phone sensing,” in Proceedings
of the 18th annual international conference on Mobile computing and
networking, 2012, pp. 173–184.

[40] A. Krause and C. Guestrin, “Beyond convexity: Submodularity in
machine learning,” ICML Tutorials, 2008.

[41] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

[42] R. G. Gallager, Stochastic processes: theory for applications. Cam-
bridge University Press, 2013.

[43] F. P. Kelly, Reversibility and stochastic networks. Cambridge University
Press, 2011.

[44] C. L. Canonne, “A short note on poisson tail bounds,” http://www.cs.
columbia.edu/∼ccanonne/files/misc/2017-poissonconcentration.pdf.

[45] N. Alon and J. H. Spencer, The probabilistic method. John Wiley &
Sons, 2004.

[46] J. Friedman, T. Hastie, R. Tibshirani et al., The elements of statistical
learning. Springer series in statistics New York, 2001, vol. 1, no. 10.

[47] J. Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive,” Cornell University, Tech. Rep., 1999.

[48] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),” Relatório técnico, Telecom
ParisTech, pp. 1–6, 2011.

[49] R. Srikant, The Mathematics of Internet Congestion Control. Birkhäuser
Boston, MA: Springer Science & Business Media, 2012.

[50] T. S. Jaakkola and M. I. Jordan, “A variational approach to bayesian
logistic regression models and their extensions,” in Sixth International
Workshop on Artificial Intelligence and Statistics. PMLR, 1997, pp.
283–294.

[51] K. B. Petersen and M. S. Pedersen, “The matrix cookbook (version:
November 15, 2012),” 2012.

[52] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university
press, 2012.

10

http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf
http://www.cs.columbia.edu/~ccanonne/files/misc/2017-poissonconcentration.pdf


APPENDIX

A. Proof of Lemma 1

Proof. We extend the proof in Appendix A of [9] for the
supmodularity of D-optimal design over a set to the integer
lattice: For n ∈ Np and k ∈ N, we have

G(n+ kei)−G(n) =

= log det(Id +
k

σ2
xix

>
i (Σ−1

0 +

p∑
i=1

ni
σ2
xix

>
i )−1)

= log(1 +
k

σ2
x>i A(n)−1xi),

where A(n) = Σ−1
0 +

∑p
i=1

ni
σ2xix

>
i , and the last equality

follows Eq. (24) in [51]. The monotonicity of G follows
because A(n)−1 is positive semidefinite. Finally, since the
matrix inverse is decreasing over the positive semi-definite or-
der, we have A(n)−1 � A(m)−1, ∀ n,m ∈ Np and n ≤m,
which leads to G(n+kei)−G(n) ≥ G(m+kei)−G(m).

B. Proof of Lemma 2

Proof. To start with, λK ∈ D, as a convex combination of
points in D. Next, consider the point v∗ = (λ∗ ∨ λ) − λ =
(λ∗ − λ) ∨ 0 ≥ 0, in which λ is the solution at current
iteration and λ∗ ∈ D is the optimal solution. Because U is
non-decreasing (Thm. 1), we have

U(λ+ v∗) = U(λ∗ ∨ λ) ≥ U(λ∗). (33)

A DR-submodular continuous function is concave along any
non-negative direction, and any non-positive direction (see
e.g., Prop. 4 in [14]), thus g(ξ) := U(λ + ξv∗), where
g′(ξ) = 〈v∗,∇U(λ+ ξv∗)〉, is concave, hence,

U(λ∗)− U(λ) = g(1)− g(0) ≤ g′(0)× 1 = 〈v∗,∇U(λ)〉.
(34)

Then,

〈v,∇U(λ)〉
(25)
≥ amax

v∈D
〈v,∇U(λ)〉 − b ≥ a〈λ∗,∇U(λ)〉 − b

≥ a〈v∗,∇U(λ)〉 − b
(34)
≥ a(U(λ+ v∗)− U(λ))− b

(33)
≥ a(U(λ∗)− U(λ))− b, (35)

where the second inequality is because the LHS maximizes the
inner product and the third inequality is because 0 ≤ v∗ ≤ λ∗
and ∇U(λ) is positive (Thm. 1). From the definition of
the Hessian, we can show that ||∇2U ||F is bounded by√

2|X ||L|TGMAX (because 2-norm is smaller than Frobenius
norm [52]), thus L =

√
2|X ||L|TGMAX is the Lipschitz

continuous constant of ∇U . Then, we have

U(λk+1)− U(λk) = U(λk + γkv
k)− U(λk)

≥ γk〈vk,∇U(λk)〉 − L

2
γ2
k||vk||22 (Lipschitz)

(35)
≥ aγk(max

λ∈D
U(λ)− U(λk))− γkb−

L

2
γ2
k||vk||22

After rearrangement, we have

U(λk+1)−max
λ∈D

U(λ) ≥

(1− aγk)[U(λk)−max
λ∈D

U(λ)]− γkb−
L

2
γ2
kλ

2
MAX,

since ||vk||22 ≤ λ2
MAX. By telescope,

U(λK)−max
λ∈D

U(λ) ≥

[U(λ0)−max
λ∈D

U(λ)]e−a − b− L

2

K−1∑
k=0

γ2
kλ

2
MAX.

Finally, as U(λ0) = 0 and γk = δ = 1/K, we have

U(λK) ≥ (1− e−a)U(λ∗)− L

2
δλ2

MAX − b.

C. Proof of Lemma 4

Proof. We further define

TAIL`x =

∞∑
n=n′+1

∆`
x(λ`, n) · T · Pr[n`x = n].

We have

HEAD`
x ≥ ∆`

x(λ`, n′) · T · Pr[n`x ≤ n′]

and
TAIL`x ≤ ∆`

x(λ`, n′) · T · Pr[n`x ≥ n′ + 1],

since ∆`
x(λ`, t1) ≥ ∆`

x(λ`, t2) for t1 ≤ t2, resulting from
the submodularity of G (Lemma 1). We note that ∂U

∂λ`x
=

HEAD`
x + TAIL`x. Then we have,

HEAD`
x

HEAD`
x + TAIL`x

=
1

1 +
TAIL`x
HEAD`x

≥

1

1 +
∆`

x(λ`,n′)·T ·Pr[n`x≥n′+1]

∆`
x(λ`,n′)·T ·(1−Pr[n`x≥n′+1]

)
= 1− Pr[n`x ≥ n′ + 1],

thus,

HEAD`
x ≥ (1− Pr[n`x ≥ n′ + 1])

∂U

∂λ`x

≥ (1− e−
(n′−λ`xT+1)2

2λ`xT
h(
n′−λ`xT+1

λ`xT
)
)
∂U

∂λ`x
,

where h(u) = 2 (1+u) ln (1+u)−u
u2 (Lemma 3).

D. Proof of Lemma 5

Proof. Our final estimator of the partial derivative is given by

∂̂U

∂λ`x
≡ T

n′∑
n=0

̂∆`
x(λ`, n)Pr[n`x = n],

where

̂∆`
x(λ`, n) =

1

N

N∑
j=1

(G`(n`,j |n`,jx =n+1)−G`(n`,j |n`,jx =n)).

11



We define

Xj(n) =
G`(n`,j |

n
`,j
x =n+1

)−G`(n`,j |
n
`,j
x =n

)−∆`
x(λ`,t)

GMAX
,

where
GMAX = max

`∈L,x∈X
(G`(ex)−G`(0)).

We have |Xj(n)| ≤ 1, because

GMAX ≥ G`(ex)−G`(0)

≥ G`(n`|nx = n+ 1)−G`(n`|nx = n),

for any ` ∈ L,x ∈ X , n ≥ 0. By Chernoff bounds described
by Theorem A.1.16 in [45], we have

Pr

∣∣∣∣∣∣
N∑
j=1

n=n′∑
n=0

Xj(n)

∣∣∣∣∣∣ > c

 ≤ 2e−c
2/2N(n

′
+1).

Suppose we let c = δ ·N/T , where δ is the step size, then we
have

| ∂̂U
∂λ`x

−HEAD`
x|

≤

∣∣∣∣∣∣
n′∑
n=0

N∑
j=1

(G`(n`,j |
n
`,j
x =n+1

)−G`(n`,j |
n
`,j
x =n

)−∆`
x(λ`,n))

N T

∣∣∣∣∣∣
=
∣∣∣∑n′

t=0

∑N
j=1X

j(n)
∣∣∣ · TN ·GMAX ≤ δ ·GMAX,

with probability greater than 1 − 2 · e−δ2N/2T 2(n′+1). By
Lemma 4, we have HEAD`

x ≥ (1 − P[n`x ≥ n′ + 1]) · ∂U
∂λ`x

.
Thus, we have

−δ ·GMAX ≤ ∂U
∂λ`x
− ∂̂U
∂λ`x
≤ δ ·GMAX +Pr[n`x ≥ n′+1] · ∂U

∂λ`x
.

(36)
We now use the superscript k to represent the parame-
ters for the kth iteration: we find vk ∈ D that max-
imizes 〈vk, ∇̂U(λk)〉. Let uk ∈ D be the vector that
maximizes 〈uk,∇U(λk)〉 instead and define PMAX =
maxk=1,...,K PkMAX where PkMAX = maxl∈L,x∈X P[n`,kx ≥
t′ + 1] and λMAX ≡ maxλ∈D

∑
`∈L ||λ

`||1. We have

〈vk,∇U(λk)〉 ≥ 〈vk, ∇̂U(λk)〉 − λMAXδ ·GMAX

≥〈uk, ∇̂U(λk)〉 − λMAXδ ·GMAX

≥(1− PMAX) · 〈uk,∇U(λk)〉 − 2λMAXδ ·GMAX,

where the first and last inequalities are due to (36) and the sec-

ond inequality is because vk maximizes 〈vk, ∇̂U(λk)〉. The
above inequality requires the satisfaction of (36) for every par-
tial derivative. By union bound, the above inequality satisfies
with probability greater than 1−2|X ||L|·e−δ2N/2T 2(n′+1).

12


	I Introduction
	II Related Work
	III Technical Preliminary
	III-A Bayesian Linear Regression 
	III-B Experimental Design
	III-C DR-Submodularity

	IV Problem Formulation
	IV-A Network Model.
	IV-B Networked Learning Problem

	V Main Results
	V-A Continuous DR-submodularity
	V-B Algorithm and Theoretical Guarantee
	V-C Proof of Theorem 1
	V-D Proof of Theorem 2

	VI Extensions
	VII Numerical Evaluation
	VII-A Experiment Setting
	VII-B Results

	VIII Conclusion
	References
	Appendix
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Proof of Lemma 4
	D Proof of Lemma 5


