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Abstract—This paper aims to characterize the memory-rate
tradeoff for decentralized caching under nonuniform file popu-
larity and size. We consider a recently proposed decentralized
modified coded caching scheme (D-MCCS) and formulate the
cache placement optimization problem to minimize the average
rate for the D-MCCS. To solve this challenging non-convex
optimization problem, we first propose a successive Geometric
Programming (GP) approximation algorithm, which guarantees
convergence to a stationary point but has high computational
complexity. Next, we develop a low-complexity file-group-based
approach, where we propose a popularity-first and size-aware
(PF-SA) cache placement strategy to partition files into two
groups, taking into account the nonuniformity in file popularity
and size. Both algorithms do not require the knowledge of active
users beforehand for cache placement. Numerical results show
that they perform very closely to each other. We further develop
a lower bound for decentralized caching under nonuniform file
popularity and size as a non-convex optimization problem and
solved it using a similar successive GP approximation algorithm.
We show that the D-MCCS with the optimized cache placement
attains this lower bound when no more than two active users
request files at a time. The same is true for files with uniform
size but nonuniform popularity and the optimal cache placement
being symmetric among files. In these cases, the optimized D-
MCCS characterizes the exact memory-rate tradeoff for decen-
tralized caching. For general cases, our numerical results show
that the average rate achieved by the optimized D-MCCS is very
close to the lower bound.

Index Terms—Decentralized coded caching, memory-rate
tradeoff, nonuniform file popularity and size, cache placement,
optimization

I. INTRODUCTION

Data caching at the network edge is anticipated to become

a key technique to alleviate network congestion and reduce

content delivery delay for future wireless networks [2]. Coded

caching that combines an uncoded cache placement and a

coded multicast delivery strategy has been proposed to harvest

the global caching gain [3]. The scheme has been shown

to substantially reduce the delivery rate (load) as compared

with uncoded caching. This promising result has attracted

significant interest in studying coded caching for different

systems or network structures [4]–[11].
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Many existing studies of coded caching generally rely on

a centrally coordinated cache placement strategy carefully

designed to store a portion of each file at different sub-

sets of users. However, a coordinated cache placement may

not always be possible, limiting the practical application of

coded caching. Following this, decentralized caching has been

considered [12], where each user caches uncoded contents

independently, requiring no coordination among users. For a

system with a central server connecting to multiple cache-

equipped users, a decentralized coded caching scheme (D-

CCS) has been proposed in [12], which consists of a decentral-

ized (uncoded) cache placement strategy and a coded delivery

strategy. Interestingly, for uniform file popularity and size, the

performance of the D-CCS is shown to be close to that of the

centralized coded caching scheme [12]. The D-CCS has since

attracted many interests, with extensions to the system with

nonuniform cache sizes [13], nonuniform file popularity [14]–

[16] or sizes [17]–[19].

For files with either nonuniform popularity or nonuniform

sizes, cache placement for the D-CCS have been studied to

lower the average delivery rate. In particular, for files with

nonuniform popularity only, a popularity-first (PF) strategy

that allocates more cache to a more popular file has been

considered in the cache placement design [14]–[16], while

for files with nonuniform sizes only, a size-first (SF) strategy

has been proposed that allocates more cache to a larger

file [17], [18]. These strategies are designed based on one

type of nonuniformity while ignoring the other. In [19], a cache

placement optimization problem for the D-CCS under nonuni-

form file popularity and sizes was formulated and solved via

numerical methods. Different lower bounds for caching with

any (coded or uncoded) placement have been developed to

quantify the performance of these proposed schemes. When

the server knows the active users (i.e., users who request

files) in advance for the cache placement, it has been shown

that the achievable rate of the D-CCS over the tightest lower

bound known in the literature is within a constant factor [16],

[18]. However, since these lower bounds are developed for

centralized caching with any coded or uncoded cache place-

ment, they are rather loose for decentralized caching. Also,

the D-CCS is a suboptimal caching scheme. Thus, the gap

between the D-CCS and the lower bounds is still large for

practical consideration. As a result, these existing results [14]–

[19] are insufficient to characterize the memory-rate tradeoff

for decentralized caching under nonuniform file popularity or

size. In particular, other than [14] and [19], the above works

cannot be applied to the scenario where the server does not

know the active users in advance for cache placement.

Recently, a decentralized modified coded caching scheme

http://arxiv.org/abs/2303.03182v2
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(D-MCCS) has been proposed under uniform file popularity

and size, assuming the server knows the active users in

advance [20]. It improves upon the D-CCS by eliminating the

redundant coded messages in the D-CCS to further reduce the

delivery rate. This scheme has been shown to attain the lower

bound developed for decentralized caching for both average

and peak rates and thus characterizes the exact memory-rate

tradeoff under uniform file popularity and size [20]. The study

of cache placement for the D-MCCS under nonuniform file

popularity and/or size is scarce. Only recently, [21] considered

files with nonuniform sizes and proposed a suboptimal cache

placement strategy based on file grouping for the D-MCCS.

Except for this, there is no other work on optimizing the cache

placement for the D-MCCS or studying how optimal the D-

MCCS is for decentralized caching. In general, the memory-

rate tradeoff for decentralized caching remains unknown under

nonuniform file popularity or size.

A. Contributions

In this paper, we aim to characterize the memory-rate trade-

off for decentralized caching under nonuniform file popularity

and size. Focusing on the D-MCCS, we formulate the cache

placement optimization problem to minimize the average rate.

To solve this challenging non-convex optimization problem,

we first propose a successive Geometric Programming (GP)

approximation algorithm, which guarantees convergence to

a stationary point of the optimization problem. Due to the

high computational complexity involved in this algorithm,

we further develop a low-complexity file-group-based ap-

proach for an approximate solution. In particular, we propose

a popularity-first and size-aware (PF-SA) cache placement

strategy. It partitions the files into two groups based on

popularity for cache placement and determines the cached

amount of each file in the popular group that captures the

nonuniformity in both file popularity and size. Unlike many

existing decentralized caching schemes, both of our proposed

approximation algorithm and PF-SA strategy for decentralized

cache placement do not require the knowledge of the active

user set in advance at the server.

To study the memory-rate tradeoff for decentralized caching,

we further propose a lower bound on the average rate for de-

centralized caching under nonuniform file popularity and size.

This lower bound is developed under the decentralized cache

placement, which is different from the existing lower bounds

developed for caching under any (coded or uncoded) cache

placement [14]–[19]. We present the lower bound as a non-

convex optimization problem and develop a similar successive

GP approximation algorithm to obtain a stationary point of the

optimization problem. For the case when no more than two

active users request files at a time, we show that the D-MCCS

with the optimized cache placement attains our proposed

lower bound; This indicates that the scheme is optimal for

decentralized caching, characterizing the exact memory-rate

tradeoff. For files with uniform size but nonuniform popularity,

we also identify a condition of symmetric cache placement for

the optimized D-MCCS to attain the proposed lower bound.

Numerical results show that the average rate achieved by

the proposed PF-SA-cache-placement-based strategy is very

close to, often even lower than, that of the successive GP

approximation algorithm, but with significantly lower compu-

tational complexity. Furthermore, the PF-SA cache placement

strategy substantially outperforms existing PF or SF strategies

when files contain nonuniformity in both popularity and sizes.

Our numerical results also show that the performance gap

between the lower bound and the optimized D-MCCS via

either the successive GP approximation algorithm or the PF-

SA cache placement strategy is very small in general. This

not only demonstrates the near-optimal performance of the

PF-SA cache placement strategy, but also indicates that the

optimized D-MCCS is a near-optimal decentralized caching

scheme under nonuniform file popularity and size.

B. Organization and Notations

The rest of the paper is organized as follows. In Section II

we discuss related works. Section III presents the system

model. Section IV describes the cache placement and content

delivery procedures for the D-MCCS under nonuniform file

popularity and sizes. In Section V, we formulate the cache

placement optimization problem for the D-MCCS and propose

two different algorithms to obtain the solution. In Section VI,

we propose a lower bound for decentralized caching. We

then characterize the memory-rate tradeoff by comparing the

optimized D-MCCS with the lower bound in some special

cases. Numerical results are presented in Section VII, followed

by the conclusion in Section VIII.

Notations: The cardinality of set S is denoted by |S|, and

the index set for S is defined by I|S| = {1, . . . , |S|}. The size

of file W is denoted by |W |. The bitwise ”XOR” operation

between two subfiles is denoted by ⊕. Notation A\S denotes

subtracting the elements in set S from set A. Notation a < 0

means vector a is element-wise non-negative.

II. RELATED WORKS

A. Centralized Caching

Many recent works have studied the memory-rate tradeoff

for caching in wireless networks. For centralized caching with

uniform file popularity and size, the memory-rate tradeoff

was studied in [3], [20], [22], where different coded caching

schemes and lower bounds for the delivery rate were proposed.

In particular, for uniform file popularity and size, [20] charac-

terized the exact memory-rate tradeoff under uncoded place-

ment for both the peak and average rates. The heterogeneity in

the caching system, including nonuniform file popularity, file

size, or cache size, was also investigated in [7], [9], [10], [23]–

[31] for centralized caching. For nonuniform file popularity,

the cache placement optimization for common coded caching

schemes was considered [23]–[27], and the optimal cache

placement structure has been fully characterized [23], [24].

Several works also proposed improved coded delivery schemes

for a given cache placement to reduce the delivery rate [28]–

[31].

B. Decentralized Caching

Decentralized caching was first considered in [12], where

the D-CCS was proposed under uniform file popularity and
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sizes, and its performance has been shown to be close to that

of the centralized coded caching scheme. Subsequently, the

D-MCCS was proposed in [20] to remove the redundancy in

the coded messages of the D-CCS during the delivery phase.

Under uniform file popularity and size, this scheme is optimal

in terms of both average and peak delivery rates and thus

characterizes the exact memory-rate tradeoff for decentralized

caching [20].

When different types of nonuniformity exist among files,

the design becomes more complicated and more challenging

to analyze. In the following, we mainly discuss the related

works in this scenario. The differences between these works

and our work are summarized in Table I.

1) Cache Placement for the D-CCS: For nonuniform file

popularity or size, the existing works mainly focus on studying

the cache placement problem for the D-CCS to reduce the

average delivery rate. For nonuniform file popularity, [14]–

[16] proposed different file-group-based suboptimal cache

placement strategies for the D-CCS, where files are divided

into different groups, and the same cache placement is applied

to the files within the same group. Furthermore, the PF strategy

is adopted to assign cache to different groups, where a group

containing more popular files is allocated with more cache. For

the scenario of nonuniform file size only, the file-group-based

approach has also been applied to the cache placement de-

sign for the D-CCS [17], [18], where different file grouping

methods have been proposed. For cache allocation to different

file groups, the SF strategy was adopted to allocate more

cache to the group containing larger files. In general, both PF

and SF strategies have been shown to perform well for their

respective nonuniform popularity only case and nonuniform

size only case. However, both strategies are designed based on

one type of nonuniformity while ignoring the other, limiting

their performance when files have nonuniformity in popularity

and size.

While the file-group-based approach simplifies the cache

placement design, it does not distinguish files of different

popularity or sizes within the same group, as well as the

coding opportunities for files among different groups, leading

to suboptimal performance. The optimization approach was

adopted to study the cache placement for the D-CCS under

nonuniform file size [32] and under nonuniform file popularity

and sizes [19]. In both works, numerical methods were devised

to find a solution to the optimization problem. All the above

mentioned works, except for [14] and [19], assume the active

user set is known at the server in advance for cache placement.

2) Cache Placement for the D-MCCS: The cache place-

ment for the D-MCCS is more difficult to design or analyze

than that of the D-CCS, due to the much more complicated

delivery strategy. Only recently, the cache placement problem

for the D-MCCS has been studied for the nonuniform file

size only scenario in [21]. A heuristic file partitioning and

grouping strategy has been proposed to simplify the problem,

where the SF strategy is adopted to allocate more cache to

the file group with larger files. However, no lower bound is

provided to evaluate the performance of the proposed strategy.

To the best of our knowledge, the cache placement for the D-

MCCS under nonuniform file popularity, or under the most

general case of nonuniform file popularity and sizes, has not

been studied. How optimal the D-MCCS is in these scenarios

is still unknown.

3) Lower Bounds: For nonuniform file popularity or size,

different lower bounds on the delivery rate for caching have

been developed to evaluate the proposed cache placement

strategies for the D-CCS in [14]–[19]. With the active user set

known at the server at the cache placement phase, the D-CCS

has been shown to be order-optimal, where the performance

gap is within a constant factor of the lower bound, for either

the nonuniform file popularity only scenario [15], [16], or the

nonuniform file size only scenario [17], [18]. Nonetheless, this

gap is still quite large, as the lower bounds developed under

any cache placement are loose, and the delivery scheme of the

D-CCS is suboptimal. For [14] and [19] that do not require

the knowledge of the active user set, the performance gap of

the proposed approaches could be even larger.

In general, the lower bounds proposed by existing works

are under any cache placement. They cannot be used to char-

acterize the memory-rate tradeoff for decentralized caching

under the nonuniform file popularity or sizes, particularly

when the active users are unknown at the server. In general, the

memory-rate tradeoff for decentralized caching under either

nonuniform file popularity or size remains an open problem

to be characterized.

Besides the above works, decentralized coded caching has

also been extended to other heterogeneous scenarios or system

setups, including heterogeneous user profiles [33], [34], cor-

related files [35], nonuniform cache sizes [19], heterogeneous

distortion [36], [37], multi-antenna transmission and shared

caches [38].

III. SYSTEM MODEL

We consider a cache-aided transmission system where a

server connects to K users over a shared error-free link,

as shown in Fig 1. We denote the user index set by K ,
{1, . . . ,K}. Each user k ∈ K has a local cache of capacity

M bits. The server has a database consisting of N files,

denoted as W1, . . . ,WN . We denote the file index set by

N , {1, . . . , N}. Each file Wn, n ∈ N , is of size Fn

bits and has probability pn of being requested. We denote

F , [F1, . . . , FN ]T as the file size vector, and denote

p , [p1, . . . , pN ]T as the popularity distribution of all N files,

where
∑N

n=1 pn = 1. Without loss of generality, we sort the

file indices as follows. First, we label the files according to the

decreasing order of their popularity as p1 ≥ p2 ≥ · · · ≥ pN .

Next, for files with the same popularity but different sizes,

we sort and label these files according to the decreasing order

of their sizes; that is, if pn = pn+1, we have Fn ≥ Fn+1

for n = 1, . . . . , N − 1. Files with the same popularity and

size are ordered randomly. In this work, we only focus on the

nontrivial case where the user’s cache capacity is no greater

than the total size of all N files, i.e., M ≤
∑

n∈N Fn.

The caching scheme operates in two phases: the cache

placement phase and the content delivery phase. In the cache

placement phase, all users have access to the files stored

in the server. For each file n ∈ N , the users select a
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TABLE I
SUMMARY OF EXISTING DECENTRALIZED CODED CACHING SCHEMES

References File popularity File size Delivery scheme Cache placement strategy Lower bound

[14], [15], [16] Nonuniform Uniform D-CCS Multiple or two file groups w/ PF Any placement

[17], [18] Uniform Nonuniform D-CCS Multiple file groups w/SF Any placement

[19] Nonuniform Nonuniform D-CCS Optimization method Any placement

[21] Uniform Nonuniform D-MCCS Multiple file groups w/ SF N/A

Our work Nonuniform Nonuniform D-MCCS Optimization method; Two file groups w/ PF-SA Decentralized placement

File 1

File N

...

File

Size

1 2 3 N...

...

Shared link

Server

...
Active users

File

Popularity

1 2 3 N...
......

PSfrag replacements

K Users Cache size M

Fig. 1. A cache-aided system with cache-equipped end users connecting to
the server via a shared link. The files in the server have nonuniform popularity
and size. A set of unknown active users request files during the delivery phase.

portion of its uncoded contents to store in their local caches.

With decentralized caching, the cached contents are selected

randomly by each user without any coordination among users.

In the content delivery phase, a subset of users in K request

files from the server. We refer to these users as active users.

Note that the server does not know these active users in

advance in the cache placement phase. Let pa,k denote the

probability of user k being active in the delivery phase. We

define pa , [pa,1, . . . , pa,K ]T as the probability vector of

users being active. Let A ⊆ K denote the active user set.

Let dk denote the index of the file requested by active user

k ∈ A. We define the demand vector of all the active users

in A as dA , (dk)k∈A. Based on the demand vector dA

and the cached contents at users in A, the server generates

coded messages containing the uncached portion of requested

files and transmits these messages to the active users. Upon

receiving the coded messages, each active user k ∈ A
reconstructs its requested file Wdk

from the received coded

messages and its own cached content. Note that, for a valid

coded caching scheme, each active user k ∈ A should be able

to reconstruct its requested file Wdk
, for any demand vector

dA, assuming an error-free link.

IV. DECENTRALIZED MODIFIED CODED CACHING

In this section, we describe the cache placement and content

delivery procedures of the D-MCCS for the system with

nonuniform file popularity and size.

A. Decentralized Cache Placement

As mentioned earlier, the set of active users is unknown

to the server before the content delivery phase. A salient

feature of the decentralized caching considered in our work

is that the cache placement strategy does not require the

knowledge of the active user set A (both the size and the

user identities) in the cache placement phase. We consider the

following decentralized placement procedure: each user k ∈ K
independently and randomly selects and caches qnFn bits of

file Wn, n ∈ N , where qn is the fraction of Wn the user wants

to cache i.e.,

0 ≤ qn ≤ 1, n ∈ N . (1)

Following the common practice [12]–[19], we assume the

file size Fn is sufficiently large, such that qnFn ∈ Z.1 We

define q , [q1, . . . , qN ]T as the cache placement vector for

all the N files. Since each file Wn has qnFn bits cached by

each user of cache size M , we have the cache size constraint

N∑

n=1

qnFn ≤ M. (2)

Note that the server knows the portion of each file cached by

each user k ∈ K.

For uniform file popularity and size, i.e., p1 = · · · pN =
1/N and F1 = · · · = FN , it has been shown that the

symmetrical decentralized placement is optimal for the D-

MCCS [20], i.e., q1 = · · · = qN . For nonuniform file

popularity and size, the cache placement may be different for

different files, which complicates the cache placement design

for the D-MCCS. In this work, we aim to optimize the cache

placement vector q for the D-MCCS to minimize the average

delivery rate.

B. Content Delivery

In the delivery phase, the server receives the information

of the active user set A and their demand vector dA. Based

on these, the server knows the cached contents among the

users in A. We define subfile Wn,S as the chunk of file Wn

that is cached by the active user subset S ⊆ A but not by

the rest users in A, i.e., A\S. We use Wn,∅ to represent the

portion of file Wn that is not cached by any user in A. Under

the decentralized cache placement, if file size Fn, n ∈ N ,

is sufficiently large, by the law of large numbers, qn is

approximately the probability of one bit in Wn being selected

and cached by a user. Following this, the size of subfile Wn,S

is approximately given by [12]

|Wn,S | ≈ qsn(1 − qn)
A−sFn, S ⊆ A, |S| = s (3)

where A , |A|. From (3), we note that besides qn and Fn,

the size of subfile Wn,S also depends on |S|, i.e., the number

of the users who cache this subfile.

1The assumption of the file size Fn being sufficiently large in terms of bits
is reasonable in practice, since the file size typically exceeds 1 kbit or even
1 Mbits, which is usually large enough for qnFn ∈ Z.
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For any file demand vector dA, the D-MCCS multicasts

coded messages to different user subsets in A. Each coded

message is intended for a unique active user subset S ⊆ A. It

is formed by the bitwise XOR operation of total |S| subfiles,

one from each requested file dk by user k ∈ S, given by

CS ,
⊕

k∈S

Wdk,S\{k}, S ⊆ A,S 6= ∅. (4)

Note from (4) that in CS , the subfile from each requested file

dk by user k is the one that is cached by users in S\{k}
exclusively. Also note that the coded messages can only be

formed for the nonempty active user subset S 6= ∅.

For files with different popularities or sizes, the portion

qnFn of file Wn cached by the users may be different for

different files. As a result, the subfiles forming the coded

message CS in (4) may not have equal size. In this case, zero-

padding is adopted for the XOR operation such that subfiles

are zero-padded to the size of the largest subfile. Thus, the

size of CS is determined by the largest subfile in CS , i.e.,

|CS | =max
k∈S

|Wdk,S\{k}| = max
k∈S

qsdk
(1− qdk

)A−sFdk
,

S ⊆ A, |S| = s+ 1, s = 0, . . . , A− 1. (5)

Remark 1. For files with nonuniform file popularity or size,

cache placement may be different for different files, resulting

in subfiles of nonequal sizes, as shown in (3). The existence

of nonequal subfiles complicates the cache placement design.

Zero-padding is a common technique to handle nonequal sub-

files in formulating coded messages for coded caching in both

centralized [23], [25], [27] and decentralized [19] fashions.

However, its impact on decentralized coded caching has not

been studied in the literature and is unknown. In Section VI-B,

we will analyze in what scenarios using zero-padding incurs

no loss of optimality. We will further use simulation to show

the impact of zero-padding on the performance in Section VII.

In the original D-CCS [12], for any file demand vector

dA, the server transmits the coded messages corresponding

to all the active user subsets {CS : ∀S ⊆ A} to the active

users. In contrast, for the D-MCCS, the server only transmits

coded messages corresponding to certain selected active user

subsets [20]. To describe the delivery procedure, we first

provide the following two definitions:

Definition 1. Leader group: For any demand vector dA

containing Ñ(dA) distinct requests, the leader group UA is a

subset of the active user set A, with the following conditions

hold: UA ⊆ A, |UA| = Ñ(dA), and the users in UA have

exactly Ñ(dA) distinct requests.

Definition 2. Redundant group: Given UA, any active user

subset S ⊆ A is called a redundant group if S ∩ UA = ∅;

otherwise, S is a non-redundant group.

Remark 2. Note that the leader group is not unique. When

multiple users request the same file, we only select one of

these users to be in the leader group, and there are multiple

choices to form it. The key feature of the leader group is

that the files requested by users in the leader group should be

distinct and represent all files requested by the active users.

Algorithm 1 Decentralized modified coded caching scheme

1: Decentralized cache placement procedure:

2: for n ∈ N do

3: Each user k ∈ K randomly caches qnFn bits of file

Wn.

4: end for

5: Coded delivery procedure:

6: for S ⊆ A and S ∩ UA 6= ∅ do

7: The server generates CS based on (4) and multicasts

it to S.

8: end for

Also, once a leader group is formed, it should be kept to carry

out the coded delivery procedure.

The delivery procedure of the D-MCCS improves upon that

of the D-CCS by multicasting only coded messages corre-

sponding to the non-redundant groups, i.e., {CS : ∀S ⊆ A and

S ∩ UA 6= ∅}, to both non-redundant and redundant groups.2

As a result, the D-MCCS achieves a lower delivery rate than

the D-CCS. Note that the rate reduction only occurs when

redundant groups exist, i.e., there are multiple requests of the

same file among the active users.

We summarize both the cache placement and the coded

delivery procedures of the D-MCCS in Algorithm 1. With

the cached contents at each user via the decentralized cache

placement described in Section IV-A and the coded messages

{CS :∀S ⊆ A and S∩UA 6= ∅} multicasted by the server, each

user in A can retrieve all the subfiles required and reconstruct

its requested file [20].

V. DECENTRALIZED CACHE PLACEMENT OPTIMIZATION

In this section, we first formulate the cache placement

design for the D-MCCS under nonuniform file popularity and

size into a cache placement optimization problem to minimize

the average delivery rate. We then develop two algorithms to

solve this optimization problem.

A. Problem Formulation

Based on the delivery procedure in the D-MCCS described

in Section IV-B, for a given demand vector dA, the delivery

rate is the total number of bits in the coded messages corre-

sponding to all the non-redundant groups {CS : ∀S ⊆ A and

S ∩ UA 6= ∅}, expressed as

RMCCS(dA;q) =
∑

S⊆A,S∩UA 6=∅

|CS |. (6)

Define Qs , {S ⊆ A : S ∩UA 6= ∅, |S| = s} as the set of the

non-redundant groups with |S| = s users, for s = 1, . . . ,K .

Based on the expression of |CS | in (5), we can rewrite (6) as

RMCCS(dA;q) =

A−1∑

s=0

∑

S∈Qs+1

max
k∈S

qsdk
(1− qdk

)A−sFdk
. (7)

2Note that this coded delivery strategy follows that of the centralized
MCCS [20], which has been shown to be a valid strategy, i.e., a user can
reconstruct any requested file by using the strategy.
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By taking the expectation of RMCCS(dA;q) over all the

possible dA ∈ NA and A ⊆ K, we obtain the average rate of

the D-MCCS as a function of q as

R̄MCCS(q) = EA [EdA [RMCCS(dA;q)]]

= EA



∑

dA∈NA

(
∏

k∈A

pdk

)
RMCCS(dA;q)


 . (8)

Thus, we formulate the cache placement optimization problem

for the D-MCCS under nonuniform file popularity and size as

P0 : min
q

R̄MCCS(q)

s.t. (1), (2).

Note that P0 is a non-convex optimization problem with

respect to (w.r.t.) q, which is difficult to solve. In the following

subsections, we propose two algorithms to solve P0. We first

develop an iterative algorithm to solve P0, which is guaranteed

to converge to a stationary point of P0. To reduce the com-

putational complexity, we further propose a low-complexity

heuristic approach to compute an approximate solution for P0.

B. Successive GP Approximation Algorithm

To solve P0, we first reformulate P0 into an equivalent

Complementary GP (CGP) problem [39]. Then, we adopt the

successive GP approximation method proposed in [40] to find

a solution for P0.

To reformulate P0 into an equivalent CGP problem, we first

introduce auxiliary variables xn, n ∈ N , and add the following

inequality constraint for the term (1 − qn) in (7):

1− qn ≤ xn, n ∈ N . (9)

We further introduce auxiliary variables wdA,S , for dA ∈ NA,

A ⊆ K, and S ∈ Qs+1, s = 0, . . . , A−1. In the expression of

RMCCS(dA;q) in (7), we replace maxk∈S qsdk
(1−qdk

)A−sFdk

by wdA,S , and based on (9), we add the following constraints

qsdk
xA−s
dk

Fdk
≤ wdA,S , k ∈ S (10)

for given S ∈ Qs+1,dA ⊆ NA,A ⊆ K. With these auxiliary

variables and constraints (9) and (10), we can reformulate P0

into the following equivalent problem:

P1 : min
q<0,x<0,w<0

EA

[ ∑

dA∈NA

( ∏

k∈A

pdk

)A−1∑

s=0

∑

S∈Qs+1

wdA,S

]

s.t. qn ≤ 1, n ∈ N , (11)

N∑

n=1

qnFnM
−1 ≤ 1, (12)

1

qn + xn

≤ 1, n ∈ N , (13)

w−1
dA,S · qsdk

xA−s
dk

Fdk
≤ 1, k ∈ S,S ∈ Qs+1,

s = 0, . . . , A− 1,dA ∈ NA,A ⊆ K (14)

where x , [x1, . . . , xN ]T , and w , (wdA,S) is the vector

containing all wdA,S’s, for S ∈ Qs+1, s = 0, . . . , A − 1 and

dA ∈ NA, A ⊆ K. Note that the optimization variables

q,x,w are all nonnegative. Also, constraints (12), (13) and

(14) are the re-expressions of constraints (2), (9) and (10),

respectively.

In P1, the objective function is a posynomial, and the

constraint functions at the left hand side (LHS) of (11), (12),

and (14) are also posynomials. Also, the constraint function

at LHS of (13) can be viewed as the ratio of two posynomials

(i.e., 1 and qn + xn). Thus, P1 is a CGP problem. A CGP

problem is in general an intractable NP-hard problem [39].

A successive approximation approach has been developed

in [40], which uses a sequence of GP approximations to obtain

a stationary point of the problem. We adopt this approach

to solve P1, where we compute (q,x,w) iteratively via a

sequence of GP approximations.

Denote the objective function in P1 by R̄CGP

MCCS(q,x,w). Let

(q(i),x(i),w(i)) denote the solution obtained in iteration i. In

iteration i + 1, given (q(i),x(i)), we form the following GP

approximation of P1:

P2
(
q(i),x(i)

)
: min
q<0,x<0,w<0

R̄CGP

MCCS(q,x,w)

s.t. (11), (12), (14),

1
(
q
(i)
n +x

(i)
n

)(
qn

q
(i)
n

)α(i)
n
(

xn

x
(i)
n

)β(i)
n

≤ 1, n ∈ N (15)

where α
(i)
n , q(i)

n

q
(i)
n +x

(i)
n

and β
(i)
n , x(i)

n

q
(i)
n +x

(i)
n

. Since the con-

straint function at LHS of (15) is a posynomial, P2
(
q(i),x(i)

)

is a standard GP problem. Comparing constraints (13)

and (15), we note that based on the arithmetic-geometric mean

inequality, we have [40]

qn + xn ≥

(
qn

α
(i)
n

)α(i)
n
(

xn

β
(i)
n

)β(i)
n

=
(
q(i)n +x(i)

n

)( qn

q
(i)
n

)α(i)
n
(

xn

x
(i)
n

)β(i)
n

. (16)

It follows that constraint (15) in P2 tightens constraint (13) in

P1. This guarantees that any solution to P2 is also a feasible

solution to P1.

Problem P2(q(i),x(i)) can be solved using a standard

convex solver. we obtain (q(i+1),x(i+1),w(i+1)) as the op-

timal solution of P2(q(i),x(i)). As shown in [40, Proposition

3], the above approach of iteratively solving P2(q(i),x(i))
is guaranteed to converge to a stationary point of P1. We

summarize this successive GP approximation algorithm for P1

in Algorithm 2. By the equivalence of P0 and P1, we can use

Algorithm 2 to compute a stationary point of P0.

Complexity Analysis: Note that P2(q(i),x(i)) has∑K

A=1

(
K
A

)
NA2A + 2N optimization variables and∑K

A=1

(
K

A

)
NA2AA + 2N + 1 constraints, which grow

exponentially with K , the same for computing the objective

function. A GP problem is typically solved by the interior

point method, whose complexity is in the polynomial

time of the problem size. Thus, the overall complexity

grows exponentially with K . As a result, the computational

complexity of Algorithm 2 can be very high as the number

of users K increases. To address this issue, in the next
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Algorithm 2 The successive GP approximation algorithm for

P0

Input: K , M , N , p, pa.

Output: q∗, R̄∗
MCCS.

1: Initialization: Set initial feasible point
(
q(0),x(0),w(0)

)
.

Set i = 0.

2: repeat

3: Solve P2(q(i),x(i)) to obtain
(
q(i+1),x(i+1),w(i+1)

)
.

4: Set i = i+ 1.

5: until R̄CGP

MCCS(q
(i),x(i),w(i)) converges.

6: Set q∗ = q(i); R̄∗
MCCS = R̄CGP

MCCS(q
(i),x(i),w(i)).

subsection, we develop an alternative algorithm to provide

an approximate solution to the problem with very low

complexity.

C. Low-Complexity File-Group-Based Approach

To address the high computational complexity faced in

GP approximation algorithm in Algorithm 2, we propose a

popularity-first and size-aware (PF-SA) cache placement strat-

egy. It uses the file-grouping concept [15], [16] to categorize

files based on popularity into two groups for cache placement,

and the cached amount of each file is size-dependent. Using

this strategy, we provide an approximate solution for P0 with

low computational complexity. Although file grouping has also

been used for the cache placement strategies proposed in [15],

[16], there are some differences of our strategy from those,

which will be discussed in Remark 5.

1) PF-SA Cache Placement: In the cache placement phase,

we partition the N files into two groups according to their

popularity in p. Define N1 , {1, . . . , N1}, for N1 ∈ N and

N2 , N\N1 as the file index sets of the first and second file

groups, respectively. Recall that the indices of files are ordered

according to the decreasing order of their popularity. As a

result, the first file group N1 contains the N1 most popular

files, and the second file group N2 contains the remaining

unpopular files in N . We allocate each user’s entire cache of

M bits to the files in the first group N1. For these files in N1,

regardless of their popularity and sizes, users randomly select

and cache a portion of each file using the same fraction, i.e.,

q1 = . . . = qN1 . The unpopular files in the second group N2

are not cached by any users and are solely stored at the server.

Thus, for this two-file-group-based placement, the fraction of

each file n ∈ N cached by any user k ∈ K is given by

qn =

{
M∑

n′∈N1
F

n′
, n ∈ N1,

0, n ∈ N2.
(17)

Note that to ensure the entire cache memory is fully used, we

always choose N1 ∈ N such that
∑N1

n=1 Fn ≥ M .

As indicated above, in the proposed two-file-group-based

placement, the N1 most popular files are prioritized for the

cache placement, and the entire user’s cache is allocated to

them. Note that there may be multiple files with the same

popularity. Recall from Section II that in this case, we label file

indices according to the decreasing order of their sizes. Thus,

for the same popularity, a file of larger size is prioritized into

the group of N1 most popular files for cache placement. Also,

note that although the same fraction of files is used for these

N1 files, the actual number of bits from file Wn cached at each

user is qnFn, which depends on the file size Fn. Following

this, a larger file will have more bits being stored at each user.

Therefore, under this proposed placement, within the most

popular file group, files of larger sizes are prioritized for cache

placement. As a result, the salient feature of our proposed

PF-SA cache placement strategy is that it captures the file

nonuniformity in both popularity and file size. In contrast,

the existing popular heuristic cache placement strategies only

prioritize files based on one type of nonuniformity but ignore

the other [24], [25], limiting their performance in the presence

of nonuniformity in both popularity and size. We discuss them

in the following remarks.

Remark 3. For both centralized and decentralized coded

caching, two types of strategies are considered for cache place-

ment, i.e., the PF strategy that allocates more cache to a more

popular file or file group under nonuniform file popularity

[14]–[16], [24], [25], or the SF strategy that allocates more

cache to a larger file or file group under nonuniform file size

[17], [18], [21], [25]. However, both PF and SF strategies

have their own drawbacks, as they are designed based on one

type of nonuniformity while ignoring the other. In particular,

when files are nonuniform in both popularity and sizes, the

PF strategy [25] specifies that the number of bits from a less

popular file cached by a user should be no more than that of a

more popular file. The SF strategy is similarly defined, except

that a more popular file is replaced by a larger file. Under

such a restriction, for the PF strategy, there can be a scenario

where a less popular large file may never have a chance to be

cached by any user, even when the cache size is large enough

to accommodate the files. As a result, the cache memory may

not be fully used in some cases. The existing numerical studies

for the centralized caching scenarios have shown that the SF

strategy tends to achieve a lower average rate than that of the

PF strategy [24], [25]. However, the SF strategy ignores the

differences in file popularity, which is an important indicator

for caching. Thus, it may still be suboptimal, especially when

the popular files are of relatively small size.

Remark 4. Our proposed PF-SA cache placement takes into

account the file nonuniformity in both popularity and size to

exploit the benefits of both PF and SF strategies for the cache

placement design. This feature enables us to further exploit

the caching gain in the scenario of nonuniform file popularity

and sizes. Note that between file popularity and size, the PF-

SA cache placement strategy puts a higher priority on file

popularity as it is used to determine whether a file will be

cached or not. Only among popular files, a larger file will

be given more cache allocation. In the simulation, we will

compare our PF-SA cache placement strategy with both the

PF and SF strategies using two file groups. Note that for

the SF strategy with two file groups, files are indexed in the

decreasing order of their sizes; then, the N1 largest files are

placed into the first file group N1, and the rest files are in the

second file group N2. The simulation results show that the

PF-SA cache placement always leads to the lowest average
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Algorithm 3 The PF-SA-cache-placement-based approximate

solution for P0

Input: K , M , N , p, pa.

Output: q∗, R̄FG-2

MCCS(N
∗
1 ).

1: for N1 = 1 to N do

2: Compute R̄PF-SA

MCCS(N1) by (19).

3: end for

4: Compute N∗
1 = argminN1∈N R̄PF-SA

MCCS(N1).
5: Compute q∗ by (17) and R̄PF-SA

MCCS(N
∗
1 ) by (19).

rate. Furthermore, its achieved average rate is very close to

the lower bound developed in Section VI, indicating that the

PF-SA cache placement is near-optimal for the D-MCCS.

2) Optimization under PF-SA Cache Placement: Under the

PF-SA cache placement in (17), we can rewrite the average

rate of the D-MCCS in (8) as a function of N1. Following this,

we reformulate P0 into an optimization problem w.r.t. N1 to

minimize the average rate. Let A1 and A2 denote the sets of

active users who request the files in N1 and N2, respectively.

Note that A1 ∩ A2 = ∅ and A = A1 ∪ A2. Denote Ai =
|Ai|, for i = 1, 2. Also denote dAi

as the files requested by

users in Ai for i = 1, 2. Accordingly, the number of distinct

file requests from Ai is Ñ(dAi
). Note that Ni, Ai, dAi

and

Ñ(dAi
), i = 1, 2 are all functions of N1. The reformulated

problem is stated in the following proposition.

Proposition 1. Consider the decentralized caching problem of

N files with popularity distribution p and sizes {Fi}, and K
users each with cache size M bits and with probability pa,k

being active. The file indices are labelled according to the

decreasing order of the file popularity. The minimum average

rate of the D-MCCS under the PF-SA cache placement is

min
N1∈N

R̄PF-SA

MCCS(N1) (18)

where R̄PF-SA

MCCS(N1) is given by

R̄PF-SA

MCCS(N1) , EA

[ ∑

dA∈NA

( ∏

k∈A

pdk

)
RPF-SA

MCCS(dA;N1)

]
(19)

with RPF-SA

MCCS(dA;N1) being the delivery rate under the PF-SA

cache placement for given dA and N1, expressed as

RPF-SA

MCCS(dA;N1) =

A−1∑

s=0

∑

S∈Qs+1

S∩A1 6=∅

(
M∑

n∈N1
Fn

)s

·

(
1−

M∑
n∈N1

Fn

)A−s

max
k∈S

Fdk
+
∑

n∈dA2

Fn (20)

where A = |A|.

Proof: See Appendix A.

By Proposition 1, for the proposed PF-SA cache placement

strategy using two file groups, the optimal N1 for group

partition to achieve the minimum average rate can be obtained

through a search in N . We summarize our proposed algorithm

in Algorithm 3. The algorithm only involves computing the

average rate for N times to determine the optimal N1. For each

N1 ∈ N , the average rate is computed directly using the ex-

pressions in (19) and (20). Thus, the computational complexity

of Algorithm 3 is much lower than that of the successive GP

method in Algorithm 2, which requires successively solving

the large-scale GP subproblems. Interestingly, our numerical

studies in Section VII show that the average rate achieved by

Algorithm 3 is very close to that by Algorithm 2, and in many

cases, it is even lower than that by Algorithm 2.

3) Approximate Solutions for Special Scenarios: We now

consider the proposed PF-SA cache placement in the special

scenario of nonuniform file popularity only or nonuniform

file size only. Both scenarios have been widely studied in the

existing works [14]–[18], [23], [25], [27], [32].

Nonuniform file popularity only: In this case, each file has

the same size. Let F , Fn, n ∈ N . Then, the PF-SA cache

placement in (17) becomes

qn =

{
M

N1F
, n ∈ N1,

0, n ∈ N2.
(21)

Based on (21), the files in the first group have the same number

of bits cached at the users, i.e., qnF = M
N1

for all n ∈ N1;

and the files in the second group N2 are uncached. Thus,

the decentralized PF-SA cache placement strategy prioritizes

popular files and equally allocates the entire user cache to

those popular files in the first group. Note that in this case, the

subfile size |Wn,S | in (3) becomes approximately the same for

all n’s for user subset S. Consequently, the subfiles in a coded

message in (5) are of equal size. As a result, the expression

of the average rate of the D-MCCS in (20) can be simplified,

as shown in the following corollary.

Corollary 1. Consider the decentralized caching problem

described in Proposition 1 with uniform file size F , F1 =
. . . = FN . The average rate of the D-MCCS under the PF-SA

cache placement is given in (18) and (19) with RPF-SA

MCCS(dA;N1)
expressed as

RPF-SA

MCCS(dA;N1) =

A−1∑

s=0




Ñ(dA)∑

i=1

(
A− i

s

)
−

Ñ(dA2 )∑

i=1

(
A2 − i

s

)


·

(
M

N1F

)s(
1−

M

N1F

)A−s

F + Ñ(dA2)F. (22)

Proof: See Appendix B.

Following Corollary 1, the optimal N1 ∈ N that leads to

the minimum average rate in this case can be again obtained

through a search in N , as described in Algorithm 3. The

only difference is that for given dA and N1, the delivery rate

RPF-SA

MCCS(dA;N1) is computed by (22) instead of (20). Note

in (20), the number of max operations involved increases

exponentially with A. In contrast, (22) contains only a total

of A(Ñ(dA) + Ñ(dA2)) + 1 summation terms, which has a

much lower computational complexity than (20).

Remark 5. For the nonuniform file popularity only scenario,

the PF-SA placement is reduced to a two-file-group-based file

placement structure similar to the ones considered by [15],
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[16] for the D-CCS, where the size of the first group N1

has been proposed through heuristics. However, our work

is different from these in the following aspects: First, our

placement solution is developed assuming unknown active user

set A, [15], [16] depend on a known active user set A. Second,

the D-MCCS is different from the D-CCS considered in [15],

[16] in the delivery procedure. Specifically, as mentioned

in Section IV-B, in the D-MCCS, only the coded message

for non-redundant groups are delivered, thus removing the

redundancy in the coded messages of the D-CCS. Furthermore,

for the coded delivery, [15], [16] apply a user-group-based

message generation method, where instead of (4), each coded

message is formed by only those files within the same file

group, and thus there is no coding across file groups. In

contrast, we explore the coded caching gain among all the

requested files dA in Algorithm 1 using (4). Indeed, it has

been shown in the study of the D-CCS that the average rate

of the coded delivery that explores the coded caching gain

among all files is a lower bound to that of the user-group-

based delivery [26].

Nonuniform file size only: In this case, the files have the

same popularity p1 = . . . = pN . According to how we index

the files as described in Section III, the files are indexed in

decreasing order of their sizes. As a result, under the PF-SA

cache placement strategy, the first group N1 contains the N1

largest files, and the cache placement vector q for these files

are given in (17). The average rate R̄PF-SA

MCCS(N1) is still given by

(19) and (20) in Proposition 1. Following this, we can search

for the optimal N∗
1 ∈ N using Algorithm 3 to obtain the

minimum average rate under the PF-SA cache placement. Note

that different from the previous scenario, for the nonuniform

file size scenario, within the first group N1, the number of

cached bits from each file depends on the file size. As shown

in (20), the coded message size depends on maxk∈S Fdk
. The

rate RPF-SA

MCCS(dA;N1) cannot be further simplified, as we need

to determine the largest file size among files requested by

each user subset S. Thus, the complexity involved in finding

the optimal N∗
1 is higher than that in the nonuniform file

popularity scenario. In Section VII-C, through our numerical

study, we show that the average rate for the D-MCCS obtained

by the optimal PF-SA cache placemen remains to be very close

to that obtained by the successive GP approximation algorithm

and the lower bound.

VI. MEMORY-RATE TRADEOFF FOR DECENTRALIZED

CACHING

In this section, we characterize the memory-rate tradeoff

for decentralized caching under nonuniform file popularity and

sizes by proposing a lower bound and comparing it with the

average rate of the optimized D-MCCS in P0.

A. Lower Bound for Decentralized Caching

The general idea for developing the lower bound for decen-

tralized caching is to first divide all the possible file demand

vectors into different types and then derive a lower bound for

each type separately [20]. Given any active user set A ⊆ K, we

categorize all the possible demand vectors dA ∈ NA based on

the distinct file requests in dA. We denote DA , Unique(dA)
as the set of distinct file indices in demand vector dA, where

Unique(dA) is to extract the distinct file indices in dA. Recall

that the leader group UA contains Ñ(dA) users requesting all

the distinct files in dA. Thus we have |DA| = |UA| = Ñ(dA).
We present a lower bound on the average rate for decentralized

caching under nonuniform file popularity and sizes in the

following theorem.

Theorem 1. Consider the decentralized caching problem of

N files with popularity distribution p and sizes {Fi}, and K
users each with cache size M bits and with probability pa,k

being active. The following optimization problem provides a

lower bound on the average rate:

P3 : min
q

R̄lb(q) ,EA

[ ∑

DA⊆N

∑

dA∈T(DA)

( ∏

k∈A

pdk

)
Rlb(DA;q)

]

(23)

s.t. (1), (2)

where T (DA) , {dA : Unique(dA) = DA, dA ∈ NA}, and

Rlb(DA;q) is the lower bound on the rate for given q and

DA, given by

Rlb(DA;q) ,

max
π:I|DA|→DA

A−1∑

s=0

Ñ(dA)∑

i=1

(
A− i

s

)
qsπ(i)(1−qπ(i))

A−sFπ(i) (24)

where I|DA| , {1, . . . , |DA|}, and π : I|DA| → DA is any

bijective map from I|DA| to DA.

Proof: See Appendix C

Note that P3 is a non-convex optimization problem, and

the only difference between P3 and P0 are their objective

functions R̄MCCS(q) and R̄lb(q). Thus, we can solve P3 using

an approach similar to Algorithm 2 for P0 in Section V-B.

We first formulate P3 into an equivalent CGP problem. To

do so, with the same auxiliary variables xn, n ∈ N , we add

the inequality constraints (9). Also, we introduce auxiliary

variable rDA for DA ⊆ N and A ⊆ K. Similar to (10), based

on (9), we replace the expression in (24) by rDA and add the

following constraints

A−1∑

s=0

Ñ(dA)∑

i=1

(
A− i

s

)(
qπ(i)

)s(
xπ(i)

)A−s
Fπ(i)≤rDA ,

∀π : I|DA| → DA (25)

for given DA ⊆ N and A ⊆ K. Similar to the reformulation of

P0 to P1, with (25), we can reformulate P3 into the following

CGP.

P4 : min
q<0,x<0,r<0

EA

[ ∑

DA⊆N

∑

dA∈T (DA)

( ∏

k∈A

pdk

)
rDA

]

s.t. (11), (12), (13) and

(rDA)
−1

A−1∑

s=0

Ñ(dA)∑

i=1

(
A− i

s

)(
qπ(i)

)s(
xπ(i)

)A−s
Fπ(i) ≤ 1,
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Algorithm 4 The successive GP approximation algorithm for

P3

Input: K , M , N , p, pa

Output: R̄∗
lb, q∗

1: Initialization: Choose initial feasible point(
q(0),x(0), r(0)

)
. set i = 0.

2: repeat

3: Solve P5
(
q(i),x(i)

)
to obtain

(
q(i+1),x(i+1), r(i+1)

)
.

4: Set i = i+ 1.

5: until R̄CGP

lb (q(i),x(i), r(i)) converges.

6: Set R̄∗
lb = R̄CGP

lb (q(i),x(i), r(i)); q∗ = q(i).

A ⊆ K,DA ⊆ N , ∀π : I|DA| → DA. (26)

Following the similar steps in Section V-B, we use

the successive GP approximation algorithm to solve P4.

Let R̄CGP

lb (q,x, r) denote the objective function of P4. Let

(q(i),x(i), r(i)) denote the solution obtained in iteration i. In

iteration i + 1, given (q(i),x(i)), we formulate the following

approximate optimization problem of P4:

P5
(
q(i),x(i)

)
: min
q<0,x<0,r<0

R̄CGP

lb (q,x, r)

s.t. (11), (12), (15), and (26).

We then iteratively solve P5
(
q(i),x(i)

)
to obtain a station-

ary point of P4. Finally, by the equivalence of P3 and P4, we

obtain the stationary point of P3. The algorithm is summarized

in Algorithm 4.

B. Memory-Rate Tradeoff Characterization

We now compare the optimized D-MCCS in P0 with the

lower bound in P3 and demonstrate the equivalence of the two

problems in some special cases. Since the difference between

P0 and P3 is only in the expression of average rate objective

function, it is sufficient to compare R̄MCCS(q) and R̄lb(q).
We first consider a special case where there are at most

two active users at the same time, i.e., A ≤ 2. Conditioned on

A ≤ 2, we rewrite R̄MCCS(q) in (8) and R̄lb(q) in (23) as

R̄MCCS(q)=EA

[ ∑

dA∈NA

( ∏

k∈A

pdk

)
RMCCS(dA;q)

∣∣∣A≤2

]
, (27)

R̄lb(q)=EA

[ ∑

DA⊆N

∑

dA∈T(DA)

(∏

k∈A

pdk

)
Rlb(DA;q)

∣∣∣A≤2

]
. (28)

Comparing (27) and (28), we show in the following theorem

that the lower bound in P3 is tight.

Theorem 2. Assume there are no more than two actives users

at the same time, i.e., A ≤ 2. The average rate of the optimized

D-MCCS in P0 attains the lower bound in P3.

Proof: See Appendix D.

Theorem 2 shows that if there are no more than two active

users at the same time, then the optimized D-MCCS is an

optimal decentralized caching scheme. In this case, the opti-

mized D-MCCS characterizes the exact memory-rate tradeoff

for decentralized caching under nonuniform file popularity and

sizes. Recall that zero-padding is used in the coded delivery

phase of the D-MCCS. Theorem 2 implies that the use of

zero-padding incurs no loss of optimality for A ≤ 2 active

users. Specifically, we note that zero-padding is only applied

when there are A = 2 active users. For the case of A = 1
active user, there is only one file being requested. In this case,

the coded message in (4) only contains one subfile, and no

zero-padding is needed.

When A > 2, in general, it is difficult to establish the

equivalency of P0 and P3 because of the difference between

R̄MCCS(q) and R̄lb(q). However, when all files are of the same

size but only different in popularity, we show that P0 and P3

can still be the same under a certain condition, as described

in the following proposition.

Proposition 2. For decentralized caching with nonuniform file

popularity and uniform file size F , F1 = . . . = FN , if q∗

with q∗1 = · · · = q∗N is the optimal solution to both P0 and

P3, then R̄MCCS(q
∗) = R̄lb(q

∗), and the optimized D-MCCS

in P0 attains the lower bound in P3.

Proof: See Appendix E.

Proposition 2 indicates that for files with the same size but

only popularity may be different, if the optimal placement q∗

is symmetric for all files, q∗1 = · · · = q∗N , then the optimized

D-MCCS is an optimal decentralized caching scheme, which

characterizes the exact memory-rate tradeoff for decentralized

caching. One known example satisfying the condition is the

special case of uniform file popularity and size. In this case,

the optimized D-MCCS (P0) and the lower bound (P3) have

the same optimal solution q∗ with q∗n’s being all identical. In

this case, it has been shown in [20] that R̄MCCS(q
∗) = R̄lb(q

∗).
Finally, we point out that, even though P0 does not attain

P3 in general, our numerical study in Section VII shows

that the gap between the optimized D-MCCS and the lower

bound in P3 is typically very small. This indicates that the

performance of the optimized D-MCCS is very close to the

optimal decentralized caching.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of the D-

MCCS in P0 and compare it with the proposed lower bound

for decentralized caching in P3. For solving P0, we con-

sider the proposed successive GP approximation method in

Algorithms 2 and the PF-SA-cache-placement-based scheme

in Algorithm 3. For solving P3, we use the successive GP

approximation method in Algorithm 4. We use R̄ to denote

the average rate obtained by various schemes and the lower

bound considered in the simulation. For both Algorithms 2

and 4, we set the convergence criterion to be that the difference

in the average rate R̄ over two consecutive iterations is less

than 10−4. In our simulation, we set the probability of each

user being active as pa,k = 0.5, for k ∈ K.

A. Nonuniform File Popularity and Sizes

We first consider the case where files have different popu-

larity and sizes. We list the file popularity distribution and

size for N = 6, 8, 10 files in Table II. They are used in

our simulation. The file popularity distribution is generated
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TABLE II
THE LIST OF FILE POPULARITI AND SIZES, FOR N = 6, 8 AND 10 FILES.

N = 6 N = 8 N = 10

Popularity Size (kbit) Popularity Size (kbit) Popularity Size (kbit)

0.4643 0.1667 0.4286 0.625 0.4052 0.1

0.2021 0.3333 0.1866 0.125 0.1764 0.2

0.1242 0.5 0.1147 0.25 0.1084 0.3

0.088 0.8333 0.0812 0.875 0.0786 0.4

0.0673 1 0.0621 0.5 0.0587 0.5

0.0541 0.6667 0.0499 0.375 0.0472 0.9

0.0415 0.75 0.0392 0.6

0.0353 1 0.0334 0.7

0.029 0.8

0.0256 1

0 0.5 1 1.5 2
0.3

0.5

0.7

0.9

1.1

1.3

1.5
Optimized D-CCS [19]
D-MCCS, PF using two file groups
D-MCCS, SF using two file groups
D-MCCS, succesive GP
D-MCCS, PF-SA cache placement
Proposed lower bound

Fig. 2. Average rate R̄ vs. cache size M (K = 4, N = 6. File popularity
and size are described in Table II.).

1 2 3 4 5 6 7 8 9 10
0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

Optimized D-CCS [19]
D-MCCS, PF using two file groups
D-MCCS, SF using two file groups
D-MCCS, succesive GP
D-MCCS, PF-SA cache placement
Proposed lower bound

Fig. 3. Average rate R̄ vs. number of users K (M = 1 kbit, N = 6. File
popularity and size are described in Table II.).

using Zipf distribution as pn = n−θ/
∑N

i=1 i
−θ, where the

Zipf parameter θ = 1.2. To compare different cache placement

strategies, besides the D-MCCS with our proposed two algo-

rithms (Algorithms 2 and 3) and the proposed lower bound

(Algorithm 4), we also consider the following methods: i)

The D-MCCS with the SF strategy using two file groups: sort

files based on their sizes and partition them into two groups

with the first group containing the N1 largest files; set cache

allocation for each file n in the first group as min{M/N1, Fn};

search for the optimal N∗
1 that gives the minimum average

rate. ii) The D-MCCS with the PF strategy using two file

groups: since files are already indexed based on popularity,

partition them into two groups with the first group containing

the N1 most popular files; set cache allocation to file n as

min{M/N1,min{F1, · · · , Fn}}, for 1 ≤ n ≤ N1; search for

the optimal N∗
1 that gives the minimum average rate. iii) The

optimized D-CCS in [19].

We consider N = 6 files in Table II for both Figs. 2 and 3.

In Fig 2, we plot the average rate R̄ vs. the cache size M by

different methods, for K = 4 users. First, we observe that the

PF-SA cache placement outperforms both PF and SF strategies

with a noticeable performance gap. In particular, note that

the average rate R̄ of the D-MCCS with the SF strategy is

higher than that of the optimized D-CCS for M ≥ 0.5 kbit.

This shows that only prioritizing the file size but ignoring

the nonuniform file popularity in the cache placement design

results in a worse performance. For the PF strategy that only

prioritizes the file popularity, the resulting R̄ is even higher

than that of the SF strategy. In particular, for M ≥ 1 kbit,

the average rate of the PF strategy is floored and no longer

reduces despite M increases. This is due to the drawback of

the PF strategy discussed in Remark 3 that cache memories

are not fully utilized in this case, as the most popular file is of

relatively smaller size 0.1667 kbit, and at most around 1 kbit of

contents from 6 files can be cached. Between our two proposed

algorithms for D-MCCS, the average rate R̄ achieved by

the PF-SA-cache-placement-based approach is always slightly

lower than that of the successive GP approximation method,

while the former has much lower complexity to implement

than the latter. Finally, we observe that the average rate R̄ by

the D-MCCS with the PF-SA cache placement is very close

to the proposed lower bound. This indicates the effectiveness

of our proposed simple PF-SA cache placement strategy and

the near-optimal performance of the optimized D-MCCS.

Fig. 3 shows the average rate R̄ vs. the number of users K
for M = 1 kbit. Due to the high computational complexity of

the successive GP approximation algorithm in Algorithm 2 as

K increases, we only show its result for K ≤ 4, and similarly

the result of Algorithm 4 for the lower bound for K ≤ 7.

Again, the D-MCCS with PF-SA cache placement outperforms

all the methods considered. It achieves the lowest R̄ that

is very close to the lower bound. This again demonstrates

the near-optimal performance of the PF-SA cache placement

strategy and the optimized D-MCCS. The performance gap

between our proposed algorithms and the optimized D-CCS

increases with K . The reason is that there are more redundant

file requests as the number of users increases; As a result, the

D-CCS produces more redundant messages for delivery, while

these redundant messages are eliminated by the D-MCCS.

Table III shows the average computation time of the succes-

sive GP approximation method in Algorithm 2 and the PF-SA-

cache-placement-based approach in Algorithm 3 in generating

Fig. 2. We have used MATLAB 2021b on a Windows x64

machine equipped with Intel 11th i5 CPU with 4.6 GHz and

32 GB RAM. The computation time of the PF-SA-cache-

placement-based approach is significantly lower than that of

the successive GP method, and it remains unchanged for

different values of M . Similarly, Table IV shows the average

computation time of the two algorithms to generate Fig. 3 for

different values of K . We see that the computational com-

plexity of the successive GP approximation method increases

very fast with K and becomes impractical for K > 4 users. In

contrast, the computational complexity for the simple PF-SA-

cache-placement-based approach increases only mildly with

K at a much slower growth rate.
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TABLE III
AVERAGE COMPUTATION TIME (SEC.) OF PROPOSED ALGORITHMS IN FIG. 2.

M (kbit) 0.5 1 1.5 2 2.5 3 3.5

D-MCCS, successive GP 25,132 14,103 21,459 30,504 38,349 42,828 39,825

D-MCCS, PF-SA cache placement 1.8 1.8 1.8 1.8 1.8 1.8 1.8

TABLE IV
AVERAGE COMPUTATION TIME (SEC.) OF PROPOSED ALGORITHMS IN FIG. 3.

K 1 2 3 4 5 6 7 8 9 10

D-MCCS, successive GP 1.2 8.9 521 38,349 N/A N/A N/A N/A N/A N/A

D-MCCS, PF-SA cache placement 0.03 0.05 0.19 2.6 8.92 42.36 69.62 116.01 178.92 258.2

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1 PF-SA cache placement
SF using two file groups

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

Fig. 4. Comparison of the PF-SA cache placement strategy and the SF using
two file groups cache placement strategy (K = 5). Top: N = 6, middle:
N = 8, bottom: N = 10. File popularity and size for each case are shown
in Table II.

For different sets of files in Table II, we further compare the

proposed PF-SA cache placement and the SF strategy using

two file groups. In Fig. 4, we plot the average rate R̄ vs.

the cache size M under these two cache placement strategies

for K = 5 users and N = 6, 8, 10 files. The proposed PF-

SA cache placement always achieves a lower value of R̄
than the SF strategy, for all values of M considered. The

performance gap of the two cache placement strategies is more

noticeable for a small to moderate cache size M , indicating

that file popularity is more critical than file size in designing

a cache placement strategy when the cache storage is limited.

In general, Fig. 4 verifies the advantage of the proposed PF-

SA cache placement, where the nonuniformity in both the

file popularity and size is considered for the cache placement

design for the D-MCCS.

B. Nonuniform File Popularity Only

We now assume all files have the same size and focus on

the nonuniform file popularity only scenario. In this case, we

can compare our schemes with several existing D-CCS based

decentralized caching schemes, which are designed in this

scenario. In particular, we will consider the well-known D-

CCS based decentralized caching schemes in [15] and [16] and

the optimized D-CCS in [19]. In Fig. 5, we plot the average

rate R̄ vs. cache size M , for N = 6 files and K = 4 users.

For the nonuniform file popularity distribution, we set the Zipf

parameter θ = 0.56. For the D-MCCS in P0, we observe

that the successive GP approximation method and the PF-

SA-cache-placement-based approach achieve nearly identical

performance. Among the caching schemes considered, the D-

MCCS provides the lowest R̄ for all values of M . We observe

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
Ji et al.[15]
Zhang et al.[16]
Optimized D-CCS [19]
D-MCCS, succesive GP
D-MCCS, PF-SA cache placement
Proposed lower bound

Fig. 5. Average rate R̄ vs. cache size M (K = 4, N = 6, Zipf file popularity
distribution with θ = 0.56, equal file size.).

TABLE V
AVERAGE RATE R̄ (KBIT) OF PROPOSED ALGORITHMS IN FIG. 5.

M (kbit) 2 3

D-MCCS, successive GP 1.3867 0.8607

D-MCCS, PF-SA cache placement 1.3867 0.8607

Lower bound 1.3601 0.8493

that the gap between the D-MCCS-based schemes and the D-

CCS-based schemes is bigger as M becomes smaller. This is

because that for a smaller cache size M , there typically exist

more redundant messages, and the D-MCCS can reduce this

redundancy in coded delivery to achieve a larger coded caching

gain. Especially for M = 0, when all requested files need to

be delivered, the amount of such redundancy is the largest.

The average rate R̄ by the D-MCCS obtained through the

successive GP approximation method and the PF-SA-cache-

placement-based approach are both very close to the lower

bound in P3. There is only a very small gap observed for

M = 2 or 3 kbit. To see the gap clearly, the values of the

average rate by these methods for M = 2 and 3 kbit are

shown in Table V. The small difference again demonstrates

the near-optimal performance of the optimized D-MCCS under

the nonuniform file popularity.

In Fig. 6, we plot the average rate R̄ vs. the number of

users K , for N = 6 files and M = 1 kbit. We consider

Zipf parameter θ = 1.2 for a more diverse file popularity

distribution. Among all the schemes compared, the D-MCCS

with the PF-SA cache placement achieves the lowest R̄ for all

values of K . The average rates obtained by the successive GP

approximation and PF-SA-cache-placement-based algorithms

are again nearly identical. In particular, for K = 4, the

achieved R̄ by the PF-SA-cache-placement-based approach is
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1 2 3 4 5 6 7 8 9 10
0.5
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Ji et al. [15]
Zhang et al. [16]
Optimized D-CCS [19]
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D-MCCS, PF-SA cache placement
Proposed lower bound

Fig. 6. Average rate R̄ vs. number of users K (M = 1 kbit, N = 6, Zipf
file popularity distribution with θ = 1.2, equal file size.).

slightly lower than that of the successive GP approximation

method. This again shows that the PF-SA-cache-placement-

based algorithm could perform even better than the more

computationally complicated successive GP approximation

algorithm. Its gap to the lower bound is very small in general,

demonstrating that the optimized D-MCCS is near optimal for

decentralized caching.

The average computation time of our two proposed algo-

rithms for the D-MCCS in generating Fig. 6 is shown in

Table VI, for different number of users K . The PF-SA-cache-

placement-based approach is very fast in computing a solution.

Moreover, compared with Table IV, we see that when files

have the same size but different popularity, the computation

time of the PF-SA-cache-placement-based approach grows at

a much lower rate as K increases. This is because for the

nonuniform file popularity only scenario, the expression of R̄
in (22) is used, which has much less computation complexity

than that of (20) for nonuniform file popularity and size.

C. Nonuniform File Size Only

In Sections VII-A and VII-B, we have focused on how the

average rate R̄ changes with M and K for a given set of N
files with specific nonuniform popularity distribution. When all

files have uniform popularity but nonuniform file size, we can

also evaluate how R̄ grows with N under different schemes.

In Fig. 7, we consider equal file popularity but different file

sizes and plot R̄ vs. N for K = 4 users and M = 1 kbit.

We set the size of file n as n/N kbit for n = 1, . . . , N .

For comparison, we consider a D-CCS based scheme in [18]

and the optimized D-CCS in [19]. For solving P0 using

the successive GP approximation algorithm, we provide the

result for N ≤ 6, due to its high computational complexity.

Similar to pervious results, the PF-SA-cache-placement-based

approach and the successive GP approximation method have

nearly identical performance. They achieve the lowest R̄
among all the schemes and are very close to the proposed

lower bound. This shows the effectiveness of our proposed

algorithms in this case and demonstrates the optimized D-

MCCS has a near-optimal performance.

Finally, the average computation time of our proposed two

algorithms for the D-MCCS in generating Fig. 7 is given

in Table VII. We observe that with as N increases, the

2 3 4 5 6 7 8 9 10
0.4

0.6

0.8

1

1.2

1.4

1.6

D-CCS based scheme [18]
Optimized D-CCS [19]
D-MCCS, successive GP
D-MCCS, PF-SA cache placement
Proposed lower bound

Fig. 7. Average rate R̄ vs. number of files N (K = 4, M = 1 kbit. File
size: Fn = n/N kbit, n ∈ N , equal file popularity: pn = 1/N , n ∈ N .).

average computation time of the successive GP approximation

algorithm increases very fast and becomes impractical beyond

N = 6. In contrast, the average computation time of the PF-

SA-cache-placement-based algorithm remains very low, and

the growth rate is very mild as N increases.

VIII. CONCLUSION AND DISCUSSION

In this paper, we studied the memory-rate tradeoff for

decentralized caching with nonuniform file popularity and

size. Focusing on the D-MCCS, we formulated the cache

placement optimization problem and developed two algorithms

to solve this non-convex optimization problem: a successive

GP approximation algorithm to compute a stationary point

and a simple low-complexity PF-SA-cache-placement-based

scheme, which partitions files into two file groups for cache

placement, taking into account the nonuniformity of file pop-

ularity and size, to obtain an approximate solution. We further

proposed a lower bound for decentralized caching. It is given

by a non-convex optimization problem, and we adopted the

successive GP approximation algorithm to solve it. We showed

that the optimized D-MCCS attains the lower bound in some

special cases and thus characterizes the exact memory-rate

tradeoff. Our numerical study showed that the optimized D-

MCCS with our proposed two algorithms in general achieves

a near-optimal performance. Furthermore, our proposed PF-

SA-cache-placement-based approximate algorithm maintains

a very low computational complexity as N or K increases.

There are several directions for extension based on this

work that can be further explored as future work. First, in this

work, our design focused on the average rate performance.

The peak rate can be considered for the worst-case scenario

to provide additional insights about decentralized caching.

Our optimization approach (i.e., P0 and P1) can still be used

for the peak rate consideration with some modifications, and

a similar algorithm to Algorithm 2 can be constructed to

compute a solution. Second, in this work, we focused on

the nonuniformity of files while assuming the cache sizes are

the same among users. It will be interesting to extend this

work to further consider nonuniform cache sizes. Note that

having nonuniform cache sizes poses new challenges as the

cache placement will now not only be different for files but

also depend on each user cache size. This complicates both
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TABLE VI
AVERAGE COMPUTATION TIME (SEC.) OF PROPOSED ALGORITHMS IN FIG. 6.

K 1 2 3 4 5 6 7 8 9 10

D-MCCS, successive GP 1.2 8.9 521 38,349 N/A N/A N/A N/A N/A N/A

D-MCCS, PF-SA cache placement 0.03 0.05 0.09 1.2 1.27 1.9 2.06 2.22 2.58 3.2

TABLE VII
AVERAGE COMPUTATION TIME (SEC.) OF PROPOSED ALGORITHMS IN FIG. 7.

N 2 3 4 5 6 7 8 9 10

D-MCCS, successive GP 28 2,219 9,188 19,258 38,349 N/A N/A N/A N/A

D-MCCS, PF-SA cache placement 1.8 2 2.6 3 3.5 4.2 5 5.8 6.6

design and analysis of the coded messages and the evaluation

of the average rate. Also, the D-MCCS is only designed for

uniform cache size, and the coded delivery scheme needs

to be redesigned. Finally, we point out that, as discussed in

the introduction, besides the delivery schemes used in the D-

CCS and the D-MCCS, several existing works also proposed

improved coded delivery schemes for centralized caching

[28]–[31]. It would be interesting to explore these delivery

schemes for decentralized caching and further jointly optimize

the delivery scheme and the decentralized cache placement to

reduce the average delivery rate.

APPENDIX A

PROOF OF PROPOSITION 1

Proof: We first derive the delivery rate of the D-MCCS

under the PF-SA cache placement in (20) for given file request

vector dA and the partition of two file groups N1. We divide

all the transmitted coded messages into two different types

based on the user subsets they are corresponding to. Recall

that A1 is the set of active users who request files in the first

file group N1, and Qs is the set of non-redundant groups of

size s. Denote Qs
1 , {S ∈ Qs,S ∩ A1 6= ∅} as the set of

those non-redundant groups that contain some users in A1.

Also denote Qs
2 , {S ∈ Qs,S ∩ A1 = ∅} as the set of

remaining non-redundant groups in Qs that do not include

any user in A1; in other words, user subsets in Qs
2 contain

only the users in A2. By definition, we have Qs = Qs
1 ∪Qs

2.

Accordingly, we can rewrite RMCCS(dA;q) in (7) as

RMCCS(dA;q) =
A−1∑

s=0

∑

S∈Qs+1
1

|CS |+
A−1∑

s=0

∑

S∈Qs+1
2

|CS |, (29)

where the first term is the total size of coded messages

corresponding to user subsets in Qs+1
1 , s = 0, . . . , A − 1

and the second term is the total size of the coded messages

corresponding to user subsets in Qs+1
2 , s = 0, . . . , A− 1.

Now we derive the expressions of the first and second terms

in (29) separately. For user subset S ∈ Qs+1
1 , based on the

PF-SA cache placement in (17), the size of the corresponding

coded message in (5) is given by

|CS |=max
k∈S

(
M∑

n∈N1
Fn

)s(
1−

M∑
n∈N1

Fn

)A−s

Fdk
, S∈Qs+1

1

where the maximization is only w.r.t. Fdk
. Substituting the

above into the first term in (29) and following the definition

of Qs
1, we have the first term in (20).

For the coded messages corresponding to S ∈ Qs+1
2 , since

all the files requested by the users in A\{A1} are only stored

at the server, the size of the corresponding coded message is

given by

|CS | =

{
Fn, s = 0,S ∈ Qs+1

2 , k ∈ S, n = dk;

0, s ≥ 1,S ∈ Qs+1
2 .

(30)

As a result, the second term in (29) is given by

A−1∑

s=0

∑

S∈Qs+1
2

|CS | =
∑

n∈dA2

Fn. (31)

Thus, we obtain the expression of the delivery rate of the D-

MCCS under the PF-SA cache placement RPF-SA

MCCS(dA;N1) in

(20).

Following the above, the average delivery rate R̄PF-SA

MCCS(N1)
of the D-MCCS under PF-SA cache placement is obtained

by taking the expectation of RPF-SA

MCCS(dA;N1) for all possible

active user sets A ⊆ K and all possible file requests dA for a

given active user set A, as shown in the expression in (19).

APPENDIX B

PROOF OF COROLLARY 1

Proof: To prove Corollary 1, we simplify the delivery

rate RMCCS(dA;q) in (29) using the two-file-group-based

placement described in (21). Based on (21), for the coded

message corresponding to the user subset S ∈ Qs+1
1 , its size

in (5) is given by

|CS | =

(
M

N1F

)s(
1−

M

N1F

)A−s

F, S ∈ Qs+1
1 . (32)

The number of user subsets in Qs+1
1 is the total number of

non-redundant groups in Qs+1 subtracting the number of non-

redundant groups that only include users in A2, given by((
A

s+1

)
−
(
A−Ñ(dA)

s+1

))
−
((

A2

s+1

)
−
(
A0−Ñ(dA2)

s+1

))
. It can be

easily shown that
(

A
s+1

)
−
(
A−Ñ(dA)

s+1

)
=
∑Ñ(dA)

i=1

(
A−i
s

)
. Thus,

the total size of the all the coded messages corresponding to

the user subsets in Qs+1
1 , s = 0, . . . , A− 1, i.e., the first term

in (29) is given by

∑

S∈Qs+1
1

|CS | =




Ñ(dA)∑

i=1

(
A− i

s

)
−

Ñ(dA2)∑

i=1

(
A2 − i

s

)


·

(
M

N1F

)s(
1−

M

N1F

)A−s

F. (33)
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The size of the coded messages corresponding to user subsets

in Qs+1
2 , s = 1, . . . , A− 1, i.e., the second term in (29), is

A−1∑

s=0

∑

S∈Qs+1
2

|CS | = Ñ(dA2)F. (34)

Thus, we obtain the expression of RMCCS(dA, N1) in (22).

APPENDIX C

PROOF OF THEOREM 1

Proof: The proof follows the genie-based approach used

in developing the lower bound for the centralized uncoded

cache placement under uniform or nonuniform file popular-

ity [20], [24] or nonuniform cache sizes [9]. For a given file

request vector dA and the corresponding set of distinct file

indices DA, the average delivery rate must satisfy [24]

R(DA;q) ≥ max
π:I|DA|→DA

Ñ(dA)∑

i=1

A−1∑

s=1

(
A− s

i

)
aπ(i),s (35)

where aπ(i),s is the number of bits of file π(i) cached

exclusively by any user subset S ∈ A with |S| = s. With

a decentralized cache placement q, from (3), the number

of bits cached by any s active users in A is aπ(i),s =
qs
π(i)(1− qπ(i))

A−sFπ(i). Substitute this expression into (35),

we have

R(DA;q) ≥

max
π:I|DA|→DA

Ñ(dA)∑

i=1

A−1∑

s=1

(
A− s

i

)
qsπ(i)(1 − qπ(i))

A−sFπ(i)

where the right hand side is the lower bound on the delivery

rate for a given DA and q in (24). By averaging Rlb(DA;q)
over all possible DA ⊆ N and A ⊆ K, we obtain the lower

bound on the average rate R̄lb(q) w.r.t q in (23). The final

lower bound on average rate is obtained by optimizing q to

minimize R̄lb(q), which is the optimization problem P3.

APPENDIX D

PROOF OF THEOREM 2

Proof: To show the equivalence of P0 and P3 for A ≤ 2,

it is sufficient to show that R̄MCCS(q) and R̄lb(q) in (27) and

(28) are equivalent. Comparing R̄MCCS(q) and R̄lb(q), we only

need to examine RMCCS(dA;q) and Rlb(DA;q) in (7) and (24).

We consider this forA = 1 and A = 2 separately below.

Case 1: A = 1. Denote A = {u1}. In this case,

RMCCS(dA;q) in (7) can be straightforwardly rewritten as

RMCCS(dA;q) = (1− qdu1
)Fdu1

.

For A = {u1}, we have DA = {du1}. Thus, Rlb(DA;q) in

(24) is given by

Rlb(DA;q)=(1− qdu1
)Fdu1

=RMCCS(dA;q), |A| = 1. (36)

Case 2: A = 2. Denote A = {u1, u2}. In this case, the two

active users can have either the same or distinct file requests.

We discuss the two cases below.

1) du1 = du2 : Two users request the same file, and we have

Ñ(dA) = 1. Without loss of generality, we denote the leader

group as UA = {u1}. By Definition 2, the set of non-redundant

groups is {{u1}, {u1, u2}}, and we have Q1 = {{u1}} and

Q2 = {{u1, u2}}. Thus, we can rewrite (7) as

RMCCS(dA;q) =

1∑

s=0

∑

S∈Qs+1

max
k∈S

qsdk
(1− qdk

)2−sFdk

= (1 − qdu1
)2Fdu1

+ qdu1
(1 − qdu1

)Fdu1
.

Given the leader group UA = {u1}, we have DA = {du1}.

Thus, Rlb(DA;q) in (24) is given by

Rlb(DA;q) = (1−qdu1
)2Fdu1

+ qdu1
(1− qdu1

)Fdu1

= RMCCS(dA;q). (37)

2) du1 6= du2 : When two active users request different files,

we have Ñ(dA) = 2. The leader group is UA = {u1, u2}, and

the set of non-redundant groups is {{u1}, {u2}{u1, u2}}, of

which can be categorized as Q1 = {{u1}, {u2}} and Q2 =
{{u1, u2}}. Thus, RMCCS(dA;q) in (7) is given by

RMCCS(dA;q) =

1∑

s=0

∑

S∈Qs+1

max
k∈S

qsdk
(1− qdk

)2−sFdk

=(1− qdu1
)2Fdu1

+ (1− qdu2
)2Fdu2

+max{qdu1
(1 − qdu1

)Fdu1
, qdu2

(1− qdu2
)Fdu2

}.

Also, Rlb(DA;q) in (24) is given by

Rlb(DA;q) =

max
{
(1− qdu1

)2Fdu1
+(1−qdu2

)2Fdu2
+ qdu1

(1− qdu1
)Fdu1

,

(1−qdu1
)2Fdu1

+ (1−qdu2
)2Fdu2+ qdu2

(1− qdu2
)Fdu2

}

= RMCCS(dA;q). (38)

From (37) and (38), we conclude R̄MCCS(q) = R̄lb(q) for

A = 2. Combining Cases 1 and 2, we can conclude that

R̄MCCS(q) = R̄lb(q) for A ≤ 2.

APPENDIX E

PROOF OF PROPOSITION 2

Proof: For F = F1 = . . . = FN and q∗1 = · · · = q∗N , the

size of coded message CS corresponding to S ∈ Qs+1 in (5)

is given by

|CS | = max
k∈S

(q∗dk
)s(1− q∗dk

)A−sF = (q∗1)
s(1− q∗1)

A−sF.

Following this, RMCCS(dA;q
∗) in (7) is given by

RMCCS(dA;q
∗) =

A−1∑

s=0

∑

S∈Qs+1

(q∗1)
s(1− q∗1)

A−sF (39)

where the summation is over all the non-redundant groups. By

Definition 2, the number of non-redundant groups in Qs+1 is(
A

s+1

)
−
(
A−Ñ(dA)

s+1

)
=
∑Ñ(dA)

i=1

(
A−i
s

)
. Thus, we can rewrite

(39) as

RMCCS(dA;q
∗) =

A−1∑

s=0

Ñ(dA)∑

i=1

(
A− i

s

)
(q∗1)

s(1− q∗1)
A−sF

= Rlb(DA;q
∗). (40)

Thus, we conclude that R̄MCCS(q
∗) = R̄lb(q

∗).
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