

Edinburgh Research Explorer

P-Sketch: A Fast and Accurate Sketch for Persistent Item Lookup

Citation for published version:
Li, W & Patras, P 2023, 'P-Sketch: A Fast and Accurate Sketch for Persistent Item Lookup', IEEE/ACM
Transactions on Networking, pp. 1-16. https://doi.org/10.1109/TNET.2023.3306897

Digital Object Identifier (DOI):
10.1109/TNET.2023.3306897

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE/ACM Transactions on Networking

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. May. 2024

https://doi.org/10.1109/TNET.2023.3306897
https://doi.org/10.1109/TNET.2023.3306897
https://www.research.ed.ac.uk/en/publications/8a074fd8-8bf9-4b01-bd30-e4c01fd8d954

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 1

P-Sketch: A Fast and Accurate Sketch for Persistent
Item Lookup

Weihe Li and Paul Patras, Senior Member, IEEE.

Abstract—In large data streams consisting of sequences of data
items, those appearing over a long period of time are regarded
as persistent. Compared with frequent items, persistent items do
not necessarily hold large amounts of data and thus may hamper
the effectiveness of vanilla volume-based detectors. Identifying
persistent items plays a crucial role in a range of areas such
as fraud detection and network management. Fast detection of
persistent items in massive streams is however challenging due
to the inherently high data rates, while state-of-the-art persistent
item lookup solutions routinely require large enough memory to
attain high accuracy, which questions the feasibility of deploying
them in practice. In this paper, we introduce P-Sketch, a novel
approach to persistent item lookup that achieves high accuracy
even with small memory (L1 Cache) budgets and maintains high
update speed across different settings. Specifically, we introduce
the concept of arrival continuity (hotness) that counts the number
of consecutive windows in which an item appears, to effectively
protect persistent items from being wrongly replaced by non-
persistent ones. Through meticulous data analysis, we also reveal
that items with higher persistence tend to possess a stronger
hotness than non-persistent ones. Thus, we harness the informa-
tion of persistence and hotness, and employ a probability-based
replacement strategy to achieve a good balance between memory
efficiency, lookup accuracy, and update speed. We also present a
theoretical analysis of the performance of the proposed P-Sketch.
Through trace-driven emulations, we demonstrate that our P-
Sketch yields average F1 score and update throughput gains of
up to 10.32× and respectively 2.9×, over existing schemes. Lastly,
we show how to further boost the P-Sketch’s update speed with
Single Instruction Multiple Data (SIMD) instructions.

Index Terms—data stream mining, persistent items, sketch

I. INTRODUCTION

PERSISTENT items convey a lot of valuable information
and can often be encountered in different data streaming

processes, including malicious network behavior detection [1],
click fraud detection [2], and vehicle traffic mining [3]. For
instance, certain network threats (e.g., command and control in
botnets) involve sending malicious items at a restricted speed
but over a long timespan (e.g., only once an hour for 200 days),
to avoid detection by intrusion detection systems (IDS) [1],
[4]. Thus, as also indicated by [1], [5], finding persistent items
can help in identifying stealthy DDoS and botnet attacks. In
a similar fashion, automated scripted logic is used to perform
click fraud by persistently clicking on advertisements over a
long time period, to circumvent discovery by vanilla volume-
based detectors and increase revenue in pay-per-click-based
online advertising systems [2]. Persistent item detection also

Weihe Li and Paul Patras are with the School of Informatics, The University
of Edinburgh, United Kingdom. E-mail: {weihe.li, paul.patras}@ed.ac.uk.

This work was partially supported by Cisco through the Cisco University
Research Program Fund (Grant no. 2019-197006).

helps thwarting such illicit activity. Identifying persistent items
in real-time is therefore critical in practice [6].

Persistent items often exhibit repetitive arrival patterns.
Consider a stream (i.e., a sequence of items where each
may appear multiple times) with N non-overlapping and
contiguous time windows. The persistence of an item e is
characterized by the number of different windows in which
e appears. Its persistence is thus an integer between 0 and
N . An item is regarded as α-persistent if its persistence is at
least αN (0 < α ≤ 1), where α is a user-configured threshold
that we term as the persistence threshold. Real-time persistent
item lookup is however non-trivial, as keeping pace with the
ever-increasing speeds of data streams while maintaining high
accuracy is hard. For example, in a fully utilized 10 Gb/s link,
the detection scheme requires a processing speed of at least
14.88 million packets per second [9]. Further, to achieve high
speed operation, it is desirable to access only the CPU cache
when processing items, which requires data structures that are
compact enough to be accommodated in the L1 and L2 caches,
which are much faster than the L3 cache [10].

Existing mechanisms for finding persistent items can be cat-
egorized into three types: sample-based [7], coding-based [13]
and sketch-based [6], [11]. The core idea of sample-based
approaches is to select items with a certain sampling rate and
then bookmark the sampled items in a hash-based filter [12].
Even though the time and space overhead can be mitigated ef-
fectively via sampling, this kind of approaches may still record
many non-persistent items, thus degrading memory efficiency.
Moreover, the sampling rate is configured according to the size
of the memory, which drops as the memory decreases, leading
to increased error rates. To improve the space utilization,
coding-based schemes store an item’s code [14] rather than
the item ID. Nevertheless, they need to encode every item
that appears in each window, wasting much space to save
non-persistent items. Besides, the computational overhead for
encoding and decoding is high, which dramatically decreases
the update speed, making it hard to match the speeds of
data streams [6], [15]. In particular, even efficient linear time
Raptor decoding approaches [14], [17] cannot meet the high
update speed requirements of fast item processing tasks [18].

Compared with schemes that record each item’s ID or
code, sketch-based methods hash items into memory entries
(buckets) and store the accumulated information of all data
streams, achieving fast update speed and small memory usage
at the cost of bounded errors [9], [18], [22]–[29], [31]. To
find persistent items, such schemes mainly resort to a Bloom
filter [12] or employ a state field to only increment persistence
counters by one in a given time window, to avoid dupli-
cates [6], [11]. However, Bloom filters incur false positives

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 2

(items that are not in the set are incorrectly reported as being in
the set), increasing the detection error. Moreover, each bucket
only records the accumulated information, leading to many
non-persistent items being mistakenly recognized as persistent,
especially under small memory budgets where hash collisions
are more likely.

Contributions: In this paper, we introduce a new sketch-
based approach for persistent item lookup, named P-Sketch,
which simultaneously overcomes the accuracy and throughput
limitations of existing solutions, and achieves a good trade-off
between accuracy, speed and memory efficiency. Specifically,
through data analysis we first unveil a key insight about
items encountered in streams: items with higher persistence
usually have stronger hotness1, meaning that they will not
be absent for a long period. Based on this observation, we
replace items stored in buckets in a probabilistic manner.
Consequently, when a persistent item is held in a bucket, the
larger persistence and hotness it has, the more difficult it will
be to substitute it with other items. Thus, persistent and non-
persistent items become easier to be stored and respectively
evicted.

To the best of our knowledge, our work is the first to harness
the hotness attribute for persistent item lookup. Compared with
existing methods, (1) P-Sketch does not utilize pointers and
reserves a larger portion of the memory to record persistent
items, which yields excellent memory efficiency and good de-
tection performance, even when strictly relying on the CPU’s
L1 cache; (2) P-sketch stops hashing once a new item finds
a bucket, effectively mitigating redundant hash operations,
leading to faster update speeds; we further accelerate the
update process of P-Sketch through data parallelism enabled
by SIMD instructions [36]; and (3) P-Sketch possesses high
accuracy, achieving an average F1 score of 0.93 with 64KB
memory (175.63% higher than the currently best-performing
persistent item lookup approach [11]). We present a formal
analysis of P-Sketch’s error bound on persistent item lookup,
to theoretically validate its accuracy, which we further demon-
strate via a spectrum of trace-driven evaluations. The source
code of P-Sketch is publicly available at [20].

The rest of this paper is organized as follows. In Section
II, we shed light on the limitations of existing schemes and
motivate our design. We present our P-Sketch solution in
Section III, then provide a formal theoretical analysis of its
performance in Section IV. In Section V we summarize the
results of extensive experiments, which confirm P-Sketch’s
effectiveness. We conclude the paper in Section VI.

II. BACKGROUND AND MOTIVATION

We start by demonstrating that existing schemes for persis-
tent item lookup can not guarantee both high accuracy and
efficient memory usage, which in turn motivates our design.

A series of approximate stream processing schemes have
been proposed recently to find persistent items in high-speed
data streams. Frequency-based sketches [46], such as Count-
Min Sketch [47], estimate persistence and adopt some supple-
mentary data structures, e.g. a Bloom filter [12], to evict dupli-

1refers to the number of consecutive windows in which an item appears.

cates. However, Bloom filters incur false positive errors owing
to hash collisions, especially under tight memory settings,
which degrades the detection accuracy. In addition, Count-
Min Sketch does not record the flow key, which results in
significant overestimations of items’ persistence. For instance,
when j different items are hashed into the same bucket in a
time window, the mapped counter will increase by j instead
of by 1. Moreover, this solution is non-invertible and thus
leads to excessive memory accesses, resulting in low update
speeds [9].

To improve the lookup accuracy and reduce the detection
overhead, Small-Space (SS) [7] tracks the persistence of
items in a hash table via sampling. Even though sampling
mitigates the space overhead, it still records many non-
persistent items, leading to low memory efficiency. Also,
the low sampling rate under limited memory increases the
lookup error. Other sampling schemes are also suitable for
persistent item detection, e.g., reservoir sampling [8], which
is a simple probabilistic method for identifying a set of items
in an unknown population. The sampling is however random,
with no consideration for the frequency of occurrence of
any of the items of interest, resulting in modest detection
performance (the P-Sketch we introduce in this work attains
up to 77% higher accuracy). To tackle the deficiencies of
sampling approaches, PIE [13] encodes each item via a Raptor
code [14]. By storing the code of each item rather than the
ID, PIE effectively alleviates memory usage. However, PIE
needs to store the code of each item in a time window
even though most items are non-persistent. Besides, encoding
and decoding require complicated computation, rendering PIE
unable to match high-speed streams. Compared to PIE, which
needs to record all items, recent work proposes to use multiple
hash tables to track only potential persistent items according
to the currently available information about the stream [4].
However, non-invertibility persists, which incurs substantial
memory access, leading to low update throughput.

The On-Off sketch [6] aims to further increase detection
accuracy and improve memory usage. There are two parts to
the On-Off Sketch: the first is a set of persistence counters, and
the second consists of g key-value pairs (g = 2 in the example
shown in Fig. 1) that are associated with each of the counters.
Both counters and key-value pairs also have an (On/Off)
flag that is used to increase the persistence of the tracked
items periodically. Specifically, when a new item arrives (e3

On, 4

e7:(On, 7)

e6:(On, 4)

Off, 5

e7:(On, 7)

e6:(On, 4)

Update
On, 4

e7:(On, 7)

e3:(Off, 5)

Swap

e3
5>4

Key-value pairCounter

Fig. 1: An insertion example of the On-Off Sketch.

in the example in Fig. 1), the On-Off Sketch first maps it
to a counter via a hash function. If the hashed item was not
previously recorded in any key-value pair associated with the
counter to which the item mapped, and the flag of that counter
is On (indicating this counter has not been accessed in this

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 3

time window), the On-Off Sketch first updates the counter’s
flag to Off and increases its value by one (from 4 to 5 in
this example). Then it compares the updated value with the
recorded value in each stored key-value pair and, if it finds
an entry with a value smaller than the counter’s value (e6 in
our example), then the flow key of that entry will be replaced
with the key of the newly arrived item, while the value in that
key-value pair will inherit the counter’s value (i.e., 5). Lastly,
the counter’s flag and value are swapped with those of the
key-value pair that was replaced (On, 4). Unfortunately, since
multiple items may be hashed into the same counter, even
if e3 arrives only once, On-Off Sketch’s simple replacement
strategy may incorrectly identify it as persistent, resulting in
low detection accuracy under small memory budgets.

WavingSketch [11] is a generic sketch that can be used
in various applications and provides unbiased estimation. It
consists of two parts: waving counters and associated mul-
tiple counters for the heavy part. Specifically, WavingSketch
leverages the waving counter to estimate the item size. If the
value of the waving counter exceeds the minimum item size
in the heavy part, the content stored in the two counters will
exchange. For persistent item lookup, WavingSketch applies a
Bloom filter to remove duplicates in a time window. However,
extra memory accesses will increase the update time and thus
degrade the update throughput. Moreover, when the memory
is tight, the severe false positive errors caused by the Bloom
filter will dramatically degrade the lookup accuracy.

Our summary of existing persistent item lookup schemes
leads us to conclude that (i) it is challenging for existing meth-
ods to achieve high detection accuracy under limited memory,
especially with the L1 cache; (ii) owing to multiple memory
accesses and complex update procedures, their throughput is
unable to keep up with high-speed streams, thereby challeng-
ing their practical deployment. This motivates us to design a
new mechanism that simultaneously achieves high memory
efficiency, high update throughput and low detection error,
thereby overcoming the inefficiencies observed, as we discuss
in detail next.

III. P-SKETCH DESIGN

Next we introduce our P-Sketch design, starting with its core
principles, followed by its detailed functionality, including the
corresponding data structure and basic operations.

A. Core Principles

Since sketches can achieve small memory footprints, high
accuracy, and fast insertion and query speeds [45], we leverage
this data structure in our design. Specifically, we instantiate
our P-Sketch as two-dimensional array of buckets, containing
r rows, each with w memory entries (buckets), where a bucket
tracks the values of items hashed to that bucket [47]. Unlike
most existing sketch-based approaches [9], [43], [47] that
hash each item key into a bucket in each row and adds the
associated counter to the item value, P-Sketch stops the hash
operation once an incoming item finds an available bucket in
a row. This enables storing more items in the sketch and thus
significantly improves the memory efficiency. When an item

cannot successfully find an available bucket, P-Sketch adopts
a probability-based replacement to decide whether a new item
can replace one already stored in a bucket. The probability is
calculated based on the following key observation:

1) Key Observation: Items with a higher persistence
typically have a stronger hotness than items with lower per-
sistence. To verify this property, we analyze the relationship
between the persistence and the hotness of different items with
three one-hour real-world IP traces, namely CAIDA 2015,
CAIDA 2016, and CAIDA 2018 [43]. Each trace consists
of around 0.52M, 0.73M, and 0.77M items, respectively. We
configure the total number of windows as 1600 [6] and classify
items into four categories according their persistence values
(i.e., [1, 400], (400, 800], (800, 1200], (1200, 1600]). Note that
the above classification method is based on quartiles. Other
methods can also be leveraged, like using five classes instead
of four, since our design principles are independent of the
classification method.

0 50 100 150 2000

1

Window ID

 High hotness

(a) Example of an item with high hot-
ness.

0 400 800 1200 16000.0
0.2
0.4
0.6
0.8
1.0

CD
F

 Hotness

 [1,400]
 (400,800]
 (800,1200]
 (1200,1600]

(b) CAIDA 2015.

0 400 800 1200 16000.0
0.2
0.4
0.6
0.8
1.0

CD
F

 Hotness

 [1,400]
 (400,800]
 (800,1200]
 (1200,1600]

(c) CAIDA 2016.

0 400 800 1200 16000.0
0.2
0.4
0.6
0.8
1.0

CD
F

 Hotness

 [1,400]
 (400,800]
 (800,1200]
 (1200,1600]

(d) CAIDA 2018.

Fig. 2: Relationship between the persistence and hotness under
different datasets.

Firstly, we randomly select a persistent item from the
CAIDA 2016 trace. As shown in Fig. 2(a), 1 indicates this item
appears in a time window; conversely, 0 marks its absence.
We observe that the item’s arrival demonstrates high hotness,
meaning it will not be absent for a long period of time. Then,
we analyze the maximum hotness of each item under three
different traces and report the results in the form of Cumulative
Distribution Function (CDF). Figs 2(b), (c), and (d) reveal that
items with higher persistence own higher hotness. Specifically,
from Table I, we observe that the average hotness of items
with persistence between (800, 1200], (1200, 1600] is much
larger than that of items with persistence between [1, 400] and
(400, 800].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 4

TABLE I: Relationship between the persistence and average
hotness in 3 datasets.

Persistence
Dataset CAIDA15 CAIDA16 CAIDA18

[1,400] 1.333639 1.450933 1.190465
(400,800] 23.19014 18.62784 20.46747
(800,1200] 52.01818 62.21523 54.44717

(1200,1600] 345.6216 653.1479 295.4784

2) Special Case: In practical scenarios, certain items may
exhibit periodic occurrence patterns, appearing at regular
intervals, e.g. once every two time windows. Despite their
high persistence, these items may have a low hotness value.
Upon conducting a detailed data analysis, we observed that in
practice such items constitute only a tiny fraction of the overall
persistent items and for persistent items with low hotness
values, their arrivals likely follow a periodic pattern. In our
analysis, we randomly selected three traces from the CAIDA
datasets of 2015, 2016, and 2018. A detailed description
of these traces is provided in Section V.A. Each trace is
divided into 1600 windows, and we identify persistent items
as those that appear in over 800 windows. Specifically, in the
selected traces we found 682, 587, and 747 persistent items,
respectively, which indicates that the proportion of persistent
flows is extremely small. We then classify the hotness of these
persistent items into four ranges: [0, 100), [100, 500), [500,
1000), and [1000, 1600]. Table II illustrates the distribution of
hotness values among the persistent items.

From the table, we observe that the majority of persistent
items exhibit high hotness values. For instance, in the CAIDA
2016 dataset, only 4.6% of persistent items have a hotness
value smaller than 100. Additionally, we find that less than
2.5% of persistent items in the CAIDA 2015 dataset, 1% in the
CAIDA 2016 dataset, and 2.68% in the CAIDA 2018 dataset
have a hotness value smaller than 50 (not displayed in the
table). This analysis leads us to conclude that most persistent
items possess high hotness values. Therefore, hotness can
serve as a valuable metric for protecting persistent items.

TABLE II: Proportion of persistent items with different hot-
ness in 3 datasets.

Hotness
Dataset CAIDA15 CAIDA16 CAIDA18

[0,100) 6.45% 4.60% 4.82%
[100,500) 33.43% 30.49% 31.86%
[500,1000) 27.42% 26.06% 27.18%

[1000, 1600] 32.70% 38.85% 36.14%

Based on these observations, we conclude that items with
higher persistence tend to have higher hotness than non-
persistent ones. Thus, our P-Sketch estimates the replacement
probability based on the value of persistence and hotness
counters, to decide whether to record newly arriving items.
Specifically, the successful replacement probability decreases
as persistence and hotness counters increase, indicating that
when the bucket stores a persistent item, it can be hardly
substituted by non-persistent ones. Even for items with low
hotness values, our probability-based eviction method can

effectively prevent items with higher persistence from being
easily evicted from the bucket, ensuring a high detection
accuracy.

3) Differences from Existing Work: Note that while both
P-Sketch and On-Off Sketch utilize an On/Off flag to track
item persistence, they differ significantly in their update ap-
proaches. Unlike the naive eviction strategy employed by On-
Off Sketch, our approach incorporates a probabilistic eviction
mechanism based on multi-dimensional features. This strategy
provides enhanced protection for potentially persistent items,
safeguarding them from being easily evicted by a large number
of non-persistent ones.

Furthermore, P-Sketch also differs from the Unbiased
Space-Saving (USS) [30] method in two significant aspects.
Firstly, our method employs a multi-feature-based eviction
approach that considers factors such as item persistence and
hotness when evicting incumbent items. This enables more
accurate eviction decision-making. Secondly, P-Sketch elimi-
nates the need to scan all buckets to identify the bucket with
the minimum value, as required by USS. This optimization
offers P-Sketch significantly higher update speeds.

B. P-Sketch Data Structure

Fig. 3 illustrates the data structure of the proposed P-
Sketch, which consists of a two-dimensional array with r rows
and w columns. Each row is assigned a different pairwise-
independent hash function, denoted by h1, ..., hr. Let Bi,j
represent the bucket at the i-th row and j-th column, where
1 ≤ i ≤ r, 1 ≤ j ≤ w. Each bucket comprises four fields: (i)
P denotes the accumulated persistence of the current candidate
persistent item; (ii) H indicates the hotness of the current
candidate persistent item; (iii) Key stands for the key of the
current candidate persistent item; and (iv) Flag is a status
field (On/Off) of bucket Bi,j to indicate whether the current
candidate persistent item has been accessed or not in the recent
time window, with status On meaning this item has not arrived
in the current window yet. Otherwise, the persistence counter
will increase by one and the status is set to Off. With the aid
of the flag bit, P-Sketch effectively removes duplicates in a
time window. At the beginning of each new window, all the
flags will be reset to On. Note that the data structure keeps a
fixed memory size, and thus we can pre-allocate static memory
space before the measurement task begins [9], [43]. Although
including a hotness counter reduces slightly the number of
buckets that can be accommodated within a given memory
budget, the benefits gained from protecting persistent items
far outweigh the storage overhead incurred, as we reveal in
Section V.

w buckets

r rows

Bucket Bi, j

P H Key Flag

P: persistence counter in Bi, j

H: hotness counter in Bi, j

Key: key of candidate persistent item
Flag: persistent flag

Fig. 3: Data structure of P-Sketch.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 5

C. Basic Operations

The main operations of P-Sketch include Update and Query.
Update is used to insert arriving items into the sketch, and
Query is utilized to report the persistent items whose estimated
persistence is over a pre-defined threshold.

1) Update: Algorithm 1 illustrates the update procedure
of P-Sketch, which is triggered when a new item arrives,
and it can be divided into two stages: finding an available
bucket (Stage I) and probability-based replacement (Stage II).
Initially, all the counters and the flags are set to 0 and On,
respectively (Line 1).

Stage I: Once a new item em arrives, P-Sketch first checks
whether this item belongs to a new time window (Lines 3–10).
If so, P-Sketch first scans all the buckets, and for those whose
flag bit is On (indicating that the candidate persistent item
did not arrive in the last window) the corresponding hotness
counter is decremented by 1. Then, the flags of all buckets are
reset to On.

To insert the new item em, P-Sketch initially maps it into
the bucket in the first row with the hash function h1. (i) If
the hashed bucket is empty, P-Sketch initializes the bucket by
recording the item’s key into that, setting both the persistence
and hotness counters as 1, and turning the status flag to Off
(Lines 11–17). (ii) If the hashed bucket has been occupied by
em and the flag of the bucket is On, we increase the persistence
and hotness counters by 1, and set the flag to Off (Lines 18–
22). In either case, an available bucket for the current item is
found. (iii) If the hashed bucket is already occupied by em and
the flag of the bucket is set to Off, we disregard the incoming
item (Lines 23–24). (iv) Otherwise, P-Sketch scans the buckets
in the next row one by one with hash functions h2, h3, ..., hr,
respectively, to find an available bucket for the current item.
Once an appropriate bucket is found, the process terminates.
Unfortunately, suppose the new arrival cannot successfully find
a bucket, indicating a hash collision occurs in each row. In
that case, P-Sketch will compare it to the stored item with
the smallest importance (the sum of persistence and hotness
counters) among r rows, to determine whether to accept or
evict the current item (Lines 25–26). Note that P-Sketch
randomly selects one to update if multiple buckets have the
same minimum value.

Stage II: If the status flag of the corresponding bucket is
Off , indicating that the candidate persistent item stored in
this bucket has arrived in current time window, the newly
arrived item will give up the replacement (Lines 28–30).
This approach guarantees the retention of the incumbent item
in the sketch, preventing its eviction during this stage. To
confirm the effectiveness of this strategy, we conduct exper-
iments comparing P-Sketch with and without this particular
abandonment (PA) in Section V-F. Otherwise, P-Sketch will
estimate the replacement probability according to the smallest
sum of persistence and hotness counters, which is calculated
as 1

η(Bi,j .P+Bi,j .H)+1 . Here, η is a predefined constant (e.g.,
η = 18). If a candidate persistent item is stored in the bucket,
the larger the value of persistence and hotness it has, the harder
it is to be successfully substituted by others. On average,
a new item has to arrive η(Bi,j .P +Bi,j .H) + 1 times to

Algorithm 1: P-Sketch’s Update operation
Input: an item em, hash functions h1, h2, ..., hr,
min ← +∞, W ← window size, c ← 0

1 Initialization: The persistence and hotness counters,
item key and flag of each bucket are initialized to 0,
NULL and On, respectively.
// Stage I: finding an available bucket

2 for i = 1 to r do
3 c← c+ 1;
4 if c mod W == 0 then // a new window

5 for j = 1 to r do
// traverse all buckets

6 for q = 1 to w do
7 if Bj,q.f lag == On then // this

item has not arrived in the

last window

8 Bj,q.h← max(Bj,q.h− 1, 0);

9 else
10 Bj,q.f lag == On; // reset the

flag in all counters

11 index = hi(em.key)
12 if Bi,index == NULL then
13 Bi,index.key ← em.key;
14 Bi,index.p← 1; // persistence counter

15 Bi,index.h← 1; // hotness counter

16 Bi,index.f lag ← Off ;
17 return;

18 else if
Bi,index.key == em.key ∧Bi,index.f lag == On
then

19 Bi,index.p← Bi,index.p+ 1;
20 Bi,index.h← Bi,index.h+ 1;
21 Bi,index.f lag ← Off ;
22 return;

23 else if Bi,index.key ==
em.key ∧Bi,index.f lag == Off then

24 return;

25 else if Bi,index.p+Bi,index.h < min then
26 min← Bi,index.p+Bi,index.h;
27 R← i; M ← hR(em.key);

// Stage II: Probability-based replacement

28 if BR,M .f lag == Off then
29 Discard the newly arrived item;
30 return;

31 if random(0, 1) < 1
η(BR,M .p+BR,M .h)+1 then

32 BR,M .key ← em.key;
33 BR,M .p← BR,M .p+ 1;
34 BR,M .h← BR,M .h+ 1;
35 BR,M .f lag ← Off ;
36 return;

37 else
38 Discard the newly arrived item;
39 return;

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 6

replace the item stored in the bucket [32]. In this fashion, the
persistent and non-persistent items become easy to be saved
and replaced, respectively. The replacement process involves
two cases: (i) if the replacement is successful, P-Sketch will
update the item key stored in the bucket with the new item’s
key, turn the flag to Off , and finally increment the counters
by 1 [23], [32], [48] (Lines 31–36); (ii) if the replacement is
unsuccessful, P-Sketch will evict the new arrival (Line 38–39).

e1e1
1 1 e1 Off1 1 e1 Off1 1 e1 Off

(a) e1 finds an empty bucket.

e2e2
1 1 e1 Off1 1 e1 Off1 1 e1 Off1 1 e1 Off1 1 e1 Off

5 4 e2 On5 4 e2 On 6 5 e2 Off6 5 e2 Off

(b) e2 updates its counters.

e2e2
1 1 e1 Off1 1 e1 Off1 1 e1 Off1 1 e1 Off1 1 e1 Off

5 4 e2 Off5 4 e2 Off 5 4 e2 Off5 4 e2 Off

(c) e2 gives up updating its counters.

e3e3
1 1 e1 Off1 1 e1 Off1 1 e1 Off1 1 e1 Off1 1 e1 Off

5 4 e2 Off5 4 e2 Off 5 4 e2 Off5 4 e2 Off

(d) e3 fails to replace e1 (e1 has arrived in current window).

e3e3
1 1 e1 On1 1 e1 On1 1 e1 On1 1 e1 On1 1 e1 On

5 4 e2 Off5 4 e2 Off 5 4 e2 Off5 4 e2 Off

(e) e3 fails to replace e1 (without triggering the replacement successfully).

e3e3
2 1 e3 Off2 1 e3 Off2 1 e3 Off1 0 e1 On1 0 e1 On

5 4 e2 Off5 4 e2 Off 5 4 e2 Off5 4 e2 Off

(f) e3 successfully replaces e1.

Fig. 4: An example of P-Sketch’s update process.

A Running Example: We apply several examples to illus-
trate the algorithm’s update operation, as depicted in Fig. 4.
For ease of understanding, we set r = 2 and η = 1 in these
examples. When an item e1 arrives, P-Sketch first maps it to
a bucket with the hash function h1(e1.key). Since the bucket
B1,h1(e1.key) is empty (Fig. 4(a)), P-Sketch inserts e1 into the
bucket and stops hash actions. After that, to insert e2, P-Sketch
first maps it to a bucket via h1(e2.key), where it collides with
the item e1. Then P-Sketch finds e2 has been stored in the
bucket with h2(e2.key). As Fig. 4(b) shows, if the flag of
e2 is On, the corresponding persistence and hotness counters
increase by 1 and the flag is updated to Off . Otherwise,

the status of the bucket storing e2 does not change in this
time window (Fig. 4(c)). When e3 arrives (Fig. 4(d,e,f)), since
no usable bucket could be found, P-Sketch selects the bucket
with a smaller sum of both counters and thus B1,h1(e3.key) is
selected. As shown in Fig. 4(d), the flag of the selected bucket
is Off , indicating item e1 has arrived in current epoch and
thus e3 will be discarded. As displayed in Fig. 4(e), if the
replacement of e3 is unsuccessful, no change occurs in that
bucket. Fortunately, as depicted in Fig. 4(f), if the flag of e1 is
On and e3 successfully triggers the replacement mechanism
with a replacement probability of 0.5, the item key in the
bucket B1,h1(e3.key) sets to e3, both counters increase by 1,
and the flag turns to Off .

2) Query: To obtain persistent items, P-Sketch traverses all
buckets, and if the estimated persistence p̂i of an item ei is
greater than the pre-defined threshold αN , then ei is reported
as persistent.

D. A New Variant: Optimization with Fingerprints

To further optimize the memory usage of P-Sketch, we
propose a new variant P-Sketch∗. Compared with the vanilla
P-Sketch, we leverage the fingerprint to replace the item key
to optimize the memory usage‘. The fingerprint of an item is
obtained through a specific hash function, producing a unique
hash value [18]. Although hash collisions can occur among
different items, the probability of such events is relatively low
and can be considered negligible. For instance, in a scenario
where the fingerprint size is set to 32 bits, and each row
consists of 340 buckets, the probability of fingerprint collisions
in a dataset containing 1,000,000 items is estimated to be
6.85 × 10−7, indicating a very low likelihood of a collision.
Despite the memory efficiency improvement achieved by har-
nessing fingerprints, there is a trade-off in terms of processing
speed. We thoroughly analyze this trade-off between detection
accuracy and processing speed in Section V-H.

In contrast to vanilla P-Sketch, which utilizes separate fields
to track persistence, hotness, and flag, we can optimize the
approach by utilizing a single 4-byte counter to track this
information. The value of persistence and hotness counters
is inherently bounded by the number of time windows N .
Before initiating the detection task, we evaluate the feasibility
of counter compression. With a 4-byte counter, allocating the
lowest 16 bits to record item persistence allows for a maximum
persistence value of 65,535. Similarly, assigning the highest 15
bits to record the hotness accommodates a maximum value of
32,767. If the number of time windows is less than 32,767, the
compression of the flag and two counters into a 4-byte counter
is feasible. For time windows ranging from 32,767 to 65,535,
the two counters can be compressed into a 4-byte counter
and a separate field can be used to record the flag. However,
suppose the number of time windows exceeds 65,535. In that
case, this approach to compression is no longer feasible, and
we revert to the default method of tracking the persistence
and hotness values in separate counters. In our specific case,
with 1,600 time windows [6], successful compression into
a 4-byte counter can be achieved. It is worth noting that
conducting the compression operation with finer granularity

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 7

has the potential to enhance detection accuracy. We leave for
future work the optimization of counter utilization to further
improve the lookup process.

IV. MATHEMATICAL ANALYSIS

We present a theoretical analysis of P-Sketch with a view
to detection accuracy. We first derive the relationship between
hotness and persistence. Then we prove that the expected
persistence estimation given by P-Sketch is no more than the
real persistence, followed by deriving the error bounds of P-
Sketch.

A. Relationship Between Hotness and Persistence

Suppose we have a sequence of time windows consisting of
a total of N windows, each of duration T . We assume that the
arrival of items is independent and random, and the probability
of arrival in each time window is θ.

First, let’s calculate the expected value of hotness H ,
denoted as E(H). Assuming an item appears in consecutive
k time windows, the hotness H is equal to k. We can use
the probability mass function of the binomial distribution to
calculate the probability of having hotness k:

P (H = k) =

(
N

k

)
· θk · (1− θ)N−k, (1)

where
(
N
k

)
represents the binomial coefficient, which selects

k successive windows out of N windows.
To compute the expected value of hotness E(H), we sum

up the products of k and the corresponding probabilities:

E(H) =

N∑
k=0

k ·
(
N

k

)
· θk · (1− θ)N−k (2)

=

N∑
k=0

k · N !

k!(N − k)!
· θk · (1− θ)N−k (3)

We can simplify the expression further by observing that

k · N !

k!(N − k)!
=

N !

(k − 1)!(N − k)!
(4)

Therefore,

E(H) =

N∑
k=0

N !

(k − 1)!(N − k)!
· θk · (1− θ)N−k (5)

We can observe that when the element appears consecutively
in more time windows, i.e., when k is larger, the corresponding
multiplication term N !

(k−1)!(N−k)! ·θ
k ·(1−θ)N−k is also larger.

As E(H) is the sum of these multiplication terms, larger
multiplication terms contribute more to the value of E(H).
From this, we can conclude that higher hotness leads to larger
expected value E(H).

Now, let’s calculate the expected value of persistence P ,
denoted as E(P). Persistence P represents the number of
distinct time windows in which an item appears. To compute
E(P), we need to consider all possible values of P ranging
from 0 to N .

Suppose an item appears in v distinct time windows. The
probability of having persistence P = v is given by:

P (P = v) =

(
N

v

)
· θv · (1− θ)N−v (6)

where P is no smaller than H , and v can be expressed as
k + ψ, where ψ represents the number of non-consecutive
occurrences.

To compute the expected value of persistence E(P), we
sum up the products of v and the corresponding probabilities:

E(P) =

N∑
v=0

v ·
(
N

v

)
· θv · (1− θ)N−v (7)

Then, we calculate the expected value of the persistence P ,
denoted as E(P):

E(P) =

N∑
v=0

v ·
(
N

v

)
· θv · (1− θ)N−v

=

N∑
v=0

v · N !

v!(N − v)!
· θv · (1− θ)N−v

=

N∑
v=0

N !

(v − 1)!(N − v)!
· θv · (1− θ)N−v

=

N∑
k=0

N !

(k + ψ − 1)!(N − k − ψ)!
· θk+ψ · (1− θ)N−k−ψ

By comparing the expression for E(P), we can observe
that E(P) is directly related to the parameter v, which is
influenced by the value of k. As k increases, the value of
v also increases. Therefore, we can conclude that when the
hotness H is larger, corresponding to a higher value of k, it
tends to result in a larger persistence P , indicating that higher
hotness is associated with larger persistence.

B. No Over-estimation Error

Theorem 1. Let P t(ei) denote the real persistence of item
ei at any given time t and P̂ t (ei) represent the estimation of
P t(ei). E

[
P̂ (ei)

]
≤ P (ei) when η ≥ 1.

Proof. We resort to mathematical induction [32], [33] to prove
this theorem. At the beginning (t = 0), P̂ (ei) = 0. We assume
this theorem holds at the (t − 1)-th time window, which is
E
[
P̂ t−1 (ei)

]
≤ P t−1(ei).2 Then at the t-th time window,

there exist two cases:
Case 1: If an item other than ei arrives, then we get

E
[
P̂ t (ei)

]
≤ E

[
P̂ t−1 (ei)

]
since the persistence estimation

for ei can only decrease or stay the same at the t-th window.
Thus, we have

E
[
P̂ t (ei)

]
≤ E

[
P̂ t−1 (ei)

]
≤ P t−1(ei).

Because P t−1(ei) ≤ P t(ei), we obtain that the hypothesis
holds at the t-th time window in this case.

2Note that here superscript t represents a time window rather than expo-
nentiation.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 8

Case 2: If item ei arrives at the t-th time window, we
employ ∆Etei to denote the variation of E

[
P̂ (ei)

]
in an

adjacent window, which is

∆Etei = E
[
P̂ t (ei)− P̂ t−1 (ei)

]
.

If ei has been stored in the bucket and the flag of the
corresponding bucket is On, we get P̂ t (ei)− P̂ t−1 (ei) = 1.
Otherwise, P̂ t (ei) remains the same in this time window.

If ei is not stored in the bucket, ei will try to replace the item
stored in the bucket with the minimum sum with a probability
of 1

η(Bi,j .P+Bi,j .H)+1 . If the replacement is successful, the
estimation value for ei is increased by (Bi,j .P+1). Contrarily,
the increment of the estimated value for ei is 0. Thus, the
expected increment is (Bi,j .P +1) · 1

η(Bi,j .P+Bi,j .H)+1 . Since
Bi,j .H ≥ 0, we obtain that the expected increment is no more
than 1 when η ≥ 1.

Therefore, the expected incremental persistence of item ei
between two consecutive time windows is not greater than 1
in all scenarios, which is E

[
P̂ t (ei)

]
−E

[
P̂ t−1 (ei)

]
≤ 1 and

∆Etei ≤ 1. Thus, E
[
P̂ t (ei)

]
≤ E

[
P̂ t−1 (ei)

]
+ 1. We get

E
[
P̂ t (ei)

]
≤ E

[
P̂ t−1 (ei)

]
+ 1 ≤ P t−1(ei) + 1.

Since ei has arrived in the t-th window, we get P t−1(ei)+
1 = P t(ei). Thus, the induction hypothesis also holds in this
case. Theorem 1 is proven.

C. Error Bounds of P-Sketch

Lemma 1. Let ct stand for the persistence value of the min-
imal bucket among the r-hashed buckets at the t-th window.
Then P̂ t (ei) ≤ P t (ei) + ct.

Proof. We leverage a case analysis [32] to validate this lemma.
First, if item ei is not in the bucket at the t-th time window

during the query process, we get P̂ t (ei) = 0 and thus the
theorem holds. On the contrary, if item ei stores in the bucket
at the query time, there are two cases.

Case 1: ei enters the bucket without any replacement
actions. This case means that ei holds in its mapped bucket
all the time. Thus, the estimated persistence P̂ t (ei) is equal
to its real persistence P t(ei). Thus, the theorem holds.

Case 2: ei enters the bucket via replacing other items.
Consider the item ei last entered the bucket in the l-th
window. At that time, P̂ l (ei) = cl−1 + 1, where P̂ l (ei)
indicates the estimated persistence of item ei at time l and
cl−1 denotes the persistence value of the minimal bucket
in the (l − 1)-th window. Since the persistence counter of
the minimal bucket only increases after an item arrives, the
counter’s value is either incremented by one or remains the
same. Thus, P̂ l (ei) ≤ cl−1 +1. Then, assume item ei arrives
q times between the l-th window and the present window (t-
th window); we obtain q ≤ P t(ei) − 1 as ei arrived once
at time l. Therefore, we obtain P̂ t (ei) = P̂ l (ei) + q ≤
cl−1 + 1 + P t(ei)− 1 = cl−1 + P t(ei) ≤ P t(ei) + ct.

Since the claim holds in all cases, Lemma 1 is proven.

(ϵ, δ)-counting is a helpful metric for assessing the error
rate of an algorithm [18]. We adopt this to prove that P-Sketch

can reach a low underestimation error rate in estimating the
persistence of persistent items.

Theorem 2. Given a small positive number ε that al-
lows εN to be greater than ct and εN − ct smaller
than the number of time windows, for a persistent item
entering a bucket at any given time t, when η ≥ 1,
Pr

{
P t (ei)− P̂ t (ei) ≥ ⌈εN − ct⌉

}
≤ N

w(εN−ct) holds,
where w represents the number of buckets in each row, and
N stands for the total number of packets in all items.

Proof. Let Ht(ei) denote the number of times item ei arrives
before the t-th time window. For an item ei to replace
the item stored in the minimal bucket, the unallocated item
requires to arrive η(Bi,j .P +Bi,j .H) + 1 times on average.
Thus, we use γ to represent the replacement loss when
replacing the formerly stored item in bucket Bi,j , which is
η(Bi,j .P +Bi,j .H) − Bi,j .P . Thus, at any given time t, we
have

Bti,j .P = P t(ei)−
Ht(ei)∑
x=1

Prx (ei) · γ

Given a small positive number ε, the following Markov
inequality holds

Pr
{
Bti,j .P ≤ P t (ei) + ct − εN

}
= Pr

P t(ei)−
Ht(ei)∑
x=1

Prx (ei) · γ ≤ P t (ei) + ct − εN

= Pr

Ht(ei)∑
x=1

Prx (ei) · γ ≥ εN − ct

≤
E

[
Ht(ei)∑
x=1

Prx (ei) · γ

]
εN − ct

Assume that all packets from distinct items follow the
uniform distribution [18], we obtain

Pr

{
Prx (ei) =

1

η
(
Bti,j .P +Bti,j .H

)
+ 1

}
=

1

Bti,j .P

=
1

P t(ei)− E

[
Ht(ei)∑
x=1

Prx (ei) · γ

]

For ease of understanding, we use δ to denote

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 9

P t(ei)− E

[
Ht(ei)∑
x=1

Prx (ei) · γ

]
. Then we have

E

Ht(ei)∑
x=1

Prx (ei) · γ

 =

E[Ht(ei)]∑
x=1

E [Prx (ei) · γ]

= E
[
Ht (ei)

] δ∑
P=1

[
γ

η
(
Bti,j .P +Bti,j .H

)
+ 1
· 1
δ

]

= E
[
Ht (ei)

] δ∑
P=1

[
η(Bi,j .P +Bi,j .H)−Bi,j .P
η
(
Bti,j .P +Bti,j .H

)
+ 1

· 1
δ

]

≤ E [Ht (ei)]

δ

δ∑
P=1

η

η + 1
= E

[
Ht (ei)

]
· η

η + 1
.

Suppose that all packets from different items are hashed
evenly to each bucket, we get E [Ht (ei)] ≤ N

w . Thus,

E

Ht(ei)∑
x=1

Prx (ei) · γ

 ≤ N

w
· η

η + 1
.

Then

Pr
{
Bti,j .P ≤ P t (ei) + ct − εN

}
≤

E

[
Ht(ei)∑
x=1

Prx (ei) · γ

]
εN − ct

≤
N
w ·

η
η+1

εN − ct
=

ηN

w (η + 1) (εN − ct)
≤ N

w (εN − ct)
.

Since Bti,j .P and P̂ t (ei) both denote the estimated persis-
tence for item ei at the t-th window. Finally, we obtain

Pr
{
P t (ei)− P̂ t (ei) ≥

⌈
εN − ct

⌉}
≤ Pr

{
P̂ t (ei) ≤ P t (ei) + ct − εN

}
≤ N

w (εN − ct)
.

1 6 3 2 6 4 1 2 8 2 5 60 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

M e m o r y S i z e (K B)

 T h e o r e t i c a l p r o b a b i l i t y b o u n d
 E m p i r i c a l p r o b a b i l i t y

Fig. 5: Theoretical bound
and empirical probability of
P-Sketch.

To confirm the correct-
ness of the derived er-
ror bound, we experiment
with a CAIDA16 trace with
0.15M packets and divide it
into 600 time windows. We
configure ϵ as 0.004 and
vary the memory size from
16 to 256KB. The results
in Fig.5 show that the em-
pirical value is smaller than
the theoretical one, validat-
ing the correctness of our
theoretical analysis.

V. EVALUATION

In this section, we conduct trace-driven experiments to
evaluate the performance of P-Sketch. First, we discuss the
experimental setup, then analyze the impact of different pa-
rameter settings. Afterwards, we compare the performance of
P-Sketch with that of prior schemes under different datasets,

to demonstrate its superiority. Further, we explore the impact
of the persistent item threshold on the detection accuracy and
study the contribution of each component to the performance
of P-Sketch. Finally, we investigate how to enhance the update
throughput of P-Sketch with SIMD instructions.

A. Experimental Setup

Implementation: We implement P-Sketch in C++ and
conduct experiments on a physical machine with an eight-core
Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz and 32GB DRAM
memory, running Ubuntu 16.04 LTS with kernel version
4.15.0-142-generic. We use MurmurHash [49] to implement
the hash function.

Dataset: We utilize the following datasets to conduct our
experiments, each of which is divided into 1,600 time win-
dows [6].

• IP Trace Dataset captured by CAIDA on 10 GigE back-
bone links [42]. Here we leverage four traces (CAIDA15,
CAIDA16, CAIDA18, and CAIDA19), collected between
2015–2019. Each trace lasts around 1-hour and contains
0.52M, 0.73M, 0.77M, and respectively 1.53M different
items.

• Data Center (DC) Dataset collected from the academic
data center of the University of Wisconsin in 2010 to
analyze network traffic characteristics of data centers in
the wild [50]. Here, we use a trace that contains 1.92M
distinct items.

• MAWI Dataset, whose traffic traces are collected by
the MAWI Working Group [51], which investigates the
performance of networks in Japanese wide area networks.
We pick a trace with a monitoring duration of 15 minutes
on Jan 1, 2022, which consists of approximately 8.35M
items.

Note that for all traces, we focus on the IPv4 traffic only
and utilize the source-destination pairs (8 bytes) as the ID of
each item.

Benchmarks: We compare P-Sketch with three existing
approaches for persistent item lookup, including Small-Space
(SS) [7], WavingSketch [11], and On-Off Sketch [6]. We
omit PIE [13] from our evaluation as it does not work
with small amounts of memory. WavingSketch provides an
unbiased estimation for the frequency of each item via well-
designed counters and employs a Bloom filter [12] to remove
duplicates in a time window. For a comprehensive comparison,
the number of WavingSketch’s cells s and On-Off Sketch’s
key-value pairs q is set as 2, 4 and 16, respectively (s and
q marked accordingly in the legend of the following figures
next to these approaches). We implemented the On-Off Sketch,
Waving Sketch, and SS algorithms using the code provided by
their respective authors. By default, we choose the threshold
α = 0.5 for identifying a persistent item. We also adjust the
value of the threshold α to test the robustness of P-Sketch in
Section V-D.

When configuring the memory size, all sketches, including
our P-Sketch and the baselines considered, are assigned the
same memory budget, which ensures a fair comparison among
them. Note that the memory allocation approach we take aligns

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 10

with many existing works, such as [9], [43], [44], whereby
the number of buckets in each row is determined based on
the given memory size and the number of rows. To expand on
this, in P-Sketch each bucket has a fixed size. By specifying
the number of rows r and the total memory size, we can
determine the number of buckets in each row based on these
parameters. Similarly, in On-Off Sketch, the structure consists
of a series of counters, where each counter is associated with
g key-value pairs. The size of each counter and key-value pair
can be determined in advance based on their respective data
structures. Knowing the memory size and the number of key-
value pairs associated with each counter, we can calculate the
total number of counters in this sketch. The memory allocation
method for Waving-Sketch and SS follows the same logic.

Metrics: We consider the following metrics:
• Recall: the ratio of true persistent items reported over all

true persistent items.
• Precision: the ratio of true persistent items reported over

all reported persistent items.
• F1 score: 2×recall×precisionrecall+precision , which is calculated based to

recall and precision, reflecting the accuracy of a method.
• Average Absolute Error (AAE):

1
|Φ|

∑
ei∈Φ

∣∣∣P (ei)− P̂ (ei)∣∣∣, where P (ei) stands for

the real persistence of item ei, P̂ (ei) is the estimated
persistence of that item, and Φ is the query set. Here,
the query set encompasses the persistent items reported.

• Average Relative Error (ARE): 1
|Φ|

∑
ei∈Φ

|P (ei)−P̂ (ei)|
P (ei)

,
which evaluates the error rate of the estimated persistence
reported by the algorithm.

• Update Throughput in million operations (insertions) per
second (Mops). We conduct insertions of all packets in all
items N and record the total time T . The update through-
put is calculated as N

T . We repeat all the experiments 5
times and report median values as in [6], [23].

B. Impact of P-Sketch’s Parameter Settings

We first measure the influence of different parameter set-
tings on the performance of P-Sketch. The parameter config-
uration process for P-Sketch is inspired by several existing
sketch-based approaches [10], [11], [22], [39]. In contrast
to prior methods that entail the specification of multiple
parameters [10], P-Sketch simplifies the process by requiring
the configuration of only two parameters: the number of rows
(r) and the eviction probability (η). Because once the memory
size and r have been set, w is also fixed. Therefore we do
not consider the parameter w here. We note that existing
processors largely have three levels of cache memory (L1 to
L3), with the L3 cache being considerably larger than the L1
cache. For instance, the Intel i9-11900K CPU has a 64KB
L1 cache memory per core and 16MB of L3 cache. However,
unlike the L1 cache with a much smaller memory size, the L3
cache is shared between all cores and is the slowest memory on
the CPU. This makes it challenging to handle high-speed items
using L3 caches. To attain high-accuracy detection, sketches
need to be compact enough to be accommodated in the much
faster but tight L1 cache. Thus, similar to recent work [10],

[16], we set the memory size between 16 and 128KB for the
parameter setting experiments. We apply two CAIDA datasets
(CAIDA 2016, 2019) and utilize F1 score and throughput as
the evaluation metrics to assess the impact of these parameters.

1) Impact of r: In the ideal scenario, when r is configured
as the total number of buckets, indicating each row only con-
tains one bucket, P-Sketch can consistently find the smallest
bucket to update. However, as the number of memory access
operations for each update is equivalent to the number of
buckets in the worst case, the update throughput will drop
dramatically, which is unacceptable in practice [23].

Fig. 6 reveals how different r values influence the algo-
rithm’s performance under different memory size. η is set to
18 in this experiment (see the next paragraph for results that
show this is the optimal value). When the memory budget is
small, the detection accuracy increases notably as r increases.
The reason is that, items have more chances to be stored
in the bucket, mitigating the risk of missing persistent items
and thus improving the detection accuracy. We also find that
when r increases to 2 and the memory size grows, the larger
number of rows improves the performance of P-Sketch only
marginally. On the other hand, as shown in Figs 6(b) and (d),
the update throughput drops as r increases, since items are
likely to undergo more hashing operations on average to find
an available bucket. Through selecting the minimum bucket
among d buckets, P-Sketch leverages the help of the “power
of d choices” paradigm [23], [34], [35]. In this paper, to strike
a good balance between detection accuracy and update speed,
setting r as 2 is recommended. Alternatively, if prioritizing
higher update speed is preferred, the parameter r can be
configured as 1 in practice.

16 32 64 128
0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
 S

c
o
re

Memory Size (KB)

 r=1

 r=2

 r=3

 r=4

(a) F1 score (CAIDA 2016).

16 32 64 128
0

5

10

15

20

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Memory Size (KB)

 r=1

 r=2

 r=3

 r=4

(b) Update throughput (CAIDA 2016).

16 32 64 128
0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
1
 S

c
o
re

Memory Size (KB)

 r=1

 r=2

 r=3

 r=4

(c) F1 score (CAIDA 2019).

16 32 64 128
0

5

10

15

20

T
h
ro

u
g
h
p
u
t
(M

o
p
s
)

Memory Size (KB)

 r=1

 r=2

 r=3

 r=4

(d) Update throughput (CAIDA 2019).

Fig. 6: Detection performance and update throughput under
different r settings with two datasets.

2) Impact of η: Recall that η is a user-defined parameter
that dictates the replacement probability. If η is configured
with a small value, persistent items may be easily replaced by

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 11

non-persistent ones. On the contrary, if η is large, even non-
persistent items become hard to be evicted from the bucket.
Similar to prior work [10], [11], [19], [22], [40], [41], we fix
r (r = 2 in this case) and vary η to experiment on different
datasets to find an appropriate value. Fig. 7 compares P-
Sketch’s detection performance when varying η and employing
different memory sizes. Observe that the F1 score reaches a
maximum with different memory sizes when η is in the 10
to 50 range for different traces. Besides, we also conducted
additional experiments on various datasets, including MAWI
[51]. The results consistently demonstrate a similar trend.
Therefore, we choose η = 18 for P-Sketch, which is the
average value that yields the best performance across all the
memory budgets considered.

0 100 200 300
0.4

0.6

0.8

1.0

F
1

 S
c
o

re

 16K 32K

 64K 128K

(a) F1 Score (CAIDA 2016).

0 100 200 300
0.2

0.4

0.6

0.8

1.0

F
1

 S
c
o

re

 16K 32K

 64K 128K

(b) Update Throughput (CAIDA 2019).

Fig. 7: Detection accuracy w/ different η and memory budgets.

C. Persistent Item Lookup Performance

Next, we conduct trace-driven experiments and compare
the performance of P-Sketch with that of existing persistent
item lookup schemes. We first measure recall, precision, F1
score, AAE, and ARE to evaluate persistent item detection
performance. Then, we measure the update throughput of each
approach to assess the update speed.

1) Persistent Item Detection: Figs 8–12 illustrate the per-
formance of our P-Sketch and that of the benchmarks consid-
ered, with different datasets. Four key takeaways follow from
these results:

First, observe that the recall of P-Sketch is higher than
that of recent approaches on all traces, with an average
improvement over the best-performing sketch-based approach,
WavingSketch (with s = 2), of 23.52% in the CAIDA 2015
dataset, 37.05% in the CAIDA 2016 dataset, 27.28% in the
CAIDA 2018 dataset, 35.11% in the CAIDA 2019 dataset,
99.99% in the DC dataset, and 86.49% in the MAWI dataset
(Fig. 8).

Second, considering the features of persistent items and
replacing those stored in buckets probabilistically leads to
significant gains in lookup precision. Indeed, as shown in
Fig. 9, P-Sketch maintains a precision value around 1 even
under minimal memory size (e.g., 16KB), which is much
higher than that of existing solutions. We also observe that
the precision of the benchmarks considered is much lower on
the DC and MAWI datasets than when applied on the CAIDA
datasets. The reason is that the DC and MAWI traces are less
skewed, increasing query difficulty.

Third, as shown in Fig. 10, P-Sketch attains the highest F1
score across various datasets. For instance, under the MAWI
dataset, the F1 score of P-Sketch is on average up to 357.16×
higher than that of existing methods, confirming the superiority
of our approach in terms of detection performance.

Finally, P-Sketch guarantees low estimation error. As re-
ported in Figs 11 and 12, the AAE and ARE of P-Sketch
are on average 1.37×/1.80×, 2.08×/2.81×, 1.57×/2.1×,
1.54×/1.99×, 5.37×/5.15×, and 8.14×/10.07× smaller than
that of the competing On-Off Sketch solution (with q = 2) on
the CAIDA 2015, CAIDA 2016, CAIDA 2018, CAIDA 2019,
DC, and respectively MAWI dataset.

Analysis: The above results confirm the effectiveness of P-
Sketch. We now analyze the reasons behind the performance
gains observed over existing algorithms.

SS keeps track of different items via sampling, so that many
non-persistent items are also stored in the hash-based filter,
leading to much memory wastage. In addition, the sampling
rate of SS needs to be low to keep a small memory, which
raises its lookup error. Specifically, from Fig. 9, we observe
the precision of SS drops as the memory size increases. The
reason is that since the sampling rate is low, increasing space
results in more non-persistent items being wrongly identified
as persistent, leading to a lower precision.

On-Off Sketch leverages the compact sketch as the data
structure, significantly reducing memory usage compared with
SS. However, as explained in Section II, On-Off Sketch
naı̈vely replaces the persistent items stored in the key-value
pairs, causing many non-persistent items to be mistakenly
recognized as persistent, especially under small memory size,
thus decreasing detection accuracy.

WavingSketch applies a Bloom filter [12] to vacate dupli-
cates in a time window, which involves larger memory usage
as hash tables usually take up much memory [6]. Moreover, the
Bloom filter brings significant false positive rates, especially
when the memory size is limited (indicating severe hash
collisions), yielding low detection accuracy.

We also observe that when the memory is tight, as the
number of cells and key-value pairs increases, the performance
of WavingSketch and On-Off Sketch declines. The reason is
that when the memory resources are limited, increasing the
number of cells and key-value pairs leads to a decreasing
number of counters (indicated in Section II), exacerbating hash
collisions and thus resulting in low detection accuracy.

Compared with existing schemes, our P-Sketch algorithm
incorporates an additional field to capture the hotness of the
incumbent item. This enhancement allows us to effectively
track and differentiate persistent items from a larger pool
of non-persistent ones. Despite the increased memory usage
resulting from the inclusion of an additional counter, P-
Sketch’s probability-based eviction mechanism ensures the
preservation of persistent items and significantly reduces the
chances of erroneous substitutions by non-persistent items,
thereby guaranteeing a high level of detection accuracy. More-
over, considering the substantial disparity between the number
of persistent and non-persistent items, the reduced number of
buckets in P-Sketch does not overly compromise its ability
to maintain high detection accuracy. Specifically, we count

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 12

 P-Sketch ON-OFF (2) ON-OFF (4) ON-OFF (16) Waving (2) Waving (4) Waving (16) SS

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0
R
e
c
a
ll

Memory Size (KB)

(a) CAIDA 2015.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Memory Size (KB)

(b) CAIDA 2016.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Memory Size (KB)

(c) CAIDA 2018.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Memory Size (KB)

(d) CAIDA 2019.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Memory Size (KB)

(e) DC.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
ll

Memory Size (KB)

(f) MAWI.

Fig. 8: Persistent item lookup recall with different algorithms, as a function of memory size.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

P
re
c
is
io
n

Memory Size (KB)

(a) CAIDA 2015.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

P
re
c
is
io
n

Memory Size (KB)

(b) CAIDA 2016.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

P
re
c
is
io
n

Memory Size (KB)

(c) CAIDA 2018.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

P
re
c
is
io
n

Memory Size (KB)

(d) CAIDA 2019.

16 32 64 128 256
0.00

0.01

0.50

0.75

1.00

P
re
c
is
io
n

Memory Size (KB)

(e) DC.

16 32 64 128 256
0.00

0.05

0.75
0.80
0.85
0.90
0.95
1.00

P
re
c
is
io
n

Memory Size (KB)

(f) MAWI.

Fig. 9: Persistent item lookup precision with different algorithms, as a function of memory size.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

F
1
 S

c
o
re

Memory Size (KB)

(a) CAIDA 2015.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

F
1
 S

c
o
re

Memory Size (KB)

(b) CAIDA 2016.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

F
1
 S

c
o
re

Memory Size (KB)

(c) CAIDA 2018.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

F
1
 S

c
o
re

Memory Size (KB)

(d) CAIDA 2019.

16 32 64 128 256
0.000

0.025

0.35

0.70

F
1
 S

c
o
re

Memory Size (KB)

(e) DC.

16 32 64 128 256
0.0

0.1

0.8

0.9

1.0

F
1
 S

c
o
re

Memory Size (KB)

(f) MAWI.

Fig. 10: Persistent item lookup F1 score with different algorithms, as a function of memory size.

16 32 64 128 256
0

100

200

300

400

500

A
A
E

Memory Size (KB)

(a) CAIDA 2015.

16 32 64 128 256
0

100

200

300

400

500

A
A
E

Memory Size (KB)

(b) CAIDA 2016.

16 32 64 128 256
0

100

200

300

400

500

A
A
E

Memory Size (KB)

(c) CAIDA 2018.

16 32 64 128 256
0

100

200

300

400

500

A
A
E

Memory Size (KB)

(d) CAIDA 2019.

16 32 64 128 256
0

100

200

300

400

500

A
A
E

Memory Size (KB)

(e) DC.

16 32 64 128 256
0

500

1000

1500

2000

A
A
E

Memory Size (KB)

(f) MAWI.

Fig. 11: Average Absolute Error (AAE) in persistent item lookup with different algorithms, as a function of memory size.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

A
R
E

Memory Size (KB)

(a) CAIDA 2015.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

A
R
E

Memory Size (KB)

(b) CAIDA 2016.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

A
R
E

Memory Size (KB)

(c) CAIDA 2018.

16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

A
R
E

Memory Size (KB)

(d) CAIDA 2019.

16 32 64 128 256
0.0

0.1

0.2

0.3

0.4

0.5

A
R
E

Memory Size (KB)

(e) DC.

16 32 64 128 256
0.0

0.5

1.0

1.5

2.0

2.5

A
R
E

Memory Size (KB)

(f) MAWI.

Fig. 12: Average Relative Error (ARE) in persistent item lookup with different algorithms, as a function of memory size.

the number of events where non-persistent items incorrectly
replace persistent items during the detection process under the
DC and MAWI datasets, respectively. As listed in Table III,
we find that our approach effectively prevents persistent items
from being effortlessly substituted by non-persistent ones, thus
outperforming off-the-shelf schemes in terms of the detection
ability.

2) Update Throughput: We now measure the update
throughput of P-Sketch and of the benchmarks considered,
under different traces and memory settings. As shown in
Fig. 13, P-Sketch maintains the highest update speed in

TABLE III: Number of persistent items being wrongly re-
placed by non-persistent ones (memory size: 16KB).

Dataset
Scheme P-Sketch ON-OFF (2) Waving (2)

MAWI 61 10129 8322
DC 1 1314 1238

all scenarios. Note that all approaches witness a throughput
decline as the memory size increases, since they cannot be
entirely placed in the cache, and the latency of memory access
increases [9]. For instance, for the CAIDA 2015 trace, the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 13

16 32 64 128 256
0

5

10

15

20
T

h
ro

u
g
h
p
u
t

(M
o
p
s
)

Memory Size (KB)

(a) CAIDA 2015.

16 32 64 128 256
0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
o
p
s
)

Memory Size (KB)

(b) CAIDA 2016.

16 32 64 128 256
0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
o
p
s
)

Memory Size (KB)

(c) CAIDA 2018.

16 32 64 128 256
0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
o
p
s
)

Memory Size (KB)

(d) CAIDA 2019.

16 32 64 128 256
0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
o
p
s
)

Memory Size (KB)

(e) DC.

16 32 64 128 256
0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
o
p
s
)

Memory Size (KB)

(f) MAWI.

Fig. 13: Update throughput for persistent item lookup with different algorithms, as a function of memory size.

average update throughput of P-Sketch is 31.04%, 193.29%,
and 242.67% higher than that of On-Off Sketch (with q = 2),
WavingSketch (with s = 2), and SS, respectively.

Analysis: These results confirm P-Sketch’s significant up-
date speed improvements. We briefly investigate the main
reasons for the slow update rates of existing solutions.

The data structure of SS consists of many pointers, which
is space-inefficient and time-consuming during updates. Also,
hash collisions in the hash-based filter increase the number
of memory access operations, thus resulting in low update
speed [6]. When a new item arrives, On-Off Sketch and
WavingSketch perform one hash operation to find a bucket and
then iterate through the key-value pairs (cells) associated with
that bucket to find an available cell for the new item. Such
tedious update processes lower update speeds. Additionally,
WavingSketch also relies on a hash-based Bloom filter, which
occupies much space and brings excessive memory access
operations, further reducing its update speed.

Unlike existing methods, P-Sketch employs a compact data
structure without utilizing pointers. Moreover, it stops the
hash operations once an item finds an available bucket, which
saves much space and limits the number of memory access
operations, ensuring a high update speed.

D. Impact of the Persistent Item Threshold
Here we explore the influence of the threshold parameter α

on detection performance, varying it between 0.4 and 0.9. We
fix the memory size to 32KB, configure the WavingSketch and
On-Off Sketch parameter as 4, and adopt the CAIDA 2016
trace for testing. As shown in Fig. 14, P-Sketch maintains
its superiority under diverse threshold settings. Specifically,
when α is 0.4, the P-Sketch outperforms the state-of-the-art
method WavingSketch in terms of recall, with an improvement
of 130.87%. In Fig. 14(b), we observe that the precision
of P-Sketch is consistently around 1, while that of existing
methods decreases noticeably as the threshold increases. The
reason is that as α increases, the number of persistent items
decreases. Due to the low sampling rate (SS), higher false
positive rate (WavingSketch), and rough replacement strategy
(On-Off Sketch), more non-persistent items are erroneously
labelled as persistent ones by the benchmarks considered,
resulting in reduced precision. P-Sketch also obtains the lowest
relative error. For example, its ARE is 6.46× less than that of
the On-Off Sketch when α is 0.4 (Fig. 14(d)).

E. Impact of Different Number of Time Windows
We investigate the impact of varying the number of win-

dows. For this purpose, we select the CAIDA 2015 trace

as the test trace and compare the performance of P-Sketch
with that of On-Off Sketch and WavingSketch. The results
of our experiments are presented in Table IV. Observe that
P-Sketch consistently outperforms the other two algorithms
across different numbers of windows. Specifically, when the
number of windows is set to 2000, P-Sketch achieves a
detection accuracy 2.22 times higher than that of On-Off
Sketch and 2.48 times higher than that of WavingSketch.

TABLE IV: F1 score with different number of windows.

F1 Score 400 800 1000 2000 3000

P-Sketch 0.664 0.808 0.819 0.923 0.956
On-Off Sketch 0.327 0.331 0.325 0.287 0.397
WavingSketch 0.142 0.223 0.231 0.265 0.277

F. Impact of P-Sketch’s Design Principles
Recall that P-Sketch incorporates two essential design prin-

ciples: (i) abandoning hash operations once a new item finds
an appropriate bucket rather than hashing it to each row; (ii)
refraining from performing replacement actions when the flag
of a hashed bucket is Off in the first case of Stage 2, and
(iii) replacing the item recorded in a bucket based on its
persistence and hotness. In the following, we set the memory
size to 16KB and employ the CAIDA and MAWI traces
to explore the contribution of each principle to the superior
performance of P-Sketch.

The results we summarize in Fig. 15 confirm the effec-
tiveness of the first principle. Observe that stopping hashing
operations in time saves more space to enable recording more
items, resulting in a 3.21% improvement in the F1-Score
compared to hashing each item in all rows. Moreover, hashing
each item to all rows will result in extra hash operations and
thus lead to a longer lookup time. As shown in Figs 15(b) and
(c), the number of hash operations and the update throughput
are on average 10.77% higher and respectively 16% lower than
that of our final P-Sketch design (labeled “Original P-Sketch”).

Next, Table V presents the F1 scores of P-Sketch with
and without PA, using different CAIDA traces and a memory
size of 16KB. The results demonstrate that the default P-
Sketch achieves higher accuracy than P-Sketch without PA.
Specifically, there is an improvement of 3.61%, 5.69%, and
1.17% in the F1 score across the CAIDA 2015, 2016, and 2018
datasets, respectively. This indicates that the incorporation of
PA enhances the detection accuracy of P-Sketch.

Finally, we emphasize the importance of considering the
hotness of each item. Fig. 16 reports the performance of P-
Sketch with/without taking into account the hotness charac-
teristics of each item. As shown in the figure, the accuracy

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 14

0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 90 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Re
ca

ll

T h r e s h o l d F a c t o r

 P - S k e t c h O N - O F F
 W a v i n g S S

(a) Recall.

0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 90 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Pre
cis

ion

T h r e s h o l d F a c t o r

 P - S k e t c h O N - O F F
 W a v i n g S S

(b) Precision.

0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 90 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

F1
 Sc

ore

T h r e s h o l d F a c t o r

 P - S k e t c h O N - O F F
 W a v i n g S S

(c) F1 score.

0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 90 . 0

0 . 1
2
4
6
8

1 0

AR
E

T h r e s h o l d F a c t o r

 P - S k e t c h O N - O F F
 W a v i n g S S

(d) ARE.

Fig. 14: Persistent item lookup performance under different threshold settings on the CAIDA 2016 dataset.

C 2 0 1 5 C 2 0 1 6 C 2 0 1 8 C 2 0 1 9 M A W I0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

F1
 Sc

ore

D a t a s e t

 P - S k e t c h (h a s h i n g a l l r o w s)
 O r i g i n a l P - S k e t c h

(a) F1 score.

C 2 0 1 5 C 2 0 1 6 C 2 0 1 8 C 2 0 1 9 M A W I
2 . 0 x 1 0 7
4 . 0 x 1 0 7
6 . 0 x 1 0 7

1 . 4 x 1 0 8

1 . 6 x 1 0 8

o
f H

as
h O

pe
rat

ion
s

D a t a s e t

 P - S k e t c h (h a s h i n g a l l r o w s)
 O r i g i n a l P - S k e t c h

(b) Number of Hash Operations

C 2 0 1 5 C 2 0 1 6 C 2 0 1 8 C 2 0 1 9 M A W I0
5

1 0
1 5
2 0
2 5
3 0

Th
rou

gh
pu

t (M
op

s)

D a t a s e t

 P - S k e t c h (h a s h i n g a l l r o w s)
 O r i g i n a l P - S k e t c h

(c) Throughput.

Fig. 15: Accuracy and update throughput comparison of P-Sketch with different hash strategies (C stands for CAIDA).

TABLE V: Detection accuracy for P-Sketch with/without the
particular abandonment.

F1 Score CAIDA 2015 CAIDA 2016 CAIDA 2018

P-Sketch 0.718 0.725 0.689
P-Sketch wo PA 0.693 0.686 0.681

C 2 0 1 5 C 2 0 1 6 C 2 0 1 8 C 2 0 1 9 M A W I0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1 . 0

F1
 Sc

ore

D a t a s e t

 w i t h H o t n e s s
 w i t h o u t H o t n e s s

(a) F1 score.

C 2 0 1 5 C 2 0 1 6 C 2 0 1 8 C 2 0 1 9 M A W I0

5

1 0

1 5

2 0

2 5

Th
rou

gh
pu

t (M
op

s)

D a t a s e t

 w i t h H o t n e s s
 w i t h o u t H o t n e s s

(b) Throughput.

Fig. 16: Accuracy and update throughput comparison of P-
Sketch with/without considering the hotness of each item.

of P-Sketch with hotness is 6.65% higher than that when
hotness is not considered. The reason is that hash collisions
are frequent under limited memory budgets. With hotness,
P-Sketch effectively mitigates the possibility of persistent
items being wrongly substituted by non-persistent ones, thus
improving the detection accuracy. Fig. 16(b) demonstrates that
the update throughput of P-Sketch with/without considering
hotness remains almost the same, indicating that incorporating
hotness does not introduce significant update overhead.

G. Impact of P-Sketch’s Eviction Probability

We compare P-Sketch using various eviction probabilities,
including the weighted sum and product approaches. The
weighted sum method requires assigning distinct weights to

persistence and hotness, introducing additional complexity
to the parameter configuration. In our study, we randomly
assign weights for persistence and hotness as (1,1), (2,2),
(2,5), and (5,2). Alternatively, the product approach involves
evicting items tracked in buckets based on a probability of

1
(Bi,j .P×Bi,j .H)+1 .

To evaluate the performance of different eviction methods,
we randomly select a MAWI trace from 2020 comprising
44.55 million packets. The results in Table VI demonstrate
that our default eviction method achieves the highest detection
accuracy. Specifically, it outperforms the weighted sum ap-
proach with weights (2,2) by 6.29% and the product approach
by 853.47%, confirming its effectiveness.

TABLE VI: F1 score with different eviction strategies (Mem-
ory size: 16KB).

Eviction Strategy F1 Score

(1,1) 0.906
(2,2) 0.906
(2,5) 0.906
(5,2) 0.943

Product 0.101
Default 0.963

H. Performance comparison of P-Sketch and P-Sketch∗

Here, we compare the performance of P-Sketch and P-
Sketch∗. As seen in Table VII, P-Sketch∗ yields superior
performance, achieving a higher F1 score compared to the
original P-Sketch owing to its high memory efficiency. On
average, P-Sketch∗ exhibits an improvement of 7.74% and
6.61% over the CAIDA 2015 and 2016 traces, respectively.

However, generating fingerprints requires additional hash
operations, which would arguably slow down the system’s
update speed. For instance, under the CAIDA 2015 trace,
we observe a 4.98% throughput drop when using fingerprints

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 15

with a memory size of 32KB. During the query process,
we first need to rehash all items to obtain their fingerprints,
then determine whether the persistence of each item exceeds
the threshold, which increases indeed the query time. Recall
however that we present the fingerprint-based P-Sketch∗ as
an alternative to P-Sketch. If the user wishes to prioritize
high detection accuracy and is less concerned about update
and query times, they can opt for P-Sketch∗. Otherwise, we
recommend using the default P-Sketch for a good trade-off
between detection accuracy and update/query time.

TABLE VII: Performance comparison of P-Sketch and P-
Sketch∗ with different memory sizes.

F1 Score P-Sketch
(CAIDA 15)

P-Sketch*
(CAIDA 15)

P-Sketch
(CAIDA 16)

P-Sketch*
(CAIDA 16)

16KB 0.718 0.863 0.725 0.821
32KB 0.847 0.943 0.854 0.933
64KB 0.924 0.981 0.914 0.971
128KB 0.962 0.992 0.955 0.99
256KB 0.996 0.996 0.968 0.993

I. Optimization with SIMD Instructions

Lastly, we boost the update speed of P-Sketch by leveraging
SIMD instructions [36]. SIMD instructions can handle sequen-
tial access operations in parallel, to accelerate the measurement
process in high-speed streams [52]–[55].

Similar to [9], we first use the MurmurHash3_x64_128
primitive to generate a hash value according to the
source/destination address (64-bit) of an item, followed by
splitting the hash value into r parts (r = 4 in this case; this
is because we leverage the primitive _mm256_set_epi32
to store the hash value, which requires the hash value to be
256 = 64× 4 bits) [56]. Then we apply SIMD instructions to
calculate the bucket positions of all r rows and record them
into a register array with _mm256_set_epi64x. When a
new item arrives, P-Sketch with SIMD leverages the primitive
_mm256_cmpeq_epi64 to compare the key of the newly
arrived item with the r candidate persistent items’ keys in
parallel. Compared with the original P-Sketch that takes at
most r steps to find an available bucket for a new item, P-
Sketch with SIMD only needs 1 step, significantly increasing
the comparison speed.

1 6 3 2 6 4 1 2 8 2 5 60
5

1 0
1 5
2 0
2 5
3 0

Th
rou

gh
pu

t (M
op

s)

M e m o r y S i z e (K B)

 w i t h S I M D
 w i t h o u t S I M D

(a) CAIDA 2016.

1 6 3 2 6 4 1 2 8 2 5 60
5

1 0
1 5
2 0
2 5
3 0

Th
rou

gh
pu

t (M
op

s)

M e m o r y S i z e (K B)

 w i t h S I M D
 w i t h o u t S I M D

(b) MAWI.

Fig. 17: Update throughput comparison of P-Sketch
with/without SIMD Instructions (r = 4 in this case).

Fig. 17 compares the throughput of the SIMD-based P-
Sketch and the vanilla P-Sketch when employing the CAIDA

2016 and MAWI traces. We vary the memory size from
16KB to 512KB. As illustrated in the figure, with the help
of SIMD instructions, the optimized P-Sketch improves the
update speed of the vanilla version on average by 57.26%
and respectively 104.18%. Note that the throughput is slightly
lower than that reported in the previous experiments – recall
that we now employ a larger r value. Since the throughput
of the SIMD-based P-Sketch is greater than 14.88Mops in all
cases, this indicates that the proposed scheme can well match
high-speed streams (e.g., 10 Gb/s) [9].

VI. CONCLUSIONS

In this paper we introduced P-Sketch, a new sketch-
based algorithm for persistent item lookup. P-Sketch replaces
persistent items in a probabilistic manner, considering both
higher persistence values and stronger hotness features. By
this approach P-Sketch alleviates the problem of persistent
items being mistakenly substituted by non-persistent ones and
thus significantly improves lookup accuracy. We conduct a
formal analysis to derive theoretical performance bounds, and
trace-driven experiments on multiple datasets to demonstrate
that P-Sketch achieves high detection accuracy, high update
throughput, as well as high memory efficiency. In essence, P-
Sketch substantially outperforms state-of-the-art sketch-based
persistent item look up solutions by up to 10.32×, including
On-Off Sketch, WavingSketch, and Small-Space. Nonetheless,
we show how to exploit SIMD instructions to further enhance
the update speed of our P-Sketch solution.

REFERENCES

[1] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen, “Estimating the Persistent
Spreads in High-speed Networks,” in Proc. IEEE ICNP, 2014.

[2] N. Immorlica, K. Jain, M. Mahdian, and K. Talwar, “Click Fraud
Resistant Methods for Learning Click Through Rates,” in Proc. ACM
WINE, 2005.

[3] Y.E. Sun, H. Huang, S. Chen, H. Xu, K. Han, and Y. Zhou, “Persistent
Traffic Measurement through Vehicle-to-Infrastructure Communications
in Cyber-Physical Road Systems,” IEEE Transactions on Mobile Com-
puting, vol. 18, no. 7, pp. 1616-1630, 2019.

[4] L. Chen, H. Dai, L. Meng, and J. Yu, “Finding Needles in a Hay Stream:
On Persistent Item Lookup in Data Streams,” Computer Networks, vol.
181, no. 1, pp. 1-11, 2020.

[5] F. Giroire, J. Chandrashekar, N. Taft, E. Schooler, and D. Papagiannaki,
“Exploiting Temporal Persistence to Detect Covert Botnet Channels,” in
Proc. Springer RAID, 2009.

[6] Y. Zhang, J. Li, Y. Lei, T. Yang, Z. Li, G. Zhang, and B. Cui, “On-Off
Sketch: A Fast and Accurate Sketch on Persistence,” in Proc. VLDB
Endowment, 2020.

[7] B. Lahiri, J. Chandrashekar, and S. Tirthapura, “Space-efficient Tracking
of Persistent Items in a Massive Data Stream,” in ACM DEBS, 2011.

[8] J.S. Vitter, “Random Sampling with a Reservoir,” ACM Transactions on
Mathematical Software, vol. 11, no. 1, pp. 37-57, 1985.

[9] L. Tang, Q. Huang, and P.P.C. Lee, “MV-Sketch: A Fast and Compact
Invertible Sketch for Heavy Flow Detection in Network Data Streams,”
in Proc. IEEE INFOCOM, 2019.

[10] Z. Zhong, S. Yan, Z. Li, D. Tan, T. Yang, and B. Cui, “BurstSketch:
Finding Bursts in Data Streams,” in Proc. ACM SIGMOD, 2021.

[11] J. Li, Z. Li, Y. Xu, S. Jiang, T. Yang, B. Cui, Y. Dai, and G. Zhang,
“WavingSketch: An Unbiased and Generic Sketch for Finding Top-k
Items in Data Streams,” in Proc. ACM KDD, 2020.

[12] B.H. Bloom, “Space/time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

[13] H. Dai, M. Shahzad, A.X. Liu, and Y. Zhong, “Finding Persistent Items
in Data Streams,” in Proc. VLDB Endowment, 2016.

[14] A. Shokrollahi, “Raptor Codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551-2567, 2006.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. XX, XXX 2023 16

[15] H. Dai, M. Shahzad, A.X. Liu, and Y. Zhong, “PIE: Technical Report,”
http://cs.nju.edu.cn/daihp/dh/PIE-TR-TON18.pdf, 2018.

[16] J. Huang, W. Zhang, Y. Li, L. Li, Z. Li, J.Ye and, J. Wang,
“ChainSketch: An Efficient and Accurate Sketch for Heavy Flow
Detection,” in IEEE/ACM Transactions on Networking, 2022, doi:
10.1109/TNET.2022.3199506.

[17] M. He, C. Hua, W. Xu, P. Gu, and X.S. Shen, “Delay Optimal Concurrent
Transmissions With Raptor Codes in Dual Connectivity Networks,”
IEEE Transactions on Network Science and Engineering, vol. 8, no.
2, pp. 1478-1491, 2021.

[18] J. Gong, T. Yang, H. Zhang, H. Li, S. Uhlig, S. Chen, L.Uden, and X.
Li, “HeavyKeeper: An Accurate Algorithm for Finding Top-k Elephant
Flows,” in Proc. USENIX ATC, 2018.

[19] T. Yang, J. Jing, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X.
Li, and S. Uhlig, “Elastic Sketch: Adaptive and Fast Network-wide
Measurements,” in Proc. ACM SIGCOMM, 2018.

[20] “P-Sketch Code,” https://git.ecdf.ed.ac.uk/s2187730/P-Sketch.git
[21] Q. Huang, P.P.C. Lee, and Y. Bao, “SketchLearn: Relieving User

Burdens in Approximate Measurement with Automated Statistical In-
ference,” in Proc. ACM SIGCOMM, 2018.

[22] T. Yang, J. Gong, H. Zhang, L. Zou, L. Shi, and X. Li, “HeavyGuardian:
Separate and Guard Hot Items in Data Streams,” in Proc. ACM KDD,
2018.

[23] Y. Zhang, Z. Liu, R. Wang, T. Yang, J. Li, R. Mao, P. Liu, R. Zhang, and
J. Jiang, “CocoSketch: High-Performance Sketch-based Measurement
over Arbitrary Partial Key Query,” in Proc. ACM SIGCOMM, 2021.

[24] R.B. Basat, X. Chen, G. Einziger, and O. Rottenstreich, “Design-
ing Heavy-Hitter Detection Algorithms for Programmable Switches,”
IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp. 1172-1185,
2020.

[25] T. Yang, H. Zhang, H. Wang, M. Shahzad, X. Liu, Q. Xin, and X. Li,
“FID-sketch: An Accurate Sketch to Store Frequencies in Data Streams,”
World Wide Web, vol. 22, no. 1, pp. 2675-2696, 2019.

[26] S. Sheng, Q. Huang, S. Wang, and Y. Bao, “PR-Sketch: Monitoring
Per-key Aggregation of Streaming Data with Nearly Full Accuracy,” in
Proc. VLDB Endowment, 2021.

[27] Z. Liu, R.B. Basat, G. Einziger, Y. Kassner, V. Braverman, R. Friedman,
and V. Sekar, “NitroSketch: Robust and General Sketch-based Monitor-
ing in Software Switches,” in Proc. ACM SIGCOMM, 2019.

[28] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng, R. Wang,
H. Wu, Y. Wang, and N. Zhang, “LightGuardian: A Full-Visibility,
Lightweight, In-band Telemetry System Using Sketchlets,” in Proc.
USENIX NSDI, 2021.

[29] R. Wang, H. Du, Z. Shen, and Z. Jia, “DAP-Sketch: An Accurate and
Effective Network Measurement Sketch with Deterministic Admission
Policy,” Computer Networks, vol. 194, no. 1, pp. 1-13, 2021.

[30] D. Ting, “Data Sketches for Disaggregated Subset Sum and Frequent
Item Estimation,” in Proc. ACM SIGMOD, 2018.

[31] Q. Xiao, Z. Tang, and S. Chen, “Universal Online Sketch for Tracking
Heavy Hitters and Estimating Moments of Data Streams,” in Proc. IEEE
INFOCOM, 2020.

[32] R.B. Basat, X. Chen, G. Einziger, R. Friedman, and Y. Kassner,
“Randomized Admission Policy for Efficient Top-k, Frequency, and
Volume Estimation,” IEEE/ACM Transactions on Networking, vol. 27,
no. 4, pp. 1432-1445, 2019.

[33] P. Ernest, “Mathematical Induction: A Pedagogical Discussion,” Educa-
tional Studies in Mathematics, vol. 15, no. 1, pp. 173-189, 1984.

[34] S. Ghorbani, Z. Yang, P.B. Godfrey, Y. Ganjali, A. Firoozshahian,
“DRILL: Micro Load Balancing for Low-latency Data Center Net-
works,” in Proc. ACM SIGCOMM, 2017.

[35] M. Mitzenmacher, “The Power of Two Choices in Randomized Load
Balancing,” IEEE Transactions on Parallel and Distributed Systems, vol.
12, no. 10, pp. 1094-1104, 2001.

[36] Intel SSE2 Documentation. https://software.intel.com/en-
us/node/683883.

[37] B. Lahiri, S. Tirthapura, and J. Chandrashekar, “Space-efficient Tracking
of Persistent Items in a Massive Data Stream,” Statistical Analysis and
Data Mining, vol. 7, no. 1, pp. 70-92, 2014.

[38] H. Dai, M. Shahzad, M. Li, Y. Zhong, and G. Chen, “Identifying and
Estimating Persistent Items in Data Streams,” IEEE/ACM Transactions
on Networking, vol. 26, no. 6, pp. 2429-2442, 2018.

[39] T. Yang, H. Zhang, D. Yang, Y. Huang, and X. Li, “Finding Significant
Items in Data Streams,” in Proc. IEEE ICDE, 2019.

[40] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig,
“Cold Filter: A Meta-Framework for Faster and More Accurate Stream
Processing,” in Proc. ACM SIGMOD, 2018.

[41] H. Li, Q. Chen, Y. Zhang, T. Yang, B. Cui, “Stingy Sketch: A Sketch
Framework for Accurate and Fast Frequency Estimation,” in Proc.
VLDB Endowment, 2022.

[42] “The CAIDA Anonymized Internet Traces,”
http://www.caida.org/data/overview/.

[43] L. Tang, Q. Huang and P.P.C. Lee, “SpreadSketch: Toward Invertible and
Network-Wide Detection of Superspreaders,” in Proc. IEEE INFOCOM,
2020.

[44] L. Tang, Y. Xiao, Q. Huang and P. P. C. Lee, “A High-Performance
Invertible Sketch for Network-Wide Superspreader Detection,” in
IEEE/ACM Transactions on Networking, vol. 31, no. 2, pp. 724-737,
2023.

[45] T. Yang, S. Gao, Z. Sun, Y. Wang, Y. Shen, and X. Li, “Diamond
Sketch: Accurate Per-flow Measurement for Big Streaming Data,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 12, pp.
2650-2662, 2019.

[46] G. Cormode, M. Hadjieleftheriou, “Finding Frequent Items in Data
Streams,” in Proc. VLDB Endowment, 2008.

[47] G. Cormode, S. Muthukrishnan, “An Improved Data Stream Summary:
The Count-Min Sketch and its Applications,” Journal of Algorithms, vol.
55, no. 1, pp. 58-75, 2005.

[48] D. Ting, “Data Sketches for Disaggregated Subset Sum and Frequent
Item Estimation,” in Proc. ACM SIGMOD, 2018.

[49] A. Appleby, “MurmurHash,” https://sites.google.com/site/murmurhash/
[50] T. Benson, A. Akella, and D.A. Maltz, “Network Traffic Characteristics

of Data Centers in the Wild,” in Proc. ACM IMC, 2010.
[51] “MAWI Working Group Traffic Archive,” http://mawi.wide.ad.jp/mawi/.
[52] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J.

Schaffner, “SIMD-Scan: Ultra Fast in-Memory Table Scan using on-
Chip Vector Processing Units,” in VLDB Endowment, 2009.

[53] Q. Huang, X. Jin, P.P.C. Lee, R. Li, L. Tang, Y.C. Chen, and G.
Zhang, “SketchVisor: Robust Network Measurement for Software Packet
Processing,” in Proc. ACM SIGCOMM, 2017.

[54] L. Liu, Y. Shen, Y. Yan, T. Yang, M. Shahzad, B. Cui, and G. Xie, “SF-
Sketch: A Two-Stage Sketch for Data Streams,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 10, pp. 2263-2276, 2020.

[55] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao, X.
Li, and S. Uhlig, “Adaptive Measurements Using One Elastic Sketch,”
IEEE/ACM Transactions on Networking, vol. 27, no. 6, pp. 2236-2251,
2019.

[56] L. Tang, Q. Huang, and P.P.C. Lee, “A Fast and Compact Invertible
Sketch for Network-Wide Heavy Flow Detection,” IEEE/ACM Transac-
tions on Networking, vol. 28, no. 5, pp. 2350-2363, 2020.

[57] Y. Zhou, Y. Zhou, M. Chen, and S. Chen, “Persistent Spread Measure-
ment for Big Network Data Based on Register Intersection,” ACM on
Measurement and Analysis of Computing Systems, vol. 1, no. 15, pp.
1-29, 2017.

Weihe Li received his Masters’s degree from Central
South University in 2021. Currently, he is pursuing a
Ph.D. degree at the University of Edinburgh. His cur-
rent research focuses on developing new techniques
for accurately detecting specific types of traffic flows
in high-speed networks.

Paul Patras is an Associate Professor in the School
of Informatics at the University of Edinburgh, where
he leads the Mobile Intelligence Lab – a multi-
disciplinary team that pursues research at the in-
tersection of network engineering and artificial in-
telligence, to improve the analysis, resilience, and
management of next generation mobile systems. He
is also a co-founder and CEO of Net AI, a pio-
neering university spinout specializing in AI-driven
network analytics. He has served on the organizing
committee on several conferences and workshops in

his field, and advised the ITU-T Focus Group on Machine Learning for
Future Networks including 5G. Paul holds M.Sc. and Ph.D. degrees from
Universidad Carlos III de Madrid (UC3M) and he was the recipient of a
prestigious Chancellor’s Fellowship awarded by the University of Edinburgh.

