
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 1

Collaborative Learning-Based Scheduling for
Kubernetes-Oriented Edge-Cloud Network

Shihao Shen, Student Member, IEEE, Yiwen Han, Student Member, IEEE, Xiaofei Wang, Senior Member, IEEE,
Shiqiang Wang, Member, IEEE, and Victor C.M. Leung, Life Fellow, IEEE

Abstract—Kubernetes (k8s) has the potential to coordinate
distributed edge resources and centralized cloud resources, but
currently lacks a specialized scheduling framework for edge-
cloud networks. Besides, the hierarchical distribution of hetero-
geneous resources makes the modeling and scheduling of k8s-
oriented edge-cloud network particularly challenging. In this
paper, we introduce KaiS, a learning-based scheduling framework
for such edge-cloud network to improve the long-term throughput
rate of request processing. First, we design a coordinated multi-
agent actor-critic algorithm to cater to decentralized request
dispatch and dynamic dispatch spaces within the edge cluster.
Second, for diverse system scales and structures, we use graph
neural networks to embed system state information, and combine
the embedding results with multiple policy networks to reduce
the orchestration dimensionality by stepwise scheduling. Finally,
we adopt a two-time-scale scheduling mechanism to harmo-
nize request dispatch and service orchestration, and present
the implementation design of deploying the above algorithms
compatible with native k8s components. Experiments using real
workload traces show that KaiS can successfully learn appropri-
ate scheduling policies, irrespective of request arrival patterns
and system scales. Moreover, KaiS can enhance the average
system throughput rate by 15.9% while reducing scheduling cost
by 38.4% compared to baselines.

Index Terms—Edge computing, kubernetes, reinforcement
learning, scheduling algorithms.

Manuscript received 19 April 2021; revised 22 July 2022 and 23
March 2023; accepted 2 April 2023. Xiaofei Wang was supported by the
National Science Foundation of China (Grant 62072332), the China NSFC
(Youth) (Grant 62002260), the China Postdoctoral Science Foundation (Grant
2020M670654), and the Tianjin Xinchuang Haihe Lab (Grant 22HHX-
CJC00002). Victor C.M. Leung was supported by the Guangdong Pearl
River Talent Recruitment Program (Grant 2019ZT08X603), the Guangdong
Pearl River Talent Plan (Grant 2019JC01X235), Shenzhen Science and
Technology Innovation Commission (Grant R2020A045), and the Canadian
Natural Sciences and Engineering Research Council (Grant RGPIN-2019-
06348). A preliminary version of this paper titled “Tailored Learning-Based
Scheduling for Kubernetes-Oriented Edge-Cloud System” was presented in the
IEEE International Conference on Computer Communications (INFOCOM),
2021 [1]. This paper extends the previous work by enhancing the detailed
description, refining the system design, adding the fine-grained experiments
about dequeue strategies and encoding methods. (Corresponding author:
Xiaofei Wang)

Shihao Shen, Yiwen Han and Xiaofei Wang are with the College of
Intelligence and Computing, Tianjin University, Tianjin 300350, China (e-
mail: {shenshihao, hanyiwen, xiaofeiwang}@tju.edu.cn).

Shiqiang Wang is with IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598, USA (e-mail: shiqiang.wang@ieee.org).

Victor C.M. Leung is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen 518052, China, and also with
the Department of Electrical and Computer Engineering, The University of
British Columbia, Vancouver, Canada V6T 1Z4 (e-mail: vleung@ieee.org).

T
h

e
m

em
o

ry
 o

f
ea

ch
ed

g
e

n
o

d
e

(G
B

)

The number of edge nodes

4
 v

C
P

U
2

 v
C

P
U

Load=10% Load=30% Load=50% Load=70% Load=100%

T
h

ro
u

g
h

p
u

t

ra
te (%

)

Fig. 1. The model of system throughput is highly complex and non-linear.

I. INTRODUCTION

A. Background and Problem Statement

To provide agile service responses and alleviate the burden
on backbone networks, edge and cloud computing are grad-
ually converging to achieve this goal by hosting services as
close as possible to where requests are generated [2].

Edge-cloud network is commonly built on Kubernetes (k8s)
[3]–[6] and are designed to seamlessly integrate distributed and
hierarchical computing resources at the edge and the cloud
[7]. In this regard, one fundamental problem for supporting
efficient edge-cloud network is: how to schedule request
dispatch [8] and service orchestration (placement) [9] within
the k8s architecture. However, the native k8s architecture
lacks the ability to manage heterogeneous resources across
distributed edge clusters and centralized cloud cluster. In
addition, existing customized edge-cloud frameworks (e.g.,
KubeEdge [4], OpenYurt [5] and Baetyl [6]) based on k8s do
not address the above scheduling issues.

To serve various requests, the edge-cloud network needs to
manage corresponding service entities across both edge and
cloud while being able to determine where these requests
should be processed. Though k8s is the most popular tool
for managing cloud-deployed services, it is not yet able to
accommodate both edge and cloud infrastructure and support
request dispatch at the distributed edge. In this case, the key to
an efficient edge-cloud network is to (𝑖) adapt k8s components
and extend its current logic to bind the distributed edge and
the cloud, and (𝑖𝑖) devise scheduling algorithms that can fit
into k8s.

B. Limitations of Prior Art and Motivation

Most scheduling solutions for request dispatch and service
orchestration rely on accurately modeling or predicting service
response times, network fluctuation, request arrival patterns,

ar
X

iv
:2

30
5.

05
93

5v
1

 [
cs

.D
C

]
 1

0
M

ay
 2

02
3

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 2

Connected by LAN

eAP

Deployed services

on an edge node

Number

of service

replicates

E
n

d
d

ev
ic

es

An illustrative edge cluster Cloud cluster

All services and abundant

replicates are deployed.

1 1

2

10+ 10+ 10+

10+ 10+

10+ 10+

10+ 10+1

2

1

1

1
1

1
2

All edge

nodes

Dispatch to

an edge node

Perform

service or-

chestration

Request

results

Horizontal

service scaling

WAN

Service

requests

2. Request dispatch at each scheduling slot
3. Service orchestration at

each scheduling frame1. Request

Offload-

ing

requests

1
1

1

1

Request

dispatch

Request

dispatch

Request

dispatch

eAP

eAP

i) Which service should be

placed on each edge node?

ii) How many replicates the

edge node should maintain

for the required service?

? Edge

node

Service orchestration

1
2 1

1 1
2 1

1

1 1
2 1

1

?

Fig. 2. Scheduling in kubernetes-oriented edge-cloud network.

and other factors [10]–[12]. Nevertheless, (𝑖) the heteroge-
neous edge nodes and the cloud cluster are connected in
uncertain network environments, and practically form a dy-
namic and hierarchical computing system. As shown in Fig. 1,
the system behavior, i.e., the average throughput rate of that
system managed by native k8s, substantially varies with the
available resources and the request loads (refer to Sec. V for
detailed settings). More importantly, (𝑖𝑖) the underlying model
that captures this behavior is highly nonlinear and far from
trivial. However, even though rich historical data are available,
it is hard to achieve the exact estimation of these metrics
[7], [13] and then design scheduling policies for any specific
request arrivals, system scales and structures, or heteroge-
neous resources. Further, (𝑖𝑖𝑖) few solutions carefully consider
whether the proposed scheduling framework or algorithms are
compatible with to the actual deployment environment, i.e.,
whether they are compatible with k8s or others to integrate
with the existing cloud infrastructure. Therefore, a scheduling
framework for a k8s-oriented edge-cloud network, without
relying on the assumption about system dynamics, is desired.

C. Technical Challenges and Solutions

First, we show the learning-based approach [14], [15] can
improve overall system efficiency by automatically learning
effective system scheduling policies to cope with stochastic ar-
rivals of service requests. We propose KaiS, a k. 8s-oriented and
lea.rni.ng-based scheduling framework for edge-cloud s.ystems.
Given only one high-level goal, e.g., to maximize the long-
term throughput of service processing, KaiS automatically
learns sophisticated scheduling policies through the experience
of the system operation, without relying on assumptions about
system execution parameters and operating states.

To guide KaiS in learning scheduling policies, we need
to tailor learning algorithms in the following aspects: the
coordinated learning of multiple agents, the effective encoding
of system states, the dimensionality reduction of scheduling
actions, etc.

For request dispatch, as depicted in Fig. 2, KaiS needs to
scale to hundreds of distributed edge Access Points (eAPs)

in the system [16]. Traditional learning algorithms, such as
DQN [17] and DDPG [18], that usually use one centralized
learning agent, is not feasible for KaiS since the distributed
eAPs will incur dispatch action space explosion [19]. To
ensure timely dispatch, KaiS requires the dispatch action to be
determined in a decentralized manner at the eAPs where the
request arrives, rather than using a centralized approach [19].
Thus, we leverage Multi-Agent Deep Reinforcement Learning
(MADRL) [20] and place a dispatch agent at each eAP.

However, such settings (𝑖) require numerous agents to inter-
act with the system at each time and (𝑖𝑖) have varying dispatch
action spaces that depend on available system resources, mak-
ing these agents difficult to learn scheduling policies. Hence,
we decouple centralized critic and distributed actors, feeding
in global observations during critic training to stabilize each
agent’s learning process, and design a policy context filtering
mechanism for actors to respond to the dynamic changes of
dispatch action space.

Since different dequeue strategies can affect the perfor-
mance of request dispatch by influencing the queueing delay of
requests, an efficient dequeue strategy is important to optimize
system performance. The request dispatch in the edge-cloud
network involves two issues. The first issue is how to dequeue
undispatched requests for dispatch, i.e., after eAPs receive
requests from end devices, the requests need to be dequeued
for dispatch according to a dequeue strategy. The other issue is
how to dequeue dispatched requests for processing, i.e., after
edge nodes and cloud cluster receive the dispatched requests,
the requests need to be dequeued for processing according to a
dequeue strategy. However, requests diversity and environmen-
tal dynamics make some classical policies (e.g., first-in-first-
out or greedy algorithms) difficult to cope with. Therefore,
we further consider the characteristics of requests in different
request queues and design the dequeue strategy based on
discounted experience to calculate the priority of requests.

Besides, KaiS must orchestrate dozens of or more services
according to the system’s global resources and adapt to dif-
ferent system scales and structures. Hence, KaiS requires our
learning techniques to (𝑖) encode massive and diverse edge-
cloud system state information, and (𝑖𝑖) represent bigger and
complex action space for orchestration in edge-cloud network.
Thus, we employ Graph Neural Networks (GNNs) [21] and
multiple policy networks [22] to encode the system informa-
tion and reduce the orchestration dimensionality, respectively,
without manual feature engineering. Compared with common
DRL solutions with raw states and fixed action spaces, our
design can reduce model complexity, benefiting the learning
of scheduling policies.

D. Main Contributions

Some of the results of this paper have been presented in
the conference version [1]. Based on the previous work, this
paper extends the work by designing dequeue strategy, refining
system design, and adding more experimental results.

In contrast to state-of-the-art studies, the improvements
of KaiS mainly consist of the following aspects. (𝑖) Most
existing studies focus only on either request dispatch, e.g.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 3

[23], [24], or service orchestration, e.g. [25], [26], and
thus ignore the interaction between services and requests. In
contrast, KaiS achieves co-optimization of the two aspects
through a two-time-scale scheduling framework. (𝑖𝑖) For some
algorithm designs based on simulated scenarios, they are more
theoretical and may have limited practical applicability, such
as considering only a single type of resource limit [25],
being able to accurately know the amount of computation
required for each request [27], etc. In contrast, KaiS does not
require assumptions about system state or execution parame-
ters and can automatically learn appropriate strategies based
on experience. (𝑖𝑖𝑖) Many studies focus on theoretical and
methodological levels without considering how the algorithms
should be deployed in practical application scenarios [27],
[28]. In contrast, KaiS designs non-intrusive components and
interaction patterns with k8s (as shown in Sec. IV-B) and uses
real-world workload trace from Alibaba [29] for evaluation,
guaranteeing applicability in real deployment scenarios. In
summary, our main contributions are as follows:
• A coordinated multi-agent actor-critic algorithm for de-

centralized request dispatch with a policy context filtering
mechanism that can deal with dynamic dispatch action
spaces to address time-varying system resources.

• A dequeue strategy based on discounted experience that can
adjust the queueing time of requests in the request queue
by deciding the request priority, thus reducing the failure of
requests due to timeouts.

• A GNN-based policy gradient algorithm for service orches-
tration that employs GNNs to efficiently encode system
information and multiple policy networks to reduce orches-
tration dimensionality by stepwise scheduling.

• A two-time-scale scheduling framework implementation of
the tailored learning algorithms for the k8s-oriented edge-
cloud network, i.e., KaiS, and an evaluation of KaiS with
real workload traces (Alibaba Cluster Trace) [29] in various
scenarios and against baselines.
In the sequel, Sec. II introduces the scheduling problem.

Sec. III and Sec. IV elaborate the algorithm and implementa-
tion design. Sec. V presents experiment results. Finally, Sec.
VI reviews related works and Sec. VII concludes the paper.

II. SCHEDULING PROBLEM STATEMENT

We focus on scheduling request dispatch and service orches-
tration for the edge-cloud network to improve its long-term
throughput rate, i.e., the ratio of processed requests that meet
delay requirements during the long-term system operation.
Table I lists the main notations we will use.

A. Edge-Cloud network

Edge computing and cloud computing should not be con-
sidered mutually exclusive. Therefore, to serve the requests
from massive end devices distributed at the networks, end-
edge-cloud collaborative computing has emerged. On the one
hand, to accommodate delay-sensitive services, some of these
services can be migrated from the cloud computing infras-
tructure (the cloud) to be deployed in the distributed edge
cluster, which consists of multiple neighboring edge nodes. On

the other hand, when the edge cluster cannot meet the needs
of service requests, the cloud can provide powerful backup
processing capabilities and high-level global management.

As shown in Fig. 2, neighboring eAPs and edge nodes form
a resource pool, i.e., an edge cluster, and connect with the
cloud. When requests arrive at eAPs, the edge cluster then
handles them together with the cloud cluster 𝐶. For clarity,
we only take one edge cluster to exemplify KaiS, and consider
the case that there is no cooperation between geographically
distributed edge clusters. Specifically, each edge cluster is
responsible for a geographical area, and there is no collab-
oration between the edge clusters in different geographical
areas. Nonetheless, by maintaining a service orchestrator for
each edge cluster, KaiS can be easily generalized to support
geographically distributed edge clusters.
• Edge Cluster and Edge Nodes. To process requests, the

edge cluster should host corresponding service entities. An
edge cluster consists of a set B = {𝑏1, 𝑏2, . . . , 𝑏𝐵} of eAPs
indexed by 𝑏, and N𝑏 = {𝑛1, 𝑛2, . . . , 𝑛𝑁𝑏

} is the set of edge
nodes attached to and managed by eAP 𝑏. All edge nodes
in the edge cluster are represented by N =

∑
𝑏∈B N𝑏 . All

eAPs, along with associated edge nodes, are connected by
Local Area Network (LAN). A request arrived at the edge
can be dispatched to an edge node or the cloud by the eAP
that admits it for processing .

• Cloud Cluster. The cloud cluster has sufficient computing
and storage resources compared to the edge and is con-
nected to eAPs through Wide Area Network (WAN), It
can undertake requests that edge clusters cannot process.
In addition, it manages all geographically distributed edge
clusters, including orchestrating all service entities in each
edge cluster according to the system’s available resources.

B. Improve Long-term System Throughput

We are inspired by [10] to design a two-time-scale mech-
anism to schedule request dispatch and service orchestration.
Within each time slot 𝑡, service requests are dispatched to edge
nodes or the cloud based on the available resources, while ser-
vice orchestration is performed in larger time frames 𝜏, which
are 𝛽 times longer than a time slot. To improve overall perfor-
mance, KaiS tailors Deep Reinforcement Learning (DRL) to
learn scheduling policies through experiences obtained from
the running system, and encodes learned policies in neural
networks.

Dispatch of Requests at eAPs. For each eAP 𝑏 ∈ B,
a queue Q𝑏 is maintained for requests. Additionally, a dy-
namic dispatch policy 𝜋̂𝑏,𝑡 is implemented, which varies with
time, along with a dequeue strategy. First, delay-sensitive
service requests arrive stochastically at queue Q𝑏 and the
highest priority request 𝑟𝑏,𝑡 is dequeued according to the
dequeue strategy Ψ. After that, according to 𝜋̂𝑏,𝑡 , at each
slot 𝑡, each eAP 𝑏 dispatches the request 𝑟𝑏,𝑡 to an edge
node, where the required service entity is deployed and that
has sufficient resources, or the cloud cluster with sufficient
computing resources for processing. The processing of each
request consumes both computation resources and network
bandwidth of the edge or the cloud. Moreover, dispatching

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 4

TABLE I
MAIN NOTATIONS

Notations Descriptions

𝑎𝑏,𝑡 The request dispatch action taken by eAP 𝑏 at slot 𝑡 .
𝑏 The index of eAPs.
B The set of eAPs.
𝐶 Cloud cluster.
C𝑟𝑏,𝑤 The dequeue priority of request 𝑟𝑏,𝑤 .
𝑑𝑤,𝑛 The number of replicates of service 𝑤 in edge node 𝑛.
E𝑤,𝑡 The predicted time to complete a request of type 𝑤 .
𝐻 The number of high-value nodes in each frame.
𝑛 The index of edge nodes.
N All edge nodes in the edge cluster.
N𝑏 The set of edge nodes attached to eAP 𝑏.
Q𝑏 Request queue in eAP 𝑏.
Q̂𝑐 Request queue in cloud cluster.
Q′𝑛 Request queue in edge node.
𝑟𝑏,𝑡 The current dispatching request of eAP 𝑏 at slot 𝑡 .
R𝑐,𝜏 The set of requests received by cloud in frame 𝜏.
R𝑛,𝜏 The set of requests received by node 𝑛 in frame 𝜏.
𝑡 The index of slots.

T𝑏,𝑤,𝑡

The average time consumption corresponding to the
request type 𝑤 calculated at slot 𝑡 based on the data
collected by eAP 𝑏.

𝑤 The index of services.
W The set of all services.
𝜆 The ratio of timeout requests.
𝜆𝑒 The discount factor.
𝜆′ The penalty factor.

𝜉
The standard deviation of the CPU and memory usage
of all edge nodes.

𝜋̂𝑏,𝑡 Dynamic request dispatch policy.
𝜏 The index of frames.

𝛶𝜏 (Q̂𝑐)
The number of requests that have been processed timely
by the cloud.

𝛶𝜏 (Q𝑏) The number of requests arrived at eAP 𝑏.

𝛶𝜏 (Q′𝑛)
The number of requests that have been processed timely
by edge node 𝑛.

𝛷′ The long-term throughput rate.
Ψ Dequeue strategy for eAPs.
Ψ′ Dequeue strategy for edge nodes and cloud cluster.

requests to the cloud may lead to extra transmission delay
since it is not as close to end devices, i.e., where requests are
generated. Each edge node and the cloud maintain a queue
of dispatched requests, i.e., {Q𝑛 : 𝑛 ∈ N} for edge nodes
and Q̂𝑐 for the cloud. After that, requests are continuously
selected from the request queue Q𝑛 and Q̂𝑐 for processing by
the service entities according to dequeue strategy Ψ′, until no
service entity is available to process any request in the queue.
To ensure timely scheduling, it is ideal to have the eAPs, where
requests first arrive, perform request dispatch independently,
instead of letting the cloud or the edge to make dispatching
decisions in a centralized manner, since it may incur high
scheduling delays [30]. For requests that are not processed in
time, the system drops them at each slot.

Orchestration of Services at Edge Cluster. Since each
type of request needs to depend on the corresponding type
of service entity for processing, placing the service entity on
the edge node will occupy the resources of the edge node.
Therefore, limited by the resource of a single edge node, it
is not possible to deploy all types W = {1, . . . , 𝑤, . . . ,𝑊}
of service entities on each edge node. In addition, due to the
resource limitations of a single service entity, it does not have
sufficient resources to process when the request load is too

high. Therefore, multiple replicates of this type of service
entity can be placed to share the requests, which requires
orchestration of the service. In this case, service entities at
the edge cluster should be orchestrated, which includes the
following questions: (𝑖) which service should be placed on
which edge node and (𝑖𝑖) how many replicates the edge node
should maintain for that service. Besides, service requests
arrivals at different times may have different patterns, resulting
in the intensity of demand for different services varying over
time. Hence, the scheduling should be able to capture and
identify such patterns and, based on them, to orchestrate ser-
vices to fulfill stochastically arriving requests. Unlike request
dispatch, too frequent large-scale service orchestration in the
edge cluster may incur system instability and high operational
costs due to resource constraints [10]. For these reasons, a
more appropriate solution is to have the cloud perform service
orchestration for the edge with a dynamic scheduling policy
𝜋̃𝜏 at each frame 𝜏. Therefore, the cloud can perform service
orchestration for the edge with a dynamic scheduling policy 𝜋̃𝜏

at each frame 𝜏, which determines the number of replicates of
service 𝑤 on edge node 𝑛, denoted by 𝑑𝑤,𝑛 ∈ N. If 𝑑𝑤,𝑛 = 0,
it means that edge node 𝑛 does not host service 𝑤.

The scheduling objective is to maximize the long-term
system throughput 𝛷 =

∑∞
𝜏=0

∑
𝑛∈N 𝛶𝜏 (Q ′𝑛) + 𝛶𝜏 (Q̂𝑐), where

𝛶𝜏 (Q ′𝑛), 𝛶𝜏 (Q̂𝑐) represent the number of requests that have
been processed timely by edge node 𝑛 or the cloud in frame
𝜏, respectively. Specifically, we first denote the set of requests
received by node 𝑛 and the cloud in frame 𝜏 as R𝑛,𝜏 and R𝑐,𝜏

respectively, then for each request 𝑟 ∈ R𝑛,𝜏 there will be a
delay requirement 𝑡𝑟 and an actual completion time 𝑡 ′𝑟 . Further,
we define that if 𝑡 ′𝑟 ≤ 𝑡𝑟 then Γ(𝑟) = 1, otherwise, Γ(𝑟) =
0. Finally, we obtain 𝛶𝜏 (Q ′𝑛) =

∑
𝑟 ∈R𝑛,𝜏

Γ(𝑟), 𝛶𝜏 (Q ′𝑐) =∑
𝑟 ∈R𝑐,𝜏

Γ(𝑟). To avoid𝛷→∞, we use a more realistic metric,
i.e., the long-term system throughput rate 𝛷′ ∈ [0, 1], which
is the ratio of requests, completed within delay requirements,
to the total number of requests. The long-term throughput
rate 𝛷′ can be denoted as 𝛷′ =𝛷/∑∞𝜏=0

∑
𝑏∈B 𝛶𝜏 (Q𝑏), where

𝛶𝜏 (Q𝑏) indicates the number of requests arrived at eAP 𝑏

during frame 𝜏. In this case, our scheduling problem for both
request dispatch and service orchestration can be formulated
as

max
{ 𝜋̂𝑏,𝑡 :𝑏∈B}, 𝜋̃𝜏

𝛷′ = max
{ 𝜋̂𝑏,𝑡 :𝑏∈B}, 𝜋̃𝜏

𝛷/
∞∑︁
𝜏=0

∑︁
𝑏∈B

𝛶𝜏 (Q𝑏), (1)

where, for clarity, we use scheduling policies {𝜋̂𝑏,𝑡 : 𝑏 ∈ B}
and 𝜋̃𝜏 instead of a series of scheduling variables to represent
the problem. Compared to the problem in [10], our scheduling
is more complicated since it involves integer dispatch vari-
ables. More details on the constraints and NP-hard proof of
such a long-term scheduling problem can be found in [10]. In
this work, we tailor learning algorithms for KaiS to improve
the long-term system throughput rate.

III. ALGORITHM DESIGN

The overall training and scheduling process of KaiS is given
in Algorithm 1. We explain the technical details of request
dispatch and service orchestration in the following. Detailed
training settings are presented in Sec. IV-C.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 5

Algorithm 1: Training and Scheduling Process of KaiS

1 Initialize the system environment and neural networks.
2 for slot 𝑡 = 1, 2, ... do
3 if frame 𝜏 begins then
4 Get reward 𝑢̃𝜏−1 and store [𝒔̃𝜏−1, 𝒂̃𝜏−1, 𝑢̃𝜏−1];
5 Use GNNs to embed system states as Eq. (10);
6 Select 𝐻 high-value edge nodes (𝑎̃•𝜏) and

compute their service scaling actions (𝒂̃★𝜏)



O
rchestrate

(G
PG

)

using policy networks 𝜃𝑔 and 𝜃𝑞 , respectively;
7 Execute orchestration action 𝒂̃𝜏 = (𝑎̃•𝜏 , 𝒂̃★𝜏);
8 Update GNNs and policy networks by Eq. (12);
9 for each eAP agent 𝑏 ∈ 𝐵 do in parallel

10 if Q𝑏 == ∅ then
11 Continue
12 Update request queue Q𝑏 and get reward 𝑢̂𝑏,𝑡−1;
13 Store [𝒔̂𝑏,𝑡−1, 𝑎̂𝑏,𝑡−1, 𝐴

(
𝒔̂𝑏,𝑡−1, 𝑎̂𝑏,𝑡−1

)
, 𝑢̂𝑏,𝑡−1,

𝑭𝑏,𝑡−1] for 𝜃𝑝 (actor);
14 Dequeue request 𝑟𝑏,𝑡 according to Ψ;
15 Compute the resource context 𝑭𝑏,𝑡 using Eq. (4);
16 Take dispatch action 𝑎̂𝑏,𝑡 for 𝑟𝑏,𝑡 using Eq. (5);


D

ispatch
(cM

M
AC

)

17 Execute dispatched requests according to Ψ′;
18 Store [𝒔̂𝑡−1, 𝑉

∗ (𝒔̂𝑡 ; 𝜃 ′𝑣 , 𝜋)] for 𝜃𝑣 (critic);
19 Update neural networks 𝜃𝑝 (actor) and 𝜃𝑣 (critic)

centrally using Eq. (6) and (2), respectively;
20 Synchronize 𝜃𝑝 periodically to distributed eAPs.

A. Tailored MADRL for Decentralized Request Dispatch

Request dispatch is to let each eAP independently decide
which edge node or the cloud should serve the arrived request.
The goal of dispatch is to maximize the long-term system
throughput rate 𝛷′ by (𝑖) balancing the workloads among edge
nodes and (𝑖𝑖) further offloading some requests to the cloud in
some appropriate cases.

1) Markov Game Formulation: To employ MADRL, we
formulate that eAPs independently perform request dispatch as
a Markov game G for eAP agents B = {1, 2, . . . , 𝐵}. Formally,
the game G = (B, Ŝ, Â, P̂, Û) is defined as follows.

• State. Ŝ is the state space. At each slot 𝑡, we periodically
construct a local state 𝒔̂𝑏,𝑡 for each eAP agent 𝑏, which
consists of (𝑖) the service type and delay requirement of the
current dispatching request 𝑟𝑏,𝑡 , (𝑖𝑖) the queue information
Q ′

𝑏,𝑡
of requests awaiting dispatch at eAP 𝑏, (𝑖𝑖𝑖) the queue

information, {Q ′𝑛𝑏 ,𝑡 : 𝑛𝑏 ∈ N𝑏}, of unprocessed requests
at edge nodes N𝑏 , (𝑖𝑣) the remaining CPU, memory and
storage resources of N𝑏 , (𝑣) the number of N𝑏 , i.e., |N𝑏 | =
𝑁𝑏 , and (𝑣𝑖) the measured network latency between the eAP
and the cloud. Meanwhile, for centralized critic training, we
maintain a global state 𝒔̂𝑡 ∈ Ŝ, which includes (𝑖) the above
information for all eAPs B and edge nodes N , instead of
only eAP 𝑏 and N𝑏 , and (𝑖𝑖) the queue information Q ′

𝐶,𝑡
of

unprocessed requests at the cloud cluster 𝐶.
• Action space. The joint action space of G is Â = Â1× . . .×
Â𝑏× . . .×Â𝐵. For an edge cluster, we consider all available
edge nodes as a resource pool, namely the cooperation
between eAPs in enabled. In this case, Â𝑏 includes 𝑁 + 1
discrete actions denoted by {𝑖}𝑁0 , where 𝑎𝑏,𝑡 = 0 and
𝑎𝑏,𝑡 ∈ N specify dispatching to the cloud or edge nodes,
respectively. At each slot 𝑡, we use 𝒂̂𝑡 = (𝑎𝑏,𝑡 : 𝑏 ∈ B) to
represent the joint dispatch actions of all requests required

cMMAC agent

1. Interact

Centralized critic training

Critic

network

Global state

Resource context

Edge cluster

The policy network (actor) deployed at each eAP

Local agent (edge AP) state

Output

raw logits

Policy context filtering

Valid logits

Sampled

scheduling action

3
45

cMMAC agent

eAP

cMMAC agent

eAP

cMMAC agent

eAP

Distributed actor training and inference (dispatch)

2. Observe

1 0 0 1 10 0

eAP

Resource context

Fig. 3. Coordinated multi-agent actor-critic for request dispatch.

to be scheduled at all eAPs. Note that multiple requests may
be queued in eAPs (Q𝑏 , 𝑏 ∈ B), we only allow each eAP
agent to dispatch one request at a slot. Meanwhile, for KaiS,
we set the time slot to a moderate value (refer to Sec. IV)
to ensure the timeliness of serving request arrivals.

• Reward function. All agents in the same edge cluster share
a reward function 𝑈̂ = Ŝ × Â → R, i.e., 𝑈̂𝑏 = 𝑈̂ holds for
all 𝑏 ∈ B. Each agent wants to maximize its own expected
return E

[∑∞
𝑖=0 𝛾

𝑖 𝑢̂𝑏,𝑡+𝑖
]
, where 𝑢̂𝑏,𝑡 is the immediate reward

for the 𝑏-th agent associated with the action 𝑎𝑏,𝑡 and
𝛾 ∈ (0, 1] is a discount factor. The immediate reward is
defined as 𝑢̂𝑏,𝑡 = e−𝜆−𝜀𝜈 . Specifically, (𝑖) 𝜆 ∈ [0, 1] is
the ratio of requests that violate delay requirements during
[𝑡, 𝑡+1], (𝑖𝑖) 𝜈 = 1/(1+e−𝜉) ∈ [0.5, 1], where 𝜉 ∈ R≥0 is the
standard deviation of the CPU and memory usage of all edge
nodes, and (𝑖𝑖𝑖) 𝜀 is the weight to control the degree of load
balancing among edge nodes. The introduction of 𝜈 is to
stabilize the system, preventing too much load are imposed
on some edge nodes. When 𝜈 is closer to 0.5, i.e., 𝜉 → 0,
the loads of edge nodes are more balanced, thus leading to
more scheduling rooms for dispatch. Such a reward is to
improve the long-term throughput while ensuring the load
balancing at the edge.

• State transition probability. We use 𝑝 (𝒔̂𝑡+1 | 𝒔̂𝑡 , 𝒂̂𝑡) : Ŝ ×
Â × Ŝ → [0, 1] to indicate the transition probability from
state 𝒔̂𝑡 to 𝒔̂𝑡+1 given a joint dispatch action 𝒂̂𝑡 . The action is
deterministic in G, i.e., if 𝑎𝑏,𝑡 = 2, the agent 𝑏 will dispatch
the current request to edge node 2 at slot 𝑡 + 1.

2) Coordinated Multi-Agent Actor-Critic: The challenges
of training these dispatch agents are: (𝑖) The environment of
each agent is non-stationary as other agents are learning and
affecting the environment simultaneously. Specifically, each
agent usually learns its own policy that is changing over
time [20], which increases the difficulty of coordination; (𝑖𝑖)
The action space of each agent changes dynamically since
its feasible dispatch options vary with the available system
resources, making vanilla DRL algorithms unable to handle.
For instance, if the memory of the edge node 𝑛 is run out
at slot 𝑡, the action space should not include the option of
dispatching the request to edge node 𝑛.

Therefore, we design coordinated Multi-Agent Actor-Critic
(cMMAC), as illustrated in Fig. 3: (𝑖) Adopt a centralized critic
and distributed actors to coordinate learning, i.e., all agents
share a centralized state-value function when training critic,
while during distributed actor training and inference each actor

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 6

only observes the local state. (𝑖𝑖) By policy context filtering,
we can adjust their policies to tolerate dynamic action space
and establish explicit coordination among agents to facilitate
successful training. The details illustrated as follows.

• Centralized state-value function (Critic). The state-value
function shared by eAP agents can be obtained by minimiz-
ing the loss function derived from Bellman equation [14],
which is as follows:

𝐿 (𝜃𝑣) =
(
𝑉𝜃𝑣 (𝒔̂𝑡−1) −𝑉∗

(
𝒔̂𝑡 ; 𝜃 ′𝑣 , 𝜋

))2
, (2)

𝑉∗
(
𝒔̂𝑡 ; 𝜃 ′𝑣 , 𝜋

)
=∑︁

𝑎𝑏,𝑡−1∈𝒂̂𝑡−1
𝜋

(
𝑎𝑏,𝑡−1 | 𝒔̂𝑏,𝑡−1

) (
𝑢̂𝑏,𝑡−1 + 𝛾𝑉𝜃′𝑣

(
𝒔̂𝑏,𝑡

))
, (3)

where 𝜃𝑣 and 𝜃 ′𝑣 denote the parameters of the value network
and the target value network, and 𝜋

(
𝑎𝑏,𝑡−1 | 𝒔̂𝑏,𝑡−1

)
denotes

the probability of adopting 𝑎𝑏,𝑡−1 at 𝒔̂𝑏,𝑡−1. In total, for 𝐵

eAP agents, there are 𝐵 unique state-values {𝑉 (𝒔̂𝑏,𝑡−1) : 𝑏 ∈
B} at each slot. Each state-value output 𝑉 (𝒔̂𝑏,𝑡−1) is the
expected return received by agent 𝑏 at slot 𝑡. To stabilize
the state-value function, we fix a target value network 𝑉∗

parameterized by 𝜃 ′𝑣 and update it at the end of each training
episode.

• Policy context filtering (Actors). Due to the neural net-
work structure, the action space for actors has a fixed
size. However, the size of the actual available action space
changes dynamically during the operation of the system. To
solve this problem, we design the policy context filtering
for actors. Specifically, during the operation of the edge-
cloud network, randomly arrived requests cause the available
resources of edge nodes to change dynamically. Therefore,
if the available resources of an edge node are insufficient
to process the current request, dispatching the request to
that node is an invalid action. Thus, to avoid such invalid
actions as much as possible, before dispatching, we compute
a resource context 𝑭𝑏,𝑡 ∈ {0, 1}𝑁+1 for each eAP agent,
which is a binary vector that filters out invalid dispatch
actions. In detail, the value of the element of 𝑭𝑏,𝑡 is defined
as:

[
𝑭𝑏,𝑡

]
𝑗
=


1, if edge node 𝑗 is available,
1, if 𝑗 = 0,
0, otherwise.

(4)

where (𝑖) [𝑭𝑏,𝑡] 𝑗 (𝑗 = 1, . . . , 𝑁) represents the validity of
dispatching the current request to 𝑗-th edge node and (𝑖𝑖)
[𝑭𝑏,𝑡]0 specifies that the cloud cluster (𝑗 = 0) is always
a valid action of request dispatch, namely

[
𝑭𝑏,𝑡

]
0 ≡ 1.

In addition, the coordination of agents is also achieved by
masking available action space based on the resource context
𝑭𝑏,𝑡 . To proceed, we first use 𝒑(𝒔̂𝑏,𝑡) ∈ R𝑁+1 to denote
the original output logits from the actor policy network
for the 𝑏-th agent conditioned on state 𝒔̂𝑏,𝑡 . Next, we let
𝒑̄(𝒔̂𝑏,𝑡) = 𝒑(𝒔̂𝑏,𝑡) ∗ 𝑭𝑏,𝑡 , where the operation ∗ is element-
wise multiplication, to denote the valid logits considering the
resource context for agent 𝑏. Besides, note that the output
logits 𝒑(𝒔̂𝑏,𝑡) ∈ R𝑁+1

>0 are restricted to be positive to achieve

Edge cluster

2
1

1

4
1

1

1
2

3

Cloud cluster

10+ 10+ 10+

10+ 10+

10+ 10+

10+ 10+

Ordered

by dequeue

strategy

Request queue

Request

queue

Service

entities

Ordered

by dequeue

strategy

Service

request

End devices

Smart phones

IoT devices

Smart vehicles
Ordered by

dequeue strategy

Request queue

Service entities

Fig. 4. Dequeue strategies in edge cluster and cloud cluster.

effective masking. Hence, the probability of valid dispatch
actions for agent 𝑏 can be given by:

𝜋𝜃𝑝

(
𝑎𝑏,𝑡 = 𝑗 | 𝒔̂𝑏,𝑡

)
=

[
𝒑̄

(
𝒔̂𝑏,𝑡

)]
𝑗
=
[𝒑̄(𝒔̂𝑏,𝑡)] 𝑗
‖ 𝒑̄(𝒔̂𝑏,𝑡)‖1

, (5)

where 𝜃𝑝 is the parameters of actor policy network. At
last, the policy gradient ∇𝜃𝑝 𝐽 (𝜃𝑝) can be derived and the
advantage 𝐴(𝒔̂𝑏,𝑡 , 𝑎𝑏,𝑡) (related to the use of the target
network parameters in [31]) can be computed.

∇𝜃𝑝 𝐽
(
𝜃𝑝

)
= ∇𝜃𝑝 log 𝜋𝜃𝑝

(
𝑎𝑏,𝑡 | 𝒔̂𝑏,𝑡

)
𝐴

(
𝒔̂𝑏,𝑡 , 𝑎𝑏,𝑡

)
, (6)

𝐴
(
𝒔̂𝑏,𝑡 , 𝑎𝑏,𝑡

)
= 𝑢̂𝑏,𝑡+1 + 𝛾𝑉𝜃′𝑣

(
𝒔̂𝑏,𝑡+1

)
−𝑉𝜃𝑣

(
𝒔̂𝑏,𝑡

)
. (7)

3) Dequeue Strategy for Request Priority: For request
queues, two issues that need to be considered are: (𝑖) which
request is selected to be dispatched after the eAPs receive
the randomly arriving requests; (𝑖𝑖) how to decide the order
of processing these requests after the edge nodes and cloud
cluster receive the dispatched requests. As shown in Fig. 4,
we design a dequeue strategy as follows.
• Dequeue strategy Ψ in eAPs. For each service type 𝑤 ∈ W,

we define the estimated time to complete a request of type 𝑤

as E𝑤,𝑡 . To accommodate environment dynamics, E𝑤,𝑡 can
be updated dynamically and a discount factor 𝜆𝑒 ∈ (0, 1)
is designed to give higher weight to the recent experience.
In particular, the experience here refers to the historical
data generated in the system, such as the transmission
time, execution time, and queueing time of each completed
request. To update E𝑤,𝑡 at slot 𝑡, eAP 𝑏 first collects
the actual consumption time of requests from dequeue to
completion. Then, the collected data is categorized by eAP
𝑏 according to request type to calculate the actual average
time consumption T𝑏,𝑤,𝑡 for request type 𝑤. If eAP 𝑏 does
not collect any request consumption time for service type 𝑤

at slot 𝑡, then T𝑏,𝑤,𝑡 takes the value of zero. Finally, for the
actual average time consumption T𝑏,𝑤,𝑡 ≠ 0, the algorithm
updates E𝑤,𝑡 by:

E𝑤,𝑡+1 = 𝜆𝑒E𝑤,𝑡 + (1 − 𝜆𝑒)T𝑏,𝑤,𝑡 . (8)

After that, for each request 𝑟𝑏,𝑤 in the request queue of eAP
𝑏, we define the remaining time from its deadline as F𝑟𝑏,𝑤 ,
which can be calculated based on request generation time,
delay limit and current time. Furthermore, it is more likely

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 7

that the request of F𝑟𝑏,𝑤<E𝑤,𝑡 cannot be completed on time,
i.e., the remaining time before the deadline is less than the
predicted time required. Therefore, we add a penalty factor
𝜆′ ∈ (0, 1) in the calculation of the priority C𝑟𝑏,𝑤 as follows:

C𝑟𝑏,𝑤 =

{
1/(F𝑟𝑏,𝑤 − E𝑤,𝑡), if F𝑟𝑏,𝑤>E𝑤,𝑡 ,

𝜆′/(E𝑤,𝑡 − F𝑟𝑏,𝑤), if F𝑟𝑏,𝑤<E𝑤,𝑡 .
(9)

Finally, the requests in the request queue are sorted accord-
ing to priority C𝑟𝑏,𝑤 , and the requests with the highest
priority are dequeued for scheduling.

• Dequeue strategy Ψ′ on edge nodes and cloud cluster.
Similar to the dequeue strategy Ψ at eAPs, the priority C′𝑟𝑏,𝑤
is computed based on (8) and (9) to determine the order
in which the requests are dequeued from the queue. Note
that there are two adjustments that differ from the dequeue
strategy Ψ in eAPs: (𝑖) the transmission time of requests
is ignored compared to the dequeue strategy Ψ in eAPs,
i.e., the dequeue strategy Ψ′ in each edge node or cloud
cluster only considers the time consumption after requests
are dequeued from the local request queue; (𝑖𝑖) the number
of requests dequeued in a slot is not one, compared to the
dequeue strategy Ψ in eAPs, i.e., each request in the request
queue is checked from the highest to the lowest priority
to see if any service entity can match it, and if there is a
corresponding service entity with free resources, the request
is dequeued and the next lower priority request is checked.

B. GNN-based Learning for Service Orchestration

In this section, we propose a GNN-based Policy Gradient
(GPG) algorithm and describe how (𝑖) the system state infor-
mation is processed flexibly; (𝑖𝑖) the high-dimensional service
orchestration is decomposed as stepwise scheduling actions:
selecting high-value edge nodes and then performing service
scaling on them.

For edge clusters with different scales, composed of edge
nodes with different numbers and heterogeneous resources, we
use the GNNs described in Sec. IV-C, namely parametrized
functions learned during training, to repeatedly process the
information of the edge-cloud network concerning the net-
work topologies, real-time available resources, service request
queues, etc. In addition, the large decision interval of service
orchestration and the centralized decision making approach
pose a challenge to the collection of training data samples. The
multiple neural networks in the actor-critic algorithm and large
number of neural network parameters would further increase
the difficulty of training. Therefore, for better convergence,
we propose the policy gradient algorithm to solve the service
orchestration problem.

1) GNN-based System State Encoding: As shown in Fig. 5,
KaiS must convert system states into feature vectors on
each observation and then pass them to policy networks. A
common choice is directly stacking system states into flat
vectors. However, the edge-cloud network is practically a
graph consisting of connected eAPs, edge nodes, and the cloud
cluster. Simply stacking states has two defects: (𝑖) processing
a high-dimensional feature vector requires sophisticated policy

Edge

cluster

embedding

③②

Edge node raw information

H
et

er
o
g
en

eo
u

s
ed

g
e

n
o
d

es
a
n

d

w
it

h
v
a
ri

o
u

s
n

et
w

o
rk

to
p

o
lo

g
ie

s

Edge node embedding

eAP

embeddings
eAP b

Per eAP embedding

eAP B

①④

①⑤

③②

Fig. 5. GNN-based system state encoding for the edge cluster.

networks, which increases training difficulty; (𝑖𝑖) it cannot ef-
ficiently model the graph structure information for the system,
making KaiS hard to generalize to various system scales and
structures. Therefore, we use GNNs to encode system states
into a set of embeddings layer by layer as follows.
• Embedding of edge nodes. For edge nodes associated with

eAP 𝑏, each of them, 𝑛𝑏 ∈ N𝑏 , carries the following
attributes at each frame 𝜏, denoted by a vector 𝒔̃𝑛𝑏 ,𝜏 : (𝑖) the
available resources of CPU, memory, storage, etc., (𝑖𝑖) the
periodically measured network latency with eAP 𝑏 and the
cloud, (𝑖𝑖𝑖) the queue information of backlogged requests
it is currently processing, i.e., Q ′𝑛𝑏 , and (𝑖𝑣) the indexes
of deployed services and the number of replicates of each
deployed service. Given 𝒔̃𝑛𝑏 ,𝜏 , KaiS performs embedding
for each edge node as (N𝑏 , 𝒔̃𝑛𝑏 ,𝜏) → 𝒙𝑛𝑏 ,𝜏 . To perform
embedding, for an edge node 𝑛𝑏 ∈ N𝑏 , we build a virtual
graph by treating other edge nodes N𝑏 \ 𝑛𝑏 as its neighbor
nodes. Then, as depicted in Fig. 5, we traverse the edge
nodes in N𝑏 and compute their embedding results one by
one. Once an edge node has accomplished embedding, it
provides only the embedding results 𝒙𝑛𝑏 ,𝜏 for the subse-
quent embedding processes of the remaining edge nodes.
For edge node 𝑛𝑏 ∈ N𝑏 , its embedding results 𝒙𝑛𝑏 ,𝜏 can
be computed by propagating information from its neighbor
nodes 𝜁 (𝑛𝑏) = {N𝑏 \𝑛𝑏} to itself. In message passing, edge
node 𝑛𝑏 aggregates messages from all of its neighbor nodes
and computes its embeddings as:

𝒙𝑛𝑏 ,𝜏 = ℎ1

[∑︁
𝑛′
𝑏
∈𝜁 (𝑛𝑏)

𝑓1 (𝒙𝑛′
𝑏
,𝜏)

]
+ 𝒔̃𝑛𝑏 ,𝜏 , (10)

where ℎ1 (·) and 𝑓1 (·) are both non-linear transformations
implemented by Neural Networks (NNs), combined to ex-
press a wide variety of aggregation functions. During the
embedding process, we reuse the same NNs ℎ1 (·) and 𝑓1 (·).

• Embedding of eAPs and the edge cluster. Similarly, we
leverage GNNs to compute an eAP embedding for each
eAP 𝑏, {𝒙𝑛𝑏 ,𝜏 : 𝑛𝑏 ∈ N𝑏} → 𝒚𝑏,𝜏 , and further an edge
cluster embedding for all eAPs, {𝒚𝑏,𝜏 : 𝑏 ∈ B} → 𝒛𝜏 .
To compute the embedding for eAP 𝑏 as in (10), we add

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 8

S
o
ft

m
a
x

P
o
li
cy

n
et

w
o
rk

S
o
ft

m
a
x

P
o
li
cy

n
et

w
o
rk

Selection of

high-value

edge nodes

Service scaling

action

of edge node H

S
o
ft

m
a
x

P
o
li
cy

n
et

w
o
rk Service scaling

action

of edge node h

G
N

N
-b

a
se

d
sy

st
em

st
a
te

em
b

ed
d

in
g

S
ch

ed
u

lin
g

selected
ed

g
e

n
o
d

es

Embed

dings

Fig. 6. GNN-based learning, i.e., GPG, for service orchestration.

an eAP summary node to N𝑏 and treat all edge nodes
in N𝑏 as its neighbor nodes. These eAP summary nodes
are also used to store their respective eAP embeddings.
Then, the eAP embedding for each eAP can be obtained
by aggregating messages from all neighboring nodes and
computed as (10). In turn, these eAP summary nodes are
regarded as the neighbor nodes of an edge cluster summary
node, such that (10) can be used to compute the global
embedding as well. Though the embeddings 𝒚𝑏,𝜏 and 𝒛𝜏
are both computed by (10), different sets of NNs, i.e., (𝑖)
ℎ2 (·), 𝑓2 (·) for 𝒚𝑏,𝜏 and (𝑖𝑖) ℎ3 (·), 𝑓3 (·) for 𝒛𝜏 , are used for
non-linear transformations.
2) Stepwise Scheduling for Service Orchestration: The key

challenge in encoding service orchestration actions is to deal
with the learning and computational complexity of high-
dimensional action spaces. A direct solution is to maintain
a huge policy network and orchestrate all services W for all
edge nodes N at once based on the embedding results in Sec.
III-B1. However, in this manner, KaiS must choose actions
from a large set of combinations (𝑑𝑤,𝑛 ∈ N : 𝑤 ∈ W, 𝑛 ∈ N),
thus increasing the sample complexity and slowing down
the training process [32]. Besides, too frequent large-scale
service orchestration will bring huge system overhead and
harm system stability.

Therefore, we consider stepwise scheduling, which in each
frame first selects 𝐻 high-value edge nodes (𝐻 = 2 in
experiments), and then scales services for each of them in
a customized action space of a much smaller size 2𝑀 + 1.
Specifically, KaiS passes the embedding vectors from Sec.
III-B1 as inputs to the policy networks, which output a joint
orchestration action 𝒂̃𝜏 = (𝑎̃•𝜏 , 𝒂̃★𝜏), including (𝑖) the action of
selecting high-value edge nodes 𝑎̃•𝜏 and (𝑖𝑖) the corresponding
joint service scaling action 𝒂̃★𝜏 .
• Selection of high-value edge nodes. At each frame, KaiS

first uses a policy network to select 𝐻 (≤ 𝑁) high-value
edge nodes, denoted by action 𝑎̃•𝜏 . As illustrated in Fig. 6,
for edge node 𝑛 associated with eAP 𝑏, it computes a
value 𝑔𝑛,𝑏,𝜏 = 𝑔(𝒙𝑛,𝜏 , 𝒚𝑏,𝜏 , 𝒛𝜏), where 𝑔(·) is a non-linear
value-evaluation function implemented by a NN 𝜃𝑔. The
introduction of function 𝑔(·) is to map the embedding
vectors to a scalar value. The value 𝑔𝑛,𝑏,𝜏 specifies the
priority of KaiS performing service scaling at edge node 𝑛. A
softmax operation is used to compute the probability 𝜎𝑛,𝜏 of

selecting edge node 𝑛 based on the values {𝑔𝑛,𝑏,𝜏 : 𝑛 ∈ N}:

𝜎𝑛,𝜏 = e𝑔𝑛,𝑏,𝜏/
∑︁

𝑏′∈B

∑︁
𝑛𝑏′ ∈N𝑏′

e𝑔𝑛𝑏′ ,𝑏′,𝜏 . (11)

According to the probabilities {𝜎𝑛,𝜏 : 𝑛 ∈ N} for all edge
nodes, KaiS selects 𝐻 edge nodes with high probabilities as
high-value edge nodes H to perform service scaling.

• Service scaling for high-value edge nodes. For a selected
high-value edge node ℎ ∈ H ⊂ N , KaiS uses an action-
evaluation function 𝑞(·), implemented by a NN 𝜃𝑞 , to
compute a value 𝑞ℎ,𝑙,𝜏 = 𝑞(𝒙ℎ,𝜏 , 𝒚𝑏,𝜏 , 𝒛𝜏 , 𝑙) for edge node
ℎ performing service scaling 𝑎̃ℎ,𝜏 = 𝑙 at frame 𝜏. The action
space of 𝑙 is defined as Ã , (−𝑊, . . . , 𝑤, . . . ,𝑊) with size
2𝑊 +1, i.e., 𝑙 ∈ Ã. The meaning of 𝑙 is as follows: (𝑖) 𝑙 = 0
indicates that all services remain unchanged, (𝑖𝑖) 𝑙 = −𝑤
means deleting a replicate of service 𝑤, and (𝑖𝑖𝑖) 𝑙 = 𝑤

specifies adding a replicate of service 𝑤. Particularly, for an
invalid service scaling action due to resource limitations of
an edge node, KaiS always transforms it to 𝑙 = 0. Similarly,
we apply a softmax operation on {𝑞ℎ,𝑙,𝜏 : 𝑙 ∈ Ã} to
compute the probabilities of scaling actions, and choose
to perform the action with the highest probability. For all
high-value edge nodes H , KaiS will generate a joint service
scaling action 𝒂̃★𝜏 = (𝑎̃ℎ,𝜏 : ℎ ∈ H) at each frame.
While KaiS decouples request dispatch and service orches-

tration, this does not affect our objective of improving 𝛷′. In
fact, by using a regularly updated policy network to provide
an appropriate load-balanced edge cluster for orchestration,
we implicitly optimize the dispatch policy while optimizing
the orchestration.

To guide GPG, KaiS generates a reward 𝑢̃𝜏 = e−
∑

𝑛∈N |Q𝑛,𝜏 |

after each service orchestration at frame 𝜏, where | Q𝑛,𝜏 |
is the queue length of unprocessed requests at edge node 𝑛.
By doing so, GPG gradually learns to reduce the backlog of
unprocessed requests, thereby improving the throughput rate,
as we will show in the experiments. KaiS adopts a policy
gradient algorithm for training NNs { 𝑓𝑖 (·), ℎ𝑖 (·)}𝑖=1,2,3, 𝜃𝑔 and
𝜃𝑞 used in GPG. For clarity, we denote all parameters of these
NNs jointly as 𝜃∗, all GNN-encoded system states as 𝒔̃𝜏 , the
joint service orchestration action as 𝒂̃𝜏 , and the scheduling
policy as 𝜋𝜃∗ (𝒔̃𝜏 , 𝒂̃𝜏), i.e., the probability of taking action
𝒂̃𝜏 when observing state 𝒔̃𝜏 . At each frame, KaiS collects the
observation (𝒔̃𝜏 , 𝒂̃𝜏 , 𝑢̃𝜏) and updates the parameters 𝜃∗ using
policy gradient:

𝜃∗ ← 𝜃∗ + 𝛼
𝑇∑︁
𝜏=1
∇𝜃∗ log 𝜋𝜃∗ (𝒔̃𝜏 , 𝒂̃𝜏)

(
𝑇∑︁

𝜏′=𝜏

𝑢̃𝜏′ − 𝜇𝜏

)
, (12)

where 𝑇 is the length of a GPG training episode, 𝛼 is the
learning rate, and 𝜇𝜏 is a baseline used to reduce the variance
of the policy gradient. A method for computing the baseline
is setting 𝜇𝜏 to the cumulative reward from frame 𝜏 onwards,
averaged over all training episodes [33].

IV. IMPLEMENTATION DESIGN

All services are hosted in the system as Docker containers.
In addition, KaiS is implemented based on k8s v1.18 and k3s
v1.0 (a lightweight k8s for edge) [34] in Ubuntu 16.04 using
Python 3.6.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 9

state

monitor

R
e
a
l
w

o
r
k
lo

a
d

tr
a
c
e

d
r
iv

e
n

re
q

u
e
st

g
e
n

e
ra

to
r

k3s master node

k8s master

node

k3s

cMMAC

service

GNN

encoding

service

k
8

s
n

o
d

e

k3s

API

server

k
3

s
d

is
p

a
tc

h
e
r

k3s edge node

GNN

encoding

service

Service orchestration action

Dispatch

k3s master node
k3s edge node k3s edge node

k3s edge node k3s edge node

k3s master node

k
8

s
n

o
d

e
k

8
s

n
o

d
e

k
8

s
n

o
d

e

Dispatch

latency probe

state monitor

latency probe

Native k8s (k3s) or Linux component

filesystem /proc/*

K
u

b
e
le

t

Components of KaiS

k8s

cMMAC

service

GNN

encoding

service

GPG

service

k8s or-

chestrator

Fig. 7. Implementation and prototype design of KaiS.

A. System Setup

• Requests. Real-world workload traces from Alibaba [29] are
modified and used to generate service requests. We classify
the workload requests in that trace into 30 services. Instead
of employing real end devices, we implement a request
generator to generate service requests and then forward
them to k3s master nodes (eAPs).

• Edge cluster and nodes. By default, we set up 5 k3s
clusters in different geographic regions of the Google Cloud
Platform (GCP) to emulate geographic distribution, each
cluster consisting of a k3s master node and 8 k3s edge nodes.
K3s master nodes and k3s edge nodes use GCP Virtual
Machine (VM) configurations “2 vCPU, 4 GB memory, and
0.3 TB disk” and “1-2 vCPU, 2-4 GB memory, and 0.3
TB disk”, respectively. Besides, we use more powerful k3s
master nodes to accelerate offline training.

• Cloud cluster. We build a homogeneous 15-VM cluster as
the cloud cluster, where each VM is with “4 vCPU, 16 GB
memory, and 1 TB disk”. A k8s master node is deployed
at one VM to manage others. We handcraft 30 services
with various CPU and memory consumption and store their
Docker images in the cloud.

• Network control. We intentionally control the network la-
tency of the edge-cloud system, with Linux TC, to simulate
practical scenarios. Refer to [35] and [36], the parameters
are set as follows: (𝑖) For the end devices and the edge
cluster, the latency is about 20 ms and the bandwidth is
about 50 Mbps. (𝑖𝑖) Since the network connection within the
edge cluster is through the LAN, the network conditions are
better, so the latency is less than 10 ms and the bandwidth
is about 1 Gbps. (𝑖𝑖𝑖) Since cloud clusters and edge clusters
are often geographically distant from each other, WAN is
used for the connection. Therefore, the latency is about 100
ms and the bandwidth is about 100 Mbps.

B. Main Components of KaiS

We decouple KaiS into two main parts as shown in Fig. 7.
• Decentralized request dispatchers. KaiS maintains a k3s

dispatcher at each k3s master node to periodically observe
and collect the current system states by a state monitor in
the following manner. Each k3s edge node (𝑖) runs a Kubelet
process and (𝑖𝑖) reads the virtual filesystem /proc/* in Linux
to collect the states about Docker services and physical

nodes. Concerning network status, each k3s edge node and
k3s master node host a latency probe to measure network
latency. State monitors at k3s edge nodes will periodically
push the above collected system states to the state monitor
at the k3s master node for fusion. To implement cMMAC,
we deploy a cMMAC agent at each k3s master node as k3s
cMMAC service while maintaining a k8s cMMAC service at
the k8s master node to support training. At each scheduling
slot 0.25 s, empirically determined from experiment results
as shown in Fig. 10, the k3s cMMAC service at a k3s master
node computes a dispatch action by observing local states
from the state monitor, and then notifies the k3s dispatcher
to execute this dispatch for the current request.

• Centralized service orchestrator. To implement GPG, KaiS
holds a set of GNN encoding services with different GNNs
(Sec. III-B1) at k3s edge nodes, k3s master nodes and k8s
master node. These GNN encoding services are communi-
cated with each other and used to compute the embeddings
of edge nodes, eAPs (i.e., k3s master nodes) and the edge
cluster, respectively. Once KaiS finishes the GNN-based
encoding, the GNN encoding service at k8s master node will
merge all embedding results. The remaining parts of GPG,
i.e., the policy networks, are realized as a GPG service and
deployed at the k8s master node. The frame length is set
as 100× slots to ensure system stability. At each frame, the
GPG service pulls all embeddings from the GNN encoding
service and computes the orchestration action. Then, the
GPG service calls the k8s orchestrator to communicate with
specific k3s API servers to accomplish service scaling via
python-k8sclient. Unlike other scaling actions, only when a
service is idle, the k3s API server can delete it. Otherwise,
KaiS will delay scaling until the condition is met.

C. Training Settings

We implement Algorithm 1 using TensorFlow 1.14. The
detailed settings are as follows. cMMAC: cMMAC involves
a critic network and an actor policy network. Both networks
are trained using Adam optimizer and a fixed learning rate
of 5 × 10−4. The critic 𝜃𝑣 is uses a four-layer ReLU NN for
parameterization, where the node sizes of each layer are 256,
128, 64 and 32, respectively. The actor 𝜃𝑝 is implemented
using a three-layer ReLU NN, with 256, 128, and 32 hidden
units on each layer. Note that the output layer of the actor uses
ReLU+1 as an activation function to ensure that the elements
in the original logits are positive. GPG: GPG uses (𝑖) six
GNNs, i.e., { 𝑓𝑖 (·), ℎ𝑖 (·)}𝑖=1,2,3 and (𝑖𝑖) two policy networks
including 𝜃𝑔 and 𝜃𝑞 . Among them, { 𝑓𝑖 (·), ℎ𝑖 (·)}𝑖=1,2,3 are
implemented with two-hidden-layer NNs with 64 and 32
hidden units on each layer. Besides, 𝜃𝑔 and 𝜃𝑞 are both three-
hidden-layer NNs with node sizes of 128, 64 and 32 from the
first layer to the last layer. All NNs, related to GPG, use Adam
optimizer with a learning rate of 10−3 for updates.

For both request dispatch and service orchestration, tradi-
tional DRL algorithms cannot cope with continuously arriving
service requests. The randomness of arriving requests makes
it difficult for the learning algorithm to distinguish between
the impact of different service request patterns and the quality

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 10

of the algorithm’s decisions on the change in system perfor-
mance.

Besides, the learning-based scheduling policy is bound to
make bad decisions in the early stage of training. Therefore,
under the situation that service requests continue to arrive, a
scheduling policy that has not been well-trained will inevitably
reduce the system throughput, resulting in a backlog of a large
number of service requests and untimely processing. In this
case, continuing to spend a lot of time for exploring better
actions cannot improve the accuracy of the scheduling policy.

To solve the above issues, we adopted a progressive training
approach. Inspired by curriculum learning proposed in [37],
we first use simple and short service request sequences for
training, and then moderately introduce more sophisticated
request sequences step by step, so that the scheduling policy
can be gradually improved.

V. PERFORMANCE EVALUATION

Next, we evaluate our design and prototype implementation
of KaiS in the following aspects: (𝑖) Greedy (for dispatch),
which schedules each request to the edge node with the
lowest resource utilization; (𝑖𝑖) Native (for orchestration), i.e.,
the default Horizontal Pod Autoscaler [38] in k8s. It first
periodically observes specific resource metrics in the system
and compares them with predefined thresholds, ultimately
making decisions based on the gap between the two. (𝑖𝑖𝑖)
GSP-SS [10] (for both), assuming that the request arrival
rate of each service is known in advance. It is a two-
time-scale framework of joint service placement and request
scheduling, and designs a greedy service placement algorithm
based on shadow request scheduling computed by a linear
program (LP). (𝑖𝑣) Firmament [39] (for dispatch), designed
to assign work (requests) to cloud cluster resources in an
optimal manner. It is a centralized scheduling method that first
summarizes system state observations as graph structured data
and then solves the request scheduling problem by a min-cost
max-flow (MCMF) based algorithm.

We consider three main performance metrics: (𝑖) Per
frame throughput rate 𝛷 𝑓 =

[∑
𝑛∈N 𝛶𝜏 (Q ′𝑛) +𝛶𝜏 (Q̂𝑐)

]
/∑

𝑏∈B 𝛶𝜏 (Q𝑏), which reflects the short-term characteristics of
𝛷′; (𝑖𝑖) Scheduling delay 𝛷𝑑 , the time required for a schedul-
ing action; (𝑖𝑖𝑖) Scheduling cost 𝛷𝑐 , primarily in terms of
network bandwidth consumption, including additional packet
forward due to request dispatch, and bandwidth consumption
for the edge pulling service Docker images from the cloud
during service orchestration. For clarity, we perform the nec-
essary normalization for some metrics, and give their statistical
characteristics from the results of multiple experiments.

For request characteristics, they are generated based on
the real-world workload traces from Alibaba [29]: (𝑖) The
“start time” in the dataset is used to generate the request
arrival time; (𝑖𝑖) The delay requirements of each request is
generated by “end time” minus “start time” in the dataset;
(𝑖𝑖𝑖) The “task type” in the dataset is used to generate the
type of each request; (𝑖𝑣) The “plan cpu” in the dataset is
used to generate the CPU requirement of each request; (𝑣)
The “plan mem” in the dataset is used to generate the memory
requirement of each request.

0.0 2.01.51.00.5 0.0 2.01.51.00.5

0.0 2.01.51.00.5 0.0 2.01.51.00.5

0.50

1.00

0.50

1.00

0.50

1.00

0.50

1.00

N
o
rm

a
li

ze
d

 l
o
a
d

Time slot

CPU Memory

Fig. 8. Illustrative examples of 4 request arrival patterns, sampled by the
service type: (a) P1 (left top), (b) P2 (right top), (c) P3 (left bottom), (d) P4
(right bottom).

100

90

80

70

60T
h

ro
u

g
h

p
u

t
ra

te
 Φ

f
(%

)
0.00 0.25 0.50 0.75 1.00

Scheduling frame while offline training

0

20

40

60

80

100

C
D

F
(%

)

Scheduling delay Φd (ms)

10-1 100 101 102

Pattern

Pattern

Pattern

Pattern

De-

centralized

request

dispatch
Centralized

service

orchestration

103

Throughput rate Φf (%)

20 40 60 80 100

Decentralized

request

dispatch

Centralized

request

dispatch

0

Fig. 9. (a) The learning ability of KaiS against request arrivals with various
patterns (left), and (b) the scheduling delay of KaiS performing decentralized
request dispatch and centralized service orchestration (central), and (c) the
performance of KaiS using decentralized and centralized dispatch (right).

A. Learning Ability and Practicability of KaiS

KaiS should be able to learn how to cope with request
arrivals with underlying statistical patterns and even stochastic
request arrivals.

In Sec. IV-A, we sample or clip the workload dataset Ω to
obtain request arrival sequences with four patterns, as shown
in Fig. 8, viz., (𝑖) Pattern P1: periodically fluctuating CPU
sum load; (𝑖𝑖) Pattern P2: periodically fluctuating memory sum
load; (𝑖𝑖𝑖) Pattern P3: P1 with 2× fluctuating frequency; (𝑖𝑣)
Pattern P4: raw stochastic request arrivals clipped from Ω.
Moreover, CDF (Cumulative Distribution Function) is used in
Fig. 9(b) and (c), to introduce it we first define the probability
of a certain variable 𝑋 = 𝑥 as 𝑃(𝑋 = 𝑥) (𝑥 is a constant), then
the corresponding CDF is 𝐹𝑋 (𝑥) = 𝑃(𝑋 ≤ 𝑥).
• Learning ability. Fig. 9(a) gives the performance evolution

of KaiS during training for different request patterns. The
throughput rate 𝛷 𝑓 in all cases is improving over time,
demonstrating that KaiS can gradually learn to cope with
different request patterns. In particular, KaiS requires ex-
periencing at least 1.2 times more frames to achieve stable
scheduling, when coping with stochastic request arrivals (P4)
rather than others (P1−3). Nonetheless, once KaiS converges,
its scheduling performance gap for requests of different
patterns is within 4.5%.

• Decentralized or centralized dispatch? Fig. 9(b) shows that
the scheduling delay of centralized service orchestration is
almost 9× greater than that of decentralized request dispatch,
while the latter can be completed within around 10 ms.
Moreover, we maintain a cMMAC agent for each eAP in

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 11

L
o
n

g
-t

er
m

th
ro

u
g
h

p
u

t
ra

te
Φ
′

1 frame = 50× slots 1 frame = 100× slots 1 frame = 200× slots
95

90

85

80

(%)

0.1 0.25 0.5 0.1 0.25 0.5 0.1 0.25 0.5
Time scale of a scheduling slot (s)

H = 1 H = 2 H = 4 H = 8

Fig. 10. KaiS’s scheduling performance under various settings: (a) 1 frame
= 50 × slots (left), (b) 1 frame = 100 × slots (central), (c) 1 frame = 200 ×
slots (right).

the cloud to dispatch requests in a centralized manner for
comparison. From Fig. 9(c), we observe that decentralized
dispatch can bring higher throughput rates, since centralized
dispatch requires additional time to upload local observa-
tions (𝒔̂𝑏,𝑡) and wait for dispatch decisions. However, these
extra delays are not trivial for some delay-sensitive service
requests.

• Two-time-scale scheduling and stepwise orchestration. Fre-
quent scheduling may not lead to better performance. As
shown in Fig. 10, when a slot is 0.1s, cMMAC agents often
experience similar system states in adjacent slots, weakening
their learning abilities. When a slot is too large (0.5s), the
untimely dispatch also degrades performance. Besides, too
frequent service orchestration will result in more scheduling
costs and make cMMAC agents hard to converge. Though
selecting more high-value edge nodes for service orches-
tration at each frame can benefit the throughput, when
𝐻 ≥ 2, the improvement is very limited, while a larger
𝐻 leads to more scheduling costs. The capability of KaiS is
affected by the above factors. We will show that a default
configuration “0.25s (slot), 25s (frame), 𝐻 = 2” can already
yield decent performance compared to baselines. It is worth
noting that the parameter values can be affected by many
factors, such as the nature of the application, request load,
edge cluster size, network state, etc. Therefore, they are not
generic values and should be adjusted by conducting similar
experiments in advance if applied to other scenarios.

B. Impact of Load Balancing

In Fig. 11, we illustrate the scheduling performance of KaiS
trained with different settings of 𝜀, that represents the degree of
edge load balancing, in 𝑢̂𝑏,𝑡 = e−𝜆−𝜀𝜈 . KaiS achieves the best
throughput when 𝜀 = 1, while its performance sharply drops
when 𝜀 = 4. This performance gap lies in that, when 𝜀 = 4,
KaiS focuses too much on load balancing while in many cases
waiving the dispatch options that can tackle requests more
efficiently. Besides, when 𝜀 = 0, namely load balancing is not
considered, both throughput rate 𝛷 𝑓 and load balancing are
still better than the case 𝜀 = 4. This fact demonstrates that even
if we are not deliberately concerned about load balancing when
designing cMMAC, KaiS can still learn load-balancing policies
that are beneficial to improve the throughput. Nonetheless,
setting a moderate 𝜀 for the reward function can lead KaiS
to learn more effectively.

MemoryCPU

A
v

era
g

e
lo

a
d

o
f ed

g
e

n
o

d
es

(%
)

T
h

ro
u

g
h

p
u

t
ra

te
 Φ

f
(%

)

88

86

84

82

80

94

92

90

0 200 400 600 800 1000 1200 1400
Online scheduling frame

Fig. 11. Impact of load balancing on the scheduling performance of KaiS:
(a) throughput rate (left) and (b) average load of edge nodes (right).

T
h

ro
u

g
h

p
u

t
ra

te

Φ
f
(%

)

N
o

rm
a

li
ze

d

sc
h

ed
u

li
n

g
 c

o
st

 Φ
c

100

95

90

85

80

0.2

0.4

0.6

0.8

Online scheduling frame
0.0 0.2 0.4 0.6 0.8 1.0

FIFO Greedy-Delay Discounted-Experience

CPU

Memory

(%)

(%)

(%)

50

100

50

100

50

100

Load distribution

FIFO

Greedy-Delay

Discounted-Experience

Fig. 12. The performance of different dequeue strategies in terms of (a)
throughput rate (top left) and (b) cost (bottom left), and (c) the percentage of
nodes with different resource occupancy rates (right).

C. Effectiveness of Dequeue Strategy

After that, we design three dequeue strategies for com-
parison. (𝑖) First-In-First-Out (FIFO), i.e., all requests are
dequeued in the order of the time they enter the request
queue. (𝑖𝑖) Latency-Greedy, i.e., since the requests are latency-
sensitive, the requests in the request queue are sorted according
to the delay requirements, and the closer the timeout is, the
higher the queueing priority is. (𝑖𝑖𝑖) Discounted-Experience,
i.e., by calculating the predicted completion time of various
types of requests based on discounted experience, the strat-
egy prioritizes the dequeuing of the request whose predicted
completion time is close to the deadline.

As shown in Fig. 12, we compare the effectiveness of the
three dequeue strategies mentioned above. It can be found that
the difference between the three strategies in terms of cost
is relatively small and roughly at the same level. However,
in terms of throughput, the performance of FIFO is close to
Greedy-Delay and the Discounted-Experience has an obvious
advantage. The reasons for the above experimental results
are as follows. For the strategy of FIFO, the arrival time
of the request cannot correctly reflect the processing priority
of the request because different requests have varying delay
requirements. Therefore, FIFO cannot effectively handle re-
quests with extreme latency requirements, resulting in resource
waste and decreased throughput. In addition, Greedy-Delay

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 12

T
h

ro
u

g
h

p
u

t
ra

te
 Φ

f
(%

)

100

90

80

70
0.0 0.2 0.4 0.6 0.8 1.0

KaiS
Greedy-

GPG

cMMAC

-Native

Pattern Pattern Pattern Pattern

Greedy-

Native

Online scheduling frame

C
D

F
(%

)

0

20

40

60

80

100

75 80 85 90 95 100 75 80 85 90 95 100

0

20

40

60

80

100

State stacking (Sophisticate)

State stacking (Simple)

GPG (Simple)

GPG (Sophisticate)

DeepWalk (Sophisticate)

DeepWalk (Simple)

Throughput rate Φf (%)

GCN-Native (Sophisticate)

GCN-Native (Simple)

GPG (Simple)

GPG (Sophisticate)

Better Better

Fig. 13. (a) The ability of GPG to respond to pattern-fluctuating request
arrivals (top). (b, c) In different system scales, compared with other methods
of state encoding (left) and with or without custom modifications (right).

also has some shortcomings. For the requests that are about to
exceed the delay requirement, they may not be completed on
time even if they are immediately dequeued due to the short
remaining time. However, these requests have high priorities
under the dequeue strategy of Greedy-Delay, and processing
them only results in wasted resources and has a negative
effect on the throughput. In contrast, the dequeue strategy of
Discounted-Experience we designed has obvious advantages.
It can avoid the disadvantages mentioned in the other two
dequeue strategies and reduce resource waste by reasonably
arranging the queueing time of each request.

D. Role of GNN-based Service Orchestration

Next, we first combine request arrival sequences of four
patterns to construct a long series, to evaluate GPG’s ability
to respond to request arrivals with fluctuating patterns. Note
that these long request arrival sequences are constructed to
reflect scenarios with high variability.
• Coping with stochastic request arrivals. In Fig. 13(a),

presented the scheduling performance of KaiS, Greedy-
GPG, cMMAC-Native and Greedy-Native to the scenarios
with high variability. The results demonstrate the following
points: (𝑖) KaiS achieves higher average throughput rate than
the closest competing baselines, and particularly, whenever
the request arrival pattern changes, KaiS can still quickly
learn a policy adapted to the new pattern; (𝑖𝑖) For patterns
P1,2,3, cMMAC-Native can achieve scheduling performance
close to KaiS, the reason of which lies in that an effi-
cient request dispatch algorithm, e.g., cMMAC, can already
address the request arrivals with obvious patterns; (𝑖𝑖𝑖)
For the sophisticated pattern P4, i.e., requests are arriving
stochastically as the raw traces Ω, due to the lack of service
orchestration to adaptively release and capture the global
system resources, the performance of cMMAC-Native and
Greedy-Native deteriorates.

• GNN-based encoding against other methods. We show in
Fig. 13(b) the role of GNN-based system state encoding

(Sec. III-B1). For evaluation, we build two edge clusters with
different system scales: (𝑖) a default setting introduced in
Sec. IV-A; (𝑖𝑖) a complex setting with 10 k3s master nodes,
each of which manages 3-15 heterogeneous k3s edge nodes
(100 in total). In addition, we select two state encoding
methods, State stacking and DeepWalk, for comparison.
In detail, State stacking is directly stacking system states
into flat vectors. DeepWalk differs from GPG’s nonlinear
mapping based on neural networks, and it uses a random
walk strategy to generate a low-dimensional representation
of the graph [40], which has been applied in research work
about the edge-cloud network [41]. From Fig. 13(b), we
can observe the following points: (𝑖) Under different system
scales, GPG is superior to other methods, with a small gap
for DeepWalk but a large gap for State stacking; (𝑖𝑖) As the
system scale becomes larger, the gap between different state
encoding methods becomes larger; (𝑖𝑖𝑖) State stacking does
not show a significant improvement at larger system scales,
which is because the larger scale will bring more complex
states, but it cannot accurately extract state information re-
sulting in poorly trained models, which significantly reduces
the accuracy of inference and overall system efficiency.
In summary, GNN-based encoding can significantly reduce
KaiS dependence on the model complexity of NNs, which
is key to efficient and fast learning. Further, it embeds
the network latency and the system structure information,
assisting KaiS scale to large-scale edge-cloud network.

• Significance of custom modifications. GPG described in
Sec. III-B is based on the generic Graph Convolutional
Network (GCN) with custom modifications for the edge-
cloud network, and we designed GCN-Native for compari-
son to check whether the adopted custom modifications can
improve performance. In detail, GCN-Native encodes the
graph data composed of global native system states directly
based on the generic GCN, i.e., different from the message
aggregation and multi-level embedding of GPG. As shown
in Fig. 13(c), there is no significant difference between
GPG and GCN-Native under the small-scale edge-cloud
system, but GPG outperforms with the expansion of the
system scale. The above experimental results demonstrate
that the custom modifications can help KaiS efficiently
extract information from environments, which can enhance
the adaptability of KaiS to large-scale edge-cloud networks.

E. Performance Comparison with Baselines

To evaluate KaiS, we need to consider both scheduling
performance and cost. We clip the workload dataset Ω to
obtain 50 request arrival sequences with the same length and
use them to evaluate KaiS. From Fig. 14(b-c), we observe
that in almost all cases, regardless of how the loads and the
delay requirements of requests fluctuate (Fig. 14(a)), KaiS
yields a 14.3% higher throughput rate 𝛷 𝑓 and a 34.7% lower
scheduling cost 𝛷𝑐 than the closest competing baselines.

Particularly, when the request loads and delay requirements
are mild at some frames, the scheduling performance 𝛷 𝑓 of
GSP-SS can be very close to that of KaiS. However, in contrast
to KaiS, the scheduling performance of GSP-SS degrades

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 13

CPU

Memory
Delay requirement

KaiS

GSP-SS

Greedy-Native

Firmament-Native

KaiS

GSP-SS

Greedy-Native

Firmament-Native

1.0

0.0

0.5

1.0

0.0

0.5

N
o
rm

a
li

ze
d

 d
el

a
y

re
q

u
ir

em
en

t

N
o
rm

a
lized

 lo
a
d

High load Mild load and delay requirements

Stable than others Keep performance
0 250 500 750 1000 1250 1500 1750 2000

100

90

80

70

60

50

40
0 500 1000 1500 2000 0 500 1000 1500 2000

T
h

ro
u

g
h

p
u

t
ra

te
 Φ

f
(%

)

Online scheduling frame

N
o
rm

a
li

ze
d

sc
h

ed
u

li
n

g
 c

o
st

 Φ
c 1.0

0.8

0.6

0.4

0.2

0.0

Fig. 14. (a) Under stochastic request arrivals (top), (b, c) the performance of
KaiS against baselines in terms of throughput rate (left) and cost (right).

during frames with high loads: as it does not understand the
system capability to process requests, when the request load
level is high, it cannot load balancing the edge cluster to
apportion these loads, thereby narrowing available scheduling
spaces. Besides, (𝑖) KaiS adopts two-time-scale scheduling,
and unlike GSP-SS performing large-scale orchestration at
each frame, (𝑖𝑖) it only selects a fixed number 𝐻 of high-value
edge nodes to perform service orchestration limited by Ã.
Hence, the scheduling cost of KaiS is bounded in each frame,
thereby reducing the overall cost, as shown in Fig. 14(b).

VI. RELATED WORK

Though existing optimization studies explore the upper
bounds of scheduling performance, they are not applicable to
practical deployment environments (e.g., k8s) due to various
model assumptions. Besides, there exists no system design
studies to accommodate decentralized request dispatch.

A. Theoretical Analysis

Most of the current theoretical studies explore one of the
two problems, i.e., request dispatch and service orchestration.
For request dispatch, [28], [42], [43] provide scheduling algo-
rithms for different optimization objectives in edge computing
scenarios, but some key system parameters such as task size,
computing capacity of the device, and network communication
capability in their simulation models are set with static con-
stants or ranges of values. For service orchestration, [44]–[46]
combine different algorithmic design perspectives to provide
solutions, but both of them cannot take full advantage of
centralized cloud clustering and cannot sufficiently consider
hardware resource constraints.

Many studies, e.g., [30], [47], have given scheduling solu-
tions for offloading stochastic computation or service requests,
which complement our study. The studies of [10]–[12] set
a theoretical basis for jointly optimizing request dispatch
and service orchestration. However, the proposed one-shot
scheduling optimization in [11], [12] cannot address con-
tinuously arriving service requests, i.e., without considering

the long-term impact of scheduling. In [10], the authors
propose to perform optimization on two different time scales to
maximize the number of requests completed in each schedule.
Nevertheless, the long-term optimization in [10] relies on
the accurate prediction of future service requests, which is
difficult to achieve in practice. Last but not least, these
studies [10]–[12] are not practically applicable since: (𝑖) They
assume that the computing resources, network requirements,
or the processing time for specific requests can be accurately
modeled or predicted; (𝑖𝑖) The dispatch is scheduled in a
centralized manner, while it must take extra time to wait for the
aggregation of context information across the entire system.

B. System Design

Many efficient schedulers have been developed for k8s-
based cloud clusters. These studies either schedule all tasks
through minimum cost maximum flow optimization for general
workloads [39] or exploit domain-specific knowledge of, e.g.,
deep learning, to improve overall cluster utilization for specific
workloads [48]. However, they cannot accommodate decentral-
ized request dispatch at the edge, since their schedulers are
deployed in the cloud in a centralized fashion. The scheduler
proposed in [49] orchestrates services by periodically mea-
suring the latency between edge nodes to estimate whether
the expected processing delay of service requests can meet
requirements. The study most related to ours is [50], which
uses model-based RL to deal with the service orchestration and
is compatible with geographically distributed edge clusters.
Nonetheless, neither [49] nor [50] consider dispatching of
requests at the edge clusters. As far as we know, the current
studies about system design for k8s only focus on the issue
of service orchestration, while ignoring the issue of request
dispatch. Therefore, there is a lack of system design related
to the collaborative optimization of requests and services.

VII. CONCLUSION

Leveraging k8s to seamlessly merge the distributed edge
and the cloud is the future of the edge-cloud network. In
this paper, we have introduced KaiS, a scheduling frame-
work integrated with tailored learning algorithms for k8s-
based edge-cloud network, that dynamically learns scheduling
policies for request dispatch and service orchestration to
improve the long-term system throughput rate. To this end, we
tailor learning algorithms for KaiS, including a coordinated
multi-agent actor-critic algorithm designed for decentralized
request dispatch combined with a dequeue strategy based on
discounted experience, and a GNN-based policy gradient al-
gorithm for centralized service orchestration. In order to verify
the effectiveness of KaiS, we conduct systematic experiments
in the edge-cloud network. Our results show the behavior of
KaiS across different scenarios and demonstrate that KaiS can
at least enhance the average system throughput rate by 15.9%
while reducing scheduling costs by 38.4%. In addition, by
modifying the scheduling action spaces and reward functions,
KaiS is also applicable to other scheduling optimization goals,
such as minimizing the long-term system overhead.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 14

REFERENCES

[1] Y. Han, S. Shen, X. Wang, S. Wang, and V. Leung, “Tailored Learning-
Based Scheduling for Kubernetes-Oriented Edge-Cloud System,” in
IEEE INFOCOM, 2021.

[2] W. Shi, J. Cao et al., “Edge Computing: Vision and Challenges,” IEEE
Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[3] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” Commun. ACM, Apr. 2016.

[4] “KubeEdge: Kubernetes native edge computing framework (project un-
der CNCF).” [Online]. Available: https://github.com/kubeedge/kubeedge

[5] “OpenYurt: Extending your native kubernetes to edge.” [Online].
Available: https://github.com/alibaba/openyurt

[6] “Baetyl: Extend cloud computing, data and service seamlessly to edge
devices.” [Online]. Available: https://github.com/baetyl/baetyl

[7] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen, “Con-
vergence of Edge Computing and Deep Learning: A Comprehensive
Survey,” IEEE Commun. Surv. Tutor., vol. 22, no. 2, pp. 869–904, 2020.

[8] H. Tan, Z. Han, X.-y. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge-clouds,” in IEEE INFOCOM, 2017.

[9] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service Placement with
Provable Guarantees in Heterogeneous Edge Computing Systems,” in
IEEE INFOCOM, 2019.

[10] V. Farhadi, F. Mehmeti, T. He, T. L. Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service Placement and Request Scheduling for Data-
intensive Applications in Edge Clouds,” in IEEE INFOCOM, 2019.

[11] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint Service Placement and Request Routing in Multi-cell Mobile
Edge Computing Networks,” in IEEE INFOCOM, 2019.

[12] X. Ma, S. Wang et al., “Cooperative Service Caching and Workload
Scheduling in Mobile Edge Computing,” in IEEE INFOCOM, 2020.

[13] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
A. Banchs, and J. J. Alcaraz, “vrAIn: A Deep Learning Approach
Tailoring Computing and Radio Resources in Virtualized RANs,” in
ACM MobiCom, 2019.

[14] R. S. Sutton et al., Reinforcement learning: An introduction.
[15] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-

izadeh, “Learning scheduling algorithms for data processing clusters,”
in ACM SIGCOMM, 2019, pp. 270–288.

[16] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A Survey on End-Edge-
Cloud Orchestrated Network Computing Paradigms,” ACM Comput.
Surv., vol. 52, no. 6, pp. 1–36, Oct. 2019.

[17] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[18] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[19] F. Wang, F. Wang, J. Liu, R. Shea, and L. Sun, “Intelligent Video
Caching at Network Edge : A Multi-Agent Deep Reinforcement Learn-
ing Approach,” in IEEE INFOCOM, 2020.

[20] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 38, no. 2, pp. 156–172, 2008.

[21] Z. Zhang, P. Cui, and W. Zhu, “Deep Learning on Graphs: A Survey,”
IEEE Trans. Knowl. Data Eng. (Early Access), 2020.

[22] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in ICML, 2014.

[23] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, and X. Wang, “Multitask
offloading strategy optimization based on directed acyclic graphs for
edge computing,” IEEE Internet of Things Journal, vol. 9, no. 12, pp.
9367–9378, 2021.

[24] Z. Liu, J. Song, C. Qiu, X. Wang, X. Chen, Q. He, and H. Sheng,
“Hastening stream offloading of inference via multi-exit dnns in mobile
edge computing,” IEEE Transactions on Mobile Computing, 2022.

[25] W. Lv, Q. Wang, P. Yang, Y. Ding, B. Yi, Z. Wang, and C. Lin,
“Microservice deployment in edge computing based on deep q learning,”
IEEE Trans Parallel Distrib Syst, 2022.

[26] Z. Ding, S. Wang, and C. Jiang, “Kubernetes-oriented microservice
placement with dynamic resource allocation,” IEEE Trans. on Cloud
Comput., no. 01, pp. 1–1, 2022.

[27] X. Wang, Z. Ning, and S. Guo, “Multi-agent imitation learning for
pervasive edge computing: A decentralized computation offloading al-
gorithm,” IEEE Trans Parallel Distrib Syst, vol. 32, no. 2, pp. 411–425,
2021.

[28] S. Jošilo and G. Dán, “Computation offloading scheduling for periodic
tasks in mobile edge computing,” IEEE/ACM Trans. Netw., vol. 28, no. 2,
pp. 667–680, 2020.

[29] “Aliababa-clusterdata.” [Online]. Available: https://github.com/alibaba/
clusterdata

[30] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient Multi-User Computa-
tion Offloading for Mobile-Edge Cloud Computing,” IEEE/ACM Trans.
Netw., vol. 24, no. 5, pp. 2795–2808, 2016.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[32] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[33] E. Greensmith et al., “Variance reduction techniques for gradient esti-
mates in reinforcement learning,” J. Mach. Learn. Res., 2004.

[34] “Lightweight kubernetes.” [Online]. Available: https://github.com/
rancher/k3s

[35] R. Hong and A. Chandra, “Dlion: Decentralized distributed deep learn-
ing in micro-clouds,” in USENIX HotCloud, 2019.

[36] A. Barbalace, M. L. Karaoui, W. Wang, T. Xing, P. Olivier, and
B. Ravindran, “Edge computing: the case for heterogeneous-isa con-
tainer migration,” in ACM VEE, 2020, pp. 73–87.

[37] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in ACM ICML, 2009, pp. 41–48.

[38] “K8s documentation: horizontal pod autoscaler.” [On-
line]. Available: https://kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/

[39] I. Gog, M. Schwarzkop et al., “Firmament: Fast, centralized cluster
scheduling at scale,” in USENIX OSDI, 2016.

[40] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in ACM SIGKDD, 2014, pp. 701–710.

[41] X. Kong, S. Tong, H. Gao, G. Shen, K. Wang, M. Collotta, I. You, and
S. Das, “Mobile edge cooperation optimization for wearable internet of
things: a network representation-based framework,” IEEE Trans. Ind.
Informat., 2020.

[42] X. Huang, R. Yu, S. Xie, and Y. Zhang, “Task-container matching game
for computation offloading in vehicular edge computing and networks,”
IEEE Trans. Intell. Transp. Syst., 2020.

[43] L. Dong, M. N. Satpute, J. Shan, B. Liu, Y. Yu, and T. Yan, “Compu-
tation offloading for mobile-edge computing with multi-user,” in IEEE
ICDCS. IEEE, 2019, pp. 841–850.

[44] Y. Liang, J. Ge, S. Zhang, J. Wu, L. Pan, T. Zhang, and B. Luo,
“Interaction-oriented service entity placement in edge computing,” IEEE
Trans. Mob. Comput. (Early Access), 2019.

[45] P. Kayal and J. Liebeherr, “Distributed service placement in fog com-
puting: An iterative combinatorial auction approach,” in IEEE ICDCS.
IEEE, 2019, pp. 2145–2156.

[46] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware appli-
cation placement in mobile edge computing: A stochastic optimization
approach,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 4, pp. 909–
922, 2019.

[47] J. Zou, T. Hao, C. Yu, and H. Jin, “A3C-DO: A Regional Resource
Scheduling Framework based on Deep Reinforcement Learning in Edge
Scenario,” IEEE Trans. Comput., vol. 70, no. 2, pp. 228–239, Feb. 2021.

[48] W. Xiao, Z. Han et al., “Gandiva: Introspective cluster scheduling for
deep learning,” in USENIX OSDI, 2018.

[49] D. Haja, M. Szalay, B. Sonkoly, G. Pongracz, and L. Toka, “Sharpening
Kubernetes for the Edge,” in ACM SIGCOMM Posters and Demos, 2019.

[50] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with Kubernetes,” Comput. Commun.,
vol. 159, pp. 161–174, Jun. 2020.

Shihao Shen received his B.S. degree from Tianjin
University, China, in 2019. He is currently pursu-
ing the Ph.D. degree with Tianjin University. His
research interests include edge computing, cluster
scheduling, reinforcement learning, and stochastic
optimization.

https://github.com/kubeedge/kubeedge
https://github.com/alibaba/openyurt
https://github.com/baetyl/baetyl
https://github.com/alibaba/clusterdata
https://github.com/alibaba/clusterdata
https://github.com/rancher/k3s
https://github.com/rancher/k3s
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. X, APRIL 2023 15

Yiwen Han received the B.S. deqree (with Out-
standing Graduates) in communication enqineering
from Nanchang University, China, in 2015, and the
M.S. degree and the Ph.D. degree (with Outstanding
Graduates) from Tianjin University, China, in 2018
and 2022 respectively. He received the National
Scholarship of China in both 2016 and 2021. He
is currently working on information technology in
public safety, and his research interests include edge
computing, reinforcement learning, and deep learn-
ing.

Xiaofei Wang received the B.S. degree from
Huazhong University of Science and Technology,
China, and received M.S. and Ph.D. degrees from
Seoul National University, Seoul, South Korea. He
was a Postdoctoral Fellow with The University of
British Columbia, Vancouver, Canada, from 2014 to
2016. He is currently a Professor with the College
of Intelligence and Computing, Tianjin University,
Tianjin, China. Focusing on the research of edge
computing, edge intelligence, and edge systems, he
has published more than 160 technical papers in

IEEE JSAC, TCC, ToN, TWC, IoTJ, COMST, TMM, INFOCOM, ICDCS
and so on. He has received the best paper awards of IEEE ICC, ICPADS, and
in 2017, he was the recipient of the ”IEEE ComSoc Fred W. Ellersick Prize”,
and in 2022, he received the ”IEEE ComSoc Asia-Pacific Outstanding Paper
Award”.

Shiqiang Wang is a Staff Research Scientist at IBM
T. J. Watson Research Center, NY, USA. He received
his Ph.D. from Imperial College London, United
Kingdom, in 2015. His current research focuses on
the intersection of distributed computing, machine
learning, networking, and optimization, with a broad
range of applications including data analytics, edge-
based artificial intelligence (Edge AI), Internet of
Things (IoT), and future wireless systems. He has
made foundational contributions to edge computing
and federated learning that generated both academic

and industrial impact. Dr. Wang serves as an associate editor of the IEEE
Transactions on Mobile Computing and IEEE Transactions on Parallel and
Distributed Systems. He received the IEEE Communications Society (Com-
Soc) Leonard G. Abraham Prize in 2021, IEEE ComSoc Best Young Profes-
sional Award in Industry in 2021, IBM Outstanding Technical Achievement
Awards (OTAA) in 2019, 2021, and 2022, multiple Invention Achievement
Awards from IBM since 2016, Best Paper Finalist of the IEEE International
Conference on Image Processing (ICIP) 2019, and Best Student Paper Award
of the Network and Information Sciences International Technology Alliance
(NIS-ITA) in 2015.

Victor C.M. Leung is a Distinguished Professor
of Computer Science and Software Engineering at
Shenzhen University, China. He is also an Emeritus
Professor of Electrical and Computer Engineering
and Director of the Laboratory for Wireless Net-
works and Mobile Systems at the University of
British Columbia (UBC), Canada. His research is
in the broad areas of wireless networks and mobile
systems, and he has published widely in these areas.
His published works have together attracted more
than 50,000 citations. He is named in the current

Clarivate Analytics list of “Highly Cited Researchers”. Dr. Leung is serving
on the editorial boards of the IEEE Transactions on Green Communications
and Networking, IEEE Transactions on Cloud Computing, IEEE Transac-
tions on Computational Social Systems, IEEE Access, and several other
journals. He received the 1977 APEBC Gold Medal, 1977-1981 NSERC
Postgraduate Scholarships, IEEE Vancouver Section Centennial Award, 2011
UBC Killam Research Prize, 2017 Canadian Award for Telecommunications
Research, 2018 IEEE TCGCC Distinguished Technical Achievement Recog-
nition Award, and 2018 ACM MSWiM Reginald Fessenden Award. He co-
authored papers that won the 2017 IEEE ComSoc Fred W. Ellersick Prize,
2017 IEEE Systems Journal Best Paper Award, 2018 IEEE CSIM Best Journal
Paper Award, and 2019 IEEE TCGCC Best Journal Paper Award. He is a Life
Fellow of IEEE, and a Fellow of the Royal Society of Canada (Academy of
Science), Canadian Academy of Engineering, and Engineering Institute of
Canada.

	I Introduction
	I-A Background and Problem Statement
	I-B Limitations of Prior Art and Motivation
	I-C Technical Challenges and Solutions
	I-D Main Contributions

	II Scheduling Problem Statement
	II-A Edge-Cloud network
	II-B Improve Long-term System Throughput

	III Algorithm Design
	III-A Tailored MADRL for Decentralized Request Dispatch
	III-A1 Markov Game Formulation
	III-A2 Coordinated Multi-Agent Actor-Critic
	III-A3 Dequeue Strategy for Request Priority

	III-B GNN-based Learning for Service Orchestration
	III-B1 GNN-based System State Encoding
	III-B2 Stepwise Scheduling for Service Orchestration

	IV Implementation Design
	IV-A System Setup
	IV-B Main Components of KaiS
	IV-C Training Settings

	V Performance Evaluation
	V-A Learning Ability and Practicability of KaiS
	V-B Impact of Load Balancing
	V-C Effectiveness of Dequeue Strategy
	V-D Role of GNN-based Service Orchestration
	V-E Performance Comparison with Baselines

	VI Related Work
	VI-A Theoretical Analysis
	VI-B System Design

	VII Conclusion
	References
	Biographies
	Shihao Shen
	Yiwen Han
	Xiaofei Wang
	Shiqiang Wang
	Victor C.M. Leung

