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Abstract— Model compression is a fundamental tool to execute
machine learning (ML) tasks on the diverse set of devices popu-
lating current- and next-generation networks, thereby exploiting
their resources and data. At the same time, how much and
when to compress ML models are very complex decisions,
as they have to jointly account for such aspects as the model
being used, the resources (e.g., computational) and local datasets
available at each node, as well as network latencies. In this
work, we address the multi-dimensional problem of adapting the
model compression, data selection, and node allocation decisions
to each other: our objective is to perform the DNN training at
the minimum energy cost, subject to learning quality and time
constraints. To this end, we propose an algorithmic framework
called PACT, combining a time-expanded graph representation of
the training process, a dynamic programming solution strategy,
and a data-driven approach to the estimation of the loss evolution.
We prove that PACT’s complexity is polynomial, and its decisions
can get arbitrarily close to the optimum. Through our numerical
evaluation, we further show how PACT can consistently outper-
form state-of-the-art alternatives and closely matches the optimal
energy consumption.

Index Terms— Distributed learning, network support to
machine learning, model pruning, dynamic programming.

I. INTRODUCTION

TRAINING machine learning (ML) models is notoriously
hard, as it requires large quantities of data as well as

significant computational resources [2], [3]. To cope with this
issue, cooperative training – most notably, federated learning
(FL) [3], [4], [5] – has emerged as a nigh-universal approach
to leverage the resources of multiple nodes to perform a
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single learning task. Examples range from smart factory sce-
narios [6], where model training takes place at both cloud- and
edge-based servers, to space applications [7] where models
are first trained on the ground and then refined aboard the
spacecraft.

In all such scenarios, the data and resources needed to
perform the training are scattered throughout different nodes,
whose availability and connectivity may significantly vary in
both space and time [8]. This results in a major technical
challenge, namely, the mutual adaptation of the decisions
concerning (i) ML training (e.g., model selection and com-
pression), (ii) data selection (i.e., which nodes shall be asked
to contribute their datasets for training), and (iii) node and
resource allocation (i.e., at which network nodes to train each
portion of an ML model). Importantly, the selection of datasets
can be performed without sharing the data itself, but based
solely on privacy-preserving statistical information [9], [10].

There are three main scenarios where such main mutual
adaptation can be beneficial over training a single model
(or completely distinct models for different nodes):
• i.i.d. datasets at different nodes – in this case, the main

benefit is fine-tuning the resources committed for train-
ing to the required learning quality, e.g., by exploiting
cheaper nodes;

• datasets that are not i.i.d. but related (e.g., from different
domains [6]) – in this case, the same model can be
successfully and efficiently trained to work with data from
all domains;

• different datasets with convolutional DNNs – as con-
volutional layers recognize basic features of the data
(e.g., simple shapes in images) as opposed to their
meaning, their information can be transferred [11], [12]
to models using different datasets.

As better discussed in Sec. VII, many existing works address
one or another of the aforementioned aspects, but fall short of
providing a comprehensive strategy to jointly make all the
required decisions. To fill this gap, in this work we focus
on deep neural networks (DNNs) and propose a solution
strategy and algorithmic framework called Performance-Aware
Compression and Training (PACT), supporting all three cases
above. PACT creates optimized strategies for the training
of DNNs, in presence of (a) heterogeneous nodes, whose
datasets cannot be shared, and (b) different DNN models
to choose from. A major novelty of PACT is the ability
to leverage multiple DNN models across different stages of
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Fig. 1. Cooperative training process proposed and optimized in this paper.
Subsets of nodes sequentially train compressed versions of a DNN model.
In the picture, nodes are categorized based on their computing capabilities
and data availability, and, in the example, the training sequence is based
on nodes’ ranking (gold, silver, bronze). Our framework, named PACT and
running at the learning orchestrator, optimizes the set of nodes, number of
epochs, and model compression along the process.

the same learning task, by switching among them as needed
(e.g., through model pruning [13] or knowledge distilla-
tion [14]). For each stage – hence, for each model –, PACT
then selects the most appropriate datasets, network nodes, and
resources. As in the example depicted in Fig. 1, a fairly com-
plex model may be used in the early stages of training, running
on a small set of powerful nodes. Later, it is possible to switch
to a simpler (e.g., pruned) model, thus including more nodes
with smaller capabilities but more valuable local data [11].
At the same time, the benefits of model switching must be
weighed against the cost of switching itself, which requires
additional resources and will often result in a (temporary) drop
in learning performance.

Our main contributions can be summarized as follows.
(1) Model and problem definition: we develop a compre-

hensive, synthetic model of networked systems supporting the
training of DNN models, capturing all relevant aspects thereof.
Leveraging such a model, we formulate the problem of making
dynamic, joint decisions about: (i) the models – including
full DNNs or pruned/compressed version thereof – to use at
each epoch; (ii) the time and manner of model switching, e.g.,
DNN pruning; (iii) the network nodes to use at each epoch,
leveraging their computational resources and local datasets.
The overall goal is to minimize the energy consumption –
hence, cost and carbon footprint – associated with training,
subject to constraints about the learning time and quality
(e.g., a certain loss function value). Importantly, PACT tackles
scenarios where all the above aspects can be controlled,
thereby achieving greater flexibility and higher-quality deci-
sions than existing works that only target one aspect at a time
(e.g., choosing the mode) and consider the others immutable
(e.g., resources are given).

(2) Algorithmic framework: making the decisions required
in our scenario is complicated by two main issues. The first is
common to many combinatorial problems, and is represented
by the problem scale, e.g., the vast number of possible
solutions to choose from. The second is unique to our own
scenario, and is the fact that model switching decisions have
effects (most importantly, on the learning quality evolution)
that cannot be exactly predicted a priori. To tackle the first

issue, we adopt an approximate dynamic programming (ADP)
approach, predicated on restricting our attention to the most
promising potential solutions. Concerning the second issue,
we leverage both theoretical works on DNN convergence
bounds and data-driven predictions into our solution strategy,
so as to estimate the effect of potential decisions with a
high level of confidence. As a result, our algorithmic solution
can make high-quality decisions – indeed, arbitrarily close
to the optimum – with remarkably low (namely, polynomial)
computational complexity.

(3) Performance evaluation: we evaluate the performance
of PACT under three different real-world scenarios for dis-
tributed ML. In all cases, PACT yields training strategies that
adapt to the existing resources and training data, honoring the
target learning quality and time at a low energy cost. Specif-
ically, PACT decisions are always very close (and, in many
cases, identical) to the optimal ones, and substantially better
than those made by state-of-the art approaches. We further
show how PACT can recover from the effects of inaccurate
estimations of the effect of model-switching decisions.

The rest of the paper is organized as follows. Sec. II clarifies
the problem we address, while Sec. III presents the system
model and the decisions we tackle. Sec. IV then introduces the
methodology for estimating the loss as learning proceeds, and
Sec. V describes our algorithmic solution. The obtained results
are shown in Sec. VI; finally, Sec. VII discusses relevant
related work and Sec. VIII summarizes our conclusions.

II. A MOTIVATING EXAMPLE

In this section, we set in the first of the cases discussed
in Sec. I, i.e., i.i.d. datasets, and seek to illustrate the ben-
efits of a cooperative training process that integrates model
and nodes switching, but also emphasize the challenges in
formulating and optimizing it. To this aim, we consider the
case in which one of the most popular cooperative learning
approaches, namely, federated learning (FL), is coupled with
model pruning [13]. The latter exploits the fact that, typically,
many of a model’s parameters have a small impact on its
performance and can thus be pruned away, resulting in a DNN
with similar performance but of lower complexity, and hence
CPU and memory requirements. In particular, we evaluate the
following scenario:
· the nodes perform an image classification task using the

VGG-11 DNN model [15] as a starting point;
·FL uses the cross entropy loss function, batch size equal

to 64, and the gradient descent optimizer with 10−3 learning
rate and 0.9 momentum;
· the model is trained for K1 epochs on 5 highly capable

nodes (“gold” nodes), each using 8,000 randomly-chosen
images from the CIFAR-10 dataset [16];
· then, a fraction F of the model’s parameters is pruned1;
·finally, training resumes adding 2 more learning nodes,

with lower computing capability and fewer data: either “silver”
with half the computing resources of the gold nodes and
2,500 local images each, or “bronze” with one third of the

1We use the PyTorch method [17] to set to 0 the weights with smaller
L2 norm, and the Simplify library [18] to remove them from the DNN.
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Fig. 2. Accuracy vs. training time for different pruning epoch K1 (denoted
by different line styles) and percentage F (denoted by different color shades).
Upon pruning, a sudden drop in accuracy occurs. Cold and warm colors denote
the set of nodes used for FL. Numbers indicate the total CPU time [s], while
each marker corresponds to 10 epochs.

computing resources of the gold nodes and 750 local images
each.

Three decisions should be made: (i) the number K1 of
epochs to execute before pruning, (ii) the percentage F of
parameters to prune, and (iii) whether to use the “silver” or
“bronze” nodes when resuming training. Notice how the first
two decisions concern selecting and switching among models,
while the third deals with the physical nodes participating in
the learning process. Fig. 2 summarizes the effects of such
decisions,2 which lead to the following main remarks.
Observation 1: Pruning more (i.e., F = 0.9, orange and
light blue curves) significantly reduces both CPU consumption
(indicated by the numbers in the plot) and epoch duration
(markers are closer to each other), thus speeding up the overall
learning process and reducing its cost.
Observation 2: Larger values of K1 (solid lines) are associated
with better performance after pruning.
Observation 3: Using lower-capability (“bronze”) nodes after
pruning (warm colors) results in a larger difference between
the learning performance obtained when K1 is small (i.e.,
5) and when K1 is larger (i.e., 25). Thus, achieving better
performance while exploiting lower-capability nodes requires
switching model later.

In a nutshell, switching from a model to another may have
significant benefits in terms of time and resource consumption;
however, its effects are hard to capture and foresee. Further-
more, the benefits of involving additional, yet heterogeneous,
nodes depend upon the chosen models and the time at which
to switch between them. Thus, it is necessary to make all
the decisions on model/nodes switching jointly, accounting for
their interactions through a comprehensive system model.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We now present the system representation and the prob-
lem of matching DNN compression and training with
resources/data availability.

A. Model Components

We envision a networked system for the compression and
training of ML models where different nodes or sets of nodes

2Only some values of F are possible, as we apply structured pruning.

are available, each characterized by computational and energy
resources, and local datasets. A learning orchestrator controls
the learning process. The system has two main components:
• DNN models m ∈ M that can be used for the training

process; each model is obtained by compressing the
original DNN with a given technique or pruning ratio;

• sets n ∈ N of nodes that can participate in the coopera-
tive learning process.

Let k indicate the current epoch, ℓ(k) the value of the
test loss, computed at epoch k over the orchestrator’s dataset,
and T (k) the time at which epoch k finishes. ∆T (k) and
∆ℓ(k) represent, respectively, the time taken by epoch k, and
the variation in the value of loss function it yielded. Finally,
∆E(k) denotes the energy consumed to perform epoch k, and
E(k) the cumulative energy consumption until k.

Importantly, time and energy variations depend on the
model (m(k)) and the set of nodes (n(k)) used at epoch k;
also, they include two components each, i.e.,

∆T (k) = τ change(m(k−1), n(k−1), m(k), n(k))
+ τ run(m(k), n(k)), (1)

∆E(k) = ϵchange(m(k−1), n(k−1), m(k), n(k))
+ ϵrun(m(k), n(k)). (2)

In the equations above, τ run (ϵrun) represents the time (energy)
to execute a given model over a set of nodes (hence, with
the associated datasets), while τ change (ϵchange) represents the
time (energy) to change (i.e., switch) the model or nodes.
In fact, model change implies compressing the model, which
may take time and energy, while a change in the set of
nodes contributing to learning requires transferring the model.
Furthermore, not all model/nodes choices are possible, which
is reflected by setting τ change, ϵchange, τ run, and ϵrun to ∞. Also
notice how the dependency of τ and ϵ upon the node/cluster n
being used allows us to model the fact that the same task takes
different time – and result in different energy consumption – if
performed at nodes with different architecture and capabilities.

The evolution of the loss function is given by:

∆ℓ(k) = λchange(k, m(k−1), m(k))
+ λrun(k, m(k), n(k)). (3)

Again, (3) includes two components: λchange – the contribution
of transitioning from the previous to the current model (if a
model switch is performed), and λrun – the effect of training
that model for an epoch. The sum of these components gives
the difference between the loss at the current epoch k and that
of epoch k−1, i.e., the result of the action enacted at k.

λrun and λchange describe two different actions with differ-
ent outcomes: the former corresponds to the usual learning
procedure, i.e., running one epoch of training; the latter
corresponds to switching across different models, an operation
that is done only occasionally and often results in a short-term
degradation of the loss. Accordingly, the two components may
have different signs: λrun ≤ 0 (the loss decreases) in most
cases, while it is possible that λchange ≥ 0, as changing model
may increase the loss value [19], [20]. Furthermore, the fact
that λrun also depends upon the used data allows our model
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to capture the familiar notion that some datasets are more
useful for learning than others. Impossible transitions between
learning settings are associated with λchange =∞.

In the following, when no confusion arises, we will drop
the dependency of decision variables m and n from the epoch.
We present below an example of how our system model can
describe concisely and accurately real-world cooperative ML
tasks.

Example 1 (System scenario): Consider the scenario in
Sec. II. In that case, the set of models M contains (i) the
original model being used, plus (ii) one additional element for
each possible pruning level.3 For instance, there could be one
element for “50% pruning” and another for “90% pruning”.
Thus, each value of fraction F to prune maps into a different
element ofM. Concerning number K1 of epochs to run before
pruning, it corresponds to the epoch at which we change the
model m being used, hence, m(K1) ̸= m(K1 + 1).

Finally, the set N of possible clusters to use contains three
elements: the set of five gold nodes, that of two silver nodes,
or the one of two bronze nodes.

In practice, the choice of the elements in M, i.e., the
possible models to consider, will be done based upon expert –
possibly, domain- or scenario-specific – knowledge. A further
aspect worth taking into consideration is the availability of
information about models, e.g., whether the impact on the
learning quality has been profiled as per Sec. IV below.

B. Problem Definition

Given the impelling need to make ML sustainable [21],
[22], our goal is to minimize the overall learning energy
consumption, while ensuring that the loss drops below a target
value ℓmax within time Tmax. Importantly, and unlike many
related works, it is not our objective to maximize the learning
quality, but rather to minimize the energy consumption subject
to learning quality and time targets.

Specifically, for each epoch k, the learning orchestrator
has to select (i) which model m(k) to train in epoch k, and
(ii) which set n(k) of nodes to involve next in the learning
process. Based on these decisions, the values ∆T (k), ∆E(k),
and ∆ℓ(k) follow, expressing, respectively, how long iteration
k takes, how much energy it consumes, and what improve-
ment in the learning it yields. The learning orchestrator is
assumed to own a synthetic dataset, which can be either
sampled from the participating devices, or obtained through
an already trained generative model [23]. By exploiting the
testing dataset, it is possible to assess not only the training loss,
but also the test loss; using the latter results in better decisions
and a lower risk of overfitting. The learning orchestrator acts
based on the knowledge of the characteristics of the network
nodes that can contribute to a learning process, and of the
computational, temporal, and energy impact of running a
model. Such values can indeed be calculated following, e.g.,
the methodology in [24].

3In structured pruning, only a finite set of pruning levels are possible.

The reason why methodologies like [24] are effective is that,
contrary to intuition, the operations required by performing
one training epoch of a DNN are deterministic, e.g., a certain
number of matrix products and inversions. Accordingly, given
the DNN model to train and the architecture/capabilities of
the nodes employ, both the time and energy consumed can be
known with virtual certainty. Thus, sets M and N , as well
as functions τ run, τ change, ϵrun and ϵchange, are given from the
viewpoint of our problem.

On the contrary, λrun and λchange can only be estimated by
the learning orchestrator, through estimators λ̂run and λ̂change.
This reflects the fact that understanding how training a specific
model over specific nodes (hence, also data) improves learning
is a hard problem, and, indeed, all existing works merely
provide approximations and/or bounds to such quantities.
In the following, we treat those estimators as given; then,
in Sec. IV we demonstrate one possible methodology that the
learning orchestrator can use to compute them.

In general, estimating and modeling the learning perfor-
mance of DNNs is a distinct, and largely orthogonal, problem
to ours; indeed, the overarching level of PACT is to leverage
information on DNN performance – regardless of how it is
obtained – to efficiently make high-quality learning decisions.

Owing to the discrete-time, combinatorial nature of the
problem, we propose an approximate dynamic programming
(ADP) formulation thereof, as described below. Dynamic
programming is indeed well-suited to cope with combinatorial
problems where the system state evolves over time and the
same decision process shall be repeated for multiple epochs.

C. ADP Formulation

First, we define the state space, set of actions, and
cost function. The state at epoch k is given by s(k) =(
k, ℓ(k), T (k), m, n

)
, while the set of actions available from

state s(k) is given by all possible decisions (m′, n′) ∈M×N
such that the switch they entail (if any) is feasible. The
cost function C(s(k),a(k)) expresses the (immediate) cost
of executing action a while in state s at epoch k, as the
corresponding consumed energy C(s(k),a(k)) = ∆E(k).
Such a cost comes directly from (2), i.e., C(s(k),a(k)) =
ϵchange(m, n,m′, n′)+ϵrun(m′, n′).

The value function V(s(k)), i.e., how desirable it is to
be in state s(k), requires a more sophisticated, and domain-
specific, definition. We set the value of being in state s(k)
equal to 0 when, after Tmax, the loss is above ℓmax; we
set it to the maximum value (i.e., 1) whenever ℓ(k) < ℓmax

while T (k) ≤ Tmax. For all other states, we compare the
current loss ℓ(k) and time T (k) with an ideal loss-time curve
ℓideal(t) which: (i) starts at ℓ(0) for T = 0; (ii) ends at ℓmax

for T = Tmax, and (iii) follows a power law in the between.
The latter comes from the finding invariably reported in both
theoretical [25], [26], [27] and experimental [28] works. Then,
we can write the value of being in state s(k) as the difference
between ideal and real loss values, i.e.,

V(s(k)) = logistic
(
ℓideal(T (k))−ℓ(k)

)
, (4)

where the value is normalized via a logistic function.
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Dynamic programming problems can be solved in principle
by optimizing Bellman’s equation, i.e., choosing at each epoch
the action minimizing the total energy cost subject to the
constraints that (i) the target quality is reached, i.e., the value
of the state reached by the last epoch K is 1, and (ii) such an
epoch is performed before the deadline Tmax is reached.

min
a(k)∈Ak

∑
k

C(s(k),a(k)) (5)

s.t. V(s(K)) = 1 ; T (K)≤Tmax. (6)

To solve our problem in real-world scenarios, however, there
are two major challenges to face. First, the learning orchestra-
tor does not have access to the future decrease (or increase)
in the loss value ∆ℓ(k), and how our decisions influence it.
A possible solution to this issue is to use traditional Deep Rein-
forcement Learning (DRL) approaches. For instance, Deep
Q-Learning algorithms would implicitly learn the probabilistic
dynamics of loss as a function of taken actions. However,
training DRL agents often requires very large datasets to
achieve satisfactory convergence, and may result in weak
generalization. Herein, we take a different approach, where
we build an ADP framework based on low-complexity neural
networks (NN) estimators of possible loss trajectories with a
finite time horizon. Second, in view of the number of possible
actions, the learning orchestrator has to identify a subset of
actions to evaluate at each epoch. Such challenges are dealt
with in Sec. IV and Sec. V, respectively.

IV. ESTIMATING THE PERFORMANCE OF LEARNING

As discussed in Sec. III-B, neither of the quanti-
ties contributing to the loss evolution (λchange(k, m, m′)
and λrun(k, m, n)) is known exactly. We thus introduce esti-
mators for ∆ℓ(k). Specifically, for λrun(k, m, n):
• an expected-value estimator λ̂run

exp(k,m, n) of the loss
reduction value;

• a robust estimator λ̂run
rob(k, m, n), such that

λrun(k, m, n) ≤ λ̂run
rob(k, m, n) with high probability.

In general, λ̂run
exp(k,m, n) ≤ λ̂run

rob(k,m, n), i.e., the robust
estimator is the most pessimistic. Likewise, for λchange(k,
m, m′), we can introduce the corresponding estima-
tors, λ̂change

exp (k,m, m′) and λ̂change
rob (k,m, m′), with similar

properties.
To obtain both the expected-value and the robust estima-

tor, the learning orchestrator leverages the knowledge of the
number of classes of the datasets owned by the nodes and
makes use of NN architectures that can predict the expected
testing loss variation as well as determine the prediction
uncertainty. An approach we envision in the following is
to estimate λrun(k, m, n) by leveraging the Long Short-Term
Memory (LSTM) model in [29] and develop develop a similar,
yet simpler, branched architecture, as depicted in Fig. 3(a).
Importantly, alternative (possibly, more complex and/or com-
prehensive) approaches can be equally integrated with PACT.

The features fed to the first Fully Connected (FC) layer are
the time-independent parameters, i.e., the number of classes
and samples in the dataset of the nodes set currently training
the DNN model, and the pruning ratio F of the current

Fig. 3. Architecture of the λ̂run (a) and λ̂change (b) estimators.

Fig. 4. Example of true loss vs expected-value and robust estimators.

model. The input of the LSTM layer is the sequence of
loss values obtained so far in the DNN model. The LSTM
predicts the expected value of λrun(k,m, n) as well as two
associated quantiles (namely, 0.05 and 0.95), yielded by the
learning process in the next 5 epochs (thus, the FC layer output
size is 15, i.e., number of predicted metrics times number
of prediction steps). So doing, we obtain λ̂run

exp(k, m, n) and
λ̂run

rob(k,m, n), with the latter given by the 0.95 quantile.
As for λchange(k, m, m′), since the goal is to predict the loss

variation when we move from one DNN model to another,
we leverage regression, using the NN in Fig. 3(b). The NN
is fed the pruning ratio and the 5 loss values preceding the
model switch. The regression model predicts the expected
value λ̂change

exp (k,m, m′) as well as the 0.05 and 0.95 quantiles
in the next epoch of the DNN training, with λ̂change

rob (k, m, m′)
being again the 0.95 quantile.

We demonstrate our loss prediction in a small-scale exam-
ple, as summarized in Fig. 4. We seek to model the testing
loss attained by the AlexNet DNN over the CIFAR-10 dataset.
The training happens in three steps:

1) the full DNN is trained for 15 epochs at a node contain-
ing 16,500 samples of classes 1–6 and 1,000 of classes
7–10;

2) the model is pruned with fraction F1 = 0.25, and
handed over to a new node owing 12,500 samples
(representing all classes equally except 9–10, which are
underrepresented) for 25 more training epochs;

3) the model is pruned with F2 = 0.5 and handed over to a
third node, owing 7,500 uniformly-distributed samples.

In Fig. 4, the true loss is represented by the black line, while
the red line and the blue markers represent, respectively, the
predicted losses λ̂run and λ̂change. It is possible to notice how,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE/ACM TRANSACTIONS ON NETWORKING

even in this relatively small-scale example, the estimators
provide remarkably accurate predictions.

Finally, to improve the reliability of the robust estima-
tor, the learning orchestrator compares the values obtained
through the above NN to the lower bounds that are available
for λrun(k,m, n) [30, Theorem 1] and for λchange(k, m, m′)
[19, Sec. 3]. If they result to be lower than the bounds, the
latter are taken as robust estimators.

V. THE PACT ALGORITHM

The goal of PACT is to let the learning orchestrator effi-
ciently find high-quality solutions to the problem in (5), which,
as shown later, is NP-hard. PACT consists of three steps:

1) Create an expanded graph representing the possible
decisions and their outcome;

2) Using such a graph, identify a set of decisions deemed
feasible based on the estimated loss trajectory;

3) By combining learning- and energy-related information,
choose the best feasible solution to enact.

Step 1: Expanded graph: The expanded graph is a directed
graph built according to the following rules:
• The vertices represent the states of the system; they are

labeled with the current epoch k, model m(k) and set of
nodes n(k) being used, and the total elapsed time T (k)
and current loss ℓ(k). With the aim of identifying feasible
solutions, the latter quantity is computed using the robust
estimators λ̂change

rob (k, m, m′) and λ̂run
rob(k,m, n);

• Elapsed time and loss values are represented, respectively,
with resolutions γT and γℓ (e.g., if γℓ = 0.1, a vertex
with ℓ = 0.1 or 0.2 can exist, but not with ℓ = 0.15);

• A directed edge is drawn between two vertices if there
is an action making the system move from one corre-
sponding state to the other; each edge is labeled with the
energy consumption of the associated action, as in (2);

• Each vertex representing a feasible state of the system
(i.e., with ℓ(k) ≤ ℓmax and T (k) ≤ Tmax) is further
connected to a virtual node Ω through a zero-cost edge.

The graph is created through the CREATEEXPANDED-
GRAPH function, presented in Alg. 1. First, all vertices are
created, representing all valid combinations of model and set
of nodes, epoch, loss value, and elapsed time (Line 3–Line 6).
Note that the quantization parameters γℓ and γT (Line 4–
Line 6) allow us to control the trade-off between size of the
graph and quantization error.

For each vertex v, the effect of taking action a from vertex v
is determined by computing the resulting elapsed time and the
required energy (Line 12–Line 13). If either is infinite, then
taking action a while in state v is impossible, and we move on
to the next action. Otherwise, the loss ℓ′ resulting from taking
the action is computed using the robust estimator (Line 16).
Now, tuple (k + 1, m′, n′, ℓ′, T ) would describe the state the
system lands on after performing a from v; however, due to
the way the vertices are created (i.e., using γℓ and γT ), such
a tuple may not correspond to a vertex in V . Accordingly,
in Line 17–Line 18, ℓ′ and T ′ are cast into integer multiples
of γℓ and γT . Then, vertex v′ representing the new state is
identified (Line 19), and an edge from v to v′ is added using

Algorithm 1 Creating the Expanded graph
1: function CREATEEXPANDEDGRAPH
2: V ← {Ω} ▷ set of vertices
3: for all m ∈M, n ∈ N do
4: for all k ∈

[
1, 2, . . . , ⌈∗⌉Tmax

γT

]
do

5: for all ℓ ∈ [0, γℓ, 2γℓ, . . . , ℓ(0)] do
6: for all T ∈ [0, γT , 2γT , . . . , Tmax] do
7: v ← (k, m, n, ℓ, T )
8: V ← V ∪ {v}
9: E ← ∅ ▷ set of edges

10: for all v = (k,m, n, ℓ, T )∈V do
11: for all a = (m′, n′) ∈ A do
12: T ′ ← T+τ change(m, n,m′, n′)+τ run(m, n)
13: E ← ϵchange(m, n,m′, n′)+ϵrun(m′, n′)
14: if T ′>Tmax ∨ E =∞ then
15: continue ▷ infeasible, skip this action
16: ℓ′ ← ℓ+λ̂change

rob (k, m, m′)+λ̂run
rob(k, m, n′)

17: ℓ′ ← γℓ⌈∗⌉ ℓ′

γℓ

18: T ′ ← γT ⌈∗⌉ T ′

γT

19: v′ ← (k+1, m′, n′, ℓ′, T ′)
20: E ← E ∪ {(v, v′, weight = E)}
21: if ℓ ≤ ℓmax∧T≤Tmax then
22: E ← E ∪ {v,Ω} ▷ feasible state
23: return G = (V, E)

Fig. 5. Example of the PACT expanded graph, with resolution values
γT = 0.1 and γℓ = 0.1, learning target ℓmax = 0.25, and time limit
Tmax = 1.5. Edge colors denote switches across subsequent epochs: node
only (solid green), model only (solid purple), both (dashed blue), neither
(dotted black).

the appropriate energy value E as its weight. Finally, if v is
feasible, v is connected to Ω (Line 22).

Fig. 5 presents an example of expanded graph. The initial
vertex is associated with epoch k = 0, model m(0) = m0,
node n(0) = n0, loss ℓ(0) = 1 and elapsed time T (0) =
0. The learning target is ℓmax = 0.25 and the time limit
is Tmax = 1.5. Also, the resolution values are set to γT =
0.1 and γℓ = 0.1. From the current state, it is possible
to change the node (switching to more capable n1), model
(switching quicker-converging m1), both, or neither; such
actions are represented (resp.) by solid green, solid purple,
dashed blue, and dotted black edges in the figure. Different
combinations of possible switches yield different combinations
of loss and elapsed time, only one of which – the bottom, pink
vertex – is feasible, hence, connected to Ω.

Step 2: Feasible paths: Next, PACT uses the expanded graph
to identify a set of paths deemed feasible; the first edge of such
paths represents a feasible action. To mitigate the impact of
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Algorithm 2 Finding Feasible paths
1: function FINDFEASIBLEPATHS
2: vcurr ← (k, m, n, ℓ, T )
3: P ← ∅ ▷ feasible paths
4: for all v: (v, Ω) ∈ E do
5: p← shortestPath(vcurr, v)
6: P ← P ∪ {p, weight =

∑
e∈p weight[e]}

7: return P

potential errors in the loss estimation (which in principle may
jeopardize feasibility), the expanded graph is built using the
robust estimators of the loss variation, which guarantees that
all paths landing at a feasible node are, indeed, feasible with
high probability. Thus, using function FINDFEASIBLEPATHS
in Alg. 2, PACT seeks for paths that (i) start from the current
state, and (ii) arrive to a feasible state, i.e., to a vertex
connected to Ω. Specifically, for each vertex v corresponding
to a feasible state, it determines the shortest path (Line 5)
from the current state vcurr to v. Such paths are collected in
set P and associated with a weight corresponding to the sum
of weights (i.e., energy consumption) of their edges.

Step 3: Making the best decision: Once the set of feasible
paths, and associated feasible actions, has been identified,
using robust estimators to choose the decision to enact would
be overly cautious, possibly resulting in unnecessarily higher
energy costs. Thus, PACT accounts for two additional aspects
when selecting an action: an opportunity and a risk factor.
Such factors and the path weight are integrated into a score,
and the action corresponding to the lowest score is enacted.

For every path p ∈ P , scores are computed in the
CHOOSEACTION function in Alg. 3. The opportunity factor,
opp≥1, is given by the ratio of (i) the sum of the expected loss
to (ii) the sum of the robust loss associated with the edges in p
(Line 9). The intuition is to make it easier to choose actions
with a good expected loss, since the robust estimator may be
too pessimistic. As for the risk factor, its high-level purpose is
to avoid undoing decisions. To this end, PACT seeks for paths
on the expanded graph that lead from the first node of p, to a
vertex v∈V associated with the current model m (Line 10),
and thence to Ω. The risk factor, risk≥1, associated with
path p is then computed in Line 12 as the ratio of the minimum
among the weights of such paths to the weight of p (defined
in Alg. 2).

The score of path p is obtained in Line 13 as p’s weight,
divided by the opportunity factor, and multiplied by the risk
factor. Then the action associated with the minimum-score
path is returned. It is important to underline that the shortest
path going from the current state to Ω represents the lowest-
cost decision since edge weights are set to the energy cost of
the corresponding actions. Thus, the ultimate outcome of this
step is the action with the lowest energy cost to enact.

A. Problem and Algorithm Analysis

Property 1: The problem of optimizing (5) is NP-hard.
The proof is based on a reduction in polynomial time from the
generalized assignment problem (GAP) [31], which is known
to be NP-hard.

Algorithm 3 Choosing the Next action
1: function CHOOSEACTION
2: scores← {}
3: for all p ∈ P do
4: w ← 0 ▷ opportunity
5: Le← 0 ; Lr← 0
6: for all ((k,m, n, ℓ, T ), (k′, m′, n′, ℓ′, T ′)) ∈ p do
7: Le←Le+λ̂change

exp (k,m, m′)+λ̂run
exp(k, m, n′)

8: Lr←Lr+λ̂change
rob (k,m, m′)+λ̂run

rob(k, m, n′)
9: opp← Le/Lr

10: V ← {v ∈ V : v[1] = m} ▷ risk
11: Wr←minv∈V weight(shortestPath(p[1],Ω,via v)
12: risk← Wr/weight[p]
13: scores[p]← weight[p] · risk/opp
14: p⋆ ← arg minp∈P score[p]
15: return a = (p[1], [1], p[1], [2])

Furthermore, we prove that:
Property 2: PACT’s time complexity is polynomial.
Proof: PACT’s complexity is given by the sum of the

complexity of Alg. 1–Alg. 3. In Alg. 1, the first loop is
run at most |V| = MN⌈∗⌉Tmax

γT

2⌈∗⌉ ℓ(0)
γℓ

times, and the
second one for at most |V|MN times. Alg. 2 computes at
most |V|2 shortest paths, each of which (e.g., using Dijkstra’s
algorithm [32]) incurs a polynomial complexity. Alg. 3 iterates
over set P of feasible paths, whose number cannot exceed |V|
(as per Alg. 2, Line 4). Thus, Alg. 1 represents the domi-
nating contribution to PACT’s complexity, which proves the
thesis.

Importantly, Property 2 concerns the worst-case time com-
plexity of PACT, which in practice has substantially lower
complexity. In particular, the shortest-path routines used in
Alg. 2 and Alg. 3 have been heavily optimized, and perform
very efficiently in practice [32].

We can further prove that the space complexity of PACT’s
most complicated part, i.e., the CREATEEXPANDEDGRAPH
procedure in Alg. 1, does not exceed that of its output, i.e.,
the expanded graph itself.

Property 3: The space complexity of Alg. 1 is |V|2MN ,
with |V| = MN⌈∗⌉Tmax

γT

2⌈∗⌉ ℓ(0)
γℓ

Proof: The proof follows by inspection of Alg. 1. First,
we remark that no data structures are created within the
algorithm. Then we observe that at most one vertex is created
every time the first loop in the algorithm is ran, and at
most one edge is created every time the second loop is
ran. Considering (see also the proof in Property 2) that the
first loop runs at most |V| = MN⌈∗⌉Tmax

γT

2⌈∗⌉ ℓ(0)
γℓ

times,
and the outer loop at most |V|MN times, then the thesis
holds.

The intuitive meaning of Property 3 is that the space
complexity of Alg. 1 does not exceed that of its output,
further supporting the suitability of PACT even to large-scale,
complex scenarios.

At last, we prove the following property about how good
PACT’s solutions are at minimizing the objective in (5).
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Fig. 6. Federated scenario. Nodes of the same category form a cluster, within
which learning is performed in parallel, employing FedAvg; the aggregation
of the models is then performed by an FL coordinator. Over the clusters,
instead, the learning procedure takes place sequentially.

Property 4: If predictions are exact, their time horizon is
sufficiently long, and all ∆ℓ and ∆T values are integer
multipliers of γℓ and γT , then PACT is optimal.

Proof: The proof comes from inspection of Alg. 1–
Alg. 3, which consider all possible options, hence, no feasible
solutions are ignored. Further, the shortest-path problem in
Alg. 2 and Alg. 3 can be efficiently solved to the optimum.
If the hypothesis holds, then the ceiling operators in Alg. 1
(Line 17 and Line 18) have no effect, hence, there is no
possible source of suboptimality.

An important consequence of Property 4 is that, by vary-
ing γℓ and γT , we can effectively trade off how close to the
optimum the solution gets with PACT’s time complexity.

VI. NUMERICAL RESULTS

We assess PACT’s performance focusing on a smart
factory-based application under two different learning
scenarios:
• a sequential learning scenario, like the one depicted in

Fig. 1, where models are passed among individual nodes;
• a federated learning scenario, as depicted in Fig. 6, where

clusters of nodes are employed instead.
In both scenarios, we perform an image classification task,
using the CIFAR-10 dataset.

Importantly, the PACT methodology – e.g., building the
expanded graph and finding a shortest path therein – works
unmodified in both scenarios. Needless to say, the available
actions (i.e., node-selection and model-switching decisions),
as well as their effects on the learning quality and energy
consumption, are different and are estimated as discussed in
Sec. IV. An example of possible decisions and their effect is
presented in Tab. I.

Sequential Scenario: We consider three nodes, each belong-
ing to a different category, namely, gold, silver or bronze. They
have respectively 17,500, 12,500, and 7,500 samples from the
CIFAR-10 dataset. While the bronze node has a balanced data
distribution, the gold and the silver ones have unbalanced
datasets: the gold node has 2,750 for each of classes 1–6
and 250 for each of classes 7–10; the silver node has
1,500 samples for each of classes 1–8 and 250 for each
of classes 9–10; finally, the bronze node has 750 samples
per class. In this situation, the most capable nodes do not

TABLE I
EXAMPLE ACTIONS AND THEIR EFFECTS IN THE SEQUENTIAL

LEARNING AND FEDERATED LEARNING SCENARIOS

necessarily possess the highest-quality datasets, hence, trivial
decisions (e.g., always using the gold node) are unlikely
to yield good performance. Therefore, learning optimization
strategies like PACT becomes necessary.

Learning always starts with the gold node training the full
model. Then either one or two pruning steps (i.e., two or
three models) are considered, with pruning being performed
as described in Sec. II. In the first case, after K1 epochs, the
model is pruned with pruning ratio F1 and handed over to
the silver or the bronze node, which continues the training.
If instead two pruning steps are performed, then the train-
ing at the silver node is interrupted after K2 epochs, after
which the model is pruned with fraction F2 and sent to the
bronze node. Two convolutional DNNs are considered, namely,
VGG-19 and AlexNet [33].

Importantly, different combinations of F1 and F2 corre-
spond to different elements of the models set M, hence,
setting those values is equivalent to selecting the models to use.
Recall that model pruning also implies switching to a different
node, so that more complex models are always matched with
more capable nodes. Specifically, the training time and energy
values used for the gold, silver, and bronze nodes reflect (resp.)
the capabilities of NVIDIA Ampere A100 [34], NVIDIA
RTX A4000 [35], and Raspberry Pi’s Videocore 6 [36]
GPUs. Finally, for simplicity, we set a very long time limit
of Tmax = 1, 000 time units. Notice how the energy cost
associated with nodes is incurred only while the nodes them-
selves are used, i.e., the energy consumption of idle nodes is
neglected [21], [22].

Federated Scenario: In the FL scenario, we replace indi-
vidual nodes with clusters, each including two nodes and
a learning coordinator. The latter performs model averag-
ing after each epoch following the FedAvg algorithm [37],
on the grounds that it is the vanilla approach to FL, hence,
provides the easiest-to-replicate results. Note that the FL
coordinator (running FedAvg) and the learning orchestrator
(running PACT) are two different logical roles, which may
not necesarily be taken on by the same physical node.

A. Loss Prediction Implementation

As described in Sec. IV, we use a DNN and an LSTM
to estimate (resp.) λrun and λchange. To capture the difference
between different settings, we train separate models for each
of our scenarios; further, in the sequential scenario, we train
separate models for the cases when the VGG and AlexNet
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Fig. 7. For sequential scenario with VGG: cost for different values of ℓmax (left); evolution of loss (center) and cost (right) when ℓmax = 1.05.

TABLE II
LOSS PREDICTION: MEAN AND STANDARD DEVIATION

FOR ALL SCENARIOS

networks are used. Because we are interested in estimating
the whole distribution of the loss, we employ a customized
loss function given by the summation of the mean square error
(MES) and a tilted loss term [38] ensuring that all quantiles
are correctly estimated.

The prediction quality achieved is reported in Tab. II,
summarizing the prediction metrics we consider, namely:
(i) the mean absolute error (MAE); (ii) the mean interval
length (MIE), i.e., the average width of the prediction interval;
(iii) the interval coverage percentage (ICP), i.e., the fraction
of true values falling within the relative prediction interval.
The latter two metrics are linked with the quality of quantile
predictions. From the table, it clearly emerges that the loss
prediction is very good in all scenarios, a further evidence of
the validity of the PACT solution strategy and the underlying
intuition.

B. PACT Performance

1) Benchmark Solutions: We compare the performance
of PACT against the following benchmarks: (i) Optimum:
the optimal decisions yielding the minimum cost, found
through brute-force search and using the true loss evolution;
(ii) NoSwitch: no model switching occurs, meaning that only
the full model is used; (iii) OneSwitch: only two models are
used. For both the NoSwitch and the OneSwitch solution,
we consider the best decisions they yield for each value
of ℓmax. Specifically, for OneSwitch, we consider the lowest
energy cost, feasible strategy changing once, considering all
combinations of models and changing epochs. Note that most
state-of-the-art works [14], [39], [40] envision pruning once,
hence, their performance would be represented by OneSwitch.

2) Sequential Scenario, VGG Model: First, we evaluate
PACT’s effectiveness, i.e., how the cost (i.e., the consumed

energy E(K)) it yields compares to that of the benchmarks.
To this end, Fig. 7(left) shows the cost associated with each
strategy, for different loss targets ℓmax. We can observe that the
NoSwitch strategy is the worst one and does not allow reaching
a low value of ℓmax, as only the full model is used. Recall
that the full model is trained by the gold node, which has
many data samples, but distributed in an extremely unbalanced
manner, as 4 out of 10 classes are highly under-represented.
Excluding the NoSwitch strategy, when ℓmax is relatively high,
all strategies result in very similar performance; on the other
hand, they diverge as ℓmax decreases, i.e., as the conditions
become more challenging. In particular, PACT closely matches
the optimum, to the point that the corresponding curves almost
overlap, and outperforms OneSwitch solution – which is the
approach followed in most state-of-the-art works. Switching
across multiple models and nodes is indeed beneficial when
learning constraints are tight.

Fig. 7(center) depicts the time evolution of ℓ(k) for ℓmax =
1.05. Note that the peak due to the loss variation λchange

incurred upon model switching is not always present, as the
testing loss can decrease even when switching the model.
This is especially true when the first switching occurs early,
as depicted by the two curves with K1 = 2, relative to
the PACT and the optimal solutions. Remarkably, PACT
makes virtually the same decisions as the optimal policy,
i.e., performs the model switching at (almost) the same
times. OneSwitch can only switch once, hence, does so later.
Interestingly, all the strategies achieve the learning target at
almost the same time. However, we recall that cost is the
optimization objective (5), while time is a mere constraint.
Accordingly, Fig. 7(right) highlights how the optimum indeed
takes slightly shorter than PACT to reach the objective and
does so at a (marginally) lower cost (see the position of the last
marker on the y-axis). On the other hand, OneSwitch solution,
despite taking a comparable time, requires much more energy
to reach ℓmax.

Fig. 8 sheds further light on how different strategies use the
network infrastructure. Plots therein show how much energy
is spent running each of the distinct models under the dif-
ferent strategies; different plots correspond to different values
of ℓmax, that are 0.95, 1.05, and 1.25 (resp.). Consistently with
Fig. 7(right), when ℓmax is high, NoSwitch requires the larger
amount of energy, i.e., higher cost, while PACT and optimum
incur almost the same cost. As for OneSwitch, the energy
cost is between the one of PACT and NoSwitch. As shown
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Fig. 8. PACT vs. benchmark strategies for sequential scenario with VGG: energy cost incurred by using different models when ℓmax = 0.95 (left),
ℓmax = 1.05 (center), ℓmax = 1.25 (right).

Fig. 9. Impact of γℓ on PACT’s performance for sequential scenario with VGG: energy cost for different values of ℓmax (left); evolution of loss (center)
and cost (right) when ℓmax = 1.05.

Fig. 10. Impact of quality of λ̂run for the sequential scenario with VGG: PACT’s energy cost for different values of ℓmax (left); loss (center) and cost (right)
evolution for ℓmax = 0.9.

in Fig. 8(center), for a medium value of ℓmax, NoSwitch
cannot achieve the target loss value. Thus, the OneSwitch
solution requires the highest amount of energy, while PACT
and optimum decisions entail a very similar cost, even if the
decisions are a bit different, as depicted in Fig. 8(center) by
the different costs of models B and D. When ℓmax is low,
as in Fig. 8(left), the difference between PACT and OneSwitch
emerges more clearly: PACT requires more energy and takes
different decisions, employing model B more. Further, in this
case, also OneSwitch solution cannot achieve the desired ℓmax.

Next, we assess the impact of γℓ and γT , which control
the trade-off between PACT’s complexity and representation’s
granularity. Fig. 9(left) shows that a larger value of γℓ does
decrease PACT’s performance: indeed, the minimum value
of ℓmax that can be achieved significantly increases with γℓ.
However, even increasing γℓ by an order of magnitude, PACT
still outperforms OneSwitch for large ℓmax, while with lower
ℓmax it is comparable to, or slightly worse than, OneSwitch.

Fig. 9(center), referring to the case ℓmax = 1.05, provides
some insight on how a higher γℓ affects the decisions made
by PACT. Specifically, the higher the value of γℓ, the later
switches are made. The reason lies in Line 17 of Alg. 1,

and more exactly in the ceiling operator therein. Increasing γℓ

leads to overestimating the loss resulting from a particular
action, hence, to assume that further gains could be made
under the current model, while that is not the case. For the
same value of ℓmax, Fig. 9(right) highlights how these later
switches result in a higher cost and time.

Finally, we further assess how well PACT can deal with loss
estimation errors, by adding a bias to the prediction output
for the first model, namely, the full one. Fig. 10(left) shows
that positive and negative biases yield similar performance
decrease. Also, PACT outperforms OneSwitch even in the
presence of a bias. Fig. 10(center), referring to the case ℓmax =
0.9, shows how biases on the loss variations prediction
influence PACT’s decisions. Consistently with Fig. 9(center),
underestimating the full model’s performance leads to a later
switch, while overestimating it has the opposite effect. It is
also worth noting the times of the second switch: PACT can
potentially compensate for the misguided decisions it made
earlier. This happens, for instance, when the bias is equal
to 0.05, as K1 and K2 are respectively lower and larger w.r.t.
the case with no bias. Fig. 10(right) underlines, similarly to
Fig. 9(right), that adding a bias term leads to higher cost and
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Fig. 11. PACT and benchmark strategies for sequential scenario with AlexNet: cost for different values of ℓmax (left); evolution of the loss (center) and
cost (right) when ℓmax = 1.1.

Fig. 12. PACT vs. benchmark strategies for sequential scenario with AlexNet: energy cost incurred by using different models when ℓmax = 0.8 (left),
ℓmax = 1 (center), ℓmax = 1.2 (right).

Fig. 13. Impact of γℓ on PACT’s performance for sequential scenario with AlexNet: energy cost for different values of ℓmax (left); evolution of the loss
(center) and cost (right) when ℓmax = 1.15.

time. This is a very important result, as it highlights how PACT
is robust to possible errors in estimation techniques such as
that demonstrated in Sec. IV.

3) Sequential Scenario, AlexNet Model: Fig. 11(left) shows
the cost versus the target loss, for PACT and for each of the
benchmark solutions. As in Fig. 7(left), PACT decisions are
close to the optimal ones and outperform the other solutions.

Fig. 11(center) shows the loss trend as a function of the
elapsed time when setting ℓmax = 1.1: the PACT solution
takes slightly longer than the optimal one, but still less than
the other two solutions. Nevertheless, in general, the time
necessary to achieve the desired ℓmax is similar for all the
solutions. On the other hand, as depicted by Fig. 11(right), the
incurred cost changes among the different strategies: PACT’s
cost is slightly higher than the optimal one, but lower than the
energy cost entailed by OneSwitch and NoSwitch.

Fig. 12, similarly to Fig. 8, shows how much the different
nodes are exploited, considering three different values of
ℓmax, respectively 0.8, 1, and 1.2. When the requirements
are stricter, i.e., ℓmax is lower, the NoSwitch and OneSwitch
solutions cannot find any feasible solution and generally the
energy consumption increases. Again, when the constraints

are tighter, PACT requires more energy than the optimal
solution.

Fig. 13(left) shows the impact of γℓ: when ℓmax decreases,
the effect of increasing γℓ is noticeable and it may be not
possible to reach the same ℓmax value as the optimum. In this
case, unlike in the VGG results of Fig. 9(left), when ℓmax

decreases, OneSwitch outperforms first the solution obtained
with γℓ = 10−3 and then the one with γℓ = 5·10−3. Regarding
Fig. 13(center) and Fig. 13(right), we can draw the same
conclusions as for Fig. 9(center) and Fig. 9(right).

Fig. 14(left) underlines the impact of γT : also in this case,
PACT outperforms the OneSwitch solution in the presence
of a bias. Unlike Fig. 10(center), even if the effect of a
bias on K1 decision is the same, a negative bias value leads
to a solution requiring less time; however, as depicted by
Fig. 14(right), the energy cost always increases when applying
a bias.

4) Federated Scenario, VGG Model: Fig. 15, Fig. 16,
Fig. 17, and Fig. 18 depict the results obtained in the federated
setting. Generally, it is possible to draw the same conclusions
as for the sequential scenario. Also, Fig. 18(center) shows that
for ℓmax = 1.1 applying a bias equal to 0.05 does not influence
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Fig. 14. Impact of quality of λ̂run for sequential scenario with AlexNet: PACT’s energy cost for different values of ℓmax (left); loss (center) and cost (right)
evolution for ℓmax = 0.8.

Fig. 15. PACT and benchmark strategies for the federated scenario with VGG: cost for different values of ℓmax (left); evolution of the loss (center) and
cost (right) when ℓmax = 1.1.

Fig. 16. PACT vs. benchmark strategies under the federated scenario with VGG: energy cost incurred by using different models when ℓmax = 1.05 (left),
ℓmax = 1.2 (center), and ℓmax = 1.4 (right).

Fig. 17. Impact of γℓ on PACT’s performance for the federated scenario with VGG: energy cost for different values of ℓmax (left); evolution of the loss
(center) and cost (right) when ℓmax = 1.2.

PACT’s decision. Still considering the same bias value, looking
at Fig. 18(left), we can notice that the trend is not monotonic.
Indeed, when ℓmax = 1.15, the incurred cost is higher than
for ℓmax = 1.1. This result might be counterintuitive, but the
explanation is straightforward. When ℓmax = 1.15, applying a
bias equal to 0.05 leads to a very inefficient K1 choice, as it
is necessary to spend a very high cost to achieve the desired
loss value. Applying the same bias when ℓmax = 1.1, instead,
it has a much lower effect on the decision and, thus, on the
cost, which is lower than the one in the previous case.

VII. RELATED WORK

Our work is related to four main research areas, namely:
approaches to transform an ML model into a different one,
hybrid learning strategies that combine different techniques,
resource-aware distributed ML, and distributed learning char-
acterization.
Model switching and compression. It is often necessary to
transform a pre- or partially-trained model into a simpler
and/or smaller one, preserving (as much as possible) the
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Fig. 18. Impact of quality of λ̂run for the federated scenario with VGG: PACT’s energy cost for different values of ℓmax (left); loss (center) and cost (right)
evolution for ℓmax = 1.1.

learning accuracy. The two most popular techniques for model
compression are knowledge distillation (KD) and pruning.
Both techniques are used to achieve model compression, i.e.,
to obtain small-size models exhibiting the same learning
performance as a larger one. KD [14] is a family of learning
techniques predicated on the transition from a larger teacher
model to a smaller (hence, simpler) student one. The student
model does not learn directly from data, but mimics the
behavior of the teacher model. Such learning exploits not
only the decisions of the teacher model, but also the so-
called dark knowledge embedded in its parameters. As shown
in [41], additional properties such as regularization are also
transferred from teacher to student models. Several works
combine KD with deep reinforcement learning (RL), to learn
the value of each action, as the actions themselves are taken.
Studies focus on task generalization [39], in which models
are transferred across nodes in charge of different tasks, and
knowledge is distilled from a task to another. In the same
context, [40] focuses on the heterogeneity of data at different
nodes, and on mitigating its impact on learning performance.
Further, [42] leverages KD to produce in a generative adver-
sarial neural network (GANN) fashion, additional training
data. [12] follows a similar approach, using KD to achieve
domain adaptation in scenarios where no data from the
source domain, but only a model trained therein, is available.
A different aspect of KD is tackled by [43] and [44], aiming at
distilling multiple single-task policies into a single, multi-task
policy.

Model pruning follows instead the more direct approach
of removing some of the coefficients from a model, thus
reducing its size and complexity. It is based upon the so-called
lottery ticket hypothesis [45], assuming that very few of the
parameters of a model actually impact its performance. Once
such parameters can be identified, the others can be pruned
away, resulting in a DNN with the same performance as the
original one, but a much lower complexity. Several works
have addressed iterative pruning where every few epochs the
weights expected to least affect performance are pruned [46],
[47]. A hardware-friendly scheme is proposed, e.g., in [48],
with the aim to execute DNNs on low-end hardware in near
real time. [20] brings privacy into the picture, highlighting how
simplistic pruning may expose user data. A very effective tech-
nique is also structured pruning [13], which removes whole
parts of a DNN (e.g., rows or columns of the parameter matrix)
instead of individual ones, thus offering better efficiency,

than plain pruning, at the cost of more complex decisions to
make.

Pruning can be combined with KD, as envisioned in [49],
where it is shown that pruned networks are easier to distill.
A related problem is that pruning affects the performance
of different layers to a different extent. To cope with this,
[50] proposes using pruning on some DNN layers of the
ResNet architecture, and compressing the others via KD. Sim-
ilarly, in [51] each layer is pruned and distilled independently
and in a parallel, to achieve faster distillation. Finally, recent
work [52] proposes the use of RL to control pruning. In a
similar spirit, [53] automatically looks for the best pruning
ratio to use at every layer of a DNN, so as to simplify (hence,
speed-up) learning without hurting accuracy.
Hybrid approaches. Combining different models towards a sin-
gle learning task is a fairly uncommon approach. Some works
explore how to alternate distributed learning schemes such as
Split Learning (SL), FL, and KD. An example is [54], which
splits the DNN architecture into head and tail, and replaces
the former with its distilled version. [55] seeks to reduce the
network delay incurred by FL by performing communication
and local learning concurrently, at the price of the global
model being behind local ones by several epochs. In a similar
setting, [56] optimizes the computation, communication, and
cooperation aspects of FL in resource-constrained scenarios.
[57] leverages RL to identify the best split of a learning task
(e.g., the layers of a DNN) across the available network nodes.

A related issue is early exit, aiming at making inference
faster by skipping some of the DNN layers if a certain
outcome, e.g., a certain classification decision, can be reached
with high certainty. This is achieved [58] by giving the DNN a
Y-shaped topology, with one branch being a lot simpler (e.g.,
with a smaller number of neurons) than the other. The simpler
branch is ran first and, if the results are decisive enough
for a certain sample, then the more complex branch can be
altogether dispensed with. [59] targets highly heterogeneous
scenarios where learning one model for all devices may indeed
be suboptimal, and proposing a personalized learning where
a different model is trained at each device; layers that are
common among models are then trained in an FL fashion.
Resource-aware distributed ML. A major concern of dis-
tributed ML is the nodes heterogeneity, in terms of data
quality, data quantity, available resources, and connectivity.
In the context of FL, several works focus on selecting the
participating nodes, accounting for their speed [60], [61],
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quantity [59], [59], [61], [62] and quality [62], [63] of local
data, the speed and reliability of their network [55], [60] as
well as trust [64]. The basic trade-off balances the need to learn
more during each epoch (achieved primarily by adding more
data from more nodes) with the need to shorten the epoch
duration. Some studies seek to assign a trust score to each
node, combining its speed and the likelihood to report inac-
curate information [64]. Recent studies [65] have established
a benchmark system, including datasets and helper Python
classes, to easily compare FL strategies. Emulated testbeds
for distributed ML are also emerging. A prominent example
is [66], allowing the study of novel ML schemes and strategies
performance over real, network-edge-class hardware. A related
trend is represented by novel datasets, with tried-and-tested
options like CIFAR [16] complemented by more challenging
alternatives; e.g., [67] describes a dataset containing hundreds
of thousands of images of numbers taken from Google Maps.

Other works, e.g., [22], [68], target a more general scenario,
where DNN layers can be run, and possibly be duplicated,
at different nodes. This requires balancing the opportunity
to use fast learning nodes with the network delays resulting
from moving data between nodes. Both works jointly consider
learning time and energy consumption: in [22] they are part of
a combined objective, while in [68] the former is a constraint
and the latter the sole objective. Interestingly, recent work
(e.g., [69]) has aimed at creating energy-efficient DNN archi-
tectures, offering better trade-offs between energy efficiency
and learning effectiveness. For instance, [69] presents variants
of the MobileNet and ResNet architectures, achieving good
performance with a fraction of the parameters (hence, training
time) of their counterparts. Similarly, [70] proposes a family
of scalable DNN architectures for sound event detection,
suitable for scaling depending upon the available resources.
In the same spirit, the authors of [5] seek to improve FL by
dividing models into client- and server-side parts, with the
former providing personalized results for local datasets, and
the latter achieving high accuracy for out-of-distribution data.
A different approach is adopted in [71], dropping the usage
of deep NNs and finding instead that single-layer, wide NNs
perform as well as their counterparts. This has an impact on
how easy it is to run the learning task in parallel, as wide
NNs have fewer dependencies between parameters and are
thus easier to split across nodes.
Distributed learning characterization. Early work [72] studies
the convergence of distributed learning, identifying the latent
trade-off between involving more nodes (which means that
fewer epochs are needed to converge) and exploiting fewer,
faster nodes (which makes individual epochs shorter). The
experiments in [28] report a power-law behavior, with the
exponent depending upon the quantity of data, and the model
architecture shifting the error, but not reducing the exponent
itself. Other works focus on FL and derive exponential bounds
on the loss [30], [73]. Some studies focus on the overpa-
rameterized regime of DNNs, investigating, e.g., how many
parameters are needed for a network to be overparameter-
ized [25], [74], Specifically, [25] finds that the number of
required parameters grows quadratically with the data size
(number of samples and complexity thereof). Studies focusing

on KD are more rare. Examples include [75], which models
the teacher-to-student translation as a price to pay on the loss,
and [76] that provides a per-iteration characterization of KD.

Finally, we mention that a preliminary version of this work
has been presented in our conference paper [1], where however
only sequential learning was addressed and the results were
obtained using a single DNN.

VIII. CONCLUSION

In this paper, we addressed the problem of optimizing the
strategy for the distributed training of DNN models, by making
joint decisions about (i) model switching (e.g., pruning),
(ii) data selection, and (iii) node and resource allocation. Our
objective is to minimize the energy cost, subject to learning
quality and time constraints. In view of the problem NP-
hardness, we proposed an algorithmic framework called PACT,
following an ADP approach and leveraging both theoretical
results and the outcome of previous decisions to predict the
future training evolution. PACT has polynomial worst-case
complexity, and the decisions it makes can be arbitrarily close
to the optimum. We have further shown, through extensive
numerical evaluation, that PACT outperforms state-of-the-art
approaches and closely matches the optimum.
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