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ABSTRACT
Though federated learning (FL) well preserves clients’ data privacy,

many clients are still reluctant to join FL given the communication

cost and energy consumption in their mobile devices. It is important

to design pricing compensations to motivate enough clients to join

FL and distributively train the global model. Prior pricing mecha-

nisms for FL are static and cannot adapt to clients’ random arrival

pattern over time. We propose a new dynamic pricing solution in

closed-form by constructing the Hamiltonian function to optimally

balance the client recruitment time and the model training time,

without knowing clients’ actual arrivals or training costs. During

the client recruitment phase, we offer time-dependent monetary

rewards per client arrival to trade off between the total payment

and the FL model’s accuracy loss. Such reward gradually increases

when we approach to the recruitment deadline or have greater

data aging, and we also extend the deadline if the clients’ training

time per iteration becomes shorter. Further, we extend to consider

heterogeneous client types in training data size and training time

per iteration. We successfully extend our dynamic pricing solution

and develop an optimal algorithm of linear complexity to monoton-

ically select client types for FL. Finally, we also show robustness of

our solution against estimation error of clients’ data sizes, and run

numerical experiments to validate our conclusion.

CCS CONCEPTS
• Networks→ Network economics.

KEYWORDS
client recruitment for federated learning, dynamic pricing, incentive
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1 INTRODUCTION
The Internet of Things (IoT) is fast developing and well connects

many human clients when using their mobile devices. It is desirable

to learn from the massive data generated on such mobile devices to

train the client models (e.g., for personal advertisement or recom-

mendation) [7]. To preserve clients’ data privacy, federated learning

(FL) is proposed to invite clients to iteratively update their comput-

ing results using local data, without sharing such data to the cental

server [20]. In a FL system (e.g., Gboard [9]), a learning task is im-

plemented in two phases: client recruitment and model training. In

the client recruitment phase, the central server waits for sequential

arrivals of mobile clients to connect and participate; in the model

training phase, clients obtain the central server’s aggregation pa-

rameter feedback in last iteration and compute their local results

for this iteration to update. In this phase, the central server well

utilizes clients’ computing power and local data to train the desired

model [19].

Previous works mainly focus on the technological issues of FL.

For example, to improve communication efficiency for FL, there are

local updating [15, 18], compression schemes [2, 12] and decentral-

ized training [10, 16]. To enhance the overall security and privacy

of FL systems, Fung et al. [6] propose FoolsGold that identifies

poisoning sybils based on the diversity of client contributions in

the distributed learning process. Liu et al. [13] further introduce

a blockchain-based secure FL framework to prevent malicious or

unreliable participants in FL. Hao et al. [8] propose an efficient

and privacy-preserving federated deep learning protocol based on

stochastic gradient descent method, by integrating the additively

homomorphic encryption with differential privacy.

Most of their works assume that the clients will voluntarily par-

ticipate in FL, which may not be realistic due to clients’ training cost

including computational energy consumption on model training

and parameter transmission. In reality, many clients are reluctant to

participate in model training if there is not enough compensation

during the training process. Thus, to increase clients engagement

and ensure training accuracy, it is important to design pricing com-

pensations to motivate enough clients to join FL and distributively

train the global model. There are only a few recent works discussing

the incentive mechanism design in FL. Ding et al. [4] use contract-

theoretic approach to best trade off between client contribution for

FL and total payment, by considering the clients’ multi-dimensional

private information. Some other researchers (e.g., Feng et al. [5],

Kang et al. [11] and Sarikaya et al. [17]) formulate a Stackelberg

game to design pricing incentive against the clients’ following re-

sponses. Zhan et al. [22] design an incentive mechanism to optimize

the utilities of mobile clients and accuracy of the training model by

considering the different sensing and training capabilities of mobile

clients. Reinforcement learning is also used to derive the optimal

pricing strategy for the central server to recruit clients for training

[21, 23].

However, there are several overlooked points in the above mech-

anisms to fit the FL scenario. Firstly, the above literature simply

decides static pricing strategies for client recruitment, by assuming

all potential clients are always waiting there for FL tasks. In many

FL practices (e.g., Gboard [9]), mobile clients have their own timing

or face message delay, randomly arriving over time to participate.

In dynamic case, one-shot or static pricing can easily lead to data

over sampling or under sampling, and it is important to adaptively

adjust the pricing compensation based on clients’ actual arrival

pattern and cost distribution to meet the data target for later model
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training. Secondly, the clients’ training costs or even their arrival

pattern are unknown to the FL system, and clients in general have

different data sizes to contribute and training time per iteration in

model training. Most of the incentive mechanisms (e.g., [5, 11, 17])

assume that the FL system has complete information about the

clients without any uncertainty to operate. In the few works con-

sidering the incomplete information about clients’ private training

costs and random arrivals, they mainly use static strategy to model

the incentive mechanism [4, 14]. Therefore, in the client recruit-

ment phase, it is necessary to design a dynamic pricing strategy

to incentivize heterogeneous clients to participate in FL under in-

complete information. Moreover, for finite time horizon, we need

to balance the client recruitment time and the model training time

per task, while the incentive works above mainly focus on the first

phase of client recruitment. Finally, when facing multiple types of

clients with different data size and training time per iteration, the

client-type selection should be further taken into consideration to

trade off the total data size and global training iterations.

Our key novelty and main contributions are summarized as

follows:

• Dynamic client recruitment in federated learning: To our best

knowledge, this paper is one of the first works studying how

to motivate dynamically arriving clients to participate in the

federated learning over time, without knowing their private

training costs or even arrival pattern. Due to the non-trivial

waiting time for enough clients, we jointly consider two

phases to balance for each FL task: client recruitment and

the model training by the involved clients, where the longer

time for recruitment helps gain more training data yet leaves

less time for FL convergence.

• Dynamic pricing mechanism under incomplete information:
In the client recruitment phase, we decide time-dependent

monetary rewards in closed-form by constructing the Hamil-

tonian function to balance the total payment to clients and

model accuracy loss, where a higher pricing reward attracts

more clients for data contribution to FL yet adds expense to

the system. We prove that the central server should provide

a higher price when approaching to the recruitment deadline

or with greater data aging, and show our dynamic pricing

strategy always outperforms the static pricing strategy.

• Threshold-based client recruitment policy to cope with the
dynamic pricing scheme: Though a longer client recruitment

duration helps recruit more clients and enlarge the training

dataset, it leaves less model training time. After deciding the

dynamic pricing for any recruitment time, we systematically

analyze the best partition in client recruitment time and

model training time, which is proved to be threshold-based.

As compared to model training, we relatively reserve less

time for client recruitment given greater data aging or longer

training time of each client.

• Pricing extension to heterogeneous clients with robustness check:
We extend the pricing solution to consider heterogeneous

client types in training data size and training time per itera-

tion. Though a client type may have a greater data size, it

also incurs greater computing time to accommodate in the

synchronous training. We successfully extend our dynamic

pricing solution and develop an optimal algorithm of linear

complexity (with respect to the number of client types) to

monotonically select client types for FL. Note that given a

selected client type, the iteration duration is fixed and in-

cluding client types with smaller data size and training time

only creates updates within the iteration duration without

reducing the number of global training iterations. Thus we

prove that the optimal client-types should be selected mono-

tonically to accelerate the model training. We also show

robustness of our solution even if we have some error in

estimating clients’ data size. We also run experiments to

validate our conclusion.

The rest of this paper is organized as follows. The system model

and problem formulation are given in Section 2. In Sections 3 and

4, we analyze the optimal dynamic pricing and data recruitment

threshold for homogeneous clients. The extension to heterogeneous

clients case and the robustness checking are discussed in Section 5.

Experimental results are shown in Section 6. Section 7 concludes

this paper.

2 SYSTEM MODEL AND PROBLEM
FORMULATION
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parameters 
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Figure 1: Illustration of the two-phase model including the client recruitment phase and
model training phase in federated learning.

We consider a FL platform that plans to complete a task in𝑇 time

slots over the discrete time horizon. It first recruits dynamically

arriving clients in the first 𝑇𝑡ℎ time slots and then proceeds with

model training at recruited clients’ mobile devices using their local

data in the rest 𝑇 − 𝑇𝑡ℎ slots, as shown in Fig. 1. Note that in

client recruitment phase, the agreed clients just commit to help

for the later model training, without incurring any cost. They only

incur costs in computational energy consumption and parameter

transmission during the model training phase. We first discuss

homogeneous clients with identical data size and training time.

The extension to heterogeneous clients with different data size and

training time will be presented in Section 5. For ease of reading, we

list the key notations in Table 1.

2.1 Client Recruitment Phase
For the client recruitment phase, the central server recruits data

from clients for the FL task in any time slot 𝑡 = 0, ...,𝑇𝑡ℎ − 1. As

shown in Fig 1, at the beginning of each time slot 𝑡 ∈ {0, ...,𝑇𝑡ℎ −1},
the central server announces price 𝑝 (𝑡) for training 𝑇 −𝑇𝑡ℎ time

slots. Then a client may appear randomly in this time slot and (if so)



Table 1: Key notations and their physical meanings.

𝑇 Total time horizon

𝑇𝑡ℎ Time threshold for client recruitment phase

𝐷 Number of global iterations

𝑁 Number of heterogeneous client types

𝑐 Client’s unit cost per training time ∈ [0, 𝑏]
𝛼 Arrival rate of the clients in each time slot

𝑟 Discount factor to indicate the freshness of data

𝑠 Data size of the homogeneous clients

𝑠𝑖 Data size of the 𝑖-th client type

𝜏
Training time per iteration for

homogeneous clients

𝜏𝑖 Training time per iteration of the 𝑖-th client type

𝑝 (𝑡) Recruitment price of the homogeneous clients

at time slot 𝑡 ∈ {0, , , , ,𝑇𝑡ℎ − 1}

𝑝𝑖 (𝑡)
Recruitment price of the 𝑖-th client type

at time slot 𝑡 ∈ {0, , , , ,𝑇𝑡ℎ − 1}
𝑞𝑖 Percentage of type-𝑖 clients with

∑𝑁
𝑖=1

𝑞𝑖 = 1

𝐵(𝑡) Resulting total data size at time slot

𝑡 ∈ {0, , , , ,𝑇𝑡ℎ}
𝑈 (𝑇 ) Total expected cost of the homogeneous clients

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ,
{1, ..., 𝑗})

Total expected cost given client-types

{1, ..., 𝑗} and recruitment threshold 𝑇𝑡ℎ

he further decides to help train the model or not by comparing the

price offer 𝑝 (𝑡) and his own total cost 𝑐 (𝑇 −𝑇𝑡ℎ), where 𝑐 is the unit
cost per training time [1]. Considering the clients appear according

to a Poisson process, with an average number 𝜆 of client arrivals

per unit time. Then, the probability of the random number of client

arrivals 𝑁 (𝑡) in the 𝑡-th time slot of the interval [(𝑡 −1)Δ, 𝑡Δ) being
equal to 𝑘 is

𝑃𝑟 (𝑁 (𝑡) = 𝑘) = 𝑒−𝜆Δ (𝜆Δ)𝑘
𝑘!

, (1)

with time duration Δ for each time slot. Note that 𝑃𝑟 (𝑁 (𝑡) > 1)
becomes trivial as long as the time duration Δ is small. Thus, each

time slot’s duration Δ is properly selected to be short such that it

is almost sure to have at most one client arrival at a time. Then,

whether a client appears at time slot 𝑡 is represented as 𝜎 (𝑡):

𝜎 (𝑡) =
{

1, if a client arrives in time slot 𝑡,

0, otherwise,

(2)

with the client arrival rate in each time slot 𝛼 = 𝜆Δ.
We consider that the clients’ private costs are i.i.d. according

to a cumulative distribution function (CDF) 𝐹 (𝑐), 𝑐 ∈ [0, 𝑏], where
upperbound 𝑏 ≥ 1 is estimated from historical data. Though all

potential users’ costs follow the same distribution, their realized

costs are different in general. If a client with data size 𝑠 and training

time 𝜏 per iteration appears and accepts the price 𝑝 (𝑡) at time

slot 𝑡 , i.e., 𝜎 (𝑡) = 1 and 𝑐 (𝑇 − 𝑇𝑡ℎ) ≤ 𝑝 (𝑡), he will help train the

model using his local training dataset and return the updated local

parameter within the training time 𝜏 , where 𝜏 represents the clients’

training time (total computation and transmission time) per global

iteration. The payoff of the participating client with private unit

cost 𝑐 is the difference between the price and his own training cost,

i.e., 𝑝 (𝑡) − 𝑐 (𝑇 −𝑇𝑡ℎ). Then, the arrival client’s payoff at time 𝑡 is

concluded as follows:

Υ(𝑡) =
{
𝑝 (𝑡) − 𝑐 (𝑇 −𝑇𝑡ℎ), 𝜎 (𝑡) = 1 & 𝑐 ≤ 𝑝 (𝑡 )

𝑇−𝑇𝑡ℎ ,

0, otherwise.

(3)

In this paper, we consider non-trivial client arrival rate 𝛼 ≥ 0.5

and training efficiency (data size/training time)
𝑠
𝜏 ≥ 1. Otherwise,

the central server may always set trivial price 𝑝 (𝑡) to be the up-

perbound 𝑏 (𝑇 −𝑇𝑡ℎ) to include all arriving clients without missing

critical data.

2.2 Model Training Phase
For distributed model training phase, we consider the synchronous

FLwith the one-step local update, whichmeans each client performs

one step of mini-batch stochastic gradient decent (SGD) to update

the model parameters in each round, and the server waits for all

clients’ local parameter updates and then sends the updated global

parameter to all clients at the same time for next round’s training.

Given 𝑀 clients agreed to participate, each participating client

𝑛 ∈ {1, ..., 𝑀} uses its local datasetD𝑛 with data size 𝜍𝑛 to train the

model. Denote the collection of data samples in D𝑛 as {𝑥𝑘 , 𝑦𝑘 }
𝜍𝑛
𝑘=1

,

where 𝑥𝑘 ∈ R𝑑 is the input sample vector and 𝑦𝑘 ∈ R is the labeled

output value for the sample 𝑥𝑘 at client𝑛. For a sample data {𝑥𝑘 , 𝑦𝑘 },
the objective is to find themodel parameter𝜔 ∈ R𝑑 that predicts the

output 𝑦𝑘 based on 𝑥𝑘 with the loss function 𝑓𝑘 (𝜔), where 𝑓𝑘 (𝜔)
characterizes the difference between the predicted value 𝑦𝑘 (𝑥𝑘 , 𝜔)
and real output 𝑦𝑘 . The loss function on the data set D𝑛 of client 𝑛

is

𝐹𝑛 (𝜔) =
1

𝜍𝑛

∑︁
𝑘∈D𝑛

𝑓𝑘 (𝜔) .

At each iteration 𝑡 + 1, client 𝑛 updates its local parameter based

on last global parameter 𝜔𝑡 sent by the central server:

𝜔𝑛
𝑡+1

= 𝜔𝑡 − 𝜂∇𝐹𝑛 (𝜔𝑡 ),
where 𝜂 is the learning rate, and sends 𝜔𝑛

𝑡+1
back to the central

server. The server averages the parameters sent back by𝑀 partici-

pating clients

𝜔𝑡+1 =

𝑀∑︁
𝑛=1

𝜍𝑛

𝜍
𝜔𝑛
𝑡+1

,

where 𝜍 =
∑𝑀
𝑛=1

𝜍𝑛 is the total data size, and sends the updated

global parameter 𝜔𝑡+1 to all clients for next round’s training.

The optimal model parameter 𝜔∗
that minimizes the global loss

function is:

𝜔∗ = arg min

𝜔
𝑓 (𝜔) = arg min

𝜔

𝑀∑︁
𝑛=1

𝜍𝑛

𝜍
𝐹𝑛 (𝜔).

Note that there are 𝑇 − 𝑇𝑡ℎ time slots left for training and the

number of training iterations is 𝐷 =
𝑇−𝑇𝑡ℎ

𝜏 . The accuracy loss

after 𝐷 global iterations is measured by the difference between

the global loss with the predicted parameter 𝜔𝐷 and that with the

optimal parameter 𝜔∗
, i.e., 𝑓 (𝜔𝐷 ) − 𝑓 (𝜔∗). The expected model

accuracy loss is 𝑂 ( 1√
𝐵 (𝑇𝑡ℎ)𝐷

+ 1

𝐷
) [3], where 𝐵(𝑇𝑡ℎ) is the total

data size contributed by the participating clients at the end of the

client recruitment phase. For finite time horizon 𝑇 , the objective

𝑈 (𝑇 ) of the central server is to find the optimal dynamic pricing



𝑝 (𝑡), 𝑡 ∈ {0, . . . ,𝑇𝑡ℎ − 1} and recruitment threshold𝑇𝑡ℎ to minimize

the total expected cost, which is the summation of the total expected

payment to clients and the expected model accuracy loss:

𝑈 (𝑇 ) = min

𝑝 (𝑡 ),𝑡 ∈{0,...,𝑇𝑡ℎ−1}
𝑇𝑡ℎ ∈{1,...,𝑇−1}

𝑇𝑡ℎ−1∑︁
𝑡=0

𝜁 (𝑝 (𝑡)) + 1√︁
𝐵(𝑇𝑡ℎ)𝐷

+ 1

𝐷
, (4)

where 𝜁 (𝑝 (𝑡)) is the expected payment at time 𝑡 .

2.3 Problem Formulation
Based on the discussions in Sections 2.1 and 2.2, we use dynamic

BayesianGame tomodel our federated learning system’s interaction

with dynamically arriving clients without knowing their arrivals

and private training costs.

• Players: the central server and random arriving clients.

• Strategies: For the central server, it decides the dynamic

pricing 𝑝 (𝑡), 𝑡 ∈ {0, . . . ,𝑇𝑡ℎ − 1}, recruitment threshold 𝑇𝑡ℎ
(for heterogeneous clients case, it further decides the client-

type choice). For the clients, they decides to help train the

model or not.

• Information set: The central server does not know clients’

arrivals and private costs, but knows the client arrival rate

𝛼 in each time slot and the cost distribution 𝐹 (𝑐).
• Expected payoffs: The client’s payoff Υ(𝑡) in (3) depends on

his private training cost 𝑐 and price 𝑝 (𝑡). The central server’s
total cost 𝑈 (𝑇 ) in (4) is the summation of the total payment

to clients and model accuracy loss.

Note that a longer recruitment duration may help recruit more

clients, but leaves less training time under finite time horizon 𝑇 .

Thus, the central server should balance the client recruitment time

and model training time. Moreover, in the client recruitment phase,

static pricing cannot adapt to clients’ random arrival patterns and

data aging over time. Hence, we need to use dynamic pricing to

balance the total payment to clients and the accuracy loss under

incomplete client information. By considering the above issues, we

formulate the problem by two-stage:

• Stage I: The central server chooses the optimal client recruit-

ment threshold 𝑇𝑡ℎ .

• Stage II: Given the optimal recruitment threshold 𝑇𝑡ℎ , the

central server decides the optimal dynamic pricing 𝑝 (𝑡), 𝑡 ∈
{0, . . . ,𝑇𝑡ℎ − 1}.

In the following, we use backward induction to first analyze

the dynamic pricing in Stage II given the time threshold, then the

optimal recruitment threshold in Stage I.

3 OPTIMAL DYNAMIC PRICING UNDER
INCOMPLETE INFORMATION IN STAGE II

In this section, we study the central server’s pricing strategy un-

der incomplete information, i.e., the central server does not know

the clients’ arrivals during the client recruitment phase and the

participating client’s particular cost. In reality, when waiting for

the central server’s client recruitment, the value of the data may

decrease, e.g., the data collected earlier is not as fresh as the latest

data contributed by recently arrived clients. Thus, the useful data

size from each device reduces. Here we reasonably consider a non-

trivial 0.5 < 𝑟 < 1 to model data aging, as a trivial 𝑟 will lead to no

recruitment till the deadline, and our dynamic pricing reduces to

one-shot pricing.

For the homogeneous clients with identical data size 𝑠 and train-

ing time 𝜏 , from the initial training data size 𝐵(𝑡 = 0) = 0, the

probability that the data size 𝐵(𝑡 + 1) at time 𝑡 + 1 increases to

𝐵(𝑡) + 𝑠 is 𝛼𝐹 ( 𝑝 (𝑡 )
𝑇−𝑇𝑡ℎ ), i.e., a client appears and accepts the price

offer 𝑝 (𝑡) at time 𝑡 . The probability that the data size 𝐵(𝑡 +1) at time

𝑡 + 1 remains 𝐵(𝑡) is 1 − 𝛼𝐹 ( 𝑝 (𝑡 )
𝑇−𝑇𝑡ℎ ). Consider uniform distribution

of the clients’ private costs
1
, i.e., 𝐹 (𝑐) = 𝑐

𝑏
, 𝑐 ∈ [0, 𝑏], the dynamics

of the expected data size 𝐵(𝑡) is given as:

𝐵(𝑡 + 1) =𝑟 ((𝐵(𝑡) + 𝑠)𝛼𝐹 ( 𝑝 (𝑡)
𝑇 −𝑇𝑡ℎ

)

+ 𝐵(𝑡) (1 − 𝛼𝐹 ( 𝑝 (𝑡)
𝑇 −𝑇𝑡ℎ

))

=𝑟 (𝐵(𝑡) + 𝛼𝑠

𝑏 (𝑇 −𝑇𝑡ℎ)
𝑝 (𝑡)).

(5)

Since the probability that a client appears and accepts the price

𝑝 (𝑡) at time 𝑡 is 𝛼
𝑏 (𝑇−𝑇𝑡ℎ) 𝑝 (𝑡), the expected payment to this client is

𝛼
𝑏 (𝑇−𝑇𝑡ℎ) 𝑝

2 (𝑡). Note that the optimal price 𝑝 (𝑡) should not exceed

the maximum cost 𝑏 (𝑇 −𝑇𝑡ℎ) of the client as it is unnecessary for

the provider to over-pay. Therefore, given any time threshold 𝑇𝑡ℎ ,

the objective function (4) of the central server can be rewritten as:

𝑈 (𝑇 ) = min

𝑝 (𝑡 ) ≤𝑏 (𝑇−𝑇𝑡ℎ)
𝑡 ∈{0,...,𝑇𝑡ℎ−1}

𝑇𝑡ℎ−1∑︁
𝑡=0

𝛼

𝑏 (𝑇 −𝑇𝑡ℎ)
𝑝2 (𝑡) + 1√︁

𝐵(𝑇𝑡ℎ)𝐷

+ 1

𝐷
,

(6)

s.t. 𝐵(𝑡 + 1) = 𝑟 (𝐵(𝑡) + 𝛼𝑠
𝑏 (𝑇−𝑇𝑡ℎ) 𝑝 (𝑡)) (5)

We can see that a higher price in the client recruitment phase

leads to smaller accuracy loss for FL, but cause higher payment to

afford for the central server. It’s not easy to solve the above problem

by considering the huge number of price combinations over time,

with computation complexity𝑂 ((𝑏 (𝑇 −𝑇𝑡ℎ)/𝜖)𝑇𝑡ℎ ) increasing expo-
nentially in 𝑇𝑡ℎ , where 𝜖 is the precision of searching for pricing in

the range [0, 𝑏]. In the following proposition, we solve the dynamic

pricing in closed-form by constructing the Hamiltonian function.

Proposition 3.1. The optimal closed-form dynamic pricing𝑝 (𝑡), 𝑡 ∈
{0, . . . , 𝑇𝑡ℎ − 1} is given by

𝑝 (𝑡) =
(𝑏3𝜏3𝐷2𝑟5𝑇𝑡ℎ−5𝑡−6 (1 − 𝑟2)3

16𝛼3𝑠 (1 − 𝑟2𝑇𝑡ℎ )3

) 1

5

, (7)

which is monotonically increasing in 𝑡 , 𝑝 (𝑡) ≤ 𝑏 (𝑇 −𝑇𝑡ℎ) holds for
any 𝑡 ∈ {0, . . . ,𝑇𝑡ℎ − 1}. The recruited clients’ expected data size at
the end of the client recruitment phase 𝑇𝑡ℎ is

𝐵(𝑇𝑡ℎ) = 𝐷− 3

5

(𝛼𝑠2

4𝑏𝜏
𝑟2

𝑇𝑡ℎ∑︁
𝑖=1

𝑟2(𝑖−1) ) 2

5 . (8)

1
Though more involved, our analysis and key results can be extended to some other

distributions such as normal.



Proof: According to the problem (5)-(6), we have the discrete

time Hamiltonian function as

𝐻 (𝑡) = 𝛼

𝑏 (𝑇 −𝑇𝑡ℎ)
𝑝2 (𝑡) + 𝜆(𝑡 + 1) ((𝑟 − 1)𝐵(𝑡)

+ 𝑟𝛼𝑠

𝑏 (𝑇 −𝑇𝑡ℎ)
𝑝 (𝑡)).

(9)

Since
𝜕2𝐻 (𝑡 )
𝜕𝑝2 (𝑡 ) > 0, the Hamiltonian function 𝐻 (𝑡) is convex in

𝑝 (𝑡). Therefore, in order to find the optimal dynamic pricing that

minimize the total expected cost 𝑈 (𝑇 ) in (6), it is necessary to

satisfy:

𝜕𝐻 (𝑡)
𝜕𝑝 (𝑡) = 0, (10)

𝜆(𝑡 + 1) − 𝜆(𝑡) = − 𝜕𝐻 (𝑡)
𝜕𝐵(𝑡) , (11)

with boundary condition

𝜆(𝑇𝑡ℎ) =
𝜕( 1√

𝐵 (𝑇𝑡ℎ)𝐷
+ 1

𝐷
)

𝜕𝐵(𝑇𝑡ℎ)
= −1

2

𝐷− 1

2 (𝐵(𝑇𝑡ℎ))−
3

2 . (12)

According to (11), we have 𝜆(𝑡) = 𝑟𝜆(𝑡 + 1). Then, based on the

boundary condition, we can derive

𝜆(𝑡) = −1

2

𝑟𝑇𝑡ℎ−𝑡𝐷− 1

2 (𝐵(𝑇𝑡ℎ))−
3

2 . (13)

Based on (10) and (13),

𝑝 (𝑡) = −𝑟𝑠
2

𝜆(𝑡 + 1) = 𝑠

4

𝑟𝑇𝑡ℎ−𝑡𝐷− 1

2 (𝐵(𝑇𝑡ℎ))−
3

2 . (14)

Insert 𝑝 (𝑡) in (14) into (5), for 𝑡 ∈ {1, . . . ,𝑇𝑡ℎ}, we have

𝐵(𝑡) = 𝛼𝑠2

4𝑏𝜏
𝐷− 3

2 (𝐵(𝑇𝑡ℎ))−
3

2 𝑟𝑇𝑡ℎ−𝑡+2

𝑡∑︁
𝑖=1

𝑟2(𝑖−1) . (15)

Thus, the total data size at the end of the client recruitment phase

can be solved as in (8). According to (14) and (15), the optimal dy-

namic pricing 𝑝 (𝑡) is obtained as in (7). Note that 𝑏3𝜏3𝐷2

16𝛼3𝑠 (∑𝑇𝑡ℎ
𝑖=1

𝑟 2(𝑖−1) )3

will not change with 𝑡 for any given 𝑇𝑡ℎ . When 𝑟 < 1, 𝑟5𝑇𝑡ℎ−5𝑡−6

increases with 𝑡 , and thus 𝑝 (𝑡) increases with 𝑡 .

In the following, we will show that 𝑝 (𝑡) ≤ 𝑏 (𝑇 −𝑇𝑡ℎ) is satisfied
when 𝑡 ≤ 𝑇𝑡ℎ − 2. According to (7), 𝑝 (𝑡) ≤ 𝑏 (𝑇 −𝑇𝑡ℎ) is equivalent
to

16𝑏2𝛼3 (𝑇 −𝑇𝑡ℎ)3
𝑠

𝜏

(∑𝑇𝑡ℎ
𝑖=1

𝑟2(𝑖−1) )3

𝑟5𝑇𝑡ℎ−5𝑡−6

≥ 1. (16)

For 𝑟 < 1,

(∑𝑇𝑡ℎ
𝑖=1

𝑟 2(𝑖−1) )3

𝑟 5𝑇𝑡ℎ−5𝑡−6
> 1

𝑟 5𝑇𝑡ℎ−5𝑡−6
> 1 always holds when

𝑡 ≤ 𝑇𝑡ℎ − 2. Note that 𝑏 ≥ 1, 𝑠𝜏 ≥ 1, and 𝛼 ≥ 0.5. Thus, (16) always

holds when 𝑡 ≤ 𝑇𝑡ℎ − 2.

When 𝑡 = 𝑇𝑡ℎ − 1, 𝑝 (𝑇𝑡ℎ − 1) ≤ 𝑏 (𝑇 −𝑇𝑡ℎ) holds if
(1 − 𝑟2)3 ≤ 2𝑟 (1 − 𝑟2𝑇𝑡ℎ )3, (17)

which always holds if

(1 − 𝑟2)3 ≤ 2𝑟 (1 − 𝑟2)3, (18)

i.e., 𝑟 ≥ 0.5. Therefore, we can conclude that 𝑝 (𝑡) ≤ 𝑏 (𝑇 −𝑇𝑡ℎ) is
always satisfied when 𝑡 ≤ 𝑇𝑡ℎ − 1.

Proposition 3.1 shows that when time slot 𝑡 approaches the

recruitment deadline 𝑇𝑡ℎ or the data aging factor 𝑟 is large, it is

necessary to increase the price to ensure recruiting enough data to

train the model.

4 OPTIMAL RECRUITMENT THRESHOLD IN
STAGE I

Under the optimal dynamic pricing in Proposition 3.1, a longer

client recruitment time 𝑇𝑡ℎ results in a larger total data size 𝐵(𝑇𝑡ℎ)
in (8) at the cost of less training iteration number 𝐷 . Therefore,

in Stage I the central server should find the optimal recruitment

threshold 𝑇𝑡ℎ to balance the total data size and training time for

cost minimization in finite time horizon 𝑇 , i.e.,

𝑇 ∗
𝑡ℎ

= arg min

𝑇𝑡ℎ ∈{1,...,𝑇−1}
𝑈 (𝑇 ), (19)

where the total expected costs 𝑈 (𝑇 ) under the optimal dynamic

pricing 𝑝 (𝑡) in (7) is:

𝑈 (𝑇 ) =(4−
4

5 + 4

1

5 ) ( 𝑏𝜏

𝛼𝑠2𝑟2
)

1

5 ( 1 − 𝑟2

1 − 𝑟2𝑇𝑡ℎ
)

1

5 ( 𝜏

𝑇 −𝑇𝑡ℎ
)

1

5

+ 𝜏

𝑇 −𝑇𝑡ℎ
.

(20)

In the following proposition, the optimal threshold𝑇𝑡ℎ is derived

in closed-form.

Proposition 4.1. The optimal threshold 𝑇 ∗
𝑡ℎ

∈ Z+ depends on the
training time 𝜏 per iteration and is given as follows:

• Given high training time per iteration (𝜏 ≥ 𝜓
5

3 ), the server
decides 𝑇 ∗

𝑡ℎ
= 1 by recruiting clients in one time slot only and

save more time for model training.

• Given low training time per iteration (0 < 𝜏 < 𝜓
5

3 ), the server
decides𝑇 ∗

𝑡ℎ
= arg min𝑇𝑡ℎ (𝑈 (𝑇 ) |𝑇𝑡ℎ= ⌊𝑇𝑡ℎ ⌋ ,𝑈 (𝑇 ) |𝑇𝑡ℎ= ⌊𝑇𝑡ℎ ⌋+1

) ∈
{1, . . . ,𝑇 − 1}, with 𝑇𝑡ℎ as the unique solution to

1

5

(4−
4

5 + 4

1

5 ) ( 𝑏𝜏2 (1 − 𝑟2)
𝛼𝑠2𝑟2 (1 − 𝑟2𝑇𝑡ℎ ) (𝑇 −𝑇𝑡ℎ)

)
1

5

×
(

2𝑟2𝑇𝑡ℎ
ln(𝑟 )

1 − 𝑟2𝑇𝑡ℎ
+ 1

𝑇 −𝑇𝑡ℎ

)
+ 𝜏

(𝑇 −𝑇𝑡ℎ)2
= 0,

(21)

where

𝜓 =
1

5

( 𝑏

𝛼𝑠2𝑟2
)

1

5 (4−
4

5 + 4

1

5 )×(
2| ln(𝑟 ) | 𝑟2

1 − 𝑟2
(𝑇 − 1)

9

5 − (𝑇 − 1)
4

5

)
.

(22)

Proof: Take the first-order derivative of (20) with respect to𝑇𝑡ℎ ,

we have

𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

=
1

5

(4−
4

5 + 4

1

5 ) ( 𝑏𝜏2 (1 − 𝑟2)
𝛼𝑠2𝑟2 (1 − 𝑟2𝑇𝑡ℎ ) (𝑇 −𝑇𝑡ℎ)

)
1

5

×
(

2𝑟2𝑇𝑡ℎ
ln(𝑟 )

1 − 𝑟2𝑇𝑡ℎ
+ 1

𝑇 −𝑇𝑡ℎ

)
+ 𝜏

(𝑇 −𝑇𝑡ℎ)2
.

(23)

Since
𝜕2𝑈 (𝑇 )
𝜕𝑇 2

𝑡ℎ

> 0 for any 0.5 ≤ 𝑟 < 1, 𝑇 ∗
𝑡ℎ

can be obtained

according to
𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

= 0. Note that
𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

increases in𝑇𝑡ℎ . Therefore,

we consider the following three cases:

(i) if
𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

|𝑇𝑡ℎ=1 ≥ 0, i.e.,

𝜏
3

5 ≥ 2

5

( 𝑏

𝛼𝑠2𝑟2
)

1

5 (4−
4

5 + 4

1

5 ) | ln(𝑟 ) | 𝑟2

1 − 𝑟2
(𝑇 − 1)

9

5

− 1

5

( 𝑏

𝛼𝑠2𝑟2
)

1

5 (4−
4

5 + 4

1

5 ) (𝑇 − 1)
4

5 := 𝜓,

(24)



𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

≥ 0 always holds for 𝑇𝑡ℎ ∈ [1,𝑇 − 1], which means 𝑇 ∗
𝑡ℎ

= 1.

(ii) If
𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

|𝑇𝑡ℎ=𝑇−1 ≤ 0, i.e.,

𝜏
3

5 ≤ 2

5

( 𝑏

𝛼𝑠2𝑟2
)

1

5 (4−
4

5 + 4

1

5 ) | ln(𝑟 ) | 𝑟
2(𝑇−1) (1 − 𝑟2)

1

5

(1 − 𝑟2(𝑇−1) )
6

5

− 1

5

( 𝑏

𝛼𝑠2𝑟2
)

1

5 (4−
4

5 + 4

1

5 ) ( 1 − 𝑟2

1 − 𝑟2(𝑇−1) )
1

5 := 𝜓,

(25)

𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

≤ 0 always holds for 𝑇𝑡ℎ ∈ [1,𝑇 − 1], which means 𝑇 ∗
𝑡ℎ

=

𝑇 − 1.

However, in the following, we can show that𝜓 is always negative

for 𝑇 ≥ 2 and 𝑟 < 1. Thus, 𝜏
3

5 ≤ 𝜓 doesn’t exist.

According to (25),𝜓 ≤ 0 is equivalent to

(1 + 2| ln(𝑟 ) |)𝑟2(𝑇−1) ≤ 1. (26)

Note that
𝜕 ( (1+2 | ln(𝑟 ) |)𝑟 2(𝑇−1) )

𝜕𝑟 > 0 always holds for 𝑇 ≥ 2 and

𝑟 < 1, and lim𝑟→1 (1 + 2| ln(𝑟 ) |)𝑟2(𝑇−1) = 1. Thus, (26) always

holds, i.e.,𝜓 ≤ 0.

(iii) if
𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

|𝑇𝑡ℎ=1 < 0 and
𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

|𝑇𝑡ℎ=𝑇−1 > 0, i.e., 0 < 𝜏
3

5 < 𝜓 ,

since
𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

increases in 𝑇𝑡ℎ , 𝑇
∗
𝑡ℎ

∈ [1, . . . ,𝑇 − 1] can be obtained

as the unique solution to
𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

= 0. Note that here 𝑇 ∗
𝑡ℎ

can still be

equal to 1 as the solution to
𝜕𝑈 (𝑇 )
𝜕𝑇𝑡ℎ

= 0 can be within the range (1, 2).
Thus, the integer 𝑇 ∗

𝑡ℎ
will be decided by comparing𝑈 (𝑇 ) |𝑇𝑡ℎ=1 and

𝑈 (𝑇 ) |𝑇𝑡ℎ=2.

As shown in Proposition 4.1, if training time is high (𝜏 ≥ 𝜓
5

3

), the

FL training needs sufficient time to converge and thus we decide

the minimum recruitment time𝑇 ∗
𝑡ℎ

= 1. As this requirement relaxes,

we gradually increase the recruitment time𝑇 ∗
𝑡ℎ
. Note that we obtain

an expression for time partition𝑇 ∗
𝑡ℎ

in closed-form, and do not face

any issue for computational complexity.

To more clearly illustrate our results, Fig. 2 numerically shows

that the optimal recruitment threshold 𝑇 ∗
𝑡ℎ

increases with the total

time horizon 𝑇 to relax the recruitment deadline. Moreover, Fig. 3

shows that the optimal recruitment threshold 𝑇 ∗
𝑡ℎ

increases with

the discount factor 𝑟 , which tells the data aging effect in (5). As the

aging effect becomes weaker with greater 𝑟 , the clients who arrived

early in the recruitment phase still contribute a lot to the training

dataset and we prolong the recruitment time 𝑇 ∗
𝑡ℎ

to accommodate

more useful data.

5 EXTENSION TO HETEROGENEOUS
CLIENTS

In previous sections, we have analyzed the optimal dynamic pric-

ing and recruitment threshold for homogeneous clients with the

identical data size and training time. In this section, we will extend

to 𝑁 types of heterogeneous clients with different data sizes 𝑠𝑖
and training time 𝜏𝑖 , 𝑖 ∈ {1, ..., 𝑁 }. A client type may have multi-

ple clients and will incur a longer iteration duration if provided

with more data to compute [19]. Without loss of generality, we

assume (𝑠𝑖 , 𝜏𝑖 ), 𝑖 ∈ {1, ..., 𝑁 } are sorted in ascending order, i.e.,

𝑠1 < 𝑠2 < · · · < 𝑠𝑁 , 𝜏1 < 𝜏2 < · · · < 𝜏𝑁 . A client of type 𝑖 with

private unit cost 𝑐 per training time will accept the price 𝑝𝑖 (𝑡) at
time slot 𝑡 if the price offer can well compensate his cost with
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Figure 2: Optimal recruitment threshold𝑇 ∗
𝑡ℎ

versus total time horizon𝑇 .
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Figure 3: Optimal recruitment threshold𝑇 ∗
𝑡ℎ

versus discount factor 𝑟 when𝑇 = 50.

𝑐𝜏𝑖𝐷 ≤ 𝑝𝑖 (𝑡), 𝑖 = {1, ..., 𝑁 }, where the training iteration number

𝐷 now varies according to our selection of client types for FL and

𝜏𝑖𝐷 is the total training time of type-𝑖 clients. In the synchronous

FL setting, we set each iteration’s duration to be the longest client

computing time to wait for all the selected clients’ updates. For

example, if the central server recruits clients of types 𝑖 ∈ {1, 2, 3},
the global iteration number is𝐷 =

𝑇−𝑇𝑡ℎ
𝜏3

, where the clients of types

1 and 2 wait for the type-3 clients’ updates.

Given such latency in model training, not necessarily all types

of clients will be invited to help train the global model. To include

clients with larger amounts of data, the iteration duration time is

also longer, and the left iteration number becomes smaller in the

model training phase. Thus, it is necessary to select appropriate

client types to balance the data size and global iteration number.

However, the optimal client-type choosing is a combinatorial opti-

mization problem that has very high computational complexity. The

client-type choice will affect the following recruitment threshold

as well as the dynamic price for each client type. The joint opti-

mization of them is NP-hard. The time complexity to only check

every combination of the client-type choice is 𝑂 (2𝑁 ) by increas-

ing exponentially in 𝑁 , not to mention the huge number of price

combinations over time for each type-𝑖 clients, with computation



complexity𝑂 ((𝑏𝜏𝑖𝐷/𝜖)𝑇𝑡ℎ ) increasing exponentially in𝑇𝑡ℎ . By con-
sidering the above issues, we formulate the decision process of the

central server as the following three stages:

• Stage I: The central server chooses the types of clients to

recruit for model training.

• Stage II: Given the types of inviting clients, the central server

decides the optimal recruitment threshold 𝑇𝑡ℎ .

• Stage III: Given the optimal recruitment threshold 𝑇𝑡ℎ and

inviting types of clients, the central server decides the dy-

namic pricing 𝑝𝑖 (𝑡), 𝑡 ∈ {0, . . . ,𝑇𝑡ℎ − 1} for each inviting

type-𝑖 clients.

In the following, we use backward induction to analyze the above

three-stage decision problem.

5.1 Optimal Dynamic Pricing in Stage III
In this section, given the inviting types of client in Stage I and

recruitment threshold 𝑇𝑡ℎ in Stage II, we will analyze the optimal

dynamic pricing 𝑝𝑖 (𝑡), 𝑡 ∈ {0, . . . ,𝑇𝑡ℎ − 1} for each type-𝑖 clients.

Without loss of generality, we denote the inviting types of clients

as {1, ..., 𝑁 } with 𝑁 ∈ {1, ..., 𝑁 }, and later in Section 5.3, we prove

the monotonic selection of client types. Denote the percentage of

type-𝑖 clients as 𝑞𝑖 with
∑𝑁̄
𝑖=1

𝑞𝑖 = 1. For uniform distribution of the

clients’ private costs, the probability that a type-𝑖 client appears and

accepts the price offer 𝑝𝑖 (𝑡) at time 𝑡 is 𝛼𝑞𝑖𝐹 ( 𝑝𝑖 (𝑡 )𝜏𝑖𝐷
) = 𝛼𝑞𝑖

𝑏𝜏𝑖𝐷
𝑝𝑖 (𝑡).

By noting the data size 𝑠𝑖 contributed by type-𝑖 client, the expected

increase of data size at time 𝑡 is
∑𝑁̄
𝑖=1

𝛼𝑞𝑖𝑠𝑖𝑝𝑖 (𝑡 )
𝑏𝜏𝑖𝐷

. Starting from the

initial training data size 𝐵(𝑡 = 0) = 0, the dynamics of the expected

data size 𝐵(𝑡) is given as (28).

Since the expected payment to type-𝑖 client at time 𝑡 is
𝛼𝑞𝑖
𝑏𝜏𝑖𝐷

𝑝2

𝑖
(𝑡),

the total expected payment at time 𝑡 is
∑𝑁̄
𝑖=1

𝛼𝑞𝑖
𝑏𝜏𝑖𝐷

𝑝2

𝑖
(𝑡). Note that

the optimal price 𝑝𝑖 (𝑡) for each type-𝑖 clients should not exceed

the maximum cost 𝑏𝜏𝑖𝐷 of this client-type as it is unnecessary for

the provider to over-pay. Therefore, given the inviting types of

clients {1, ..., 𝑁 } and recruitment threshold 𝑇𝑡ℎ , the central server

aims to find the optimal dynamic pricing 𝑝𝑖 (𝑡), 𝑡 ∈ {0, . . . ,𝑇𝑡ℎ − 1}
for each type-𝑖 clients to minimize the total expected cost 𝐽 (𝑷 (𝒕)
|𝑇𝑡ℎ, {1, ..., 𝑁 }) consisting of the total payment to the clients and

the expected accuracy loss for FL. That is,

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑁 })

= min

𝑝𝑖 (𝑡 ) ≤𝑏𝜏𝑖𝐷
𝑡 ∈{0,...,𝑇𝑡ℎ−1}

𝑇𝑡ℎ−1∑︁
𝑡=0

𝑁̄∑︁
𝑖=1

𝛼𝑞𝑖

𝑏𝜏𝑖𝐷
𝑝2

𝑖 (𝑡) +
1√︁

𝐵(𝑇𝑡ℎ)𝐷
+ 1

𝐷

= min

𝑝𝑖 (𝑡 ) ≤𝑏𝜏𝑖𝐷
𝑡 ∈{0,...,𝑇𝑡ℎ−1}

𝑇𝑡ℎ−1∑︁
𝑡=0

(
𝑷 (𝒕)⊤𝑾𝑷 (𝒕)

)
+ 1√︁

𝐵(𝑇𝑡ℎ)𝐷
+ 1

𝐷
,

(27)

s.t.

𝐵(𝑡 + 1) =𝑟
(
𝐵(𝑡) +

𝑁̄∑︁
𝑖=1

𝛼𝑞𝑖𝑠𝑖𝑝𝑖 (𝑡)
𝑏𝜏𝑖𝐷

)
= 𝑟𝐵(𝑡) + 𝑸𝑷 (𝒕), (28)

where

𝑷 (𝒕) = [𝑝1 (𝑡), ..., 𝑝𝑁̄ (𝑡)]⊤ ∈ R𝑁̄×1

𝑸 = [ 𝑟𝛼𝑞1𝑠1

𝑏𝜏1𝐷
, ...,

𝑟𝛼𝑞𝑁̄ 𝑠𝑁̄

𝑏𝜏𝑁̄𝐷
] ∈ R1×𝑁̄

𝑾 =


𝛼𝑞1

𝑏𝜏1𝐷
· · · 0

.

.

.
. . .

.

.

.

0 · · · 𝛼𝑞𝑁̄
𝑏𝜏𝑁̄𝐷

 ∈ R𝑁̄×𝑁̄ .

Similar to the analysis of Proposition 3.1, we have the following

lemma.

Lemma 5.1. The optimal dynamic pricing 𝑷 (𝒕) ∈ R𝑁̄×1 is

𝑷 (𝒕) =𝑚𝑖𝑛(

𝑠1Γ𝑡
.
.
.

𝑠𝑁̄ Γ𝑡

 ,

𝑏𝜏1𝐷

.

.

.

𝑏𝜏𝑁̄𝐷

) . (29)

where Γ𝑡 =
( 𝑏3𝐷2𝑟 5𝑇𝑡ℎ−5𝑡−6 (1−𝑟 2)3

16𝛼3 (1−𝑟 2𝑇𝑡ℎ )3 (∑𝑁̄
𝑖=1

𝑞𝑖𝑠
2

𝑖
𝜏𝑖

)3

) 1

5 , which is monotonically

increasing in 𝑡 .2

Proof: According to the problem (27)-(28), we can construct the

Hamiltonian function as follows:

𝐻 (𝑡) = 𝑷 (𝒕)⊤𝑾𝑷 (𝒕) + 𝜆(𝑡 + 1) ((𝑟 − 1)𝐵(𝑡) + 𝑸𝑷 (𝒕)) . (30)

Since
𝜕2𝐻 (𝑡 )
𝜕𝑝2

𝑖
(𝑡 ) > 0, 𝑖 ∈ {1, ..., 𝑁 }, the Hamiltonian function is

convex in 𝑝𝑖 (𝑡). Similar to the proof of Proposition 3.1, we have

𝑷 (𝒕) =
1

4

𝑾−1𝑸⊤𝐷− 1

2 (𝐵(𝑇𝑡ℎ))−
3

2 𝑟𝑇𝑡ℎ−𝑡−1, (31)

and

𝐵(𝑡) = 1

4

𝑸𝑾−1𝑸⊤𝐷− 1

2 (𝐵(𝑇𝑡ℎ))−
3

2 𝑟𝑇𝑡ℎ−𝑡
𝑡∑︁
𝑖=1

𝑟2(𝑖−1) . (32)

According to (32), 𝐵(𝑇𝑡ℎ) is solved as:

𝐵(𝑇𝑡ℎ) =
(

1

4

𝑸𝑾−1𝑸⊤𝐷− 1

2

𝑇𝑡ℎ∑︁
𝑖=1

𝑟2(𝑖−1)
) 2

5

, (33)

Insert (33) into (31) and note that 𝑝𝑖 (𝑡) ≤ 𝑏𝜏𝑖𝐷 for any 𝑖 ∈ {1, ..., 𝑁 },
the optimal dynamic pricing 𝑃 (𝑡) can be derived as (29). Since

𝑟5𝑇𝑡ℎ−5𝑡−6
increases with 𝑡 for any 0 < 𝑟 < 1, 𝑃 (𝑡) is monotonically

increasing with 𝑡 .

Note that theHamiltonian function is convex in 𝑝𝑖 (𝑡), 𝑖 ∈ {1, ..., 𝑁 }
for the problem (27)-(28). Thus, when 𝑝𝑖 (𝑡) > 𝑏𝜏𝑖𝐷 , it’s optimal

to set 𝑝𝑖 (𝑡) = 𝑏𝜏𝑖𝐷 . Moreover, by noting that 𝑝𝑖 (𝑡), 𝑖 ∈ {1, ..., 𝑁 }
increases with 𝑡 , if Γ𝑡𝑠 𝑗 > 𝑏𝜏 𝑗𝐷 for client type 𝑗 from certain time

slot 𝑡 ′, the optimal pricing is 𝑝 𝑗 (𝑡) = 𝑏𝜏 𝑗𝐷 for any 𝑡 ≥ 𝑡 ′.
According to Lemma 5.1, if 𝑠𝑖Γ𝑡 ≤ 𝑏𝜏𝑖𝐷 holds for any client-type

𝑖 ∈ {1, .., 𝑁 }, the resulting total expected cost is:

𝐽≤ (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑁 })

=(4−
4

5 + 4

1

5 ) ( 𝑏

𝛼𝑟2
)

1

5 ( 1 − 𝑟2

1 − 𝑟2𝑇𝑡ℎ
)

1

5 (
𝑁̄∑︁
𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)−

1

5 (
𝜏𝑁̄

𝑇 −𝑇𝑡ℎ
)

1

5

+
𝜏𝑁̄

𝑇 −𝑇𝑡ℎ
.

(34)

2
If 𝑠 𝑗 Γ𝑡 > 𝑏𝜏 𝑗𝐷 for client type 𝑗 from certain time slot 𝑡 ′, the optimal pricing is

𝑝 𝑗 (𝑡 ) = 𝑏𝜏 𝑗𝐷 for any 𝑡 ≥ 𝑡 ′.



Lemma 5.1 also shows that for the client type with large amount of

data, higher dynamic prices are required to compensate for their

higher training costs. Also, like homogeneous clients, the dynamic

price increases over time due to data aging (that is, the value of

data decreases over time).

5.2 Optimal Recruitment Threshold in Stage II
Based on the optimal dynamic pricing in Section 5.1, in Stage II

we are ready to analyze the optimal recruitment threshold 𝑇𝑡ℎ
given the types {1, ..., 𝑁 } of inviting clients in Stage I. We propose

the following proposition to find the optimal threshold 𝑇𝑡ℎ for

heterogeneous clients case.

Proposition 5.1. The optimal threshold 𝑇 ∗
𝑡ℎ

∈ Z+ for heteroge-
neous clients depends on their training rate 𝑠𝑖

𝜏𝑖
(data size/training

time) and is given as follows:

• Given low training rate ( 𝑠𝑖𝜏𝑖 ≤ 𝑏𝐷
Γ′𝑡

for any 𝑖 ∈ {1, ..., 𝑁 }, 𝑡 ∈
{0, ...,𝑇𝑡ℎ − 1}), the server decides 𝑇 ∗

𝑡ℎ
= 𝑇𝑡ℎ .

• Given high training rate ( 𝑠𝑖𝜏𝑖 > 𝑏𝐷
Γ′𝑡

for certain 𝑖 ∈ {1, ..., 𝑁 }, 𝑡 ∈
{0, ...,𝑇𝑡ℎ − 1}), the optimal recruitment threshold 𝑇 ∗

𝑡ℎ
can be

obtained according to Algorithm 1.

where Γ′𝑡 =
( 𝑏3𝐷2𝑟 5𝑇̃𝑡ℎ−5𝑡−6 (1−𝑟 2)3

16𝛼3 (1−𝑟 2𝑇̃𝑡ℎ )3 (∑𝑁̄
𝑖=1

𝑞𝑖𝑠
2

𝑖
𝜏𝑖

)3

) 1

5 and 𝑇𝑡ℎ = arg min𝑇𝑡ℎ (

𝐽≤ (𝑷 (𝒕) | ⌊𝑇𝑡ℎ⌋, {1, ..., 𝑁 }), 𝐽≤ (𝑷 (𝒕) | ⌊𝑇𝑡ℎ⌋+1, {1, ..., 𝑁 })) ∈ {1, ...,𝑇−
1} with 𝑇𝑡ℎ ≥ 1 as the unique solution to

1

5

(4−
4

5 + 4

1

5 ) (
𝑁̄∑︁
𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)−

1

5 (
𝑏𝜏𝑁̄ (1 − 𝑟2)

𝛼𝑟2 (1 − 𝑟2𝑇𝑡ℎ ) (𝑇 −𝑇𝑡ℎ)
)

1

5

×
(

2𝑟2𝑇𝑡ℎ
ln(𝑟 )

1 − 𝑟2𝑇𝑡ℎ
+ 1

𝑇 −𝑇𝑡ℎ

)
+ 𝜏

(𝑇 −𝑇𝑡ℎ)2
= 0.

(35)

Proof: Based on Lemma 5.1, we consider the following two cases

based on whether Γ𝑡𝑠𝑖 ≤ 𝑏𝜏𝑖𝐷 :

(i) First, we consider the case that Γ𝑡𝑠𝑖 ≤ 𝑏𝜏𝑖𝐷 is always satisfied

for any 𝑖 ∈ {1, ..., 𝑁 }, 𝑡 ∈ {0, . . . ,𝑇𝑡ℎ − 1}. According to 𝑷 (𝒕) in (29),

we obtain the total expected cost 𝐽≤ (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑁 }) in (34).

We can check that
𝜕2 𝐽≤ (𝑷 (𝒕) |𝑇𝑡ℎ,{1,...,𝑁̄ })

𝜕𝑇 2

𝑡ℎ

> 0 is always satisfied,

and thus the optimal 𝑇 ∗
𝑡ℎ

can be obtained based on the first-order

conditions
𝜕𝐽≤ (𝑷 (𝒕) |𝑇𝑡ℎ,{1,...,𝑁̄ })

𝜕𝑇𝑡ℎ
= 0, which is given in (35).

Denote the solution to (35) as𝑇𝑡ℎ . Note that
𝜕𝐽≤ (𝑷 (𝒕) |𝑇𝑡ℎ,{1,...,𝑁̄ })

𝜕𝑇𝑡ℎ

= 0 increases in 𝑇𝑡ℎ . If
𝜕𝐽≤ (𝑷 (𝒕) |𝑇𝑡ℎ,{1,...,𝑁̄ })

𝜕𝑇𝑡ℎ
|𝑇𝑡ℎ=1 > 0, we have

𝑇𝑡ℎ < 1. Since 𝐽≤ (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑁 }) is convex in 𝑇𝑡ℎ , the optimal

threshold 𝑇 ∗
𝑡ℎ

= 𝑇𝑡ℎ = 𝑇𝑡ℎ = 1. If
𝜕𝐽≤ (𝑷 (𝒕) |𝑇𝑡ℎ,{1,...,𝑁̄ })

𝜕𝑇𝑡ℎ
|𝑇𝑡ℎ=1 ≤ 0,

𝑇𝑡ℎ ≥ 1 is the unique solution to (35). By noting that 𝑇𝑡ℎ ∈ Z+, the
optimal threshold is 𝑇 ∗

𝑡ℎ
= 𝑇𝑡ℎ = arg min𝑇𝑡ℎ (𝐽≤ (𝑷 (𝒕) | ⌊𝑇𝑡ℎ⌋, {1, ...,

𝑁 }), 𝐽≤ (𝑷 (𝒕) | ⌊𝑇𝑡ℎ⌋ + 1, {1, ..., 𝑁 })) ∈ {1, ...,𝑇 − 1}. By noting that

Γ𝑡 is a function of 𝑇𝑡ℎ , we define Γ
′
𝑡 =

( 𝑏3𝐷2𝑟 5𝑇̃𝑡ℎ−5𝑡−6 (1−𝑟 2)3

16𝛼3 (1−𝑟 2𝑇̃𝑡ℎ )3 (∑𝑁̄
𝑖=1

𝑞𝑖𝑠
2

𝑖
𝜏𝑖

)3

) 1

5

given 𝑇𝑡ℎ . Therefore, we can conclude that, if
𝑠𝑖
𝜏𝑖

≤ 𝑏𝐷
Γ′𝑡

for any

𝑖 ∈ {1, ..., 𝑁 }, 𝑡 ∈ {0, ...,𝑇𝑡ℎ − 1}, 𝑝𝑖 (𝑡) = Γ′𝑡 𝑠𝑖 ≤ 𝑏𝜏𝑖𝐷 is always

satisfied and the optimal threshold 𝑇 ∗
𝑡ℎ

= 𝑇𝑡ℎ .

Algorithm 1 Optimal recruitment threshold 𝑇 ∗
𝑡ℎ

and client-type

choice for heterogeneous clients.

1: for 𝑗 = 1 : 𝑁 do
2: Solve 𝑇𝑡ℎ as the solution to (35)

3: if 𝑇𝑡ℎ < 1 then
4: 𝑇𝑡ℎ = 1

5: end if
6: Calculate 𝑇𝑡ℎ = arg min𝑇𝑡ℎ (𝐽≤ (𝑷 (𝒕) | ⌊𝑇𝑡ℎ⌋, {1, ..., 𝑁 }),
7: 𝐽≤ (𝑷 (𝒕) | ⌊𝑇𝑡ℎ⌋ + 1, {1, ..., 𝑁 })) and Γ′𝑡
8: if ∀𝑖 ∈ {1, ..., 𝑗}, 𝑡 ∈ {0, ...,𝑇𝑡ℎ − 1}, 𝑠𝑖𝜏𝑖 ≤ 𝑏𝐷

Γ′𝑡
then

9: return 𝑇 ∗
𝑡ℎ

= 𝑇𝑡ℎ and

𝐽 ∗ (𝑷 (𝒕) |𝑇 ∗
𝑡ℎ
, {1, ..., 𝑗}) = 𝐽≤ (𝑷 (𝒕) |𝑇 ∗

𝑡ℎ
, {1, ..., 𝑗})

10: else
11: Calculate 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗}) according to the dynamics

of data size 𝐵(𝑡) in (28) and optimal dynamic pricing 𝑃 (𝑡)
in (29)

12: if 𝜕𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ,{1,..., 𝑗 })
𝜕𝑇𝑡ℎ

|𝑇𝑡ℎ=1 ≥ 0 then
13: return 𝑇 ∗

𝑡ℎ
= 1 and 𝐽 ∗ (𝑷 (𝒕) |𝑇 ∗

𝑡ℎ
, {1, ..., 𝑗})

14: else
15: Solve

𝜕𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ,{1,..., 𝑗 })
𝜕𝑇𝑡ℎ

= 0

16: return 𝑇 ∗
𝑡ℎ

= arg min(𝐽 (𝑷 (𝒕) | ⌊𝑇𝑡ℎ⌋, {1, ..., 𝑗}),
𝐽 (𝑷 (𝒕) | ⌊𝑇𝑡ℎ⌋ + 1, {1, ..., 𝑗})) and 𝐽 ∗ (𝑷 (𝒕) |𝑇 ∗

𝑡ℎ
, {1, ..., 𝑗})

17: end if
18: end if
19: end for
20: 𝑗∗ = arg min(𝐽 ∗ (𝑷 (𝒕) |𝑇 ∗

𝑡ℎ
, {1, ..., 𝑗}) | 𝑗 = 1, ..., 𝑁 )

21: return optimal client-type {1, 2, ..., 𝑗∗}

(ii) Then, we consider the case that Γ′𝑡 𝑠𝑖 > 𝑏𝜏𝑖𝐷 for certain client

type 𝑖 ∈ {1, ..., 𝑁 } at time 𝑡 ′ ∈ {0, . . . ,𝑇𝑡ℎ − 1}, the optimal pricing

for client type 𝑖 is 𝑝𝑖 (𝑡) = 𝑏𝜏𝑖𝐷 for any 𝑡 ≥ 𝑡 ′. Based on the data size
updating dynamics (28), the total batch size 𝐵(𝑇𝑡ℎ) at time 𝑇𝑡ℎ and

the resulting total expected cost 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗}) in (27) can

be derived given the optimal dynamic pricing 𝑷 (𝒕) in (29). Then,

similar to the above analysis, the optimal recruitment threshold

𝑇 ∗
𝑡ℎ

is obtained by checking the first-order condition as shown in

Algorithm 1.

The procedure to find the optimal recruitment threshold 𝑇 ∗
𝑡ℎ

for heterogeneous clients is concluded in linear Algorithm 1. Note

that if the solution to (35) is less than 1, 𝑇𝑡ℎ = 1, and then we

can calculate 𝑇𝑡ℎ and Γ′𝑡 to check whether
𝑠𝑖
𝜏𝑖

≤ 𝑏𝐷
Γ′𝑡

is satisfied for

any 𝑖 ∈ {1, .., 𝑁 }, 𝑡 ∈ {0, ...,𝑇𝑡ℎ − 1}. If satisfied, 𝑇 ∗
𝑡ℎ

= 𝑇𝑡ℎ . Other-

wise, the total expected cost 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑁 }) can be calculated
according to the dynamics of data size 𝐵(𝑡) in (28) and optimal

dynamic pricing 𝑃 (𝑡) in (29), and then the optimal recruitment

threshold 𝑇 ∗
𝑡ℎ

can be derived by checking the first-order condition

𝜕𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ,{1,...,𝑁̄ })
𝜕𝑇𝑡ℎ

.

5.3 Optimal Client-Type Choice in Stage I
In this subsection, we will discuss the optimal types of clients to

be invited in Stage I based on the optimal dynamic pricing and

optimal recruitment threshold obtained above. Even though we

have derived closed-form solutions to the optimal dynamic pricing



and optimal recruitment threshold, the time complexity of finding

the optimal client-type choice is still very high with𝑂 (2𝑁 ) increas-
ing exponentially in 𝑁 . In the following sections, we consider the

non-trivial case that 𝑝𝑖 (𝑡) = 𝑠𝑖Γ𝑡 ≤ 𝑏𝜏𝑖𝐷 for any 𝑖 ∈ {1, ..., 𝑁 } to
reveal the analytical result in Proposition 5.2.

Proposition 5.2. For any 𝑁 types of clients at the optimum, the
central server monotonically chooses client types in set {1, 2, ..., 𝑗∗}
with 𝑗∗ = arg min𝑗 ∈{1,...,𝑁 } 𝐽

∗ (𝑷 (𝒕) |𝑇 ∗
𝑡ℎ
, {1, ..., 𝑗}).

Proof: According to (34), the total expected cost for inviting

type 𝑖 clients only is

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {𝑖})

=(4−
4

5 + 4

1

5 ) ( 𝑏𝜏𝑖

𝛼𝑞𝑖𝑠
2

𝑖
𝑟2

)
1

5 ( 1 − 𝑟2

1 − 𝑟2𝑇𝑡ℎ
)

1

5 ( 𝜏𝑖

𝑇 −𝑇𝑡ℎ
)

1

5

+ 𝜏𝑖

𝑇 −𝑇𝑡ℎ
.

(36)

When there are two types of clients, i.e., 𝑁 = 2, according to

(36) and (34), we have 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {2}) ≥ 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, 2}) for any
given 𝑇𝑡ℎ . Thus, inviting two types of clients {1, 2} is always better
than only inviting type-2 clients.

When there are three types of clients, i.e., 𝑁 = 3, the possible

client-type combinations are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} and
{1, 2, 3}. According to (34), the total expected cost of inviting client

types {1, 3} is

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, 3}) =(4−
4

5 + 4

1

5 ) ( 𝑏

𝛼𝑟2
)

1

5 ( 1 − 𝑟2

1 − 𝑟2𝑇𝑡ℎ
)

1

5

×(
𝑞1𝑠

2

1

𝜏1

+
𝑞3𝑠

2

3

𝜏3

)−
1

5 ( 𝜏3

𝑇 −𝑇𝑡ℎ
)

1

5 + 𝜏3

𝑇 −𝑇𝑡ℎ
,

(37)

and the total expected cost of inviting client types {1, 2, 3} is

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, 2, 3}) =(4−
4

5 + 4

1

5 ) ( 𝑏

𝛼𝑟2
)

1

5 ( 1 − 𝑟2

1 − 𝑟2𝑇𝑡ℎ
)

1

5

×(
3∑︁

𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)−

1

5 ( 𝜏3

𝑇 −𝑇𝑡ℎ
)

1

5 + 𝜏3

𝑇 −𝑇𝑡ℎ
.

(38)

Since

𝑞1𝑠
2

1

𝜏1

+ 𝑞2𝑠
2

2

𝜏2

+ 𝑞3𝑠
2

3

𝜏3

>
𝑞1𝑠

2

1

𝜏1

+ 𝑞3𝑠
2

3

𝜏3

, 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, 2, 3}) <

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, 3}) for any given𝑇𝑡ℎ . Similarly, we have 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ ,
{1, 2, 3}) < 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {2, 3}) and 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, 2, 3}) < 𝐽 (𝑷 (𝒕) |
𝑇𝑡ℎ, {3}). Note that 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {2}) ≥ 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, 2}). Thus,
when 𝑁 = 3, we only need to compare the total expected costs

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1}), 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, 2}), 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, 2, 3}) to find the
optimal types of inviting clients.

Similar to the above analysis, for any𝑁 groups of clients, if client-

type 𝑗 is invited, all client-types 𝑖 ≤ 𝑗 should be invited for cost

minimization. Thus, the central server only need to compare the

optimal expected costs 𝐽 ∗ (𝑷 (𝒕) |𝑇 ∗
𝑡ℎ
, {1, ..., 𝑗}), 𝑗 ∈ {1, ..., 𝑁 } given

the optimal recruitment threshold𝑇 ∗
𝑡ℎ

and optimal dynamic pricing

in (29). Thus, the optimal types of inviting clients is {1, 2, ..., 𝑗∗}
with 𝑗∗ = arg min𝑗 ∈{1,...,𝑁 } 𝐽

∗ (𝑷 (𝒕) |𝑇 ∗
𝑡ℎ
, {1, ..., 𝑗}).

Given a selected client type 𝑗 , the iteration duration is at least

𝜏 𝑗 . Thus including any client type 𝑖 < 𝑗 with smaller data size

and training time only creates updates within the iteration dura-

tion without reducing the number of global training iterations. As

shown in Proposition 5.2, we monotonically select the first 𝑗∗ types

of clients with smaller data sizes and training time to accelerate

the model training. The optimal types of inviting clients is one

of the following cases: {1}, {1, 2}, ..., {1, 2, ..., 𝑁 }. This means the

multiple client-type choice is monotonic, which can reduce the time

complexity of finding the optimal client-type choice from 𝑂 (2𝑁 )
to 𝑂 (𝑁 ) by enumerating only 𝑁 subsets as shown in Algorithm 1.

5.4 Robustness to Data Size
In reality, our estimation of each client type may not be precise due

to some noises, and we wonder our solution’s robustness against

estimation error of clients’ data size. Assume the data size 𝑠𝑖 (𝑡)
contributed by a type-𝑖 client at time slot 𝑡 faces a variable and

bounded error from our estimation: 𝑠𝑖 (𝑡) ∈ [𝑠𝑖 − 𝛿𝑖 , 𝑠𝑖 + 𝛿𝑖 ], 0 <

𝛿𝑖 < 𝑠𝑖 , where 𝑠𝑖 can be viewed as the mean of type-𝑖 clients’ data

size. Given the optimal client type choice {1, ..., 𝑗∗}, by applying

the dynamic pricing 𝑝𝑖 (𝑡) in (29), the dynamics of data size 𝐵(𝑡)
under uncertain client data size 𝑠𝑖 (𝑡), 𝑖 ∈ {1, ..., 𝑗∗} changes from
(28) to

𝐵̃(𝑡 + 1) = 𝑟 𝐵̃(𝑡) + 𝑟
𝑗∗∑︁
𝑖=1

𝛼𝑞𝑖𝑠𝑖 (𝑡)
𝑏𝜏𝑖𝐷

𝑝𝑖 (𝑡), (39)

and the resulting total expected cost is

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗}) =
𝑇𝑡ℎ−1∑︁
𝑡=0

𝑗∗∑︁
𝑖=1

𝛼𝑞𝑖

𝑏𝜏𝑖𝐷
(𝑝𝑖 (𝑡))2

+ 1√︃
𝐵̃(𝑇𝑡ℎ)𝐷

+ 1

𝐷
.

(40)

By comparing the total expected cost 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗}) un-
der noisy data size 𝑠𝑖 (𝑡) in (40) with the total expected cost 𝐽 (𝑷 (𝒕) |
𝑇𝑡ℎ, {1, ..., 𝑗∗}) under no noise case where all type-𝑖 clients con-

tribute the precisely data size 𝑠𝑖 in (27), we have the following

proposition.

Proposition 5.3. By applying the optimal dynamic pricing 𝑃 (𝑡)
in (29), the total expected cost objective 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗}) with
noisy data size 𝑠𝑖 (𝑡) ∈ [𝑠𝑖−𝛿𝑖 , 𝑠𝑖+𝛿𝑖 ], 𝑖 ∈ {1, ..., 𝑗∗}, 𝑡 ∈ {0, ...,𝑇𝑡ℎ−1}
satisfy

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗}) ≤𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗})
+ Φ(𝛿𝑖 |𝑖 ∈ {1, ..., 𝑗∗}),

(41)

where

Φ(𝛿𝑖 |𝑖 ∈ {1, ..., 𝑗∗}) =
(

4𝑏𝜏 𝑗∗ (1 − 𝑟2)
𝛼𝑟2 (𝑇 −𝑇𝑡ℎ) (1 − 𝑟2𝑇𝑡ℎ )

) 1

5

×
( (∑𝑗∗

𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)

3

10

(∑𝑗∗

𝑖=1

𝑞𝑖𝑠𝑖 (𝑠𝑖−𝛿𝑖 )
𝜏𝑖

)
1

2

− (
𝑗∗∑︁
𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)−

1

5

)
,

(42)

which increases with 𝛿𝑖 , 𝑖 ∈ {1, ..., 𝑗∗}.

Proof: According to (27), the total expected cost increases as the
total data size 𝐵(𝑇𝑡ℎ) decreases. Thus, given the optimal dynamic

pricing 𝑝𝑖 (𝑡) in (29) and recruitment threshold 𝑇 ∗
𝑡ℎ
, the worst-case



total cost is:

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗})
= max

𝑠𝑖 (𝑡 ) ∈[𝑠𝑖−𝛿𝑖 ,𝑠𝑖+𝛿𝑖 ],
𝑖∈{1,..., 𝑗∗ },

𝑡 ∈{0,...,𝑇𝑡ℎ−1}

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗}) (43)

which is achieved when 𝑠𝑖 (𝑡) = 𝑠𝑖 − 𝛿𝑖 for any 𝑖 ∈ {1, ..., 𝑗∗}, 𝑡 ∈
{0, ...,𝑇𝑡ℎ − 1}. In this case, according to (39) and 𝑝𝑖 (𝑡) in (29), the

total data size at time 𝑇𝑡ℎ is

𝐵(𝑇𝑡ℎ) =
( 𝛼2

16𝑏2𝐷3 (∑𝑗∗

𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)3

) 1

5

𝑗∗∑︁
𝑖=1

𝑞𝑖𝑠𝑖 (𝑠𝑖 − 𝛿𝑖 )
𝜏𝑖

× ( 𝑟
2 (1 − 𝑟2𝑇𝑡ℎ )

1 − 𝑟2
)

2

5 .

(44)

The worst-case total cost given 𝑝𝑖 (𝑡) in (29) and 𝐵(𝑇𝑡ℎ) in (44) is

𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗})

=
𝜏 𝑗∗

𝑇 −𝑇𝑡ℎ
+
( 𝑏𝜏 𝑗∗ (1 − 𝑟2)
𝛼𝑟2 (𝑇 −𝑇𝑡ℎ) (1 − 𝑟2𝑇𝑡ℎ )

) 1

5

×
(
4

1

5

(∑𝑗∗

𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)

3

10

(∑𝑗∗

𝑖=1

𝑞𝑖𝑠𝑖 (𝑠𝑖−𝛿𝑖 )
𝜏𝑖

)
1

2

+ 4
− 4

5 (
𝑗∗∑︁
𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)−

1

5

)
.

(45)

By comparing the worst-case total cost 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗})
with the optimal total expected cost 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗}) under
no noise case where all type-𝑖 clients contribute the precisely data

size 𝑠𝑖 , 𝑖 ∈ {1, ..., 𝑗∗}, we have
Φ(𝛿𝑖 |𝑖 ∈ {1, ..., 𝑗∗})

=𝐽 (𝑇 |𝑖 ∈ {1, ..., 𝑗∗}) − 𝐽 (𝑇 |𝑖 ∈ {1, ..., 𝑗∗})

=

(
4𝑏𝜏 𝑗∗ (1 − 𝑟2)

𝛼𝑟2 (𝑇 −𝑇𝑡ℎ) (1 − 𝑟2𝑇𝑡ℎ )

) 1

5

×
( (∑𝑗∗

𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)

3

10

(∑𝑗∗

𝑖=1

𝑞𝑖𝑠𝑖 (𝑠𝑖−𝛿𝑖 )
𝜏𝑖

)
1

2

− (
𝑗∗∑︁
𝑖=1

𝑞𝑖𝑠
2

𝑖

𝜏𝑖
)−

1

5

)
,

where 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗}) is as given in (34). Note that 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ ,
{1, ..., 𝑗∗}) ≤ 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗}). Then, (41) is obtained.

As shown in Proposition 5.3, the error term Φ(𝛿𝑖 |𝑖 ∈ {1, ..., 𝑗∗})
increases with upperbound error 𝛿𝑖 , 𝑖 ∈ {1, ..., 𝑗∗}. Besides worst-
case analysis, we also provide the average-case analysis via sim-

ulations. As shown in Fig. 4, for randomly generated noisy data

size 𝑠𝑖 (𝑡) ∈ [𝑠𝑖 −𝛿𝑖 , 𝑠𝑖 +𝛿𝑖 ], 𝑖 ∈ {1, ..., 𝑗∗} in each time slot 𝑡 , the dif-

ference between 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗}) and 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ , {1, ..., 𝑗∗})
increases with the noise bound 𝛿𝑖 , 𝑖 ∈ {1, ..., 𝑗∗}, which coincides

with the changing trend of Φ(𝛿𝑖 |𝑖 ∈ {1, ..., 𝑗∗}).

6 NUMERICAL EXPERIMENT
In this section, we conduct simulation experiments to evaluate

the performance of our proposed solution. We first discuss the

traditional static pricing benchmark versus our dynamic pricing

for homogeneous clients with identical data size and training time.

Then we consider heterogeneous clients with different data size

and training time to show how different impacting factors affect

optimal client-type choice.
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Figure 4: Total expected cost 𝐽 (𝑷 (𝒕) |𝑇𝑡ℎ, {1, ..., 𝑗∗ }}) versus data size ’s noise bound 𝛿𝑖
for identical 𝛿𝑖 , 𝑖 ∈ {1, ..., 𝑗∗ }.

First, we examine the performance of our proposed dynamic

pricing for homogeneous clients, by comparing the total expected

cost 𝑈 (𝑇 ) under the traditional static pricing (e.g., [5, 11]) with

that under our dynamic pricing in (7). Note that the static pricing

strategy is to use a fixed price to recruit clients at all times. The opti-

mal static pricing can be derived as 𝑝∗ =𝑚𝑖𝑛{( 𝐷2𝑏3𝜏3 (1−𝑟 )
16𝑇 2

𝑡ℎ
𝛼3𝑠𝑟 (1−𝑟𝑇𝑡ℎ ) )

1

5 ,

𝑏 (𝑇 −𝑇𝑡ℎ)} according to (5)-(6), which is a special case of (7). We

set parameter values to be 𝛼 = 0.5, 𝑏 = 1, 𝑠 = 1.0, 𝑟 = 0.5, 𝜏 = 0.5.

The experimental results in Fig. 5 show that our proposed dynamic

pricing strategy always outperforms the static pricing strategy, and

the gap increases with time horizon 𝑇 due to the accumulated ad-

vantage of dynamic price over time. Moreover, the total expected

costs 𝑈 (𝑇 ) for both static and dynamic pricing decrease over time.

This is because the model accuracy loss decreases as the number of

training iterations 𝐷 increases with the time horizon 𝑇 .

Then, we will show how the optimal client-type choice changes

with different factors. Consider 𝑁 = 5 types of clients with uniform

client distribution {𝑞𝑖 = 1

𝑁
, 𝑖 ∈ {1, ..., 𝑁 }}, different data size {𝑠𝑖 =

𝑠0 + (𝑖 − 1)𝜇, 𝑖 ∈ {1, ..., 𝑁 }} and training time {𝜏𝑖 , 𝑖 ∈ {1, ..., 𝑁 }},
where 𝜇 is the data size disparity. Note that a client’s training

time increases with the data size. According to [19], we set 𝜏𝑖 = 𝛽𝑠𝑖 ,

where 𝛽 is related to CPU-cycle frequency and transmission rate. Let

𝛼 = 0.5, 𝑏 = 1, 𝑠0 = 1, 𝑟 = 0.5and 𝑇 = 10. When data size disparity

𝜇 = 1 and 𝛽 = 0.01, the optimal client-type choice is {1, 2, 3, 4, 5}
by inviting all types of clients. Starting from above setting, Fig 6

shows how the optimal client-type choice changes with different

impacting factors. As the data size disparity 𝜇 between any two

neighboring types increases from 1 to 5, it is shown in Fig. 6(a) that

the optimal client-type choice decreases from {1, 2, 3, 4, 5} including
all types to {1} with only type-1 clients with the smallest data size

and training time per iteration. As 𝜇 increases in the synchronous

FL running, the clients with smaller data and training time need

to wait longer for those clients with larger dataset to complete,

which results in less global training iterations and thus we drop

higher client types. As the training rate
𝑠𝑖
𝜏𝑖

= 1

𝛽
for each client-type

𝑖 increases, Fig. 6(b) shows that it is better to recruit more types

of clients without worrying about their training time difference.
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(a) Optimal client-type choice 𝑗∗ versus data size disparity 𝜇.
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Figure 6: Optimal client-type choice 𝑗∗ with {1, ..., 𝑗∗ } versus data size disparity 𝜇 and training rate 𝑠
𝜏 .

20 40 60 80 100
total time horizon T

0.7

0.8

0.9

1.0

1.1

1.2

1.3

to
ta
l e

xp
ec

te
d 
co

st
 U
(T
) static pricing

dynamic pricing

Figure 5: Static Pricing versus Dynamic Pricing by comparing their total expected cost
objectives.

Our simulations also show that we will include more client types

given a longer time horizon T and more client types 𝑁 . We skip

the details here due to the page limit.

7 CONCLUSION
In this paper, we focus on the clients’ incentivemechanism design in

FL, by offering time-dependent monetary rewards per client arrival

to trade-off between the total payment and the FL model’s accuracy

loss, under incomplete information about their random arrivals and

private training costs. We jointly consider two phases including

the client recruitment phase and model training phase to balance

the total data size and training iterations. First, for homogeneous

clients with identical data size and training time, we obtain a new

dynamic pricing solution in closed-form to optimally balance the

total payment to clients and the accuracy loss. Such pricing scheme

gradually increases when close to recruitment deadline due to aging

effect. Moreover, for heterogeneous clients with different data size

and training time, we use a three-stage model to successfully extend

our dynamic pricing solution. A linear algorithm is proposed to find

the optimal client recruitment threshold and monotonically select

client types for FL. Finally, we show the robustness of our solutions

against estimation error of clients’ data size and run numerical

experiments to validate our analytical results.
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