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Composite Community-Aware Diversified Influence
Maximization with Efficient Approximation
Jianxiong Guo, Member, IEEE, Qiufen Ni, Weili Wu, Senor Member, IEEE, and Ding-Zhu Du

Abstract—Influence Maximization (IM) is a famous topic in
mobile networks and social computing, which aims at finding a
small subset of users to maximize the influence spread through
online information cascade. Recently, some careful researchers
paid attention to diversity of information dissemination, espe-
cially community-aware diversity, and formulated the diversified
IM problem. The diversity is ubiquitous in a lot of real-world
applications, but they are all based on a given community struc-
ture. In social networks, we can form heterogeneous community
structures for the same group of users according to different
metrics. Therefore, how to quantify the diversity based on
multiple community structures is an interesting question. In this
paper, we propose the Composite Community-Aware Diversified
IM (CC-DIM) problem, which aims at selecting a seed set to
maximize the influence spread and the composite diversity over
all possible community structures under consideration.

To address the NP-hardness of CC-DIM problem, we adopt
the technique of reverse influence sampling and design a random
Generalized Reverse Reachable (G-RR) set to estimate the
objective function. The composition of a random G-RR set is
much more complex than the RR set used for the IM problem,
which will lead to inefficiency of traditional sampling-based
approximation algorithms. Because of this, we further propose
a two-stage algorithm, Generalized HIST (G-HIST). It can not
only return a (1 − 1/e − ε) approximate solution with at least
(1 − δ) probability, but also improve the efficiency of sampling
and ease the difficulty of searching by significantly reducing the
average size of G-RR sets. Finally, we evaluate our G-HIST
on real datasets against existing algorithms. The experimental
results show the effectiveness of our proposed algorithm and its
superiority over other baseline algorithms.

Index Terms—Influence maximization, Social networks, Com-
posite diversity, Reverse sampling, Approximation algorithm.

I. INTRODUCTION

ONLINE social networks (OSNs) are connected by hun-
dreds of millions of mobile devices through social

media, which has become a popular platform for people to
express their views, for companies to promote their products,
and for governments to spread their policies. With the rapid
development of mobile Internet, there are more than 1.52
billion users active daily on Facebook and 321 million users
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actively monthly on Twitter, which stimulates the study of the
Influence Maximization (IM) problem. It selects a small subset
of influential users (seed nodes) in social networks, convinces
them to adopt one thing (product, service, or opinion), and
utilizes the “word-of-mouth” effect to activate other users in
social networks through online information cascade. Kempe
et al. [1] formally defined the IM problem as a combinatorial
optimization problem, which aims to select a size-k seed
set such that the expected number of activated nodes can
be maximized in the social network. Subsequently, a series
of variant optimization problems based on the IM problem
for different real-world applications came into being, such as
topic-aware IM [2] [3], time-aware IM [4] [5], location-aware
IM [6] [7], and target-aware IM [8] [9].

Both the IM problem and their variant optimization prob-
lems were only concerned about how to maximize the total
number of activated nodes across the network. They did
not care who was the activated node, thus the diversity of
activated nodes did not attract enough attention in current
research. For example, to consider community-aware diversity,
users on social media from different communities usually
represent different kinds of people, and their classification
metrics can be age, gender, occupation, income, etc. For an
organization to advertise its ideas or products, it usually hopes
to have diverse followers from different communities, so as to
increase its influence more effectively. Besides, the diversity
of recommendations is also an important criterion to measure
the quality of recommandation systems [10] [11]. Thus, the
diversity could benefit us as you should not put all your eggs
in one basket. To best of our knowledge, only five literatures
[12] [13] [14] [15] [16] considered the diversity in the IM
problem. They all took the community-aware diversity as a
specific example and based on the initial work [12] that tried
to maximize the expected value of the influence spread and
influence diversity.

In the Community-Aware Diversified IM problem, it needs
to partition a given social graph into communities in advance,
and achieve the diversity in this community structure. A com-
munity structure is usually formulated according to a certain
metric, which can effectively measure the distance between
two nodes. If the matric used to partition a social graph is
users’ occupations, then the diversity here will be occupation-
oriented. However, in real-world applications, there is often
more than one metric. Sometimes, we want to consider the
diversity based on several metrics at the same time. Let us
first look at the following example.

Example 1. For the government to spread their policies, it
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can select some influential celebrities to publicize, and spread
the influence across the network. At this time, the government
should not only allow as many listeners as possible to receive
the message, but also consider the diversity, including age,
occupation, income, social class, etc.

Shown as Example 1, a kind of community structure is
obviously not enough, and the previous diversified IM problem
cannot cover this scenario based on multiple metrics.

Therefore, we propose a Composite Community-Aware
Diversified Influence Maximization (CC-DIM) problem in
this paper, which perfectly matches multiple metrics of the
community partition. For the CC-DIM problem, we first
formulate different community structures according to the
metrics we consider, and then select a size-k seed set such
that the weighted sum of the expected number of activated
nodes and the expected diversity of activated nodes, where the
expected diversity is the average over all possible community
structures based on different metrics. Then, we prove that
the CC-DIM problem is NP-hard, but its objective function
is monotone and submodular. Unfortunately, similar to com-
puting the influence spread in the IM problem [17] [18], it
is #P-hard as well to compute our objective function, even
more difficult. If using the greedy hill-climbing algorithm with
Monte Carlo simulations to estimate the objective function,
then the computational cost will be unacceptable. In order to
improve its computational efficiency, a lot of methods based on
the technique of reverse influence sampling (RIS) [19] have
been utilized to solve the IM problem. Here, we design a
novel sampling method, called random Generalized Reverse
Reachable (G-RR) set, to unbiasedly estimate the objective
function of CC-DIM problem. However, the processes of
sampling and searching based on random G-RR sets are
much more complex and time-consuming than that based on
random RR sets for the IM problem because of the diversity
in multiple community structures. Thus, based on random G-
RR sets and probabilistic analysis, we further propose a two-
stage algorithm, called Generalized HIST (G-HIST), which
includes sentinel set selection and remaining set selection. It
selects a small-size sentinel set by a small number of random
G-RR sets in the first stage, and then utilizes the sentinel
set to significantly reduce the average size of random G-RR
sets in the second stage. Through detailed theoretical analysis
and experimental verification, we prove that the memory
consumption and running time will be greatly improved by
the G-HIST because of its compressed sampling, and the
approximation guarantee will not be affected.

The contributions can be summarized as follows.

• To the best of our knowledge, we are the first to consider
the diversity on multiple community structures according
to different metrics, propose the CC-DIM problem, and
prove its hardness, monotonicity, and submodularity.

• To tackle the intractability, we design a random G-RR
set and the unbiased estimator of the objective function.
Then, we propose G-HIST algorithm to further reduce
the memory consumption and running time, which can
return a (1− 1/e− ε) approximate solution with at least
(1− δ) probability.

• We conduct intensive simulations based on real-world
social datasets. By comparing our G-HIST with the-
state-of-art baselines, the experimental results validate the
effectiveness of our proposed sampling and algorithm in
approximate performance and efficiency.

Organization: In Section II, we summarize the works
related this paper. We then introduce our CC-DIM problem
and its basic properties in Section III, and sampling techniques
used to estimate in Section IV. In Section V and VI, we elab-
orate the G-HIST algorithm and its corresponding theoretical
analysis. Experiments and discussions are presented in Section
VII, and finally, Section VIII concludes this paper.

II. RELATED WORKS

Influence Maximization: Kempe et al. [1] first formulated
the IM problem and defined it as a combinatorial optimiza-
tion problem. They proposed two classic diffusion models,
Independent Cascade (IC) model and Linear Threshold (LT)
model, and proved that the IM problem is NP-hard and the
influence spread is monotone and submodular. Given a seed
set, it is #P-hard to compute the influence spread under the IC
model [17] and LT-model [18]. Thus, the greedy hill-climbing
algorithm can return a (1 − 1/e − ε) approximate solution
with Monte Carlo simulations. Borgs et al. [19] first proposed
the technique of RIS to reduce the running time, but they did
not give a feasible algorithm and a strict theoretical argument.
Subsequently, a plethora of research works focused on follow-
ing the RIS to further improve efficiency, such as TIM/TIM+
[20], IMM [21], SSA/D-SSA [22], and OPIM-C [23]. Along
this line, it could run in O(k(n+m) log n/ε2) expected time
and return a (1− 1/e− ε) approximate solution with at least
1−1/n probability. Recently, Guo et al. [24] [25] proposed a
Hit-and-Stop (HIST) algorithm to tackle the scalability issue
in high influence networks by reducing the average size of
random RR sets without losing the approximation guarantee.
For our CC-DIM problem, we learn from the idea of HIST and
formulate our G-HIST algorithm because the size of random
G-RR sets will be much larger than that of random RR sets
from existing multiple community structures. However, our G-
HIST is not a trivial revision of HIST, and we extend to the
variant optimization problems in social networks.

Community Detection: Finding communities is a basic
task to study large networks. A great deal of researchers
tried to mine the underlying community structure by different
techniques, such as hierarchical clustering [26], modularity
maximization [27], statistical inference methods [28], and
graph partitioning [29]. However, we only care about the di-
versity of activated nodes which are usually divided according
to users’ attributes. Thus, these methods are not suitable for
the diversity, but they can be used in other variant problems
based on our proposed framework.

Diversified Influence Maximization: Based on the above-
mentioned community structures in social networks, the di-
versity of influence spread has become the inherent demand
of viral marketing, which is a typical application of IM
problem. Tang et al. [12] first defined the diversified IM
problem as a combinatorial optimization problem that aims
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to maximize the weighted sum of the influence spread and
diversity, while designing an algorithm to solve it. Zhang et
al. [13] adopted three commonly used utilities in economics
to quantify the diversity over communities. Li et al. [14]
proposed a metric to measure the community-based diversified
influence and designed two tree-based heuristic algorithms
to reduce the computational cost. Wang et al. [15] utilized
the IMM algorithm to effectively address the diversified IM
problem by sampling with theoretical guarantee. Zhang et
al. [16] exploited a Graph Neural Networks (GNNs) based
method, GRAIN, to combine the diversified IM and greedy
algorithm into a unified framework, which significantly im-
proved the efficiency of data selection. However, there is no
existing work that considers the multiplicity of diversity in
practical applications, and the computational challenge of such
a problem has not been effectively address. Solving these two
problems is the main contribution of this paper.

III. PROBLEM FORMULATION

In this section, we define our CC-DIM problem from the
basic definitions of diffusion model, community, and IM.

A. Preliminaries

Let G = (V,E) be a directed graph with a node set V =
{v1, v2, · · · , vn} and an edge set E = {e1, e2, · · · , em}. In
social networks, each node v ∈ V represent a user and each
edge (u, v) ∈ E represents the relationship, e.g., friendship,
between u and v. For each edge (u, v) ∈ E, we say that u is
the in-neighbor of v and v is the out-neighbor of u. For each
node v ∈ V , we denote by N−(v) the set of its in-neighbors
and N+(v) the set of its out-neighbors.

In the information diffusion, we consider that a user is active
if she accepts (is activated by) the information cascade from
her in-neighobors or she is selected as a seed. The information
cascade can be given by a predefined diffusion model, such
as the Independent Cascade (IC) model [1]. Given a seed set
S ⊆ V , the IC model is a discrete-time stochastic cascade
process shown as follows: (1) At timestamp 0, all nodes in
S are activated and other nodes in V \S are inactive, where
a node keeps active once it is activated; (2) If a node u is
activated at timestamp t, it has one chance to activate its
inactive out-neighbor v with the probabiltiy puv at timestamp
t + 1, after which it cannot activate any nodes; and (3) The
information diffusion terminates when no more inactive nodes
can be activated in the subsequent timestamp.

B. Influence Maximization (IM)

The traditional IM problem is to find a seed set S ⊆ V
such that its influence spread σ(S), can be maximized, which
is the expected number of active nodes after the diffusion
terminates. To mathematically define the influence spread, we
first introduce a concept called “realization”. A realization
g = (V,Eg), Eg ⊆ E, is a subgraph sampled according to
the diffusion model. For example, in IC model, each edge
(u, v) ∈ E will be independently contained in Eg with the
probability puv . An edge in Eg is called “live edge” in real-
ization g. Thus, the probability of realization g sampled from

G under the IC model is Pr[g] =
∏
e∈Eg

pe
∏
e∈E\Eg

(1−pe).
Obviously, there are totally 2m possible realizations. The in-
fluence cascade on a realization becomes deterministic instead
of stochastic process. As a result, the influence spread across
the network can be regarded as the expected spread on all
possible realizations. Now, the IM problem can be written in
an expectation form and formally defined as follows.

Definition 1 (Influence Maximziation). Givne a social graph
G = (V,E), a diffusion model (IC model in this paper), and
an budget k, the IM problem asks to find a seed set S◦, with at
most k nodes, that can maximize the expected influence spread
across the graph, i.e.,

S◦ ∈ arg max
|S|≤k

σ(S) (1)

= Eg∼G [|Ig(S)|] =
∑
g∈G

Pr[g] · |Ig(S)|, (2)

where G is the collection of all possible realizations sampled
from a given diffusion model and Ig(S) is the node set that
contains all nodes can be reached from a node in S by the
live edges in the realization g.

Here, the influence function σ is a set function. Given a set
function f : 2V → R+ and any two subsets S and T with
S ⊆ T ⊆ V , we say it is monotone if f(S) ≤ f(T ) and
submodular if f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ). The
IM problem is NP-hard and the influence function is monotone
and submodular under the IC model. Under the size constraint,
the greedy hill-climbing algorithm of iteratively choosing the
node with maximum marginal gain approximates the optimal
solution within a factor of (1 − 1/e) [30]. However, given a
seed set S, it is #P-hard to compute the σ(S) under the IC
model [17]. Thus, the hill-climbing algorithm can only return
a (1− 1/e− ε) approximation within the Ω(kmn · poly(1/ε))
running time through Monte Carlo simulations.

C. Composite Community-Aware Diversified IM

Generally, there are many communities in any given graph,
and the community structure is an essential characteristic
of social networks. in this way, the users can be divided
into different groups according to a certain metric, and their
communication within the group is dense but sparse between
groups. Given a social network G = (V,E), we assume that
it has a disjoint community structure C(G) associated with G,
where C(G) = {C1, C2, · · · , Cr} is a partittion of V . That
is V = ∪ri=1Ci and for any i, j ∈ {1, 2, · · · , r}, we have
Ci ∩ Cj = ∅. However, when considering the diversified IM
problem, the community structure can be partitioned based
on different metrics, such as gender, age, race, interest, poor-
rich disparity, and consuming behavior, for a variety of real
applications. Thus, in the same optimization goal, community
structure can be determined by different metrics. We denote by
Q the metric set under our consideration. Each element q ∈ Q
is a specific metric that can be used to partition the graph.
In each metric q ∈ Q, we define the community structure
based on the metric q as Cq(G) = {Cq1 , C

q
2 , · · · , Cqrq}, where

the rq indicates the graph can be divided into rq communities



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, SEPTEMBER 2022 4

under the matric q. Now, we can formally define the composite
diversified function as follows.

Definition 2 (Composite Diversified Function). Given a graph
G = (V,E) and a metric set Q, the composite diversified
function of seed set S is defined as:

φ(S) =
∑
q∈Q

wq · ψ(S; Cq) (3)

=
∑
q∈Q

wq ·
∑
Cq

j∈Cq

ψ(S;Cqj ) (4)

=
∑
q∈Q

wq ·
∑
Cq

j∈Cq

∑
g∈G

Pr[g] · ψg(S;Cgj ), (5)

where wq is the weight of matric q that can ensure
∑
q∈Q wq =

1, ψ(S; Cq) is a monotone and submodular set function
with respect to S that can quantify the diversity under the
community structure generated by the metric q, and ψ(S;Cqj )
is the utility under the community Cqj ∈ Cq .

Here, the weight wq is the importance of diversity of metric
q, thus the composite diversified function is a weighted average
of the influence spread over all kinds of community structures
based on multiple different metrics. In order to make the
function ψ(S; Cq) be monotone and submodular with respect
to S, we should ensure that the ψg(S;Cqj ) be monotone and
submodular with respect to S because of its linear invariance.
In the simplest way, we can let

ψg(S;Cqj ) = hq,j
(∣∣Ig(S) ∩ Cqj

∣∣) , (6)

where hq,j : Z+ → R+ can be any monotone and concave
function with hq,j(0) = 0 since ψ is monotone and sub-
modular function if hq,j is monotone and concave function
[31]. In this paper, we assume that the diversified utility is
linear, thus we have h(x) = aq,j · x where aq,j > 0 is
an adjustable coefficient. When we find the proportion of
|Ig(S) ∩ Cqj |/|C

q
j | is low, we can enlarge the coefficient aq,j

for diversity promotion. This is an important trick to help
us achieve the composite diversity. Then, we are enough to
define the Composite Community-Aware Diversified Influence
Maximization (CC-DIM) problem as follows.

Definition 3 (CC-DIM). Given a graph G = (V,E), a metric
set Q, and a budget k, the CC-DIM problem aims to select
a subset S with |S| ≤ k that can maximize the following
objective function:

f(S) = (1− λ)
σ(S)

σ(V )
+ λ

φ(S)

φ(V )
, (7)

where λ ∈ [0, 1] is an adjustable parameter that can balance
the influene spread and the community-aware diversity.

Through taking the influence spread and diversity over
community structures based on different metrics, we can make
the IM problem more flexible to adapt to different applications.
If caring more about the influence spread, we can make the
parameter λ approach to zero, and by adjusting the weight wq ,
we can specify the importance of different ways of community
partition. Furthermore, the CC-DIM problem remains at least
the same hardness of addressing the IM problem [1] and

computing the objective function [17].

Theorem 1. The CC-DIM problem is NP-hard and given a
seed set S, computing the objective function f(S) defined in
Eqn. (7) is #P-hard.

Proof. When given the parameter λ = 0, the CC-DIM
problem can be reduced to the IM problem and the objective
function f(S) can be reduced to the influence function σ(S),
thus it inherits the NP-hardness of the IM problem and the
#P-hardness of computing the influence function.

Theorem 2. The objective function f(S) defined in Eqn. (7)
is monotone and submodular with respect to S.

Proof. First, the influence function σ(S) is monotone and
submodular with respect to S under the IC model [1] since
the |Ig(S)| is monotone and submodular in any realization g.
Then, it is easy to see that given any realization g and node
set Cqj , the |Ig(S)∩Cqj | is monotone and submodular as well.
In Eqn. (6), we assume the function hq,j is monotone and
concave, thus we have ψg(S;Cqj ) is monotone and submodular
with respect to S because of the composition property proven
in [31]. Naturally, the ψ(S; Cq) is monotone and submodu-
lar because it is a linear combination over all communities
Cqj ∈ Cq(G) and realizations g ∈ G. Thus, we have that the
φ(S) and f(S) are monotone and submodular.

IV. SAMPLING TECHNIQUE

In the last section, we can argue that the objective function
f(S) is monotone and submodular, thus the greedy hill-
climbing algorithm can return a solution with (1 − 1/e)
approximation ratio [30]. However, it is #P-hard to compute
this objective function, which leads to the high computational
cost to implement it by Monte Carlo simulations. In order to
reduce the time complexity and ensure a valid approximation
guarantee, we will exploit the the technique of reverse influ-
ence sampling (RIS) [19] in our problem. This technique is
based on the concept of the random reverse reachable (RR)
set. In the traditional IM problem, a random RR set R can be
generated in three steps: (1) Uniformly select a node v from
V ; (2) Randomly sample a realization g from G under a given
diffusion model; and (3) Collect the nodes that can reach v
through a live path in realization g. Here, for each node u ∈ V ,
the probability that it is contained in R randomly generated
by the v equals the probability that u can activate v. Thus, we
have the following lemma.

Lemma 1 ([19]). Let S ⊆ V be a seed set and R be a random
RR set under a given diffusion model, then we have

σ(S) = n · ER[I(S ∩R)], (8)

where I(S ∩R) = 1 if S ∩R 6= ∅, else I(S ∩R) = 0.

However, this sampling can not be directly applied to
address our objective function because we need to consider
the diversity under different metrics. To estimate the φ(S),
we need to design a sampling method to compute the value of
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f̂(S; R̃) =
1− λ
σ(V )

· σ̂(S; R̃) +
λ

φ(V )
· φ̂(S; R̃) (9)

=
1− λ
σ(V )θ

θ∑
i=1

∑
q∈Q

1

|Q|
∑
Cq

j∈Cq

|Cqj | · I(S ∩R(viq,j , g
i)) +

λ

φ(V )θ

θ∑
i=1

∑
q∈Q

wq
∑
Cq

j∈Cq

aq,j · |Cqj | · I(S ∩R(viq,j , g
i)) (10)

=
1

θ
·
θ∑
i=1

∑
q∈Q

∑
Cq

j∈Cq

(
1− λ
σ(V )|Q|

+
λwqaq,j
φ(V )

)
· |Cqj | · I(S ∩R(viq,j , g

i))

︸ ︷︷ ︸
Ω(S;R̃)

. (11)

∆f̂ (u|S; R̃) =
1

θ
·
θ∑
i=1

∑
q∈Q

∑
Cq

j∈Cq

(
1− λ
σ(V )|Q|

+
λwqaq,j
φ(V )

)
· |Cqj | ·

[
I((S ∪ {u}) ∩R(viq,j , g

i))− I(S ∩R(viq,j , g
i))
]
, (12)

ψ(S;Cqj ) for each Cqj ∈ Cq and q ∈ Q as a subroutine. Here,
we have the following based on Eqn. (6),

ψ(S;Cqj ) = aq,j · Eg∼G [|Ig(S) ∩ Cqj |]. (13)

Denoted by R(v, g) a RR set generated from the node v under
the realization g, we have

ψ(S;Cqj ) = aq,j · |Cqj | · Ev∼Cq
j ,g∼G [I(S ∩R(v, g))]. (14)

Then, the composite diversified function defined in Eqn. (5)
can be rewritten as

φ(S) =
∑
g∈G

Pr[g] ·
∑
q∈Q

wq
∑
Cq

j∈Cq

ψg(S;Cqj ). (15)

Motivated by Eqn. (15), all communities Cqj for Cqj ∈ Cq
and q ∈ Q can share the same realization g in computing the
expectation. Thereby, we can formally define the concept of
the random Generalized Reverse Reachable (G-RR) set. In our
CC-DIM problem, a random G-RR set R̃ can be generated in
the following three steps.

• Uniformly select a node vq,j from Cqj for each commu-
nity Cqj ∈ Cq and q ∈ Q, totally

∑
q∈Q rq nodes.

• Randomly sample a realization g from G under a given
diffusion model.

• For each node vg,j sampled from Cqj , collect the nodes
that can reach it through a live path in g. This is a random
RR set R(vq,j , g), thus we have totally

∑
q∈Q rq random

RR set under the same realization.

From above, a random G-RR set R̃ is a collection of random
RR sets but they are under the same realization, which can be
defined as

R̃ = {R(vq,j , g) : Cqj ∈ Cq and q ∈ Q}. (16)

Then, we can build the relationship between the composite
deversified function and random G-RR set.

Theorem 3. Let S ⊆ V be a seed set and R̃ be a random
G-RR set under a given diffusion model, the function σ(S)

and φ(S) can be estimated as follows:

σ(S) = ER̃

∑
q∈Q

1

|Q|
∑
C

q
j∈Cq

|Cqj | · I(S ∩R(vq,j , g))

 , (17)

φ(S) = ER̃

∑
q∈Q

wq
∑
C

q
j∈Cq

aq,j · |Cqj | · I(S ∩R(vq,j , g))

 . (18)

Proof. For a seed set S, we have Eg∼G [|Ig(S)∩Cqj |] = |Cqj | ·
Ev∼Cq

j ,g∼G [I(S ∩R(v, g))]. It indicates that

σ(S) =
∑
Cq

j∈Cq

Eg∼G [|Ig(S) ∩ Cqj |]

=
∑
Cq

j∈Cq

|Cqj | · Ev∼Cq
j ,g∼G [I(S ∩R(v, g))]

=
∑
q∈Q

1

|Q|
∑
Cq

j∈Cq

|Cqj | · Ev∼Cq
j ,g∼G [I(S ∩R(v, g))]

= Eg∼G

∑
q∈Q

1

|Q|
∑
Cq

j∈Cq

|Cqj | · Ev∼Cq
j
[I(S ∩R(v, g))]


= Eqn. (17).

Similarly, we have

φ(S) =
∑
q∈Q

wq
∑
Cq

j∈Cq

aq,j · Eg∼G [|Ig(S) ∩ Cqj |]

=
∑
q∈Q

wq
∑
Cq

j∈Cq

aq,j · |Cqj | · Eg∼G,v∼Cq
j
[I(S ∩R(v, g))]

= Eg∼G

∑
q∈Q

wq
∑
Cq

j∈Cq

aq,j · |Cqj | · Ev∼Cq
j
[I(S ∩R(v, g))]


= Eqn. (18).

This theorem can be proved.

Let R̃ = {R̃1, R̃2, · · · , R̃θ} be a collection of random G-RR
sets that contains θ random G-RR sets, where in each R̃i ∈ R̃,
we denoted it by R̃i = {R(viq,j , g

i) : Cqj ∈ Cq and q ∈ Q} the
i-th random G-RR set in the collection R̃. Then, according to
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Eqn. (17) and Eqn. (18) in Theorem 3, the unbiased estimation
of our objective function f(S) can be formulated from Eqn. (9)
to Eqn. (11). It is easy to know that the f̂(S; R̃) is an unbiased
estimation function of f(S) under the collection of G-RR sets
R̃, then σ̂(S; R̃) and φ̂(S, R̃) can be defined in a similar way
shown in Eqn. (10). The σ(V ) and φ(V ) are constants with
σ(V ) = n and φ(V ) =

∑
q∈Q wq

∑
Cq

j∈Cq
aq,j · |Cqj |. Thus,

the Eqn. (11) can be further simplified.

Theorem 4. Given a collection of G-RR sets R̃, the function
f̂(S; R̃) is monotone and submodular with respect to S.

Proof. For convenience, we define the marginal gain of u on
S as ∆f̂ (u|S; R̃) = f̂(S ∪ {u}; R̃)− f̂(S; R̃), which can be
rewritten as Eqn. (12) based on the expression of Eqn. (11).
First, it is monotone because I(S ∩ R(viq,j , g

i)) = 1 implies
I((S∪{u})∩R(viq,j , g

i)) = 1, thus we have ∆f̂ (u|S; R̃) ≥ 0.
Next, we show that it is submodular. Given any S1 ⊆ S1 ⊆ V
with u /∈ S2, to show ∆f̂ (u|S1; R̃) ≥ ∆f̂ (u|S2; R̃), it is
equivalent to prove I((S1 ∪ {u}) ∩ R(viq,j , g

i)) − I(S1 ∩
R(viq,j , g

i)) ≥ I((S2∪{u})∩R(viq,j , g
i))−I(S2∩R(viq,j , g

i))
according to Eqn. (12). Here, we need to build the connection
that we have I((S1∪{u})∩R(viq,j , g

i))−I(S1∩R(viq,j , g
i)) =

1 if I((S2 ∪ {u}) ∩ R(viq,j , g
i)) − I(S2 ∩ R(viq,j , g

i)) = 1,
which implies I((S2 ∪ {u}) ∩ R(viq,j , g

i)) = 1 and I(S2 ∩
R(viq,j , g

i)) = 0. Obviously, the I(S2 ∩ R(viq,j , g
i)) = 0

indicates that S2 ∩ R(viq,j , g
i) = ∅, naturally we have S1 ∩

R(viq,j , g
i) = ∅ because of S1 ⊆ S2. Then, the I((S2∪{u})∩

R(viq,j , g
i)) = 1 is enough to infer {u} ∩ R(viq,j , g

i) 6= ∅,
thus we have I((S1 ∪ {u}) ∩ R(viq,j , g

i)) = 1. Thereby, we
have I((S1∪{u})∩R(viq,j , g

i))− I(S1∩R(viq,j , g
i)) = 1 and

∆f̂ (u|S1; R̃) ≥ ∆f̂ (u|S2; R̃).

V. APPROXIMATION ALGORITHM

Based on Theorem 3 and Theorem 4, the original problem
can be transformed to a weighted maximum coverage problem,
whose objective function f̂(S; R̃) is monotone and submod-
ular given a collection of random G-RR sets R̃. It is much
more convenient and efficient than directly solving the original
problem. In this section, we first introduce some preliminary
knowledge, and then we begin to design our algorithm and
conduct the theoretical analysis step by step.

Algorithm 1: MaxCoverage-Greedy (R̃, k)

1 Initialize: S0 ← ∅;
2 for a = 1 to k do
3 v′a ∈ arg maxv∈V \Sa−1

{∆Ω(v|Sa−1; R̃)};
4 Sa ← Sa−1 ∪ {v′a};
5 return Sk

A. Preliminary Analysis

Given a seed set S and a collection of random G-RR sets R̃,
we define the generalized coverage as Ω(S; R̃) = θ · f(S; R̃)
shown as Eqn. (11). Given a collection of random G-RR sets

R̃, we can apply the MC-Greedy algorithm shown as Algo-
rithm 1. It iteratively selects the node v′a with the maximum
marginal coverage ∆Ω(v|Sa−1; R̃) = Ω(Sa−1 ∪ {v}; R̃) −
Ω(Sa−1; R̃), and returns a set Sk as the final solution. Let
S∗k be the solution returned by MC-Greedy process shown
as Algorithm 1, Ŝ◦k be the optimal size-k set that achieves
the maximum weighted coverage Ω, and S◦k be the optimal
solution of the original objective function f . The above MC-
Greedy algorithm can guarantee

Ω(S∗k ; R̃) ≥ (1− 1/e)Ω(Ŝ◦k ; R̃) ≥ (1− 1/e)Ω(S◦k ; R̃), (19)

because the Ω(S; R̃) is monotone and submodular with re-
spect to S. Then, we have the following concentration bound
adapted to the martingale analysis in [21] [23].

Lemma 2. For any ε > 0, given a seed set S and a collection
of random G-RR sets R̃, we have

Pr
[
Ω(S; R̃) ≤ (1− ξ)θf(S)

]
≤ exp

(
−ξ

2θf(S)

2

)
, (20)

Pr
[
Ω(S; R̃) ≥ (1 + ξ)θf(S)

]
≤ exp

(
−ξ

2θf(S)

2 + 2
3ξ

)
. (21)

Until now, the most excellent algorithm based on the RIS
technique to solve the IM problem is OPIM-C [23], where
they are optimistic about the selected seed set by the greedy
algorithm. Motivated by the idea of OPIM-C, in our CC-
DIM problem, we first sample a collection of random G-
RR sets R̃1 to select a size-k seed set S∗k in greedy manner
as Algorithm 1 and derive an upper bound f(S◦k) of f(S◦k).
Second, we sample another collection of random G-RR sets
R̃2 with |R̃2| = |R̃1| to derive a lower bound f(S∗k) of f(S∗k).
The algorithm will stop until we have

f(S∗k)/f(S◦k) ≥ (1− 1/e− ε). (22)

The tigher these bounds are, the fewer the number of random
G-RR sets will be, thus greatly reducing the running time.
Based on Lemma 4.2 in [23], we can derive the lower bound
f(S∗k) under the R̃2 with |R̃2| = θ2 as follows:

f(S∗k) =

(√Ω(S∗k ; R̃2) +
2ηl
9
−
√
ηl
2

)2

− ηl
18

· 1

θ2
(23)

where we have ηl = ln(1/δl) and Pr[f(S∗k) > f(S∗k)] ≥ 1−δl.
In a similar way, we can derive the upper bound f(S◦k) under
the R̃1 with |R̃1| = θ1 as follows:

f(S◦k) =

(√
Ω(S◦k ; R̃1) +

ηu
2

+

√
ηu
2

)2

· 1

θ1
(24)

where we have ηu = ln(1/δu) and Pr[f(S◦k) < f(S◦k)] ≥
1− δu. Here, the Ω(S◦k ; R̃1) is an upper bound of generalized
coverage Ω(S◦k ; R̃1), it satisfies Ω(S◦k ; R̃1) ≤ Ω(S∗k ; R̃1)/(1−
1/e) based on Eqn. (19). To make it tighter, we can construct
the upper bound Ω(S◦k ; R̃1) during running the greedy process
because of its submodularity. Let S∗a with 1 ≤ a ≤ k be the
set of nodes that are selected in the first a iteration in the MC-
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Algorithm 2: G-HIST (G, k, ε, δ)

1 Initialize: ε1 = ε2 = ε/2, δ1 = δ2 = δ/2;
2 S∗b = SentinelSet(G,Q, k, ε1, δ1);
3 S∗k−b = RemainingSet(G,Q, k, S∗b , ε, ε2, δ2);
4 return S∗b ∪ S∗k−b

Greedy algorithm, then an tigher upper bound Ω(S◦k ; R̃1) =

min
0≤a≤k

Ω(S∗a ; R̃1) +
∑

v∈maxMC(S∗a,k;R̃1)

∆Ω(v|S∗a ; R̃1)

 ,

where maxMC(S∗a , k; R̃1) be the set of k nodes with the
largest marginal coverage in R̃1 with respect to S∗a .

B. Generalized HIST Algorithm

Given a collection of random G-RR sets R̃, we can quickly
get a sub-optimal solution S∗k by optimizing function f̂(S; R̃)
through the MC-Greedy algorithm. However, how many ran-
dom G-RR sets do we need to ensure the approximation ratio
shown as Eqn. (22) is unknown. Thus, in this section, we
would like to sample enough number of random G-RR sets to
achieve an accurate estimation of our objective function and
guarantee the approximation. Different from the IM problem,
to generate a random RR set, it only needs to uniformly sample
a node from the graph. However, to generate a random G-RR
set, it needs to uniformly sample a node from every possible
community and there are totally

∑
q∈Q rq communities. Thus,

a specific challenge in the sampling for our CC-DIM problem
is that the size of a random G-RR set is much larger than that
of a random RR set. This not only leads to excessive memory
usage, but also the running time is significantly increased
because of the difficult generation and coverage computing
process. To overcome this challenge, a feasible strategy is to
reduce the average size of a random G-RR set.

Recently, there is a method to reduce the memory consump-
tion and running time by reducing the average size of random
RR sets in the IM problem, called Hit-and-Stop (HIST) [24]
[25]. Motivated by the HIST thought, our solution to the CC-
DIM problem is named as Generalized HIST (G-HIST), which
can also be divided into the following two stages.

• Sentinel set selection: At this stage, we first generate a
small number of random G-RR sets, and use it to select
a size-b node set S∗b by the MC-Greedy algorithm, which
can guarantee f(S∗b ) ≥ (1−(1−1/k)b−ε1) ·f(S◦k) with
a high probability.

• Remaining set selection: At this stage, we need to gen-
erate enough number of random G-RR sets to select the
remaining size-(k − b) node set S∗k−b. But in the gener-
ation of a random G-RR set R̃, in each R(vq,j , g) ∈ R̃,
the sampling can be terminated if hitting some node in
the sentinel set S∗b . Therefore, the cost of generating a
random G-RR set can be significantly reduced. Then,
it returns S∗b ∪ S∗k−b as the final result and guarantee
f(S∗b ∪ S∗k−b) ≥ (1− 1/e− ε1 − ε2) · f(S◦k).

From a high level perspective, in the stage of sentinel
set selection, at the beginning of the MC-Greedy shown as
Algorithm 1, the partial solution S∗a−1 has a small number
of nodes, thus the value of the marginal gain ∆Ω(v|S∗a−1; R̃)
should be very large. Thus, the required number of random G-
RR sets to select the node with the maximum marginal gain
will be small, and it is easy to provide a (1− (1−1/k)b−ε1)
approximate solution. With the foundation of the first stage,
the sampling and searching process of the second stage can
be accelerated. Then, in the stage of remaining set selection,
we will need a greater number of random G-RR sets to select
nodes in a greedy manner because the value of the marginal
gain is relatively small. The average size of random G-RR
sets can be significantly pruned based on the partial solution
S∗b given by the first stage, thus the computational cost is
reduced without losing the approximation ratio, where the final
result can give a (1− 1/e− ε1 − ε2). The G-HIST algorithm
can be shown in Algorithm 2. Shown as Algorithm 2, let
ε1 = ε2 = ε/2 and δ1 = δ2 = δ/2, it can return a (1−1/e−ε)
approximate solution with at least 1− δ probability.

1) Sentinel set selection: A natural question is how to
determine the size of sentinel set S∗b . If the size b is too small,
it will reduce the hit rate at the second stage, thus weakening
the speed-up effect. If the size b is too large, this problem has
almost been solved, thus worsening the memory consumption
and running time. In other words, the size b should be carefully
determined that is able to balance the cost of sampling at the
first stage and the speed-up at the second stage. The process
of sentinel set selection can be shown in Algorithm 3.

Shown as Algorithm 3, we first give a collection of random
G-RR set R̃1, and use it to generate a size-k seed set S∗k
by the MC-Greedy algorithm shown in Algorithm 2. In this
process, we simultaneously obtain the partial solution S∗a with
1 ≤ a ≤ k, which can be applied to compute the upper
bound f(S◦k) by Eqn. (24). However, based on Eqn. (23), we
need another collection of random G-RR set R̃2, which is
independently sampled, to compute the lower bound f(S∗a).
Let us ignore this point for the time being, where we still
apply R̃1 to roughly compute the lower bound, denoted by
f ′(S∗a) to discriminate, for all 1 ≤ a ≤ k. Then, in line 8 of
Algorithm 3, we select the maximum a, denoted by b, such
that f ′(S∗a)/f(S◦k) ≥ (1− (1−1/k)a−ε1). Since the roughly
lower bound f ′(S∗b ) may be not accurate, we generate another
collection of random G-RR set R̃2 and use it to compute the
lower bound f(S∗b ) by Eqn. (23). Whereby, we can check
whether the S∗b is at least (1−(1−1/k)b−ε1) approximation.
If yes, return the S∗b directly; If no, make the lower bound
tighter through enlarging R̃2 until |R̃2| = 4 · |R̃1| and use
it to compute the f(S∗b ) again. If the S∗b can provide the
approximation, return it directly; If not, this implies the S∗b is
not a good solution with a high probability. Thus, we double
the collection R̃1 and repeat the above process to re-select a
node set until satisfying the approximation ratio or reaching
the maximum number of iterations imax.

It is worth noting that in line 9 of Algorithm 3, the only
purpose of the collection of G-RR set R̃2 is to compute
the lower bound f(S∗b ) for a fixed node set S∗b . Given a
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Algorithm 3: SentinelSet (G,Q, k, ε1, δ1)

1 Set θ1 = 3 · ln(1/δ1) and θmax according to Eqn. (26);
2 Generate a collection of random G-RR sets R̃1 with
|R̃1| = θ;

3 imax ← dlog2(θmax/θ)e;
4 repeat
5 server select active users A uniformly at random,

then broadcast ω, θ and p̂(y) to A;
6 until training stop;
7 for i = 1 to imax do
8 S∗k ← MaxCoverage-Greedy(R̃1, k);
9 Compute the roughly lower bound f ′(S∗a) by Eqn.

(23) on R̃1 and S∗k , where 1 ≤ a ≤ k;
10 Get f(S◦k) by Eqn. (24) on R̃1, δu = δ1/(3imax);
11 Let b be the maximum number such that

f ′(S∗a)/f(S◦k) ≥ (1− (1− 1/k)a − ε1);
12 Generate a collection of random G-RR sets R̃2

with |R̃2| = |R̃1| by calling G-RR Set-Sentinel
(G,Q, S∗b ) shown as Algorithm 4;

13 Get f(S∗b ) by Eqn. (23) on R̃2, δl = δ1/(6imax);
14 if f(S∗b )/f(S◦k) ≥ (1− (1− 1/k)b − ε1) then
15 return S∗b ;

16 Enlarge R̃2 until |R̃2| = 4 · |R̃1| and re-compute
f(S∗b ) by Eqn. (23) on R̃2;

17 if f(S∗b )/f(S◦k) ≥ (1− (1− 1/k)b − ε1) then
18 return S∗b ;

19 Double the size of R̃1;

20 return S∗b ;

sentinel set S∗b , the sampling process of a random G-RR set
can be optimized, which is shown in Algorithm 4. Here, the
sampling of collection and searching process of subsequent
coverage computation can be significantly improved, which
will be widely used in the next stage. Shown as Algorithm
4, we elaborate the process of generating a random G-RR
set with the help of sentinel set S∗b . First, we initialize a
map R̃ (a data structure to represent a G-RR set), where the
value of R̃[(q, j)] contains a random RR set generated from
community Cjq , representing the same meaning as R(vq,j , g) in
Eqn. (16). For each community Cqj ∈ Cq and q ∈ Q, under the
realization g, we first select a node vq,j from Cqj uniformly.
If the vq,j hit the sentinel set S∗b , we set R̃[(q, j)] by � (a
placeholder, which means that the RR set R̃[(q, j)] has been
covered), then terminate the current iteration and enter the
next community. If the vq,j does not hit the S∗b , we add vq,j
into the set R and queue H , and start a traversal from vq,j
following the reverse direction of its edges in the while loop
from line 13 to line 23. Here, we use a flag in line 12 to
indicate whether the sampling hits the S∗b . If yes, the flag
will become true, and we set R̃[(q, j)] by �; If no, the flag
will keep false, and we set R̃[(q, j)] by the sampled RR set R.
Given a collection R̃2, when computing the value of f(S∗b ), we
need to compute the value of Ω(S∗b , R̃2) as Eqn. (11). Thus,
we have I(S∗b ∩R(viq,j , g

i)) = 1 if and only if R̃i[(q, j)] = �,

Algorithm 4: G-RR Set-Sentinel (G,Q, S∗b )

1 Initialize R̃ as a map, and (q, j) is the key for q ∈ Q
and Cqj ∈ Cq(G);

2 Sample a realization g from G randomly;
3 foreach q ∈ Q do
4 foreach Cqj ∈ Cq(G) do
5 Select a node vq,j from Cqj uniformly;
6 if vq,j ∈ S∗b then
7 R̃[(q, j)]← �;
8 Continue;

9 Initalize a set R← ∅ and a queue H ← ∅;
10 R← R ∪ {vq,j};
11 H ← H ∪ {vq,j}; Mark vq,j as activated;
12 Flag ← False;
13 while H is not empty do
14 Let u be the top node of H , pop u from H;
15 foreach in-neighbor w of u in g do
16 if w is inactivated then
17 if w ∈ S∗b then
18 Flag ← True;
19 Break;

20 R← R ∪ {w};
21 H ← H ∪ {w}; Mark w as

activated;

22 if Flag then
23 Break;

24 if Flag then
25 R̃[(q, j)]← �;

26 else
27 R̃[(q, j)]← R;

28 return R̃;

which is much easier to compute than before.
Next, how many random G-RR sets are enough in the

collection R̃1 to generate a sentinel set S∗b with a good
approximation? Similar to Lemma 6 in HIST [24], we can
give the following theorem.

Theorem 5. Let R̃1 be the collection of random G-RR sets
and S∗b be a size-b node set selected by Algorithm 1 based on
R̃1. Given any ε′ and δ′, if the size of R̃1 satisfies |R̃1| ≥

2 ·
[(
1− ( 1

k
)b
)√

ln 2
δ′ +

√(
1− ( 1

k
)b
) (

ln
(
n
b

)
+ ln 2

δ′

)]2
ε′2 · f(S◦k)

, (25)

then we have f(S∗b ) ≥ (1 − (1 − 1/k)b − ε′) · f(S◦k) with at
least 1− δ′ probability.

Based on Theorem 5, we need to give a lower bound of the
f(S◦k) to get a θmax. Here, we define fmin =

sup
Sk⊆V

{f(Sk)} = (1−λ)· k
n

+λ·
minq∈Q,Cq

j∈Cq{aq,j} · k∑
q∈Q wq

∑
Cq

j∈Cq
aq,j · |Cqj |

.
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Algorithm 5: RemainingSet (G,Q, k, S∗b , ε, ε2, δ2)

1 Set θ1 = 3 · ln(1/δ2) and θmax according to Eqn. (26);
2 Generate two collections of random G-RR sets R̃1 and
R̃2 with |R̃1| = |R̃2| = θ by calling G-RR
Set-Sentinel (G,Q, S∗b ) shown as Algorithm 4;

3 imax ← dlog2(θmax/θ1)e;
4 for i = 1 to imax do
5 Select a size-(k − b) node set S∗k−b from V \S∗b

based on R̃1 by the MC-Greedy algorithm;
6 S∗k ← S∗b ∪ S∗k−b;
7 Get f(S◦k) by Eqn. (24) on R̃1, δu = δ2/(3imax);
8 Get f(S∗k) by Eqn. (23) on R̃2, δl = δ2/(3imax);
9 if f(S∗b )/f(S◦k) ≥ (1− 1/e− ε) then

10 return S∗k−b;

11 Double the size of R̃1 and R̃2 by Algorithm 4;

12 return S∗k−b;

By replacing f(S◦k) with fmin, ln
(
n
b

)
with ln

(
n
k

)
, 1− (1/k)b

with 1, and setting ε′ = ε1 and δ′ = δ1/3, the maximum
number of random G-RR sets in the stage of sentinel set
selection is

θmax =
2 ·
(√

ln 6
δ1

+
√

ln
(
n
k

)
+ ln 6

δ1

)2

ε2
1 · fmin

. (26)

Thus, if the size of the collection R̃1 is larger than θmax, the
node set S∗b selected based on R̃1 satisfies (1−(1−1/k)b−ε1)
approximation with at least 1− δ1/3 probability.

Shown as Algorithm 3, it has at most imax iterations. In
the last iteration, if the f(S∗b )/f(S◦k) is still unqualified, it
will return S∗b as the final result, where the failure probability,
i.e. f(S∗b ) < (1 − (1 − 1/k)b − ε1) · f(S◦b ), is at most
δ1/3. In each of the first imax − 1 iterations, the failure
probability of the upper bound in line 7 is δ1/(3imax) and the
failure probabilities of the lower bound in line 11 and 14 are
δ1/(6imax) respectively. By the union bound, the total failure
probability of the first imax−1 iterations is at most 2δ1/3, then
the sentinel set returned by Algorithm 3 satisfies the desired
approximation guarantee with at least 1− δ1 probability.

2) Remaining set selection: After obtaining the sentinel set
S∗b at the first stage, we make full use of it to accelerate the
generation of random G-RR sets and get the remaining k − b
seed nodes. The process of remaining set selection can be
shown in Algorithm 5. Here, we first sample two collections
of random RR set R̃1 and R̃2 by invoking Algorithm 4. Based
on R̃1, we can select a size-(k−b) node set S∗k−b from V \S∗b
by the MC-Greedy algorithm.

Remark 1. In line 5 of Algorithm 5, given a collection R̃1,
we can apply the MC-Greedy algorithm to iteratively select
the optimal node. But there is a difference here since it is a
greedy strategy based on S∗b . Thus, according to Algorithm 1,
we make a little change. We initialize S0 ← S∗b , and iteratively
select from a = 1 to k − b, finally return Sk−b. Thus, when
computing the value of Ω(Sa−1, R̃1) as Eqn. (11) in the MC-

Greedy process, we have I(Sa−1∩R(viq,j , g
i)) = 1 if and only

if Sa−1 ∩ R̃i[(q, j)] 6= ∅ or R̃i[(q, j)] = �. This is also the
core mystery of our G-HIST algorithm.

After obtaining a feasible solution S∗k in line 6, we use the R̃1

to compute the upper bound f(S◦k) and use the R̃2 to compute
the lower bound f(S∗k). If the f(S∗b )/f(S◦k) has satisfies a (1−
1/e− ε) approximation, we return the S∗k directly; Otherwise,
we double the collection R̃1 and R̃2, and repeat the above
process to re-select the remaining node set until satisfying
the approximation ratio or reaching the maximum number of
iteration imax.

According to Remark 1, in the stage of remaining set selec-
tion, the average size of random G-RR sets can be significantly
reduced and the computational process of coverage in the
MC-Greedy algorithm can also be simplified because the RR-
set that intersects the sentinel set S∗b has been discharged in
advanced. Next, how many random G-RR sets are enough in
the collection R̃1 to generate a remaining set S∗k−b with a
good approximation guarantee? Similar to Lemma 7 in HIST
[24], we can give the following theorem.

Theorem 6. Given any ε′, δ′, and S∗b with f(S∗b ) ≥ (1− (1−
1/k)b − ε1) · f(S◦k), if the size of R̃1 satisfies |R̃1| ≥

2 ·
[√

ln 3
δ′ +

√(
1− 1

e

) (
ln
(
n−b
k−b
)

+ ln 3
δ′

)]2

ε′2 · f(S◦k)
, (27)

then the remaining set S∗k−b selected by the adapted MC-
Greedy algorithm satisfies f(S∗b ∪ S∗k−b) ≥ (1 − 1/e − ε1 −
ε′) · f(S◦k) with at least 1− δ′ probability.

Based on Theorem 6, by replacing f(S◦k) with fmin, and
setting ε′ = ε2 and δ′ = δ2/3, the maximum number of
random G-RR sets in the stage of remaining set selection is

θmax =

2 ·
[√

ln 9
δ2

+

√(
1− 1

e

) (
ln
(
n−b
k−b

)
+ ln 9

δ2

)]2
ε22 · fmin

. (28)

Thus, if the size of the collection R̃1 is larger than θmax, the
node set S∗k−b selected based on R̃1 satisfies (1−1/e−ε1−ε2)
approximation with at least 1− δ2/3 probability.

Shown as Algorithm 5, if the f(S∗b )/f(S◦k) is still unquali-
fied in the last iteration, it will return S∗k−b as the final result
with at most δ2/3 failure probability. By the union bound,
the total failure probability of the first imax − 1 iterations is
at most 2δ2/3, then the remaining set returned by Algorithm
5 satisfies the desired approximation guarantee with at least
1− δ2 probability.

VI. THEORETICAL ANALYSIS

In this section, we first prove the Theorem 5 and Theorem
6 proposed in last section, then show the analysis of time
complexity and main theoretical result in this paper.

A. Proof of Theorem 5

We first give several lemmas as follows that are useful to
prove the Theorem 5.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, SEPTEMBER 2022 10

Lemma 3. Let S∗b be the node set selected by Algorithm 1 on
R̃, then we have Ω(S∗b ; R̃) ≥ (1− (1− 1/k)b) · Ω(S◦k ; R̃).

This lemma is directly from the monotonicity and submod-
ularity of Ω(S; R̃) with respect to S shown in Theorem
4. Denoting by |R̃| = θ, the Ω(S◦k ; R̃)/θ is an unbiased
estimation of f(S◦k). Thus, we have Ω(S◦k ; R̃)/θ ≈ f(S◦k)
when the θ is large enough.

Lemma 4. Given δ′1, ε′1, and

θ1 = 2 · ln(1/δ′1)/(ε′1
2 · f(S◦k)), (29)

if θ ≥ θ1, then we have Ω(S◦k ; R̃)/θ > (1− ε′1) · f(S◦k) with
at least 1− δ′1 probability.

Proof. By applying Eqn. (20) in Lemma 2, we have
Pr[Ω(S◦k ; R̃)/θ ≤ (1 − ε′1) · f(S◦k)] ≤ exp(−(ε′1

2
/2) ·

θf(S◦k)) ≤ exp(−(ε′1
2
/2) · θ1f(S◦k)) = δ′1 by substituting

θ1 with the above Eqn. (29).

Based on Lemma 3 and Lemma 4, we have

Ω(S∗b ; R̃)/θ > (1− (1− 1/k)b)(1− ε′1) · f(S◦k) (30)

with at least 1−δ′1 probability. Next, we can connect the f(S∗b )
with f(S◦k) as the following lemma.

Lemma 5. Given δ′2, ε′ with ε′ > ε′1, and

θ2 =
2 ·
[
1− (1− 1/k)b

]
·
(

ln
(
n
b

)
+ ln 1

δ′2

)
[ε′ − (1− (1− 1/k)b) · ε′1]2 · f(S◦k)

, (31)

if Eqn. (30) holds and θ ≥ θ2, then we have f(S∗b ) > (1 −
(1− 1/k)b − ε′) · f(S◦k) with at least 1− δ′2 probability.

Proof. Let Sb be any size-b subset of V . By applying Eqn.
(21) in Lemma 2 and setting ε′2 = ε′ − (1− (1− 1/k)b) · ε′1,
we have

Pr
[
Ω(Sb; R̃)/θ − f(Sb) ≥ ε′2 · f(S◦k)

]
= Pr

[
Ω(Sb; R̃)− θf(Sb) ≥

ε′2 · f(S◦k)

f(Sb)
· θf(Sb)

]
≤ exp

(
− ε′2

2 · f(S◦k)2

2f(Sb) + 2
3ε
′
2 · f(S◦k)

· θ

)

≤ exp

(
− ε′2

2 · f(S◦k)

2(1− (1− 1/k)b − ε′) + 2
3ε
′
2

· θ

)

≤ exp

(
− ε′2

2 · f(S◦k)

2(1− (1− 1/k)b)
· θ2

)

= δ′2/

(
n

b

)
.

Thus, if θ ≥ θ2, the S∗b returned by Algorithm 1 satisfies
Ω(S∗b ; R̃)/θ − f(S∗b ) < ε′2 · f(S◦k) with at least 1 − δ′2
probability based on the union bound of at most

(
n
b

)
size-b

node sets. Thus, if the Eqn. (30) holds, we have

f(S∗b ) > Ω(S∗b ; R̃)/θ − ε′2 · f(S◦k)

> [(1− (1− 1/k)b)(1− ε′1)− ε′2] · f(S◦k)

= (1− (1− 1/k)b − ε′) · f(S◦k)

with at least 1− δ′2 probability.

Based on Lemma 4 and Lemma 5, if θ ≥ max{θ1, θ2}, we
have f(S∗b ) > (1−(1−1/k)b−ε′)·f(S◦k) with at least 1−δ′1−
δ′2 probability. By setting δ′1 = δ′2 = δ′/2 and θ1 = θ2 = θ′,
we have θ′ equals the Eqn. (25) similar to the techniques in
[21]. Theorem 5 has been proven.

B. Proof of Theorem 6

We first give several lemmas as follows that are useful to
prove the Theorem 6.

Lemma 6. ([24]) Given any size-b sentinel set S∗b , let S∗k−b
be a size-(k − b) remaining set selected by the adapted MC-
Greedy algorithm from V \S∗b on R̃ like the process of Remark
1. We have Ω(S∗b ∪ S∗k−b; R̃) ≥

(1−(1−1/k)k−b)·Ω(S◦k ; R̃)+(1−1/k)k−b ·Ω(S∗b ; R̃). (32)

This lemma is directly from Lemma 11 in [24]. Shown as
Lemma 4, when θ ≥ θ1, the Ω(S◦k ; R̃)/θ should be very
close to f(S◦k). Actually, it works for any S∗b in a similar
way according to Lemma 7.

Lemma 7. Given δ′1, ε′1, and θ1 as Eqn. (29), if θ ≥ θ1, then
we have Ω(S∗b ; R̃)/θ > f(S∗b )−ε′1 ·f(S◦k) with at least 1−δ′1
probability.

Proof. Similar to the proof of Lemma 4, by applying Eqn.
(20) in Lemma 2, we have Pr[Ω(S∗b ; R̃)/θ − f(S∗b ) ≤ −ε′1 ·
f(S◦k)] = Pr[Ω(S∗b ; R̃) − θf(S∗b ) ≤ (−ε′1 · f(S◦k)/f(S∗b )) ·
θf(S∗b )] ≤ exp(−ε′1

2 · f(S◦k)2/(2f(S∗b )) · θ) ≤ exp(−ε′1 ·
f(S◦k)/2 · θ1) = δ′1 by substituting θ1 with Eqn. (29).

Lemma 8. Given δ′1 and ε′1, if f(S∗b ) ≥ (1 − (1 − 1/k)b −
ε1) · f(S◦k), then we have

Ω(S∗b ∪ S∗k−b; R̃)/θ > (1− 1/e− ε1 − ε′1) · f(S◦k) (33)

with at least 1− 2δ′1 probability.

Proof. Based on Lemma 6, we have Ω(S∗b ∪ S∗k−b; R̃)/θ ≥
(1−(1−1/k)k−b)·Ω(S◦k ; R̃)/θ+(1−1/k)k−b ·Ω(S∗b ; R̃)/θ ≥
(1−(1−1/k)k−b)(1−ε′1)·f(S◦k)+(1−1/k)k−b ·(f(S∗b )−ε′1 ·
f(S◦k)) ≥ (1− (1− 1/k)k−b)(1− ε′1) · f(S◦k) + (1− 1/k)k−b ·
[(1−(1−1/k)b−ε1) ·f(S◦k)−ε′1 ·f(S◦k)] = (1−(1−1/k)k−
ε′1−(1−1/k)k−bε1)·f(S◦k) ≥ (1−(1−1/k)k−ε1−ε′1)·f(S◦k).
Here, the second inequality is from Lemma 4 and Lemma 7,
where the Ω(S◦k ; R̃)/θ > (1− ε′1) · f(S◦k) holds with at least
1−δ′1 probability and Ω(S∗b ; R̃)/θ > f(S∗b )−ε′1 ·f(S◦k) holds
with at least 1−δ′1 probability. Thus, the Eqn. (33) holds with
at least 1 − 2δ′1 probability by the union bound. Then, this
lemma can be proven.

Lemma 9. Given δ′2, ε′ with ε > ε′1, and

θ2 =
2(1− 1/e) ·

(
ln
(
n−b
k−b
)

+ ln 1
δ′2

)
(ε′ − ε′1) · f(S◦k)

, (34)

if Eqn. (33) hold and θ ≥ θ2, then we have f(S∗b ∪ S∗k−b) >
(1− 1/e− ε1 − ε′) · f(S◦k) with at least 1− δ′2 probability.
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Proof. Let Sk−b be any size-(k − b) subset of V \S∗b . By
applying Eqn. (21) in Lemma 2 and setting ε′2 = ε′ − ε′1,
we have

Pr
[
Ω(S∗b ∪ Sk−b; R̃)/θ − f(S∗b ∪ Sk−b) ≥ ε′2 · f(S◦k)

]
= Pr

[
Ω(S∗b ∪ Sk−b; R̃)− θf(S∗b ∪ Sk−b)

≥ ε′2 · f(S◦k)

f(S∗b ∪ Sk−b)
· θf(S∗b ∪ Sk−b)

]
≤ exp

(
− ε′2

2 · f(S◦k)2

2f(S∗b ∪ Sk−b) + 2
3ε
′
2 · f(S◦k)

· θ

)

≤ exp

(
− ε′2

2 · f(S◦k)

2(1− 1/e− ε1 − ε′) + 2
3ε
′
2

· θ

)

≤ exp

(
−ε
′
2
2 · f(S◦k)

2(1− 1/e)
· θ2

)

= δ′2/

(
n− b
k − b

)
.

Thus, if θ ≥ θ2, the S∗k−b returned by the adapted MC-Greedy
algorithm on R̃ given the S∗b satisfies Ω(S∗b ∪ S∗k−b; R̃)/θ −
f(S∗b ∪ S∗k−b) < ε′2 · f(S◦k) with at least 1 − δ′2 probability
based on the union bound of at most

(
n−b
k−b
)

size-(k− b) node
sets. Thus, if the Eqn. (33) holds, we have

f(S∗b ∪ S∗k−b) > Ω(S∗b ∪ S∗k−b; R̃)/θ − ε′2 · f(S◦k)

> (1− 1/e− ε1 − ε′1 − ε′2) · f(S◦k)

= (1− 1/e− ε1 − ε′) · f(S◦k)

with at least 1− δ′2 probability.

Based on Lemma 8 and Lemma 9, if θ ≥ max{θ1, θ2},
when the first stage returns a good sentinel set S∗b with
f(S∗b ) ≥ (1−(1−1/k)b−ε1)·f(S◦k), we have f(S∗b ∪S∗k−b) ≥
(1−1/e−ε1−ε′) ·f(S◦k) with at least 1−2δ′1−δ′2 probability.
By setting δ′1 = δ′2 = δ′/3 and θ1 = θ2 = θ′, we have θ′

equals the Eqn. (27) similar to the techniques in [21]. Theorem
6 has been proven.

C. Theoretical Result and Complexity

In summary, based on Theorem 5, the sentinel set S∗b
selected at the first stage satisfies f(S∗b ) ≥ (1− (1− 1/k)b −
ε1) · f(S◦b ) with at least 1 − δ1 probability. When it works,
based on Theorem 6, the remaining set S∗k−b selected at the
second stage satisfies f(S∗b∪S∗k−b) ≥ (1−1/e−ε1−ε2)·f(S◦k)
with at least 1 − δ2 probability. Shown as Algorithm 2,
by setting ε1 = ε2 = ε and δ1 = δ2 = δ/2, we have
f(S∗b ∪ S∗k−b) ≥ (1 − 1/e − ε) · f(S◦k) with at least 1 − δ
probability by the union bound.

For our G-HIST algorithm, the analysis of time complexity
is very hard because the number b at the first stage cannot
be estimated. Thus, we only consider an extreme case, where
there is no sentinel set selection stage, namely b = 0. Then,
the Algorithm 5 will directly select a size-k seed set, whose
process is similar to OPIM-C [23]. Thus, when δ < 1/2,
it generates an expected number of O(k lnn + ln(1/δ)/(ε2 ·
f(S◦k))) random G-RR sets. To generate a random G-RR set,

the worst running time is less than O(
∑
q∈Q rq ·m). Thus, the

worst time of generating random G-RR sets should be

O

(∑
q∈Q rq ·mn(k lnn+ ln(1/δ))

ε2 · k

)
. (35)

As the search time of MC-Greedy algorithm is shorter than the
generation time, the total time complexity remains unchanged.
Now, we can draw the main conclusion of this paper.

Theorem 7 (Main Theorem). The G-HIST shown as Algorithm
2 can be guaranteed to return a (1 − 1/e − ε) approximate
solution for the CC-DIM problem with at least 1−δ probability
and run in the O(

∑
q∈Q rq · mn(k lnn + ln(1/δ))/(ε2 · k))

worst expected time.

VII. EXPERIMENTS

In this section, we conduct several experiments on different
datasets to validate the effectiveness and efficiency of our
G-HIST algorithm for the CC-DIM problem. All of our
experiments are programmed by Python and run on a Mac
machine. There are four datasets used in the experiments
as follows. (1) NetScience [32]: A coauthorship network
among scientists to publish papers about network science;
(2) Wiki [32]: A who-votes-on-whom network coming from
the collection of Wikipedia voting; (3) HetHEPT [33]: An
academic collaboration relationship on high-energy physics
area; and (4) Epinions [33]: A who-trust-whom online social
network on Epinions.com, which is a general consumer review
site. The statistics of these four datasets are shown in Table
I. For the undirected graph, we replace each undirected edge
with two reversed directed edges.

TABLE I
THE DATASETS STATISTICS (K = 103)

Dataset n m Type Avg.Degree
NetScience 0.4K 1.01K undirected 5.00

Wiki 1.0K 3.15K directed 6.20

HetHEPT 12.0K 118.5K undirected 19.8

Epinions 75.9K 508.8K directed 13.4

A. Experimental Settings

For the IC model, we use the Weighted Cascade (WC) [8]
[34] [35] to set the diffusion probability of each edge. The
probability puv for each edge (u, v) ∈ E is 1/|N−(v). As for
the parameters in G-HIST algorithm, we set ε = 0.1 and δ =
0.1. We conduct 1000 Monte Carlo simulations to estimate the
objective function given a seed set. Each point in our result is
the average over 3 times running.

Because our CC-DIM is a composite community-aware
problem, there are multiple community structures in a shared
social network. In the objective function shown as Eqn. (7), we
give the λ = 0.7. Then, we consider three cases of different
number of community structures as follows. (1) Case 1: One
community structure, denoted by Q1 = {q1}; (2) Case 2: Two
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community structure, denoted by Q2 = {q1, q2}; and (3) Case
3: Three community structure, denoted by Q3 = {q1, q2, q3}.
Here, we have rq1 = 3, rq2 = 4, and rq3 = 5, where the
graph will be partitioned into three communities under the
metric q1, four communities under the metric q2, and five
communities under the metric q2. Besides, for each of the
above cases, we will give two different settings as follows.
Under the parameter setting 1, we have {wq1 = 1} for Q1,
{wq1 = 0.4, wq2 = 0.6} for Q2, and {wq1 = 0.3, wq2 =
0.3, wq3 = 0.4} for Q3; {aq1,1 = 0.4, aq1,2 = 1, aq1,3 = 1.6},
{aq2,1 = 0.4, aq2,2 = 0.8, aq2,3 = 1.2, aq2,4 = 1.6}, and
{aq3,1 = 0.2, aq3,2 = 0.6, aq3,3 = 1, aq3,4 = 1.4, aq3,5 = 1.8}.
Under the parameter setting 2, we have {wq1 = 1} for Q1,
{wq1 = 0.1, wq2 = 0.9} for Q2, and {wq1 = 0.1, wq2 =
0.1, wq3 = 0.8} for Q3; {aq1,1 = 0.1, aq1,2 = 0.1, aq1,3 =
2.8}, {aq2,1 = 0.1, aq2,2 = 0.1, aq2,3 = 0.8, aq2,4 = 3}, and
{aq3,1 = 0.1, aq3,2 = 0.1, aq3,3 = 0.1, aq3,4 = 1.7, aq3,5 = 3}.
We will explain them in the later analysis.

How to get a community partition is flexible. We can not
only divide the community according to user’s attributes given
by datasets, but also we can use existing algorithms [26] [27]
[28] [29] to divide the community.

Next, we introduce some typical baselines, which will be
used for comparison with our G-HIST algorithm.
• G-HIST: It is given by Algorithm 2.
• G-HIST-no-Sentinel: It directly selects a size-k seed set

without the stage of sentinel set selection by invoking
Algorithm 5 like RemainingSet (G,Q, k, ∅, ε, ε, δ).

• G-IMM: It uses the IMM [21] to maximize our objective
function by setting ε = 0.1 and δ = 0.1.

• Greedy: It adopts greedy hill-climbing algorithm to select
the node with maximum marginal gain in each iteration
through Monte Carlo simulations.

• Greedy-IM: It uses greedy hill-climbing algorithm to
solve the IM problem through Monte Carlo simulations.

• IMM [21]: A classic sampling based method of the IM
problem by setting ε = 0.1 and δ = 0.1.

• MaxDegree: It selects the node with maximum out degree
in each iteration.

• Random: It randomly select a size-k seed set.

B. Experimental Results

1) Performance: Fig. 1 and Fig. 2 draw the performance
comparison achieved by all kinds of algorithms with different
settings under the NetScience dataset and Wiki dataset. In
this part, we only consider these two smaller datasets since
the Greedy and Greedy-IM algorithm are implemented by
Monte Carlo simulations, which cannot be carried out in an
acceptable running time for a large network. Here, we make
the following observations. First, no matter which case and
parameter setting we use, the performances obtained by G-
HIST, G-HIST-no-Sentinel, and G-IMM algorithm are very
close, and they are obviously better than other baselines. This
means that our G-HIST algorithm and pre-selected sentinel
set will not significantly reduce performance, even if the per-
formance fluctuates slightly more than other baselines. Thus,
we think that the G-HIST, G-HIST-no-Sentinel, and G-IMM

(a) NetScence, Q1, Parameter 1 (b) NetScence, Q2, Parameter 1

(c) NetScience, Q3, Parameter 1 (d) NetScience, Q1, Parameter 2

(e) NetScence, Q2, Parameter 2 (f) NetScence, Q3, Parameter 2

Fig. 1. The performance comparison achieved by the NetScience dataset
under three community structures and two parameter settings.

are consistent in performance. Second, through comparing G-
HIST with Greedy and comparing IMM with Greedy-IM,
we can see that the performance of G-HIST (resp. IMM)
is slightly better than that of Greedy (resp. Greedy-IM),
which means that the methods based on sampling are slightly
better than the corresponding methods based on Monte Carlo
simulations. In fact, they should be roughly equal. This may
be due to the insufficient number of simulations, which leads
to inaccurate estimation of the objective function.

Third, through comparing G-HIST (resp. Greedy) with IMM
(resp. Greedy-IM), we find that their performance is roughly
similar under the parameter setting 1, where the performance
of G-HIST is just a little better than the IMM. However,
under the parameter setting 2, the performance of G-HIST
is significantly superior to the IMM, and the performance
gap between G-HIST and IMM will increase as the bud-
get k increases. This is because the weight and coefficient
distributions are more uneven under the parameter setting
2, which leads to obvious bias. Here, the IMM (Greedy-
IM) algorithm that ignores the requirement of diversity will
result in obvious reduction of the objective function, but this
effect is not significant under the parameter setting 1 where
the weight and coefficient distributions are uniform. Fourth,
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(a) Wiki, Q1, Parameter 1 (b) Wiki, Q2, Parameter 1

(c) Wiki, Q3, Parameter 1 (d) Wiki, Q1, Parameter 2

(e) Wiki, Q2, Parameter 2 (f) Wiki, Q3, Parameter 2

Fig. 2. The performance comparison achieved by the Wiki dataset under three
community structures and two parameter settings.

the performance of G-HIST has large advantage over the
MaxDegree and Random algorithm, and the performance gap
between G-HIST and MaxDegree will increase as the budget
k increases.

2) Running time: First, the computational cost of
simulation-based methods, Greedy and Greedy-IM, is much
higher than the corresponding sampling-based methods, G-
IMM and IMM. Thus, we will not adopt simulation-based
methods in the later experiment. Second, similar to OPIM-
C [23], we find a similar trend between G-HIST-no-Sentinel
and G-IMM. Under the equivalent setting, the running time
of G-HIST-no-Sentinel is about 20% to 30% of G-IMM.
Third, through comparing G-HIST with G-HIST-no-Sentinel,
the average size of random G-RR sets at the second stage of
G-HIST can be reduced by nearly one order of magnitude,
and the running time can also be significantly improved.

3) Scalability: Fig. 3 draws the performance comparison
achieved by sampling-based algorithms under the HetHEPT
and Epinions dataset. In the large networks, our G-HIST has
the same advantages in performance and running time as
before, which further verifies its effectiveness.

(a) HetHEPT, Q1, Parameter 2 (b) HetHEPT, Q2, Parameter 2

(c) HetHEPT, Q3, Parameter 2 (d) Epinions, Q1, Parameter 2

(e) Epinions, Q2, Parameter 2 (f) Epinions, Q3, Parameter 2

Fig. 3. The performance comparison achieved by the HetHEPT and Epinions
dataset under three community structures and parameter setting 2.

VIII. CONCLUSION

To tackle the multiplicity of diversity in real social ap-
plications, in this paper, we first propose the Composite
Community-aware Diversified IM (CC-DIM) problem, which
is totally different from the traditional IM problem and Di-
versified IM problem. Even though its objective function is
monotone and submodular, it is extremely hard to compute.
Thus, we create a novel sampling method based on Gener-
alized Reverse Reachable (G-RR) set to effectively estimate
the objective function, and design a two-stage G-HIST algo-
rithm to further improve the memory consumption and time
efficiency by significantly reducing the average size of random
G-RR sets. According to our theoretical analysis, the G-HIST
returns a (1 − 1/e − ε) approximate solution with at least
(1− δ) probability in an acceptable running time. Finally, our
experimental results verify our theories and demonstrate the
effectiveness and correctness of our proposed algorithm over
other the-state-of-art baselines.

However, in order to ensure the rigor of theoretical guaran-
tee, our sampling and algorithm design are conservative. There
is still a lot of room for improvement in the future.
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