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Abstract—Network models are an essential block of modern
networks. For example, they are widely used in network plan-
ning and optimization. However, as networks increase in scale
and complexity, some models present limitations, such as the
assumption of Markovian traffic in queuing theory models, or the
high computational cost of network simulators. Recent advances
in machine learning, such as Graph Neural Networks (GNN),
are enabling a new generation of network models that are data-
driven and can learn complex non-linear behaviors. In this paper,
we present RouteNet-Fermi, a custom GNN model that shares
the same goals as Queuing Theory, while being considerably
more accurate in the presence of realistic traffic models. The
proposed model predicts accurately the delay, jitter, and packet
loss of a network. We have tested RouteNet-Fermi in networks of
increasing size (up to 300 nodes), including samples with mixed
traffic profiles — e.g., with complex non-Markovian models —
and arbitrary routing and queue scheduling configurations. Qur
experimental results show that RouteNet-Fermi achieves similar
accuracy as computationally-expensive packet-level simulators
and scales accurately to larger networks. Our model produces
delay estimates with a mean relative error of 6.24% when
applied to a test dataset of 1,000 samples, including network
topologies one order of magnitude larger than those seen during
training. Finally, we have also evaluated RouteNet-Fermi with
measurements from a physical testbed and packet traces from a
real-life network.

Index Terms—Network Modeling, Graph Neural Networks,
Queuing Theory.

I. INTRODUCTION

ETWORK modeling is arguably one of the key tools

when designing, building, and evaluating computer net-
works, even since the early days of networking [1]. Network
models are used in protocol design, performance evaluation,
or network planning, just to cite a few examples. The two
most widespread network modeling techniques are analytical
models based on Queuing Theory (QT), and packet-level
simulators [2], [3].
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However, the evolution of computer networks, especially
concerning complexity and traffic characteristics, highlights
some of the limitations of classical modeling techniques.
Despite their tremendous success and widespread usage, some
scenarios require more advanced techniques capable of accu-
rately modeling complex traffic characteristics, while scaling
to large real-world networks.

Especially, two relevant applications can benefit from ad-
vanced network modeling techniques: Network Digital Twins
(NDT) [4], and network optimization tools. Commonly, an
NDT is referred to as a virtual replica of a physical net-
work that can accurately mimic its behavior and can make
performance predictions for any given input condition (e.g.,
traffic, topology change, or new routing configuration). In
other words, an NDT is an accurate network model that
can support a wide range of network configurations and
that can accurately model the complex non-linear behaviors
behind real-world networks. As a result, NDTs can be used to
produce accurate performance predictions, carry out what-if
analysis, or perform network optimization by pairing it with
an optimization algorithm [4], [5].

In the context of network optimization, we can only op-
timize what we can model. Optimization algorithms operate
by searching the network configuration space (e.g., to find an
alternative routing scheme). For each configuration, a network
model is used to estimate the resulting performance to see if
it fulfills the optimization goal (e.g., minimize delay [6]). To
achieve efficient online optimization, it is essential an accurate
and fast network model.

State-of-the-art modeling techniques have important limita-
tions in effectively supporting the stringent requirements of
current packet-switched networks. Queuing Theory imposes
strong assumptions on the packet arrival process (Poisson
traffic generation), which often is not sufficient to model
real-world networks [7]. Internet traffic has been extensively
analyzed in the past two decades [8]-[12] and, despite the
community has not agreed on a universal model, there is
consensus that in general aggregated traffic shows strong
autocorrelation and a heavy-tail [13].

Alternatively, packet-level simulators can accurately model
networks. However, this comes at a high computational cost.
The cost of a simulator depends linearly on the number of
packets forwarded, which can be in the range of millions per
second on a single 1Gbps link. In consequence, they are slow
and impractical when considering large networks with realistic
traffic volumes. This also severely limits its applicability to
online network optimization, given the hard time constraints
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Fig. 1: Black-box representation of RouteNet-F.

of such types of applications.

In this context, Deep Learning (DL) offers an extraordinary
set of techniques to build accurate data-driven network models.
DL models can be trained with real data, without making any
assumptions about physical networks. This enables building
models with unprecedented accuracy by modeling the entire
range of non-linear and multidimensional characteristics.

In this paper, we first make a systematic analysis of
the performance of DL techniques for network modeling,
using classical discrete-event network simulators as a base-
line. Specifically, we analyze the performance of Multilayer
Perceptron-based (MLP), Recurrent Neural Network-based
(RNN), and Graph Neural Network-based (GNN) models. We
find that classical DL techniques, such as MLPs and RNNs,
are not practical enough for network modeling as they fail to
provide accurate estimates when the network scenario differs
from the examples seen during training (e.g., link failure).
More recently, GNNs have been proposed as a novel neural
network architecture specifically designed to learn over graph-
structured data. They have been successfully used in other
domains, such as quantum chemistry [14] or logistics [15].
However, in our analysis, we find that standard GNNs [14]
do not work well for network modeling and that we need a
custom GNN architecture to model computer networks.

As a result, we propose RouteNet-Fermi (RouteNet-F), a
GNN architecture for network modeling. RouteNet-F shares
the same goals as Queuing Theory. It provides performance
estimates (delay, jitter, and packet loss) on given network
scenarios (Figure 1) with remarkable accuracy and speed. The
proposed model is not limited to Markovian traffic as Queuing
Theory; it supports arbitrary models (including autocorrelated
processes) which better represent the properties of real-world
traffic [13]. Interestingly, it also overcomes one of the main
limitations of DL-based models: RouteNet-F generalizes and
provides accurate estimates in network scenarios not seen in
training (e.g., different topologies, traffic matrices, routing
configurations). We benchmark RouteNet-F against a state-of-
the-art DL-based model (MimicNet [16]) and with a state-
of-the-art queuing theory model. We show that our model
outperforms both baselines in all the scenarios, achieving a
5.64% error when tested in a dataset with packet traces coming
from a real-world network, an 11% error when evaluated in a
physical testbed, and a 6.24% error when estimating the delay
on networks over a large dataset with 1,000 network samples,
with topologies ranging from 50 to 300 nodes.

As any Deep Learning model [16]-[18], RouteNet-Fermi
does not provide strong mathematical performance guarantees.

However, the error of the estimates produced by the model is
strongly bounded. The minimum estimated delay assumes no
queuing across the path while the maximum assumes that all
the queues are full. RouteNet-Fermi will not produce delay
estimates outside these bounds.

The implementation of the model used in the evaluation of
this paper is publicly available at [19].

II. CHALLENGES OF DATA-DRIVEN NETWORK MODELING

This section describes the main challenges that data-driven
solutions need to address for network modeling. These chal-
lenges drove the core design of RouteNet-Fermi.

Traffic models: Networks carry different types of traffic,
so, supporting arbitrary stochastic traffic models is crucial.
Experimental observations show that traffic on the Internet has
strong autocorrelation and heavy-tails [13]. In this context, it is
well-known that the main limitation of Queuing Theory is that
it fails to provide accurate estimates on realistic Markovian
models with continuous state space, or non-Markovian traffic
models. The challenge for DL-based modeling is: How can
we design a neural network architecture that can accurately
model realistic traffic models?

Training and Generalization: One of the main differences
between analytical modeling (e.g., QT) and data-driven model-
ing is that the latter requires training. In DL, training involves
obtaining a representative dataset of network measurements.
The dataset needs to include a broad spectrum of network op-
erational regimes, ranging from different congestion levels to
various routing configurations, among others. In other words,
the DL model can predict only scenarios it has previously seen.
Note that this is a common property of all neural network
architectures.

Ideally, we would obtain this training dataset from a pro-
duction network, since they commonly have systems in place
to measure performance. However, it would be difficult to
obtain a representative dataset. As we mentioned previously,
we would need to measure the production network when it
is experiencing extreme performance degradation as the result
of link failures, incorrect configurations, severe congestion,
etc. However, these situations are not common in production
networks, which limits the ability to generate the training
dataset. A reasonable alternative is creating these datasets in
controlled testbeds, where it is possible to use different traffic
models, implement a broad set of configurations, and replicate
a wide range of network failures. Thus, the DL model can
be trained on samples from this testbed and then, applied to
production networks. Hence, the research challenge is: how
to design a DL model that can provide accurate estimates in
networks not seen during training? This includes topologies,
traffic, and configurations (e.g., queue scheduling, routing)
different from those seen in the training network testbed.

Leveraging a testbed that is smaller than a production
network creates another challenge: the generalization to larger
networks. Real-world networks include hundreds or thousands
of nodes, and building a network testbed at this scale is
typically unfeasible. As a result, the DL model should be able
to learn from datasets with samples of small network testbeds



and predict metrics for considerably larger networks, e.g., by a
factor of 10-100x. Generalizing to larger networks, or graphs
in general, is currently an open research challenge in the field
of GNNs [20], [21].

Quality of Service and Scheduling policies: A key
requirement of modern networks is supporting Quality of
Service (QoS), usually implemented via scheduling policies
and mappings of traffic flows to QoS classes. Hence, a DL
model should be able to predict the performance of the input
traffic flows with their associated QoS class, similarly to how
QT models support a wide range of scheduling policies [22],
[23].

III. LIMITATIONS OF CURRENT NETWORK MODELING
TECHNIQUES

This section explores the performance of different DL
models with respect to an accurate packet-level simulator and
discusses the main limitations of existing network modeling
techniques.

A. Simulation as a Network Modeling Technique

Network simulators reproduce the network behavior at the
granularity of packet events [3], [24]. This way, they can
offer excellent accuracy and can be easily extended to include
virtually any feature, such as packet scheduling, wireless
networks, etc. Some simulators, such as OMNET++ [25] or
ns3 [26], are widely used and maintained.

However, their main limitation is the simulation time,
especially for networks with high-speed links (10Gbps and
above). Hence, depending on the amount of traffic found in
the target network, it may become unfeasible to simulate the
network [16].

To illustrate this limitation, we simulate different topologies
using the OMNET++ simulator to calculate the delay of a set
of source-destination flows [CPU Intel Xeon Silver 4210R @
2.40 GHz]. Network topologies are artificially generated using
the Power-Law Out-Degree Algorithm from [27] and a traffic
distribution that follows a Poisson process.

Figure 2 shows the simulation time of such networks
depending on the number of events. Here, an event refers
to a transition in the status of the network (e.g., adding a
new packet to a queue). We can see that the simulation time
increases linearly and that simulating 4 billion events takes
more than 11 hours. Although 4 billion events may appear a
large figure, consider that a 10 Gbps link transmitting regular
Ethernet frames translates to ~820k events per second or 247
million events in 5 minutes of network activity for a single
link. For example, in our experiments, the simulator takes
around 8h to compute the performance metrics of a 300-node
network.

So, the main limitation of packet-level simulators is the
simulation time. On the contrary, packet simulators offer
unrivaled accuracy and can simulate virtually any scenario,
from different routing configurations to replaying packet traces
to simulate unknown traffic models. Because of this, hereafter,
we consider the results from the simulator as the ground truth
for the evaluations in this paper.
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Fig. 2: Simulation time depending on the number of processed
events.

B. Neural Networks as Network Modeling Techniques

The following sections review the performance of three
common Neural Network (NN) architectures in the order
of increasing complexity. First, we evaluate the Multilayer
Perceptron, one of the simplest NNs. Next, Recurrent Neural
Networks which are designed to work with sequences. Finally,
we directly input the network into a Graph Neural Network
specifically designed to work with graphs. The objective is
to create a network model with the NN that can predict
performance parameters for input networks with a wide range
of characteristics. We are especially interested in the following
parameters:

o Accuracy: How close is the prediction to simulation
values?

« Different Routing: Does the accuracy degrade if we
change the routing configuration?

« Link failures: Quantify if link failures affect the quality
of predictions.

We train and test the three neural networks with the same
dataset, obtained from simulations with OMNET++. The in-
put values are the network characteristics (topology, routing
configuration, traffic model and intensity, etc), and the output
values are the delay for each path. Hence, all the errors are
computed with respect to the values of the simulator. We use
four different datasets:

o Traffic Models: In it, we consider traffic models that
are non-Poisson, auto-correlated, and with heavy tails.
Table IV details the different traffic models.

« Same Routing: Where the testing and training datasets
contain networks with the same routing configurations.

» Different Routing: Where the training and testing
datasets contain networks with different routing config-
urations.

o Link failures: Here, we iteratively remove one link of
the topology to replicate a link failure, until we transform
the network graph into a connected acyclic graph. This
scenario is the most complex since a link failure triggers
a change both in the routing and the topology.

To compare the different techniques, we compute the pre-
diction error with respect to the accurate performance values
produced by the simulator. Particularly we use the following
error metrics: (i) Mean Absolute Percentage Error (MAPE),



TABLE I: Delay prediction using an MLP and an RNN for
different traffic models. The error is computed w.r.t. simulation
results.

MLP RNN

MAPE MSE MAE R? MAPE MSE MAE R?
Poisson 123% 0103 0.122 0801 10.0% 0.071 0084 0.862
Deterministic 239% 0309 0.160 0044 13.1% 0.083 0.070  0.743
On-Off 304% 0438 0240 0002 152% 0.065 0.082  0.851
A. Exponentials ~ 84.5%  1.013 0308 -1.935 140% 0.070 0072 0.7961
M. Exponentials ~ 57.1% 1058 0363 -1.679 57.8% 0.528 0457 -0.338
Mixed 412% 0351 0269 0052 17.5% 0.036  0.080  0.900

(if) Mean Squared Error (MSE), (iii) Mean Absolute Error
(MAE), and (iv) Coefficient of Determination (R?).

C. Multilayer Perceptron

A Multilayer Perceptron (MLP) is a basic kind of NN from
the family of feedforward NNs [28]. In short, input data is
propagated unidirectionally from the input neuron layer to the
output layer. There may be an arbitrary number of hidden
layers between these two layers, and this determines how deep
is the NN.

1) Design: Several works have leveraged an MLP to predict
network performance metrics [29]-[31]. Based on this work,
we have built an MLP to predict the mean delay for each
source-destination pair of nodes of a given network. The MLP
has 8,280 inputs and two hidden layers with 4096 neurons and
uses Rectified Linear Units (ReLLU) as activation functions.

2) Evaluation: Table I presents the error when predicting
the network delay with respect to the results produced by the
network simulator, including several traffic models. We can see
that the MLP offers good accuracy for Poisson traffic, but the
error increases significantly for the rest of the traffic models
showing a MAPE between 23% and 84%.

Likewise, Table II shows the error of predicting the delay for
the datasets with the same/different routing and link failures.
We can see that the MLP cannot offer an accurate estimate
when predicting the delay of a previously unseen routing
configuration (1150% of error). This is due to the internal
architecture of the MLP. During training, the MLP performs
overfitting, meaning that the model only learns about the initial
network topology used for training and not for any others.
When we input a new topology, it does not have sufficient
information to make an accurate prediction.

D. Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a more advanced
type of NN. They have shown excellent performance when

TABLE II: Delay prediction using an MLP and an RNN for
the same and different routing configurations w.r.t. those seen
during training, and considering various link failures. The error
is relative to simulation results.

MLP RNN
MAPE MSE MAE R? MAPE MSE MAE R?
Same Routing  12.3%  0.103  0.122  0.801  10.0% 0071 0.084  0.862
Diff. Routing ~ 1150% 283 296  -40.0  30.5% 0553 0282 0.197
Link Failures ~ 125%  3.69  1.03  -0.191 63.8% 2971 0870 0.0417
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processing sequential data [32]. This is mainly because they
connect some layers to the previous ones, which gives them
the ability to keep the state along sequences.

1) Design: Several works [33]-[35] propose RNNs as a
way to predict network performance. In this experiment, we
build a sequential model with an RNN (Figure 4). Particularly,
we choose a Gated Recurrent Unit (GRU).

We initialize the state of each path with the sequence of
nodes in the path and the features of the traffic model (e.g.,
packets, bandwidth, A, €, @, or on-off time), and we update
the state of each link across the path. As an example, Figure 4
shows the structure of an RNN to model the sample network
from Figure 3. We can see that the path of flow; is composed
of L; and Lj3. Once the path state has been computed, an MLP
with 2 hidden layers computes the final output.

2) Evaluation: We train the RNN with the same datasets
as the previous subsection. Although the RNN supports better
different traffic models than the MLP (Table I), it still struggles
to produce accurate predictions when there are routing or
topology changes (Table II), especially for different routing
configurations (30% error), or when removing links (63%).

The reason behind the lack of capability of RNNs to
understand routing changes and link failures is due to its
internal architecture. RNNs can accommodate different end-
to-end paths in the network (i.e., series of routers and links),
thereby, making it easier to perform predictions for paths never
seen in the training phase. However, this structure cannot store
and update the status of individual links in the topology due
to the inter-dependency between links and traffic flows (i.e.,
routing). In other words, if the status of a link changes, it
affects several flows, and vice-versa. This generates circular
dependencies that RNNs are not able to model (see more
details in Sec. IV).



E. Graph Neural Networks

Networks are fundamentally represented as graphs, where
networking devices are the graph nodes and the links connect-
ing devices are the graph edges. This interconnection translates
to the fact that the different elements in the network are
dependent on each other. Since most standard DL models (e.g.,
MLP, RNN) assume independent flow-level data points. This
renders them inaccurate for our use case. Hence, a model that
is capable of processing directly the network graph is arguably
more desirable for network modeling, because it will be able,
not only to obtain information from the individual nodes and
edges but also from the underlying data structure (i.e., the
relationships between the different elements) [36].

GNNs [37] are a type of neural network designed to work
with graph-structured data. They have two key characteristics
that make them a good candidate for a network model. First,
GNNs have the ability to store node-level hidden states and
update them in each iteration. Second, they process the input
data directly as a graph, both during training and inference.
This means that the internal structure of the neural network
depends on the input graph. Hence, they can dynamically
adapt to the underlying dependencies between the different
elements of a network [38], [39]. The latter is of special
importance, since changes in the network graph (e.g., routing
modifications, link failures) are the main limitation of other
DL-based models, such as MLPs and RNNs, as we have seen
in the previous subsections.

In this section, we build a standard GNN model to predict
the mean per-flow delay in networks.

1) Design: We implement a Message-Passing Neural Net-
work (MPNN), a powerful state-of-the-art GNN architecture
that can efficiently capture dependencies between the elements
of input graphs [14]. We define a graph G described as a set of
vertices (or nodes) E and a set of edges (or links) V. Each node
has a set of features x,, and edges also have some features
e,w. The execution of an MPNN can be divided into three
phases, an initialization phase, a message-passing phase, and
a readout phase. The first one defines a hidden state (4°) using
the node features (x,). The second one is an iterative process
that runs for T time steps and that is defined by two functions:
the message function M, and the update function U;. During
this phase, node hidden states (), represented as fixed-size
vectors, attempt to encode some meaningful information, and
are iteratively updated by exchanging messages m’*! with their
neighbors:

mit = Y M R eu) (1)
weN (v)
W= U (b my) )

where N(v) represents the neighbors of v in graph G.
Finally, the readout phase computes the output vector using
a readout function R that takes as input the final hidden
states hl:

$=R({hlveG}) 3)

In our case, the input of the MPNN is the network topol-
ogy graph. It performs 7=4 message-passing iterations and
the hidden state dimension is 32. The readout function is
implemented with a two-layer fully connected NN with ReLUs
as activation functions for the hidden layers and a linear
activation for the output layer.

2) Evaluation: We evaluate the accuracy of the MPNN
model when predicting the mean flow-level delay, as in previ-
ous subsections. Table III presents the delay prediction errors
in the same scenarios of the previous experiments: routing
configurations, both seen and not seen during training, and link
failures. Unfortunately, the results are similar to those of the
RNN: the routing configurations from the training dataset are
easy to predict, with an error as low as 3%, while new routing
configurations and link failures increase the error significantly
(respectively, 50% and 125% of MAPE), thus showing even
larger errors than the RNN model.

The main reason behind the poor accuracy of the MPNN
model is that the architecture of this model is directly built
based on the network topology without taking into account
the paths traversed by different traffic flows (i.e., the routing
configuration), which is a fundamental property to understand
inter-dependencies between flows and links. More specifically,
when we test the model with the same routing configuration,
it learns the relationships between flows and links. However,
when we change this configuration, those previously-learned
relationships are no longer valid, and the model is not able
to capture the relationships between elements in the new
scenario.

This intuition is better understood with an extreme packet
loss example. Let’s suppose we have the sample network in
Figure 3. The first flow (Flow;) is transmitting at a rate of
2Gbps, and the second one (Flow;) is transmitting at a rate
of 0.5Gbps. As we can see, L; has a maximum capacity
of 0.5Gbps. Because of this, Flow; will experience a large
packet loss, which causes the traffic of Flow; at L3 to be
at most 0.5Gbps. Hence, instead of having 2Gbps+0.5Gbps
of aggregated traffic at L, it will only have 1Gbps. Now,
Flow,, which initially could have experienced a lot of network
congestion when going through the 2Gbps link will experience
none as the state of the link changed.

Knowing this, we can see how there is a circular dependency
between the flows and links found in the network. At the same
time, the state of a flow depends on the state of the links they
traverse, and the state of the links depends on the state of the
flows passing through them.

If we apply a standard GNN over this example, the state of
each flow is not updated at each hop. Therefore, the GNN does

TABLE III: Delay prediction using an MPNN for the same
and different routing configurations w.r.t. those seen during
training, and considering various link failures. The error is
relative to simulation results.

MAPE MSE MAE  R?
Same Routing 3.0% 0.002 0.016 0.994
Diff. Routing ~ 50.0%  0.609 0.307 0.115
Link Failures 82.2% 341 0.949  -0.099
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at small scales and, therefore, are fast as well.

not have a structure that represents how the delay depends on
both the links (topology) and the flows that go through each
specific router.

Hence, we conclude that feeding the MPNN directly with
the network topology graph is not sufficient to accurately
perform network modeling. However, more complex and cus-
tomized GNN-based architectures can still be powerful for
modeling the inter-dependencies between the different network
elements and generalizing over new network scenarios by
exploiting the underlying graph structure.

IV. ROUTENET-FERMI

This section describes the internal GNN architecture of
RouteNet-Fermi (hereafter referred to as RouteNet-F). This
GNN-based model implements a custom three-stage message-
passing algorithm that represents key elements for network
modeling (e.g., topology, queues, traffic flows). RouteNet-F
supports a wide variety of features present in real-world
networks, such as multi-queue QoS scheduling policies or
complex traffic models.

Figure 1 shows a black-box representation of RouteNet-F.
The input of this model is a network sample, defined by: a
network topology, a routing scheme (flow level), a queuing
configuration (interface level), and a set of traffic flows char-
acterized by some parameters. As output, the model produces
estimates of relevant performance metrics at a flow-level
granularity (e.g., delay, jitter, packet loss). Figure 5 shows
the end-to-end workflow to train, validate, and use RouteNet-
Fermi.

A. Model Description

RouteNet-F is based on two main design principles:
(i) finding a good representation of the network components
supported by the model (e.g., traffic models, routing, queue
scheduling), and (if) exploit scale-independent features of
networks to accurately scale to larger networks unseen during
training. These two aspects are further discussed in the next
two subsections.

B. Representing network components and their relationships

First, let us define a network as a set of source-destination

flows & = {fi : i € (1,..,nf)}, a set of queues
on Q@ = {q; Jj € (1,..,n4)}, and a set of links
L={l;:ke(l,...,n;)}. According to the routing configura-

tion, flows follow a source-destination path. Hence, we define
flows as sequences of tuples with the queues and links they
traverse f;={(g"!,1""), ..., (¢"™,1>M)}, where M is the path
length of the flow (number of links). Let us also define Q¢ (q;)
and Ly (l) as functions that respectively return all the flows
passing through a queue g or a link /;. Also, L, (/x) is defined
as a function that returns the queues g;, € Q injecting traffic
into link /. (i.e., the queues at the output port to which the
link is connected).

Following the previous notation, RouteNet-F considers an
input graph with three main components: (i) the physical
links L that shape the network topology, (if) the queues Q
at each output port of network devices, and (iii) the active
flows ¥ in the network, which follow some specific src-dst
path (i.e., sequences of queues and links). Traffic in flows is
generated from a given traffic model. From this, we can extract
three basic principles:

1) The state of flows (e.g., delay, throughput, packet loss) is
affected by the state of the queues and links they traverse
(e.g., queue/link utilization).

2) The state of queues (e.g., occupation) depends on the state
of the flows passing through them (e.g., traffic volume,
burstiness).

3) The state of links (e.g., utilization) depends on the states
of the queues that can potentially inject traffic into the
link, and the queue scheduling policy applied over these
queues (e.g., Strict Priority, Weighted Fair Queuing).

Formally, these principles can be formulated as follows:

h’fz :Gf(hqi,l 5 hli,l 5 eeey h’q"~M’ h’li‘M) (4)
hg, = Gq(hg . hp).  fi € Q(q)) ©)
hi, = Gi(hg,,....hq,), qj € Lq(l}) ©)

Where G¢, G4, and G; are some unknown functions, and
h¢, hy and h; are latent variables that encode information
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Fig. 6: Schematic representation of RouteNet-F.

about the state of flows ¥, queues Q, and links £ respec-
tively. Note that these principles define a circular dependency
between the three network components (¥, Q, and £) that
must be solved to find latent representations satisfying the
equations above.

To solve the circular dependencies defined in Equa-
tions (4)-(6), RouteNet-F implements a three-stage message
passing algorithm that combines the states of flows ¥, queues
Q, and links £, and updates them iteratively. Finally, it
combines these states to estimate flow-level delays, jitters,
and packet loss. Figure 6 shows a schematic representation
of the internal three-stage message-passing architecture of this
model.

Algorithm 1 describes the architecture of RouteNet-F. First,
hidden states h ¢, h,, and h; are initialized using the functions
HSy¢, HS,, and HS; respectively (lines 1-3). These functions
encode the initial features x 7, x,, and x; into fixed-size vec-
tors that represent feature embeddings. The initial features of
flows x ¢ are defined as an n-element vector that characterizes
the flow’s traffic. For example, in our case, this vector includes
the average traffic volume transmitted in the flow A, and some
specific parameters of the traffic model, such as 7,, and t, ¢
for On-Off traffic distributions or @ and S for exponential
models. We set the initial features of links x; as (i) the link
load x;,,_,, and (ii) the scheduling policy at the output port
of the link (FIFO, Strict Priority, Weighted Fair Queuing, or
Deficit Round Robin). For the scheduling policy, we use a
one-hot encoding. The calculation of the link load x,, is
defined in more detail later (Sec. IV-C). Lastly, the initial
features of queues x, include: (i) the buffer size, (ii) the
queue order/priority level (one-hot encoding), and (iii) the
weight (only for Weighted Fair Queuing or Deficit Round
Robin configurations).

Once all the hidden states are initialized, the message-
passing phase starts. This phase is executed for T iterations
(loop from line 4), where T is a configurable parameter of the
model. Each message passing iteration is divided into three
stages, which represent respectively the message exchanges
and updates of the hidden states of flows hy (lines 5-10),
queues h, (lines 11-14), and links h; (lines 15-19).

Finally, the loop from line 20 computes the different flow-
level performance metrics. Here, function Ry, (line 24) and
Ry; (line 28) represent a readout function that is individually
applied to the hidden states of flows as they pass through

Algorithm 1 Internal architecture of RouteNet-F.

Input: 7, Q, L, =5, z 4, ;
Output: j,

1: for each f € ¥ do hY — HSy(zy)
2: for each g € Q do h) — HS,(x,)
3: for each | € £ do h) — HS;(x))

4: for t = 0 to T-1 do > Message Passing Phase
S: for each f € ¥ do > Message Passing on Flows
6: o[-, ]) « FRNN(h’}, [.-D > FRNN Initialization
7: for each (q,1) € f do’

8: h’fl — 0O([hL, h}]) > Flow: Aggr. and Update
. =1+l 3 . :
9: me e hf’l > Flow: Message Generation

. t+1 t
10: hff' — hf,l
11: for each ¢ € Q do > Message Passing on Queues
12: M"I” — Zfle(q) rTl}“q > Queue: Aggregation
13: h“qJrl —Ug4(RL, Mfz”) > Queue: Update
14: 1712*1 — hifl > Queue: Message Generation
15: for each [ € £ do > Message Passing on Links
16: ¥(-) &« LRNN (hj, ") > LRNN Initialization
17: for each g € L, (1) do
18: hy ‘P(r?til“) > Link: Aggr. and Update
19: hI*l — hi

20: for each f € F do > Flow: Readout

21: 3£, =0 > Initializing the flow delay
22: ¥y 1= 0 > Initializing the flow jitter
23: for each (q,1) € f do

24: c{q =Ry, (h’}:l)/mlc > Queuing delay
25: dy =g, [T, > Transmission delay
26: dAlink = qu + dAt

27: Sra =3+ drink > Sum of link delays along the flow
28: yfj = jzfj +Rfj (iLJfJ)/;clC > Sum of link jitters along the flow

29: ¥ =Ry (hjf) > Packet loss prediction

a specific link (hy ;). The output of these functions is the
average queue occupancy and the delay variation (i.e., jitter)
seen by the flow at that link. Note that different flows may
experience different queue occupancies and jitter depending
on their traffic properties (e.g., traffic volume, burstiness).
Lastly, these link-level delay and jitter estimates are combined
to compute the final flow-level delay J, and jitter y,. This
calculation is further described in Section IV-C. Similarly, Ry,
(line 29) is applied to the hidden states of flows &y to compute
the per-flow packet loss rate.

C. Scaling to larger networks: scale-independent features

Data-driven models typically need to see edge cases that
are uncommon in real-world production networks (e.g., link
failures). This means that collecting data directly from produc-
tion networks requires testing configurations that might break
the correct operation of the network. As a result, data-driven
network models should be typically trained with data from
controlled network testbeds. However, network testbeds are
usually much smaller than real networks. In this context, it is
essential for our model to effectively scale to larger networks
than those seen during the training phase.



It is well-known that GNN models have an unprecedented
capability to generalize over graph-structured data [38], [39].
In the context of scaling to larger graphs, it is also known that
GNNs keep good generalization capabilities as long as the
spectral properties of graphs are similar to those seen during
training [40]. In our particular case, the internal message
passing architecture of RouteNet-F generalizes accurately to
graphs with similar structures (e.g., a similar number of queues
at output ports, or a similar number of flows aggregated
in queues). In practice, this means that RouteNet-F should
be able to generalize to larger topologies when trained with
smaller ones, as long as the networks used for training had the
same spectral properties as the larger ones. More details about
this can be found in Section V, which presents an empirical
evaluation of RouteNet-F’s generalization capabilities).

However, scaling to larger networks often entails other
aspects beyond the topology size. Two key elements require
special attention: link capacities and the range of output
variables. First, larger networks naturally have larger link
capacities. This in turn results in larger traffic aggregates on
core links of the network. Such traffic intensities may fall in
ranges not seen in smaller topologies. Second, as the network
scales, it inherently has longer end-to-end paths, which result
in increased end-to-end path delays. Again, some of these
delays may fall outside the range of delays used when training
with smaller topologies. These out-of-range parameters require
devising mechanisms to effectively scale on them.

1) Scaling to larger link capacities: In RouteNet-F (Algo-
rithm 1), the most straightforward way to represent the link
capacity x;. would be as an initial feature of the links’ hidden
states x;. However, the fact that «;, would be encoded as a nu-
merical input value would then introduce inherent limitations
to scale to larger capacity values. Indeed, scaling to out-of-
distribution numerical values is recognized as a generalized
limiting factor among all neural network models [41], [42].

Our approach is to exploit particularities from the network
domain to find scale-independent representations for link ca-
pacities. These representations define link capacities and how
they relate to other link-level features that impact performance
(e.g., the aggregated traffic in the link), so they can be used
to accurately estimate performance metrics (e.g., delay, jitter,
packet loss). Inspired by traditional QT methods, we aim to
encode in RouteNet-F the relative ratio between the arrival
rates on links (based on the traffic aggregated in the link) and
the service times (based on the link capacity). This enables
the possibility to infer the output performance metrics of our
model from scale-independent values. As a result, instead of
directly using the numerical link capacity values, we introduce
the link load xy,,,, in the initial feature vector of links x;.
Particularly, we compute the link load as follows:

1
xllnad = ; Z /lf (7)

¢ feLy(y)

Where Ay is the average traffic volume of the flows that
traverse the link /;, and x;, is the link capacity. In other words,
we compute the link load as the summation of all the traffic
that would traverse the link without considering possible losses

and divide it by the link capacity. Then, through the iterative
message-passing process, the GNN model updates the load
values after estimating the packet loss.

2) Different output ranges: The previous mechanism en-
ables us to keep scale-independent features along with the
message-passing phase of our model (loop lines 4-19 in
Alg. 1), while it is still needed to extend the scale indepen-
dence to the output layer of the model. Note that in larger
networks, delay values can vary with respect to those seen
during the training in smaller networks. This is because flows
can go through links with higher capacities, or because flows
can potentially traverse longer paths. This again poses the
challenge of generalizing to ranges of delays not seen in the
training phase. Equivalently, this also applies to the prediction
of flow jitter and packet loss.

To overcome this potential limitation, RouteNet-F infers de-
lays indirectly from the mean queue occupancy on forwarding
devices. Based on traditional QT models, RouteNet-F infers
the flow delay as a linear combination of the estimated queuing
delays (line 24) and the transmission delays after crossing a
link (line 25). Note that a potential advantage with respect to
traditional QT models is that the queue occupancy estimates
produced by RouteNet-F can be more accurate, especially for
autocorrelated and heavy-tail traffic models.

We call the values produced by the Ry, function the
effective queue occupancy, which is defined as the mean queue
occupancy experienced by a given flow f; as it passes through
a specific forwarding device. More precisely, this value is the
average number of bits that have to be served on a specific
output port before the packets of flow f; are transmitted. As
an example, let us consider the case of packets from a flow
with low priority, which are mapped to low-priority queues.
If forwarding devices implement a multi-queue Strict Priority
scheduling policy, the effective queue occupancy seen by those
low-priority packets should include all the bits to be served in
the queues with higher priority.

The prediction of this effective queue occupancy — instead
of directly predicting delays — helps overcome the practical
limitation of producing out-of-range delay values with the
readout function Ry, . In this case, the values produced by Ry,
are bounded between 0 and the maximum buffer size at the
output ports of forwarding devices. Note that the buffer size
is a device-specific feature that is independent of the network
size.

Lastly, RouteNet-F produces flow-level delay predictions
97, by combining the estimated queuing and transmission
delays. The queuing delay ch is indirectly estimated by
using the effective queue occupancies (in bits) on queues for
a particular flow. Particularly, queue occupancy values are
estimated by the readout function Ry, 1(hJTCJ). Then, they are
divided by the capacity of the link connected to the output
port x;. to eventually produce a queuing delay estimate ch.
Likewise, the transmission delay d; is computed by dividing
the mean flow packet size xy, by the link capacity x;.. With
this, RouteNet-F estimates the delay of a flow after passing
through a specific forwarding device and a link (dAlink):



N Rfd (hT 1)
dq = Tf (8)
% X X3
dt = f_’ (9)
X1,

djink = dg +d, (10)

Hence, we can compute end-to-end flow delays as the sum
of all the link delays Lflmk along the flow (loop lines 20-27 in
Algorithm 1). Note that the function responsible for computing
the effective queue occupancy, Rfd(h;,l) takes as input the
directly considering queue states hg. This is because each
flow can experience a different queuing behavior depending
on its properties (e.g., traffic burstiness).

Likewise, jitter estimates J 7, are produced by combining the
jitter predictions of all links along the flow. These predictions
are made by the Ry, function, which takes as input the hidden
state of the flow at a specific link hT’l. Note that we define
the jitter as the relative fluctuation with respect to the mean
delay, that is, the ratio between the delay variance divided by
the flow mean delay.

In the case of packet loss, RouteNet-F makes predictions
directly on flows’ hidden states h”.. We define the packet loss
as the relative ratio of packets dropped with respect to the
packets transmitted by the source; hence it is a bounded value
V5 € [0,1]. We estimate it with the Ry, function (line 29 in
Algorithm 1).

hidden state of the flow at a specific link h instead of

D. Training and Implementation

We implement RouteNet-Fermi in TensorFlow and it is
publicly available at [19].

As in any other ML model, fine-tuning the hyperparameters
of RouteNet-F is crucial for achieving optimal performance
and accuracy. Two key parameters to consider are the hidden
state vectors (hy, hy, h;) and the number of message passing
iterations (7). The size of the hidden state vectors determines
how much information the model can encode, with larger sizes
allowing for more information but also harming performance.
Similarly, a larger number of message-passing iterations can
help the model reach a higher level of convergence, but
at the cost of increased computation. Through grid search
experiments, we selected a set of hyperparameters that provide
good accuracy while also being efficient. Specifically, we set
the size of all the hidden state vectors to 32 elements and T
to 8 message-passing iterations.

We implement the functions FRNN (Flow-Level RNN),
LRNN (Link-Level RNN), and U, (Queue Update Function)
as Gated Recurrent Units (GRU). Functions HS¢, HS,, and
HS; are implemented as 2-layer fully-connected neural net-
works with ReLU activation functions with 32 units each.
Similarly, functions Ry,, R £ and Ry, are implemented as a
3-layer fully-connected neural networks with ReL.U activation
function for the hidden layers, and a linear one for the output
layer (except for Ry, that uses a Sigmoid activation function).
Note that, the whole architecture of RouteNet-F (Algorithm 1)
constitutes a fully-differentiable function. This means that it

can be trained end-to-end using as input the network samples
and as output the different flow-level performance metrics
(e.g., delay, jitter, packet loss) as illustrated in the black box
diagram of Figure 1.

For each set of experiments, we train RouteNet-F during
150 epochs of 2,000 samples each. We set as loss function the
Mean Absolute Percentage Error for the delay experiments, the
Mean Squared Error for jitter, and the Mean Absolute Error
for the packet loss. In all the cases, we use an Adam optimizer
with an initial learning rate of 0.001.

V. EVALUATION

In this section, we evaluate the performance of RouteNet-F
in a wide range of relevant scenarios. First, we evaluate
RouteNet-F in a variety of scenarios with complex traffic
models and scheduling policies and compare it to a state-
of-the-art Queuing Theory (QT) benchmark from [43]. In it,
the network is modeled as a M /M /1/b system where each
queue along a path is treated independently. Note that the
baseline, like the majority of QT models, assumes that arrivals
to each queue are approximated by a Poisson process and
that service times are exponentially distributed. Under these
assumptions, the model derives analytical results for queue
throughput, delay distributions, and blocking probabilities. A
public implementation of the QT model can be found at [44].

Then, we evaluate RouteNet-F’s generalization capabilities
when evaluated in topologies x30 times larger than the ones
seen during training and compare its inference times. Finally,
we benchmark RouteNet-F in real-world scenarios with data
from a real testbed, with traffic coming from real-world
networks, and compare its performance with MimicNet [16]
a state-of-the-art DL-based model.

A. Performance Analysis

1) Methodology: In all the experiments (except for subsec-
tion V-C1 that comes from a real testbed), the ground truth is
obtained using a packet-level simulator (Section V-A2). Unless
specified, in each evaluation we perform 50k experiments with
a random configuration (src-dst routing, traffic intensity, per-
interface scheduling policy, queue size, and traffic model), and
compute the mean average delay, jitter, and packet loss. Then
we compute the error of RouteNet-F’s and QT’s estimates
with respect to the results of the packet simulator. For a fair
comparison, the evaluation samples have not been used in the
training phase of RouteNet-F.

2) Dataset: We generate our dataset by simulating a wide
range of network scenarios with the OMNet++ network sim-
ulator, v5.5.1 [25]. An image of the simulator is publicly
available and can be found at [45]. Each dataset sample
corresponds to a single simulation, and we record the mean
delay, jitter, and packet loss for all the flows in the network,
as well as queue-level statistics(e.g., mean occupancy, average
packet loss, or average packet size). We select the different
scenarios to simulate by randomly sampling from the possible
values of all the input variables (Table IV). The traffic mod-
els autocorrelated exponentials and modulated exponentials
reproduce realistic Internet traffic [9], [43]. We define the



traffic intensity (7/) as a tunable parameter that defines the
overall traffic load in the network scenario. T'1 represents how
congested is the network. In our dataset, it ranges from 400 to
2000 bits per time unit, with 400 being the lowest congested
network (0% avg. packet loss) and 2000 a highly congested
network (~3% avg. packet loss).

3) Traffic Models: This section analyzes the accuracy of
RouteNet-F in a wide range of traffic models. The experiment
is organized such that, for each traffic model, we add a degree
of complexity by changing its first and second-order statistics
(i.e., variance and autocorrelation). We start with simple traffic
models such as Poisson or Constant Bitrate and end by testing
more complex models that are better approximations of traffic
seen in Internet links.

Tables V and VI show the errors of the delay and jitter for
both, RouteNet-F and QT, with respect to the values obtained
using the simulator. We can see that RouteNet-F achieves
excellent accuracy results, producing very accurate estimates
of delay and jitter in all traffic models: the worst cases are
5.21% and 10.40% for delay and jitter, respectively.

TABLE IV: Simulation variables.

NSFENET [46], GEANT [47],
GBN [48], and scale-free synthetic
topologies following the Power-
Law Out-Degree algorithm [27].

Topology

6 options: Poisson, On-Off, Constant
Bitrate, Autocorrelated Exponentials,
Modulated Exponentials (according
to [43]), and all models mixed.

Traffic Model

Random traffic intensities to generate

Traffic Intensity packet loss between 0% and 3%.

1, 2, or 3 queues per port.

Queue size: 8, 16, 32, or 64 kbits.
Policy: First In First Out, Strict
Priority, Weighted Fair Queuing,
and Deficit Round Robin.

Queuing Configuration

TABLE V: Delay prediction using the QT baseline and
RouteNet-F for different traffic models. The error is computed
w.r.t. simulation results.

QT RouteNet-F

MAPE MSE MAE R? MAPE MSE MAE R?

Poisson 126% 0001 0.017 0998 21%  0.001 0.017 0.999
Deterministic 224% 0715 0321 0611 443% 0029 0.048 0.984
On-Off 23.1% 0784 0363 0613 290% 0.009 0.035 0.995

A. Exponentials  21.1%  0.686 0.316 0.618 2.62% 0.010 0.030 0.994
M. Exponentials ~ 68.1%  1.10 0798 0.145 521% 0.013  0.061  0.989
Mixed 35.1% 0721 0430 0560 4.71% 0.018 0.054 0.988
TABLE VI: Jitter prediction using the QT baseline and

RouteNet-F for different traffic models. The error is computed
w.r.t. simulation results.

QT RouteNet-F
MAPE MSE MAE R? MAPE MSE MAE R?

Poisson 719% 0013 0072 0849 6.26% 0.001 0.013  0.980
Deterministic 99.0% 0057 0.067 -1.86 7.17% 0.001 0.008 0.924
On-Off 69.4% 0057 0098 0425 850% 0.004 0.018 0.959

A. Exponentials ~ 74.3%  0.025 0.067 0246  6.29% 0.001 0.008 0.973
M. Exponentials ~ 91.4%  1.34  0.834 -0.622 103% 0.036 0.091 0.956
Mixed 69.1% 0299 0296 0.025 9.82% 0.007 0.034 0974

As expected, the estimates of the QT model are unaccept-
able in continuous-state traffic models, e.g. almost 70% for
modulated exponentials. On the other hand, it achieves moder-
ate accuracy for discrete-state models (Poisson, Deterministic,
and On-Off). It is also noticeable how the QT model shows
poor accuracy across all the jitter estimations. The main reason
for this is that QT assumes independence between queues in
the network. Hence, the estimator used to compute the jitter
is the sum of the individual delay variance of queues along
the flow’s paths.

For non-Markovian traffic models (e.g., On-Off), RouteNet-
F produces accurate estimates, as well as for more challenging
models that implement strong autocorrelation (Autocorrelated
Exponentials) and heavy-tail distributions (Modulated Expo-
nentials). These models are important since they approximate
real traffic generated by TCP [49], similar to that found at
Internet links [13]. Also, notice that this traffic model could
be made even more difficult for QT by increasing both the
variance and the autocorrelation factor.

We add a final scenario (Mixed) where each src-dst pair
generates traffic by randomly selecting one of the five available
traffic models, and using random parameters for these models.
In other words, we multiplex all traffic models in a single
network topology. As the table shows, RouteNet-F shows
good accuracy not only when modeling individual traffic
models, but also when they are mixed across links in the
network. It is worth noting that although RouteNet-F shows
excellent accuracy for arbitrary parameterizations of these 6
traffic models, it cannot generalize to new traffic models not
introduced during the training phase.

Finally, Table VII shows the different metrics for the packet
loss ratio. Since there are some paths where the packet loss
ratio is zero, we provide the Mean Absolute Error and the
Coefficient of Determination (R?). The packet loss ratio is
measured as the percentage of packets dropped w.r.t. packets
sent, that is why the MAE is expressed in % units. In this
particular case, it is noticeable how the QT baseline works
well in the scenario with the Poisson traffic model. However,
the accuracy decreases remarkably in more complex scenarios.
On the other hand, RouteNet-F obtains a high accuracy with
a worst-case MAE of 1.2% and R>>0.98.

4) Scheduling: This section aims to validate if RouteNet-F
is capable of modeling the behavior of queues in the presence
of several scheduling policies. For this purpose, we train the
model using samples with mixed queue scheduling policies
across nodes in the GEANT and NSENET topologies. Then,
we evaluate the model on samples of the GBN topology
(unseen during training). In this experiment, each router port
implements three different queues with a randomly selected
scheduling policy for the queues: (7) First In, First Out (FIFO),
(i) Weighted Fair Queueing (WFQ), (iii) Deficit Round Robin
(DRR), and (iv) Strict Priority (SP). For WFQ and DRR, the
set of weights is also randomly selected. Furthermore, each
flow has been assigned a Quality-of-Service class that maps it
to a specific queue depending on the flow priority. To provide
a fair benchmark with QT, in this experiment we use only
Poisson traffic.

Table VIII shows the Mean Average Percentage Error



TABLE VII: Packet Loss evaluation - Mean Absolute Error and Coefficient of Determination (R?) of QT and RouteNet-F for

the different traffic models.

Poisson Const. Bitrate On-Off A. Exponentials M. Exponentials Multiplexed
MAE R?} MAE R?> MAE R? MAE R? MAE R? MAE  R?
QT 1.0%  0.97 11% 064 95% 0.63 10% 0.65 9.5% 0.08 4.6% 0.50
RouteNet-F  03% 099 1.0% 099 1.0% 099 12% 0.99 1.1% 0.98 0.50% 0.99
TABLE VIII: Delay and jitter evaluation - Mean Absolute
Percentage Error of QT and RouteNet-F in the presence of 10%
Scheduling Policies for low, medium, and high traffic intensity. S °
X
Delay Jitter =
Low Medium High Low Medium High § 5% 1
QT 13.0%  17.3%  251% 49.0%  532%  59.6% =
RouteNet-F  0.80%  2.60% 731% 395% 577% 14.8%
0% +—3 : : : ; : s
(MAPE) of the delay and jitter for three different traffic ’ 50 75 100 130 170 200 240260280300

intensities: from low-loaded to highly-congested scenarios.
According to [50] the average packet loss on the Internet
is around 2%-3%. Based on this, in the highly-congested
scenarios, the mean packet loss rate is around 3% which we
believe represents a wide range of realistic network scenarios.
We can see that RouteNet-F outperforms the QT benchmark
in both metrics (delay and jitter), obtaining a MAPE of 3.57%
for delay and 8.17% for jitter after averaging the results over
the three traffic intensities.

Similarly, Table IX presents the results for packet loss.
Again, RouteNet-F outperforms the QT benchmark showing
an MAE of 0.7% and an average R? close to 0.99.

TABLE IX: Packet loss evaluation - Mean Absolute Error and
Coefficient of Determination (R?) of QT and RouteNet-F in
the presence of Scheduling Policies for low, medium, and high
traffic intensity.

Low Medium High
MAE R?2 MAE R? MAE R?2
QT 455% -0.05 922% 000 10.6% 029
RouteNet-F  02% 097 010% 099 0.40% 0.99

B. Generalization and Scalability

1) Generalization to larger networks: The previous exper-
iments show that RouteNet-F achieves remarkable accuracy
when tested in scenarios with different traffic models (Sec-
tion V-A3) and different scheduling policies (Section V-A4)
with topologies never seen in training. As previously discussed
in Section II, data-driven network models must generalize to
larger networks than those seen during training to become a
practical solution.

In this section, we evaluate RouteNet-F in a wide variety
of networks significantly larger than the ones seen during the
training phase. We generate a training set with 10,000 samples
from networks of only 5 to 10 nodes. Following the process de-
scribed in Sections IV-A and V-A4, for each flow, we randomly

Topology Size (Number of nodes)

Fig. 7: Scaling with mixed traffic models and scheduling
policies - Mean Absolute Relative Error of delay predictions
vs. topology size, including different traffic models and queue
scheduling configurations. The model was trained on a dataset
with 10,000 samples from networks of 5 to 10 nodes.

assign a traffic model, and for each router port, we assign
an arbitrary queue scheduling configuration. We evaluate the
accuracy of RouteNet-F in topologies from 50 to 300 nodes,
configuring the traffic models and the scheduling policies
accordingly to the descriptions of Sections IV-A and V-A4.
In contrast to previous experiments, all these networks have
been synthetically generated using the Power-Law Out-Degree
algorithm described in [27], where the ranges of @ and S
parameters have been extrapolated from real-world topologies
of the Internet Topology Zoo repository [51]. Link capacities
and generated traffic volumes are scaled accordingly.

Figure 7 shows the MAPE of the delay predictions made by
RouteNet-F. We can observe that the proposed model obtains
a worst-case error of ~8% for samples of networks with 300
nodes. This shows how RouteNet-F is capable of generalizing
to networks 30x larger than those seen during training, even
when introducing various traffic models and queue scheduling
policies along the network. This is due to the capability of this
model to effectively learn the underlying relationships between
flows, links, and queues in the scenarios seen during training,
and the posterior ability to exploit this learned knowledge in
new scenarios not seen before.

Note that in this and the previous section, we have not tested
any other baseline (e.g. RNN, QT) since they already fail in
other relevant scenarios.

Despite generalization is an open challenge in the field of
Deep Learning (as previously discussed in Section III) by
using a custom GNN-based architecture and domain expert
knowledge, RouteNet-F shows strong capabilities to generalize
to considerably larger networks than the ones seen during
training.
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2) Few-shot Learning: The performance of DL models is
often determined by the quantity and quality of the training
data used. Here, it is important to consider that the process
of collecting and labeling large amounts of data can be very
costly and, sometimes, infeasible. In the field of computer
networks, such data collection implies generating and storing
data from costly network infrastructures. This can be generally
a very expensive and time-consuming process. An alternative
is the use of packet-level simulators, which are also very
expensive in terms of computational cost. In this section, we
evaluate the accuracy of RouteNet-F when trained with a very
limited number of samples (i.e., few-shot learning). This may
be very helpful to dramatically reduce the cost of generating
the datasets and reduce the carbon footprint of training the
model.

To do so, we train the model by randomly selecting 25,
50, 100, 1,000, 2,000, 5,000, and 10,000 samples from the
previous training dataset (Section V-B1). Note that the topolo-
gies used for training range from 5 to 10 nodes, while the
evaluation is done over samples of networks from 50 to
300 nodes. Figure 8 shows the MAPE with respect to the
number of training samples used (see only results of RouteNet-
F). Interestingly, when trained with only 25 samples, the
model shows an average error of 11%. As the number of
samples increases, RouteNet-F obtains slightly better accuracy,
achieving an error of 6.24% when trained with 10,000 samples.

3) Ablation test: We aim to analyze which features of
RouteNet-F have more impact on its accuracy. For this pur-
pose, we perform an ablation test, by considering four models
where we remove different features. The first one (labeled
as RouteNet-F) is the complete model used in the previous
experiments, as it is previously described in Section IV.
Second, in RouteNet-F-occupancy we remove the link load
as an input feature (see Sec. IV-C1), and replace it directly
with the link capacity value as an initial feature of links x;.
Third, RouteNet-F-load predicts the flow-level delay using
directly the hidden state of flows (hy), instead of predicting
the effective queue occupancy of flows at a specific link (hy ;)
and then adding up all the estimated link-level delays (see
Sec. IV-C2). Finally, we use RouteNet-E [43] as a reference,
which is the previous version of RouteNet-F, without any
of the aforementioned features. Figure 8 shows the results
obtained in this experiment. We can see that predicting the

TABLE X: Inference time vs. topology size for RouteNet-F
and the QT baseline.

Topology Size

10 30 50 70 90 110
RouteNet-F ~ 48.03 ms  76.25 ms 110.5 ms 285.6 ms 455.3 ms 613.3 ms
QT 28.01l ms 49.19 ms 131.68 ms 3265 ms 662.15 ms 962.5ms

delay as the sum of link-level delays along flows (RouteNet-
F-occupancy) seems to have the largest impact on the accuracy
of the model, achieving an error of 17.63%. In addition, the
results suggest that using the link load as input instead of the
capacity (RouteNet-F-load) does not have a significant impact
on the model’s accuracy. However, when we combine this
feature with the one of RouteNet-F-occupancy we see a slight
improvement. Particularly, in RouteNet-F, which implements
the two features, we can see that the prediction error decreases
to 6.24%.

In this experiment, it is observed that the previous version of
the model (RouteNet-E) exhibits poor accuracy. This is likely
because RouteNet-E was not designed to support scalability
levels of 30x larger networks. Additionally, RouteNet-E as-
sumes uniform delays for all flows traversing the same queue
and link. In contrast, RouteNet-F takes into consideration that
flows may experience different delays when traversing the
same queue and link, depending on their traffic model (e.g.,
traffic burstiness).

4) Scalability: Training and Inference time: Models that
are capable of producing fast estimations are particularly
interesting for network control and management applications,
as they can be deployed in real-time scenarios. In this section,
we evaluate the inference time of both RouteNet-F and the QT
baseline. To this end, we measure the inference times of the
experiments of the general evaluation (Sec. V-B1). Table X
shows that both models operate in the order of milliseconds
for topologies lower than 110 nodes. Particularly, QT performs
better for smaller topologies (<50 nodes). However, as the size
of the topology increases, RouteNet-F is faster.

Finally, note that one difference between analytical models
(e.g., QT) and DL-based models (e.g., RouteNet-F) is that
the last need a training process that may be taken into
consideration when comparing these times. These training
times depend greatly on various factors like the size of the
training dataset, the hyperparameters, the used hardware, etc.
In our particular case, the model that obtained the higher
accuracy was trained during 20 epochs of 2,500 samples each,
lasting for about 2h30min.

In this experiment, we used one CPU [AMD Ryzen 9
3950X @ 3.5 GHz]. However, an advantage of DL-based
models is that they can be easily parallelizable using hardware-
specific solutions (e.g., GPU), thus reducing considerably their
execution times in production.

C. Benchmarking of RouteNet-F

1) Testbed: In previous sections, we examined how
RouteNet-F can be applied in different network scenarios.
This section evaluates its performance in a real-world scenario
using real-world hardware and synthetic traffic. For this, we
set up a physical network testbed, as shown in Figure 9. This



Fig. 9: Schematic representation of the network testbed.

testbed includes (i) 8 Huawei NetEngine 8000 M1A routers,
(if) 2 Huawei S5732-H48UM 2CC 5G Bundle switches, and
(iii) 4 servers. Two of the servers are used to generate traffic
using the TRex traffic generator, and the other two are used for
capturing and analyzing traffic with the PF_RING software.

To train and test the model, we generated 1,000 samples
with realistic network topologies (with a maximum of 8 nodes)
and different routing, queueing, and traffic configurations. Out
of these 1,000 samples, we randomly selected 800 samples for
training the model and used the remaining 200 samples for
testing. Note that, the algorithm 1 described in Section IV-A
has been slightly modified to add the state of the queues
of the switches found in the topology. This only affects the
initialization process, and not the message-passing architecture
itself.

Table XI shows the results of RouteNet-F. As can be seen,
RouteNet-F obtains a remarkable performance (11% MAPE)
which is in line with the previous results when compared with
simulated data.

2) Real Traffic: In our previous experiments, we tested
RouteNet-F using synthetic-simulated traffic. Now, we want
to see how well this model performs when applied to actual
traffic data.

For this, we used real-world traffic data from the SNDIib
library [52] and combined it with packet inter-arrival times
from a recent snapshot of the MAWI repository (Sample
point 2022/09) [53]. We then scale the inter-arrival times to
match the values in the traffic data. Additionally, we used
a distribution of source-destination flows from a real internet
service provider [54] to map flows to different ToS classes. Our
dataset includes 4 real-world network topologies, including
one previously used (GEANT) and three new topologies
that the model has never seen before (ABILENE, NOBEL-
GBN, and GERMANY50). For this experiment, we leveraged
the knowledge obtained from previous versions and used a
previous checkpoint, fine-tuning it using 200 samples of the
GEANT topology.

Table XI shows the results of RouteNet-F. We can see
that RouteNet-F achieves a remarkable performance (5.67%
MAPE) when tested using real-world traffic data. Again, these
results are close to the simulator and testbed ones.

3) State-of-the-Art: This section aims to compare the accu-
racy of RouteNet-F against MimicNet [16]. MimicNet is a DL-

TABLE XI: Delay prediction using RouteNet-F for the testbed
and the real traffic traces experiments.

MAPE MSE MAE R?
Testbed 11.0%  6.12x10°  0.0007  0.869
Real Traffic  5.67%  1.66x10°  0.0003  0.877

based model which combines discrete event simulators with
Deep Neural Networks (DNN). MimicNet takes advantage of
the accuracy of discrete packet-event simulators to generate
data of a small network which then is used to train an
RNN-based estimator known as a "mimic". Finally, MimicNet
composes several of those mimics to perform predictions
of much bigger larger networks. This makes MimicNet an
alternative to a discrete packet-event simulator as it reduces the
cost of simulation for large networks, providing an accurate
estimation of the per-packet level distributions. However, as
stated in the MimicNet paper, the main limitation of this
strategy is that it only works for FatTree topologies.

Following the parameters and the specifications described
in [17] we generate a dataset containing three different topolo-
gies (FatTreel6, FatTree64, and FatTree128) and compute the
average RTT.

Table XII shows the results for both RouteNet-F and Mim-
icNet. For RouteNet-F we show the same metrics as before
and the Normalized Wasserstein Distance (W;). Contrary to
RouteNet, MimicNet does not directly compare the average
RTT of the packets aggregated per path. Instead, it computes
the distance of both distributions (the predicted and the real
one).

Note that in this scenario, RouteNet-F achieves an outstand-
ing accuracy not only when compared with MimicNet, but also
when compared with a state-of-the-art QT model (Table V).
This is mainly because, in previous experiments, we explored
a wide variety of scenarios containing from low to high (3%)
packet loss ratios, while in this particular scenario, the packet
loss rate is about 0.3%.

Finally, as shown in section V-B4, RouteNet-F is capable
of predicting the performance metrics in the order of mil-
liseconds. In contrast, MimicNet ranges from minutes for the
smaller topologies to hours for the larger ones. This difference
is mainly because, while RouteNet-F focuses on predicting the
different performance metrics aggregated by flows, MimicNet
predicts those metrics at a packet level.

TABLE XII: Average RTT prediction using MimicNet and
RouteNet-F for different FatTree topologies. The error is
computed w.r.t. simulation results.

MimicNet RouteNet-F
w, MAPE MSE MAE R2 w,
FatTreel6 0.0080 037% 1.31x10°  533x10  0.999 0.0018
FatTree64 0.0122 0.44% 1.70x10"°  7.15x106  0.999  0.0026
FatTree128 0.0172 0.67%  3.40x10"°  1.20x10°5  0.998  0.0060

VI. RELATED WORK

The use of Deep Learning (DL) for network modeling has
recently attracted much interest from the networking commu-
nity. The authors from [31] survey different techniques and



discuss data-driven models that can learn from real networks.
Initial attempts to implement this idea use fully-connected
neural networks (e.g., [30], [55]). Such early attempts do not
generalize to different networks unseen in training, they are not
tested with realistic traffic models, and they do not model QoS-
aware queue scheduling configurations. More recent works
propose elaborated neural networks models, like Variational
Auto-encoders [56] or ConvNN [57]. However, they have
similar limitations.

Since the introduction of Graph Neural Networks [37],
they have already been applied to different fields such as
chemistry [14] or logistics [15]. In the field of computer
networks, early pioneering works leverage GNNs [58], [59].
However, they use a basic GNN architecture that considers
a simplified model of the network, ignoring traffic models,
queuing policies, and the critical property of generalizing to
larger networks.

More recent works leverage GNNs to model complex
characteristics of computer networks. For example, xNet [60]
learns the state transition function between time steps and
rolls it out to obtain the complete fine-grained prediction
trajectory, but it does not take into account scaling to larger
networks. Others focus on data center networks to predict
the Flow Completion Time [61]. Finally, state-of-the-art sim-
ulators MimicNet [16] and DeepQueueNet [17] leverage DL
models (LSTMs and transformers, respectively) to accelerate
parts of the simulation process, with a focus on per-packet
delay prediction, as opposed to our per-path average delay
prediction.

VII. CONCLUSION

In this paper, we have presented RouteNet-Fermi, a custom
GNN model designed for network performance analysis. This
model supports a wide range of configuration parameters
related to routing, queue scheduling, and traffic models while
being able to accurately model networks 30 times larger
than the ones seen during training. In our evaluation, we
have shown that the proposed model outperforms a state-of-
the-art queuing theory model, especially in scenarios with
complex and realistic traffic models. At the same time,
RouteNet-Fermi achieves comparable accuracy with respect to
computationally-expensive packet-level simulators (MAPE ~
6.24%) while exhibiting considerably lower inference times
(on the order of milliseconds in networks of 100 nodes).
Finally, we validated RouteNet-F in a wide variety of real-
world scenarios including a testbed and real-world traffic
traces.
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