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Throughput is a main performance objective in communication networks. This paper considers a fundamental

maximum throughput routing problem — the all-or-nothing multicommodity flow (ANF) problem — in arbitrary

directed graphs and in the practically relevant but challenging setting where demands can be (much) larger
than the edge capacities. Hence, in addition to assigning requests to valid flows for each routed commodity, an

admission control mechanism is required, which prevents overloading the network when routing commodities.

Formally, the input for the ANF problem is an edge-capacitated directed graph 𝐺 = (𝑉 , 𝐸), where 𝑛 = |𝑉 |,
and 𝑘 source-destination node-pairs (𝑠𝑖 , 𝑡𝑖 ) of demand 𝑑𝑖 > 0 and weight 𝑤𝑖 > 0. The goal is to route a

maximum weight subset of the given pairs (i.e., the weighted throughput), respecting the edge capacities; a
pair (𝑠𝑖 , 𝑡𝑖 ) is routed if all of its demand 𝑑𝑖 is routed from 𝑠𝑖 to 𝑡𝑖 (this is the all-or-nothing aspect); splitting

(fractional) flows is allowed.

We make several contributions. On the theoretical side we present a bi-criteria approximation randomized

rounding framework for this NP-hard problem that achieves a constant approximation of the throughput while

only violating the edge capacities by a logarithmic factor. We present two non-trivial linear programming

relaxations that can be used in the framework. One is an exponential-size formulation (solvable in polynomial

time using a separation oracle) that considers a “packing” view and allows a more flexible approach, while

the other is a compact (polynomial-size) edge-flow formulation that allows for easy solving via standard LP

solvers. We prove the non-trivial "equivalence" of the two relaxations and highlight the advantages of each of

the two approaches. Via these, we obtain a polynomial-time randomized algorithm that yields an arbitrarily

good approximation on the weighted throughput while violating the edge capacity constraints by at most

an 𝑂 (min{𝑘, log𝑛/log log𝑛}) multiplicative factor. We also describe a deterministic rounding algorithm by

derandomization, using the method of pessimistic estimators.

We complement our theoretical results with a proof of concept empirical evaluation, considering a variety

of network scenarios. We study two different ways to solve the LP efficiently in terms of time and space: (𝑎)
by solving the compact ANF formulation directly using an off-the-shelf solver, and (𝑏) by approximately

solving the packing LP relaxation via a well-known multiplicative weight update (MWU) approach (based

on Lagrangean relaxation) or via a faster MWU-based heuristic called permutation routing. We highlight

the benefits of the ANF packing LP formulation by presenting some more general scenarios of interest to
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networking applications (such as routing along short paths or a small number of paths) that this formulation

allows.

1 INTRODUCTION
The study of routing and multicommodity flow problems is motivated by many real-world appli-

cations, e.g., related to the optimization of communication and traffic networks, as well as by the

crucial role flows and cuts play in combinatorial optimization [8]. In this paper, we are interested in

throughput optimization in the context of communication networks serving multiple commodities.

Throughput is a most fundamental performance metric in many networks [22], and we are particu-

larly interested in the practically relevant scenario where flows have certain minimal performance

or quality-of-service requirements, in the sense that they need to be served in an all-or-nothing
manner with respect to their respective demands.

Our problem belongs to the family of all-or-nothing (splittable) multicommodity flow problems.

In contrast to most existing literature, we consider a more realistic model in the following respects:

• The underlying communication graph can be directed. This is motivated by the fact that in

most practical communication networks (e.g., optical networks or wireless networks), the

available capacities in the different link directions can differ.

• A single commodity demand can be larger than the capacity of any single link or path. Con-

sider for example a bulk transfer, or the fact that traffic patterns are often highly skewed, with

a small number of elephant flows consuming a significant amount of bandwidth resources [29].

Only splittable flows can serve such demands.

• The total demand can be larger than the network capacity. To make efficient use of the given

network resources, we hence need a clever admission control mechanism, in addition to a

routing algorithm.

We define the All-or-Nothing (Splittable) Multicommodity Flow (ANF) problem as follows: It takes

as input a flow network modeled as a capacitated directed graph 𝐺 (𝑉 , 𝐸), where 𝑉 is the set of

nodes, 𝐸 is the set of edges, and each edge 𝑒 has a capacity 𝑐𝑒 > 0. Let 𝑛 = |𝑉 | and𝑚 = |𝐸 |. We

are given a set of source-destination pairs (𝑠𝑖 , 𝑡𝑖 ), where 𝑠𝑖 , 𝑡𝑖 ∈ 𝑉 , 𝑖 ∈ [𝑘]1, each with a given

(non-uniform) demand 𝑑𝑖 > 0 and weight𝑤𝑖 > 0. The edge capacities 𝑐𝑒 , the demands 𝑑𝑖 and the

weights𝑤𝑖 can be arbitrary positive functions on 𝑛 and 𝑘 , for any 𝑒 ∈ 𝐸 or 𝑖 ∈ [𝑘]. A valid set of

flows for commodities 1, . . . , 𝑘 in 𝐺 (i.e., a valid multicommodity flow), must satisfy standard flow

conservation constraints for each commodity 𝑖 , which imply that the amount of flow for commodity

𝑖 entering a node 𝑣 has to be equal to the flow for commodity 𝑖 leaving 𝑣 , if 𝑣 ≠ 𝑠𝑖 , 𝑡𝑖 . The load of an
edge 𝑒 , given by the sum of the flows for all commodities on 𝑒 , must not exceed the edge’s capacity

𝑐𝑒 . Commodity 𝑖 is satisfied if 𝑑𝑖 units of flow of this commodity can be successfully routed from 𝑠𝑖
to 𝑡𝑖 in the network. (See also our mixed integer program edge-flow formulation in Figure 3).

We aim to maximize the total profit of a subset of commodities that can be concurrently satisfied

in a valid multicommodity flow. Specifically, the goal is to find a subset 𝐾 ′ ⊆ [𝑘] of commodities

to be concurrently satisfied such that the (weighted) throughput, given by

∑
𝑖∈𝐾 ′𝑤𝑖 , is maximized

over all possible 𝐾 ′. The flow can be split arbitrarily along many branching routes (subject to flow

conservation and edge capacity constraints) and does not have to be integral.

The ANF problem was introduced in [10] as a relaxation of the classical Maximum Edge-Disjoint

Paths problem (MEDP) and is known to be NP-Hard and APX-hard even in the restricted setting of

unit demands and when the underlying graph is a tree [10, 16]. In directed graphs, even with unit

demands, the problem is hard to approximate to within an 𝑛Ω (1/𝑐) factor even when edge capacities

are allowed to be violated by a factor 𝑐 [13]. When demands can exceed the minimum capacity,

1
Let [𝑥 ] denote the set {1, . . . , 𝑥 }, for any positive integer 𝑥 .
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strong lower bounds exist even in very restricted settings [30]. Hence, the literature has followed a

bi-criteria optimization approach where edge capacities can be violated slightly. Namely, in this

paper we seek an (𝛼, 𝛽)-approximation algorithm: For parameters 𝛼 ∈ (0, 1] and 𝛽 ≥ 1, we seek a

polynomial-time algorithm that outputs a solution to the ANF problem whose throughput is at

least an 𝛼 fraction of the maximum throughput and whose load on any edge 𝑒 is at most 𝛽 times the
edge capacity 𝑐𝑒 , with high probability.

2
The parameter 𝛽 hence provides an upper bound on the

edge capacity violation ratio (or congestion) incurred by the algorithm.

1.1 Our Contributions
This paper revisits a fundamental maximum throughput routing problem, the all-or-nothing multi-

commodity flow (ANF) problem, considering a more general and practical setting where the network

topology can be an arbitrary directed graph, with arbitrary, non-uniform commodity demands that
can be much larger than the edge capacities, in contrast to most of the existing work in the literature.

This model is challenging as it not only requires a clever algorithm to efficiently route the splittable

commodities across the directed and capacitated network, but also an admission control policy.

We make several contributions. On the theoretical side, we present a bi-criteria approximation

randomized rounding framework for this NP-hard problem that achieves a constant approximation

of the throughput while only violating the edge capacities by a logarithmic factor. More specifically,

• We present two non-trivial ANF linear programming relaxations: One is an exponential-size

formulation (solvable in polynomial time using a separation oracle) that considers a “packing”
view and allows a more flexible approach, while the other is a strengthened relaxation of a

compact edge-flow mixed integer program (MIP) formulation that allows for easy solving

via standard LP solvers. We prove the non-trivial "equivalence" of the two relaxations and

highlight the advantages of each of the two approaches.

• Via these relaxations, we obtain a polynomial-time randomized rounding algorithm that yields

an (1 − 𝜖) throughput approximation, for any 1/𝑚 ≤ 𝜖 < 1, with an edge capacity violation
ratio (also referred to as congestion) of 𝑂 (min{𝑘, log𝑛/log log𝑛}), with high probability.

• We also present a deterministic rounding algorithm by derandomization, using the method of

pessimistic estimators. Contrary to most algorithms obtained this way, our derandomized

algorithm is simple enough to be also of relevance in practice.

In addition, our packing framework for ANF has interesting networking applications, beyond the

specific model considered in this paper. We discuss different examples, related to unsplittable flows,
flows that are split into a small number of paths, routing along disjoint paths for fault-tolerance,
using few edges for the flow, or routing flow along short paths.

As a proof of concept, we show how to engineer our algorithms for practical scenarios. To this end,
we couple three algorithms that allow one to compute the relaxed LP solutions efficiently, in terms

of time and space, with both our randomized and derandomized algorithms. The first algorithm

directly solves the compact ANF formulation using an off-the-shelf solver, in our case CPLEX; the

second algorithm approximately solves the packing LP relaxation via a well-known multiplicative
weight update (MWU) approach, based on Lagrangean relaxation; the last and third algorithm is

a faster MWU-based heuristic called permutation routing. We provide general guidelines about

the relative efficacy of these algorithms in specific real-world networks. As a contribution to the

research community, to ensure reproducibility and facilitate follow-up work, we will release our

implementation (source code) and experimental artefacts with this paper.

2
With probability at least 1 − 1/𝑛𝑐 , where 𝑐 > 0 is a constant.
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1.2 Novelty and Related Work
We presented preliminary results leading to this journal article at two conferences, at IEEE IN-

FOCOM 2019 [21] and at PERFORMANCE 2021 [7]. In particular, our compact edge-flow LP

formulation first appeared in [21] and led to (1/3,𝑂 (
√︁
𝑘 log𝑛))-approximation guarantees for the

ANF problem for the case of uniform demands and weights in directed graphs (note that while [21]

considered the case of uniform demands, there was also no restriction on how large these demands

can be when compared to the edge capacities). In this article, we significantly improve and gen-

eralize the randomized rounding framework outlined in [21], in several ways: (𝑎) We are able to

achieve an arbitrarily good throughput approximation bound; (𝑏) our bound on the edge capacity

violation ratio does not depend on the number of commodities 𝑘,3 and significantly improves on

the bound of𝑂 (
√︁
𝑘 log𝑛)in [21]; and (𝑐) we were also able to accommodate arbitrary non-uniform

demands and commodity weights. In addition, we provide a derandomized algorithm for the ANF

problem and a more flexible packing MIP formulation for the ANF problem that leads to several

interesting extensions of practical interest. Some of these ideas were sketched in our previous short

paper [7], however, without any technical details, proofs or evaluations.

Other work on bi-criteria (𝛼, 𝛽)-approximation schemes for the ANF problem that are closely

related to ours aims at keeping 𝛽 constant, while letting 𝛼 be a function of 𝑛. The work of Chekuri

et al. [10–12] is the most relevant and was also the first to formalize the ANF problem. Their

work implies an approximation algorithm for the general (weighted, non-uniform demands) ANF

problem in undirected graphs with 𝛼 = Ω(1/log
3 𝑘) and 𝛽 = 1. A requirement of their algorithm is

that max𝑖 𝑑𝑖 ≤ min𝑒 𝑐𝑒 . This is a strong assumption, since it eliminates all (undirected) networks𝐺

where the above assumption fails, such as for example complete graphs with unit edge capacities

and demands 2 ≤ 𝑑𝑖 ≤ 𝑛 − 1, for all 𝑖 . Hence, besides the fact that our approximation guarantees

differ from those of [10] (we have constant 𝛼 and logarithmic 𝛽 , while they achieve constant 𝛽 at

the expense of a polylogarithmic 1/𝛼), our results also apply to any directed graph𝐺 , without any
assumptions on how 𝑑𝑖 compares to individual edge capacities. We note that even in undirected

graphs and unit demands, the ANF problem does not admit a constant factor approximation if

only constant congestion is allowed [3]. Thus, obtaining a good throughput approximation even in

restricted settings requires 𝜔 (1) congestion violation.

The ANF problem gets considerably more challenging in directed graphs. Chuzhoy et al. [13]

show that, even if restricted to unit demands, the throughput is hard to approximate to within

polynomial factors in directed graphs when constant congestion is allowed. In [8], Chekuri and Ene

consider a variation of the ANF problem — the Symmetric All or Nothing Flow (SymANF) problem —

in directed graphs with symmetric unit demand pairs and unit edge capacities, also aiming at constant

𝛽 and polylogarithmic 1/𝛼 . In SymANF, the input pairs are unordered and a pair 𝑠𝑖 , 𝑡𝑖 is routed if

and only if both the ordered pairs (𝑠𝑖 , 𝑡𝑖 ) and (𝑡𝑖 , 𝑠𝑖 ) are routed; the goal is to find a maximum subset

of the given demand pairs that can be routed. The authors provide a poly-logarithmic throughput

approximation with constant congestion for SymANF, by extending the well-linked decomposition

framework of [11] to the directed graph setting with symmetric demand pairs. However, their

approach, like the one for undirected graphs is limited to the setting where max𝑖 𝑑𝑖 ≤ min𝑒 𝑐𝑒 . As

explained above, our work considers a more general network setting where demand pairs need

not be symmetric and demands values can exceed the capacities. Further, our goal is to obtain an

arbitrarily good approximation of the throughput while relaxing the capacity violation which is

different regime.

The Maximum Edge-Disjoint Paths (MEDP) [15] problem considers a set of pairs of nodes to be

routable if they can be connected using edge-disjoint paths and aims at finding the largest number

3
Unless 𝑘 is very small, 𝑜 (log𝑛/log log𝑛) in which case we get an approximation bound of 𝑘 .
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of routable pairs. The Unsplittable Flow Problem (UFP) is a generalization of MEDP to non-uniform

demands while requiring that all flow for a pair is routed along a single path. MEDP and UFP are

classical routing problems and have been extensively studied in VLSI routing where the constraint

of using a single path for connecting pairs is particularly important. MEDP and UFP tend to be

harder to approximate than ANF. For instance, even for unit demands and undirected graphs MEDP

is hard to approximate to almost a polynomial factor [14], and in directed graphs the problem is hard

to approximate to within an Ω(𝑚1/2−𝜖 )-factor [18]. MEDP and UFP have been mostly considered

under the no-bottleneck assumption, that is, when max𝑖 𝑑𝑖 ≤ min𝑒 𝑐𝑒 . Without this assumption

UFP becomes hard to approximate to within an𝑚1/2−𝜖
factor even for very restricted settings [30].

Finally, our work leverages randomized rounding techniques presented by Rost et al. [27, 28] in

the different context of virtual network embedding problems (i.e., in their context, flow endpoints

are subject to optimization).

1.3 Organization
The remainder of the paper is organized as follows. We introduce our packing framework in

Section 2 and the compact edge-flow formulation in Section 3. The multiplicative-weight-update

(MWU) algorithm is described in Section 4, our randomized rounding algorithm in Section 5, and

our derandomized algorithm in Section 6. We discuss more general applications of our packing

framework in Section 7. We report on simulation results in Section 8, and conclude in Section 9.

2 A PACKING FRAMEWORK FOR ANF
We develop two non-trivial mixed integer programming (MIP) formulations for the ANF problem,

presented in this section and in Section 3. In our approach, we compute their linear program-

ming (LP) relaxation solutions in polynomial time and then convert these solutions into integer

solutions via appropriate randomized rounding. In this section we present the first such MIP formu-

lation, that takes a “packing” view of the ANF problem and allows for a more flexible approach, as

we discuss below and in Section 7. In this formulation, we will be packing an entire flow assignment

for each commodity 𝑖 , selected from the set of all possible valid flows between 𝑠𝑖 and 𝑡𝑖 . Since

the number of possible flows will be exponential, this formulation has exponential size, but we

show that its LP relaxation can still be solved in polynomial time via a separation oracle. This

is akin to use the path formulation for flows rather than the edge-based flow formulation. This

perspective allows one to easily see why the randomized rounding framework for rounding paths

easily generalizes to rounding “flows.”

Recall that the input is a directed graph 𝐺 = (𝑉 , 𝐸), with 𝑛 = |𝑉 | and𝑚 = |𝐸 |, and with edge

capacities 𝑐 : 𝐸 → Z+ and 𝑘 demand pairs (𝑠1, 𝑡1), . . . , (𝑠𝑘 , 𝑡𝑘 ). Each demand pair 𝑖 has an associated

non-negative weight𝑤𝑖 and a non-negative integer demand 𝑑𝑖 . We say that 𝑓 : 𝐸 → R+ is a valid
flow for pair 𝑖 if 𝑓 routes 𝑑𝑖 units from 𝑠𝑖 to 𝑡𝑖 in𝐺 and respects the edge capacities. Note that if pair

𝑖 cannot be routed in isolation in𝐺 then we may as well discard it (since there are no valid flows for

𝑖). Let F𝑖 denote the set of all valid flows for pair 𝑖 . Each F𝑖 is not necessarily a finite set. However,

we can restrict attention to a finite set of flows by considering the polyhedron of all feasible 𝑠𝑖-𝑡𝑖
flows in 𝐺 and considering only the finitely many vertices of that polyhedron; any valid flow can

be expressed as a convex combination of the flows defined by the polyhedron’s vertices.

We now describe a mixed integer programming formulation that captures the ANF problem.

This formulation is very large: In general it can be exponential in 𝑛,𝑚 and 𝑘 . For each 𝑖 , we have a

binary variable 𝑥𝑖 to indicate whether commodity 𝑖 is routed or not. For each 𝑖 and each valid flow

𝑓 ∈ F𝑖 , we have a variable 𝑦 (𝑓 ) to indicate the fraction of 𝑥𝑖 that is routed using the flow 𝑓 . For a

flow 𝑓 we let 𝑓 (𝑒) denote the amount of flow on 𝑒 used by 𝑓 ; note that 𝑓 (𝑒) is fixed, for each 𝑓 and
𝑒 , and hence is not a variable. The following lemma is easy to see.
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max

𝑘∑︁
𝑖=1

𝑤𝑖𝑥𝑖∑︁
𝑓 ∈F𝑖

𝑦 (𝑓 ) = 𝑥𝑖 1 ≤ 𝑖 ≤ 𝑘

𝑘∑︁
𝑖=1

∑︁
𝑓 ∈F𝑖

𝑓 (𝑒)𝑦 (𝑓 ) ≤ 𝑐 (𝑒) 𝑒 ∈ 𝐸

𝑥𝑖 ∈ {0, 1} 1 ≤ 𝑖 ≤ 𝑘
𝑦 (𝑓 ) ≥ 0 𝑓 ∈ F𝑖 , 1 ≤ 𝑖 ≤ 𝑘

(𝑎)

max

𝑘∑︁
𝑖=1

𝑤𝑖

∑︁
𝑓 ∈F𝑖

𝑦 (𝑓 )∑︁
𝑓 ∈F𝑖

𝑦 (𝑓 ) ≤ 1 1 ≤ 𝑖 ≤ 𝑘

𝑘∑︁
𝑖=1

∑︁
𝑓 ∈F𝑖

𝑓 (𝑒)𝑦 (𝑓 ) ≤ 𝑐 (𝑒) 𝑒 ∈ 𝐸

𝑦 (𝑓 ) ≥ 0 𝑓 ∈ F𝑖 , 1 ≤ 𝑖 ≤ 𝑘
(𝑏)

Fig. 1. (𝑎) Mixed integer programming formulation for ANF based on “flow” variables; (𝑏) its LP relaxation.

Lemma 2.1. The formulation shown in Fig 1(a) is an exact formulation for the ANF problem.

We will now focus on solving and rounding the LP relaxation of the preceding formulation; we

simplify it by eliminating the variables 𝑥𝑖 . See Fig 1(b).

2.1 Solving the Packing LP Relaxation
It is not at first obvious that the LP relaxation of the ANF MIP can be solved in polynomial time.

There are two ways to see why this is indeed possible. One is to show via the Ellipsoid method that

the dual has an efficient separation oracle for the dual LP and the other is to describe an equivalent
compact (polynomial-size) formulation to the ANF LP. In this section, we will present the former

approach, which gives us a more flexible formulation that leads to interesting extensions and that

also leads to simpler proofs. In Section 3, we will present our strengthened compact edge-flow

formulation, of size polynomial in𝑛 and𝑘 , and show that its relaxation is equivalent to the relaxation

of the formulation in Figure 1(b). The benefits of the compact formulation are that it directly leads

to simple randomized and derandomized algorithms, that can be efficiently implemented, as we

show in Section 8.

In Figure 2, we present the dual LP to the formulation in Figure 1(b). There are two types of

variables: First, for each of the capacity constraints, we associate a dual variable ℓ𝑒 and for each

constraint limiting the total flow to 1 we associate a dual variable 𝑧𝑖 . (Recall that the value 𝑓 (𝑒) is a
constant and not a variable.)

min

∑︁
𝑒∈𝐸

𝑐 (𝑒)ℓ𝑒 +
𝑘∑︁
𝑖=1

𝑧𝑖

𝑧𝑖 +
∑︁
𝑒∈𝐸

𝑓 (𝑒)ℓ𝑒 ≥ 𝑤𝑖 1 ≤ 𝑖 ≤ 𝑘, 𝑓 ∈ F𝑖

ℓ𝑒 ≥ 0 𝑒 ∈ 𝐸
𝑧𝑖 ≥ 0 1 ≤ 𝑖 ≤ 𝑘

Fig. 2. Dual of the LP relaxation for ANF.

The following lemma shows that one can use a polynomial-time separation oracle for solving

the dual LP.
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Lemma 2.2. There is a polynomial-time separation oracle for the dual LP.

Proof. The dual LP is easily seen to reduce to 𝑠-𝑡 minimum-cost flow. Given non-negative values

for the variables ℓ𝑒 , 𝑒 ∈ 𝐸 and 𝑧𝑖 , 1 ≤ 𝑖 ≤ 𝑘 we compute the minimum-cost flow for each pair (𝑠𝑖 , 𝑡𝑖 )
of 𝑑𝑖 units with edge costs given by ℓ𝑒 , 𝑒 ∈ 𝐸. Let this cost be 𝑞𝑖 . The values are feasible for the dual
iff 𝑧𝑖 + 𝑞𝑖 ≥ 𝑤𝑖 for 1 ≤ 𝑖 ≤ 𝑘 . If there is an 𝑖 for which 𝑧𝑖 + 𝑞𝑖 < 𝑤𝑖 the corresponding minimum

cost flow 𝑓 for pair 𝑖 defines the violated constraint. THe minimum-cost flow problem is poly-time

solvable and hence there is a poly-time separation oracle for the dual LP. □

Standard techniques allow one to solve the primal LP from an optimum solution to the dual LP.

However, since the Ellipsoid method is impractical, in Sections 3 and 4, we present two efficient

ways of solving the ANF packing LP in practice, which we will use in our implementations.

2.2 Rounding the Packing LP Relaxation
In this section, we show how to round a (fractional) solution to the primal ANF MIP formulation.

We will need the following standard Chernoff bound (see [23]):

Theorem 2.3. Let 𝑋1, . . . , 𝑋𝑛 be 𝑛 independent random variables (not necessarily distributed iden-
tically), with each variable 𝑋𝑖 taking a value of 0 or 𝑣𝑖 for some value 0 < 𝑣𝑖 ≤ 1. Let 𝑋 =

∑𝑛
𝑖=1
𝑋𝑖 be

their sum. Then the following hold:

• For 𝜇 ≥ 𝐸 [𝑋 ] and 𝛿 > 0, Pr[𝑋 ≥ (1 + 𝛿)𝜇] <
(

𝑒𝛿

(1+𝛿) (1+𝛿 )

)𝜇
.

• For 0 ≤ 𝜇 ≤ 𝐸 [𝑋 ] and 𝛿 ∈ (0, 1), Pr[𝑋 ≤ (1 − 𝛿)𝜇] < 𝑒−𝛿2𝜇/2 .

Randomly rounding a feasible solution to the LP relaxation is straightforward, and is very similar

to the standard rounding via the path formulation for the Maximum Edge Disjoint Problem (MEDP)

pioneered in the work of Raghavan and Thompson [26]. Once the LP relaxation is solved, we

consider the support of the solution. For each pair 𝑖 , the LP relaxation identifies some ℎ𝑖 flows

𝑓𝑖1 , 𝑓𝑖2 , . . . , 𝑓𝑖ℎ𝑖 ∈ F𝑖 along with non-negative values 𝑦 (𝑓𝑖1 ), . . . , 𝑦 (𝑓𝑖ℎ𝑖 ) such that their sum is at most

1. The randomized algorithm simply picks for each 𝑖 independently, at most one of the flows in

its support where the probability of picking 𝑓𝑖 𝑗 is exactly 𝑦 (𝑓𝑖 𝑗 ). Note that the probability that one

chooses to route pair 𝑖 is exactly
∑
𝑓 ∈F𝑖 𝑦 (𝑓 ) ≤ 1.

We will analyze the algorithm with respect to the weight of the LP solution

∑𝑘
𝑖=1
𝑤𝑖

∑ℎ 𝑗

𝑗=1
𝑦 (𝑓𝑖, 𝑗 ).

We refer to this quantity as𝑊LP. We refer to the value of an optimum LP solution as OPTLP and the

value of an optimum integer solution as OPTIP. We observe that OPTLP ≥ OPTIP and OPTLP ≥𝑊LP.

Note that when solving the formulation in Figure 1(b) or the compact formulation presented in

Section 3, the LP solution obtained will be optimal and hence𝑊LP = OPTLP; however, the solution

obtained via the multiplicative-weight update algorithm of Section 4 may only approximate OPTLP

and hence one could indeed have OPTLP >𝑊LP. We will also assume that OPTLP ≥ 𝑤max, since we

can discard from consideration any commodity 𝑖 that cannot be routed alone in the network, as it

will never be part of a feasible solution of the MIP formulation, and hence𝑤max ≤ OPTIP ≤ OPTLP.

Lemma 2.4. Let 𝑍 be the (random) weight of the pairs chosen to be routed by the algorithm. Then

𝐸 [𝑍 ] =𝑊LP and Pr[𝑍 < (1 − 𝛿)𝑊LP] < 𝑒−
𝛿2

2

𝑊LP
𝑤max . In particular, Pr[𝑍 < (1 − 𝛿)𝑊LP] < 𝑒−𝛿

2/2.

Proof. Let 𝑌𝑖 be the indicator for pair 𝑖 being chosen to be routed. We have 𝑍 =
∑𝑘
𝑖=1
𝑤𝑖𝑌𝑖 .

The rounding algorithm implies that Pr[𝑌𝑖 = 1] = ∑
𝑓 ∈F𝑖 𝑦 (𝑓 ). Hence, by linearity of expectation,

𝐸 [𝑍 ] = ∑
𝑖 𝑤𝑖𝐸 [𝑌𝑖 ] =

∑
𝑖 𝑤𝑖

∑
𝑓 ∈F𝑖 𝑦 (𝑓 ) =𝑊LP. Let 𝑍𝑖 =

𝑤𝑖

𝑤max

𝑌𝑖 ; note that 𝑍𝑖 ≤ 1 and

∑
𝑖 𝑍𝑖 =

1

𝑤max

𝑍 .

Let 𝑍 ′ =
∑
𝑖 𝑍𝑖 . Since 𝑍

′
is a sum of independent random variables, each of which in [0, 1], we can
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apply the lower-tail Chernoff bound for 𝑍 ′, and obtain a lower-tail bound for 𝑍 .

Pr[𝑍 < (1 − 𝛿)𝑊LP] = Pr[𝑍 ′ < (1 − 𝛿)𝑊LP/𝑤max] = Pr[𝑍 ′ < (1 − 𝛿)𝐸 [𝑍 ′]] ≤ 𝑒− 𝛿2

2
(𝑊LP/𝑤max) .

□

Lemma 2.5. For𝑚 ≥ 9 and 𝑏 > 1 the probability that the total flow on an edge 𝑒 is more than
(3𝑏 ln𝑚/ln ln𝑚)𝑐 (𝑒) is at most 𝑒−1.5𝑏 ln𝑚− 3𝑏 ln𝑏 ln𝑚

ln ln𝑚
−1. Via the union bound, the probability that the

total flow on any edge 𝑒 is more than (3𝑏 ln𝑚/ln ln𝑚)𝑐 (𝑒) is at most 𝑒−(1.5𝑏−1) ln𝑚− 3𝑏 ln𝑏 ln𝑚
ln ln𝑚

−1.

Proof. Let 𝑋𝑒 be the random variable indicating the total flow on edge 𝑒 . Let 𝑋𝑒,𝑖 be the flow on

𝑒 from the flow chosen for pair 𝑖 . We have 𝑋𝑒 =
∑𝑘
𝑖=1
𝑋𝑒,𝑖 and moreover the variables 𝑋𝑒,𝑖 , 1 ≤ 𝑖 ≤ 𝑘

are independent by the algorithm. Note that 0 ≤ 𝑋𝑒,𝑖 ≤ 𝑐 (𝑒) since each flow in F𝑖 is a valid flow by

definition. Further

𝐸 [𝑋𝑒 ] =
∑︁
𝑖

𝐸 [𝑋𝑒,𝑖 ] =
𝑘∑︁
𝑖=1

∑︁
𝑓 ∈F𝑖

𝑓 (𝑒)𝑦 (𝑓 ) ≤ 𝑐 (𝑒).

We now apply the Chernoff bound to see that Pr[𝑋𝑒 > (3𝑏 ln𝑚/ln ln𝑚)𝑐 (𝑒)] ≤ 𝑒𝛿

(1+𝛿) (1+𝛿 ) where

(1 + 𝛿) = 3𝑏 ln𝑚/ln ln𝑚; we note that the standard bound has all variables bounded in [0, 1] while
all our variables are in [0, 𝑐 (𝑒)] but we can simply scale all variables by 𝑐 (𝑒). We have

𝑒𝛿

(1+𝛿) (1+𝛿 ) =

𝑒𝛿−(1+𝛿) ln(1+𝛿)
. We consider the expression 𝛿 − (1 + 𝛿) ln(1 + 𝛿), where (1 + 𝛿) = 3𝑏 ln𝑚/ln ln𝑚.

𝛿 − (1 + 𝛿) ln(1 + 𝛿) = (1 + 𝛿) (1 − ln(1 + 𝛿)) − 1

= (3𝑏 ln𝑚/ln ln𝑚) (1 − ln(3𝑏 ln𝑚/ln ln𝑚))) − 1

= (3𝑏 ln𝑚/ln ln𝑚) (1 − ln 3 − ln𝑏 − ln ln𝑚 + ln ln ln𝑚) − 1

≤ (3𝑏 ln𝑚/ln ln𝑚) (− ln𝑏 − 1

2

ln ln𝑚) − 1

≤ −1.5𝑏 ln𝑚 − 3𝑏 ln𝑏 ln𝑚/ln ln𝑚 − 1.

In the above we used the fact that ln ln𝑚 − ln ln ln𝑚 ≥ 1

2
ln ln𝑚 for𝑚 ≥ 9.

The second part follows easily via the union bound over all the𝑚 edges. □

We can now put together the preceding lemmas to derive our bicriteria approximation. We

will henceforth assume that 𝑚 ≥ 9. Let 𝑆 be the random set of pairs routed by the algorithm.

Let E1 be the event that 𝑤 (𝑆) < (1 − 𝛿)𝑊LP. From Lemma 2.4, Pr[E1] ≤ 𝑒−𝛿
2/2

. Let E2 be the

event that there is some edge 𝑒 such that the flow on 𝑒 is more than (3𝑏 ln𝑚/ln ln𝑚)𝑐 (𝑒). From
Lemma 2.5 Pr[E2] ≤ 𝑒−1.5𝑏 ln𝑚−3𝑏 ln𝑏 ln𝑚/ln ln𝑚−1

. For 𝑏 = 1 and𝑚 ≥ 9 we see that Pr[E2] ≤ 𝑒−12
.

Chossing 𝛿 = 1/2, Pr[E1] ≤ 0.8825. Thus Pr[E1 or E2] ≤ 0.9. This implies that with probability

≥ 0.1, the set 𝑆 of routed pairs satisfies the property that 𝑤 (𝑆) ≥ 0.5𝑊LP and the congestion

of every edge is at most 3 ln𝑚/ln ln𝑚. In other words, if 𝑊LP = OPTLP ≤ OPTIP, we obtain

a (1/2, 3 ln𝑚/ln ln𝑚)-bicriteria approximation with probability at least 0.1. One can boost the

success probability by repetition. If the rounding is repeated 10𝑐 ln𝑚 times, then with probability

at least 1 − (1 − 0.1)10𝑐 ln𝑚 ≥ 1 −𝑚−𝑐 (in other words with high probability), one of the rounded

solutions is a (1/2, 3 ln𝑚/ln ln𝑚)-bicriteria approximation

We now refine the preceding argument to show that the quality of the rounded solution can

get arbitrarily close to𝑊LP but with lower probability, and examine the trade-off required in the

congestion and number of repetitions required. Suppose we want 𝑤 (𝑆) ≥ (1 − 𝜖)𝑊LP for some

small 0 < 𝜖 < 1/2. Let E1 be the event that this does not happen. From Lemma 2.4, we have that
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Pr[E1] ≤ 𝑒−𝜖
2/2

. Let E2 be the event that some edge congestion exceeds 3𝑏 ln𝑚/ln ln𝑚. Lemma 2.5

allows us to upper bound this probability. Suppose we choose 𝑏 such that Pr[E2] ≤ 𝜖2/6. Then

Pr[ ¯E1 ∩ ¯E2] = 1 − Pr[E1 ∪ E2] ≥ (1 − Pr[E1] − Pr[E2]) ≥ 1 − 𝑒−𝜖2/2 − 𝜖2/6 ≥ 𝜖2/6.
This would yield a (1−𝜖, 3𝑏 ln𝑚/ln ln𝑚) bicriteria approximation with probability at least 𝜖2/6 and
one can boost this via repeating 𝑂 ( 1

𝜖2
ln𝑚) times to get the approximation with high probability.

Thus it remains to estimate 𝑏 such that Pr[E2] ≤ 𝜖2/6. From Lemma 2.5, it suffices to choose 𝑏

such that

(1.5𝑏 − 1) ln𝑚 + 3𝑏 ln𝑏 ln𝑚/ln𝑚 ln𝑚 + 1 ≥ ln(6/𝜖2).
In particular it suffices to have 𝑏 ≥ 𝑐 ln(1/𝜖)

ln𝑚
for some fixed constant 𝑐 . Thus for all 𝜖 ≥ 1/𝑚 a fixed

constant 𝑏 (e.g., 𝑏 = 1.85) suffices! Note however that the number of repetitions grows as Ω(1/𝜖2)
to guarantee a good solution with high probability.

Theorem 2.6. For𝑚 ≥ 9 and any 1/𝑚 ≤ 𝜖 < 1, there is a polynomial-time randomized algorithm
that yields a (1 − 𝜖,𝑂 (ln𝑚/ln ln𝑚 + ln(1/𝜖)/ln𝑚))-approximation with high probability. Moreover,
by setting 𝜖 = 1/𝑚, we guarantee a𝑂 (1− 1/𝑚,𝑂 (ln𝑚/ln ln𝑚))-approximation with high probability.

Noting that it is trivial to get a (1, 𝑘)-approximation by simply routing all the commodities at

full demand, we get the following corollary, stating our full approximation guarantees:

Corollary 2.7. For𝑚 ≥ 9 and any 1/𝑚 ≤ 𝜖 < 1, there is a polynomial-time randomized algorithm
that yields a (1 − 𝜖,min{𝑘,𝑂 (ln𝑚/ln ln𝑚)}))-approximation with high probability.

We describe a different rounding approach in Appendix A, using an alteration approach, that
may also be of interest in certain settings and gives a better tradeoff in terms of repetitions.

3 COMPACT EDGE-FLOW FORMULATION
As we saw, one can solve the ANF packing LP via the Ellipsoid method. While this leads to a

polynomial-time algorithm for solving the LP, implementing such algorithm would not be trivial

nor be very efficient in practice. In this section, we present an alternative polynomial-size compact

edge-flow formulation for the ANF problem, which can be solved more efficiently in practice

than the packing LP. In Section 4, we present another approach for solving the packing LP more

efficiently, albeit only approximately. Both approaches were evaluated in simulations in Section 8.

We present our general compact edge-flow based MIP formulation for the ANF problem
4
in

Figure 3. We use an indicator variable 𝑓𝑖 ∈ {0, 1} to indicate whether a commodity 𝑖 is successfully

routed through 𝐺 . Next, we denote 𝑓𝑖,𝑒 ∈ [0, 1] as the fraction of flow for commodity 𝑖 allocated

to a particular edge 𝑒 ∈ 𝐸. The total flow assigned to a fixed edge 𝑒 is given by

∑
𝑖 𝑑𝑖 · 𝑓𝑖,𝑒 and the

total weighted throughput is given by

∑
𝑖 𝑤𝑖 𝑓𝑖 . Constraints (2-4) define the value of the total flow

for each commodity 𝑖 , enforce flow conservation for each 𝑖 , and stipulate that no edge capacity

is violated by the flow assignments. Constraint (5) ensures that for a fixed commodity 𝑖 , the ratio

of flow assigned to an edge 𝑒 to the total flow of that commodity does not exceed the capacity

of 𝑒: These constraints are actually redundant for the MIP formulation, but will strengthen the LP
relaxation of Figure 3, obtained by allowing each 𝑓𝑖 to assume any real value in [0, 1]. In fact, (5)

is crucial to establish the perhaps surprising "equivalence" between the LP relaxation of the ANF

packing formulation (Figure 1(b)) and the LP relaxation of the compact edge-flow MIP.

This formulation has size polynomial in 𝑛 and 𝑘 and hence can be solved in polynomial time

(e.g., using the Ellipsoid method). Moreover, given the compact nature of the LP, one can use a

standard LP solver in practice.

4
The compact MIP formulation presented here generalizes the one in our conference version [21] to accommodate arbitrary

demands and commodity weights.
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max

𝑘∑︁
𝑖=1

𝑤𝑖 𝑓𝑖 (1)∑︁
(𝑠𝑖 ,𝑣) ∈𝐸

𝑓𝑖,(𝑠𝑖 ,𝑣) = 𝑓𝑖 ∀𝑖 ∈ [𝑘] (2)∑︁
(𝑢,𝑣) ∈𝐸

𝑓𝑖,(𝑢,𝑣) =
∑︁
(𝑣,𝑢) ∈𝐸

𝑓𝑖,(𝑣,𝑢) ∀𝑖 ∈ [𝑘],∀𝑣 ∈ 𝑉 − {𝑠𝑖 , 𝑡𝑖 } (3)

𝑘∑︁
𝑖=1

𝑓𝑖,(𝑢,𝑣) · 𝑑𝑖 ≤ 𝑐 (𝑢,𝑣) ∀(𝑢, 𝑣) ∈ 𝐸 (4)

𝑓𝑖,(𝑢,𝑣) · 𝑑𝑖 ≤ 𝑓𝑖 · 𝑐 (𝑢,𝑣) ∀𝑖 ∈ [𝑘],∀(𝑢, 𝑣) ∈ 𝐸 (5)

𝑓𝑖,(𝑢,𝑣) ≥ 0 ∀𝑖 ∈ [𝑘],∀(𝑢, 𝑣) ∈ 𝐸 (6)

𝑓𝑖 ∈ {0, 1} ∀𝑖 ∈ [𝑘] (7)

Fig. 3. Compact Edge-Flow ANF Formulation

Equivalence with Packing Formulation. Here we prove that the packing formulation in

Figure 1(b) is “equivalent” to the compact formulation given in Figure 3. When we say equivalent

we mean the following: Given a feasible solution to one LP we can obtain a feasible solution to the

other LP of the same value. We prove both directions below.

First, consider a feasible solution to the compact formulation. For commodity 𝑖 , let 𝑓𝑖 ∈ [0, 1]
be the total fraction of 𝑑𝑖 that is routed from 𝑠𝑖 to 𝑡𝑖 , and let 𝑓𝑖,𝑒 ∈ [0, 1] be fraction of 𝑓𝑖 that is

assigned to edge 𝑒 ∈ 𝐸, satisfying flow conservation and capacity constraints. We first construct a

flow 𝑔𝑖 : 𝐸 → R+ of 𝑑𝑖 units from 𝑠𝑖 to 𝑡𝑖 : We set 𝑔𝑖 (𝑒) = 𝑑𝑖 𝑓𝑖,𝑒/𝑓𝑖 , for all 𝑒 ∈ 𝐸. It is easy to verify

that 𝑔𝑖 is a flow of 𝑑𝑖 units from 𝑠𝑖 to 𝑡𝑖 . Moreover by the strengthening constraint (5) in Figure 3,

we see that 𝑔𝑖 (𝑒) ≤ 𝑐 (𝑒) for all 𝑒 and hence 𝑔𝑖 is a feasible flow in the capacities. Putting together

these facts, 𝑔𝑖 ∈ F𝑖 . We obtain a feasible solution to the packing formulation as follows. For each

𝑖 we set 𝑥𝑖 = 𝑓𝑖 and we set 𝑦 (𝑓 ) = 𝑥𝑖 for 𝑓 = 𝑔𝑖 and 𝑦 (𝑓 ) = 0 for every other 𝑓 ∈ F𝑖 . In other

words we are using only one flow for each commodity 𝑖 . The only non-trivial fact to check is that

this solution is feasible. For this we need to verify that

∑
𝑖 𝑦 (𝑔𝑖 )𝑔𝑖 (𝑒) ≤ 𝑐 (𝑒) but this easily follows

from our definition of 𝑔𝑖 ’s and Constraint (4) in Figure 3. Since 𝑥𝑖 = 𝑓𝑖 for all 𝑖 , we see that the two

solutions have the same value.

Second, consider a feasible solution 𝑦 to the packing formulation in Figure 1(b). Let 𝑥𝑖 be the

amount routed for commodity 𝑖 and for each flow 𝑓 ∈ F𝑖 , 𝑦 (𝑓 ) is the amount routed on 𝑓 with∑
𝑓 ∈F𝑖 𝑦 (𝑓 ) = 𝑥𝑖 . We construct a feasible solution to the compact LP as follows. For each commodity

𝑖 we set 𝑓𝑖 = 𝑥𝑖 . For each 𝑒 ∈ 𝐸 and each 𝑖 ∈ [𝑘], we set 𝑓𝑖,𝑒 = 1

𝑑𝑖

∑
𝑓 ∈F𝑖 𝑓 (𝑒)𝑦 (𝑓 ). Note that

𝑓𝑖,𝑒 is simply scaling by 𝑑𝑖 the total flow on 𝑒 from all 𝑓 ∈ F𝑖 . Since each 𝑓 ∈ F𝑖 is a flow of 𝑑𝑖
units from 𝑠𝑖 to 𝑡𝑖 and

∑
𝑓 ∈F𝑖 𝑦 (𝑓 ) = 𝑥𝑖 we see that 𝑓𝑖,𝑒 , 𝑒 ∈ 𝐸, corresponds to sending a total of

𝑥𝑖 units of flow from 𝑠𝑖 to 𝑡𝑖 . We focus on Constraints (4) and (5) in Figure 3. We observe that∑
𝑖 𝑑𝑖 𝑓𝑖,𝑒 =

∑
𝑖 𝑑𝑖

1

𝑑𝑖

∑
𝑓 ∈F𝑖 𝑓 (𝑒)𝑦 (𝑓 ) =

∑
𝑖

∑
𝑓 ∈F𝑖 𝑦 (𝑓 ) 𝑓 (𝑒) and the last term is at most 𝑐 (𝑒) from the

feasiblity of given solution for the packing formulation. This proves that Constraint (4) in Figure 3

is satisfied for the solution we constructed. We observe that for each 𝑓 ∈ F𝑖 and each 𝑒 ∈ 𝐸 we have

𝑓 (𝑒) ≤ 𝑐 (𝑒) since 𝑓 is a feasible flow in the capacities. Thus 𝑓 (𝑒)/𝑑𝑖 ≤ 𝑐 (𝑒)/𝑑𝑖 and since 𝑦 (𝑓 ) ≥ 0

for each 𝑓 ∈ F𝑖 we have
∑
𝑓 ∈F𝑖 𝑦 (𝑓 ) 𝑓 (𝑒)/𝑑𝑖 ≤ 𝑐 (𝑒)/𝑑𝑖

∑
𝑓 ∈F𝑖 𝑦 (𝑓 ) which implies that 𝑓𝑖,𝑒𝑑𝑖 ≤ 𝑓𝑖𝑐 (𝑒).

Thus the solution also satisfies (5) in Figure 3. This finishes the proof of the equivalence.
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Hence, the results in Section 2 that lead to Theorem 2.6 and Corollary 2.7 also apply to a

randomized rounding approach based on the compact formulation, as we explain in Section 5.

4 MWU ALGORITHM
While the compact edge-flow formulation can always be solved in polynomial time, one may run

into space issues when attempting to solve it in practice: The disadvantage of using a standard LP

solver to solve the compact edge-flow LP relaxation is that the number of variables is 𝑘𝑚 which is

quadratic in the input size, and the number of constraints is𝑚. Standard LP solvers often require

space proportional to 𝑘𝑚2
which can be prohibitive even for moderate instances (since it is almost

cubic in input size). One advantage of the packing LP formulation, although it is equivalent, to the

compact formulation is that one can use well-known multiplicative weight update (MWU) based

Lagrangean relaxation approaches to obtain a (1 − 𝛾)-approximation, for any 0 < 𝛾 < 1. Although

the convergence time can be slow depending on the accuracy required, the space requirement is

𝑂 (𝑘 +𝑚) which is linear in the input size. In addition, there are several optimization heuristics

based on the MWU algorithm that can result in very efficient implementations in practice. Since

the MWU framework is standard we only describe and explain the algorithm here and state the

known guarantees on the number of iterations and time complexity, referring the reader to standard

treatments in the literature [4] for a formal analysis on the correctness guarantees.

(𝑎)max

𝑘∑︁
𝑖=1

𝑤𝑖

∑︁
𝑓 ∈F𝑖

𝑦 (𝑓 )

𝑘∑︁
𝑖=1

∑︁
𝑓 ∈F𝑖

𝑓 (𝑒)𝑦 (𝑓 ) ≤ 𝑐 (𝑒) 𝑒 ∈ 𝐸

𝑦 (𝑓 ) ≥ 0 𝑓 ∈ F𝑖 , 1 ≤ 𝑖 ≤ 𝑘.

(𝑏)min

∑︁
𝑒∈𝐸

𝑐 (𝑒)ℓ𝑒∑︁
𝑒∈𝐸

𝑓 (𝑒)ℓ𝑒 ≥ 𝑤𝑖 1 ≤ 𝑖 ≤ 𝑘, 𝑓 ∈ F𝑖

ℓ (𝑒) ≥ 0 𝑒 ∈ 𝐸

Fig. 4. (𝑎) LP Relaxation with no constraint on total amount routed per commodity; (𝑏) its dual.

Algorithm description:MWU based algorithms are iterative and provide a way to obtain arbi-

trarily good relative approximation algorithms for a large class of linear programs such as packing,

covering and mixed packing and covering LPs. In particular we can apply it to the packing LP

in Fig 1(b). The LP has two types of packing constraints, one involving the capacities, and the

other involving the total amount of flow routed for each commodity. It is useful to simplify the LP

further in order to apply a clean packing framework. For this purpose we alter the given graph

𝐺 = (𝑉 , 𝐸) as follows. For each given demand pair (𝑠𝑖 , 𝑡𝑖 ) we add a dummy source 𝑠 ′𝑖 and connect it

to 𝑠𝑖 with an edge (𝑠 ′𝑖 , 𝑠𝑖 ) of capacity equal to 𝑑𝑖 . We replace the pair (𝑠𝑖 , 𝑡𝑖 ) with the pair (𝑠 ′𝑖 , 𝑡𝑖 ),
which ensures that the total amount of flow for the pair is at most 𝑑𝑖 , and further allows us to

eliminate the first set of constraints in Fig. 1(b). In the modified instance we hence only have edge

capacity constraints and the problem becomes a pure maximum throughput problem that allows for

a commodity to be routed more than one total unit. The dual LP also simplifies in a corresponding

fashion. These are shown in Fig 4.

The MWU Algorithm 1 solves the primal LP in Fig 4 in an iterative fashion as follows. It takes

as input an error parameter 𝛾 ∈ (0, 1) and its goal is to output a feasible solution of value at least

(1 − 𝛾) times the optimum LP solution value. Note that the primal LP has an exponential number

of variables but only𝑚 non-trivial constraints corresponding to the edges, so it maintains only an

implicit representation of the primal variables. The MWU algorithm can be viewed as primal-dual
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Algorithm 1:MWU for Multi-Commodity ANF Problem

Inputs: Directed graph G(V,E), 𝑐 : 𝐸 → R+, a set 𝑆 of 𝑘 pairs of commodities (𝑠𝑖 , 𝑡𝑖 ) each with

demand 𝑑𝑖 and 𝛾 ∈ R+
1: Change𝐺 by adding dummy terminal 𝑠 ′𝑖 and edge(𝑠 ′𝑖 , 𝑠𝑖 ) with capacity 𝑑𝑖 . This ensures that we

don’t route more than 𝑑𝑖 units for pair 𝑖 . We will assume this has been done and simply use

(𝑠𝑖 , 𝑡𝑖 ) instead of (𝑠 ′𝑖 , 𝑡𝑖 )
Output: Total flow 𝑓𝑒 on each 𝑒 . 𝑓 (𝑠 ′𝑖 , 𝑠𝑖 )/𝑑𝑖 gives the fraction of commodity 𝑖 that is routed

2: Define a length/cost function ℓ : 𝐸 → R+ and initialize ℓ𝑒 ← 1,∀𝑒 ∈ 𝐸
3: Define a function 𝑓 : 𝐸 → R≥0 and initialize 𝑓𝑒 ← 0,∀𝑒 ∈ 𝐸
4: Define 𝜂 ← ln |𝐸 |

𝛾

5: repeat
6: for each commodity 𝑖 ∈ 𝑆 do
7: Compute min-cost flow of 𝑑𝑖 units from 𝑠𝑖 to 𝑡𝑖 with capacities 𝑐 (𝑒) and cost given by ℓ .

(If no feasible flow then pair 𝑖 can be dropped.) Let this flow be defined by 𝑔𝑖 (𝑒), 𝑒 ∈ 𝐸 and let

cost of this flow be 𝜌 (𝑖) = ∑
𝑒 ℓ (𝑒)𝑔𝑖 (𝑒)

8: Set 𝑖∗ ← argmin𝑖∈𝑆
𝜌 (𝑖)
𝑤𝑖

9: Compute 𝛿 ← min𝑒
𝛾

𝜂
· 𝑔𝑖∗ (𝑒)
𝑐 (𝑒)

10: for each 𝑒 do
11: Set 𝑓𝑒 ← 𝑓𝑒 + 𝛿𝑔𝑖∗ (𝑒)
12: if 𝑓𝑒 > 𝑐𝑒 then
13: Output 𝑓 and halt

14: else
15: Update ℓ𝑒 ← exp(𝜂𝑓𝑒/𝑐𝑒 )
16: until termination

algorithm as well and as such it maintains “weights” (hence the name mutiplicative weights udate)

for each edge 𝑒 which correspond to the dual variables ℓ (𝑒). To avoid confusion with the weights

of commodities we use the term lengths. The algorithm maintains lengths ℓ (𝑒), 𝑒 ∈ 𝐸 which are

initialized to 1. The algorithm roughly maintains the invariant that ℓ (𝑒) is exponential in the current
total flow 𝑔(𝑒) on edge 𝑒; more formally, for a parameter 𝜂 = ln𝑚/𝛾 the algorithm maintains the

invariant that ℓ (𝑒) ≃ exp(𝜂𝑓 (𝑒)/𝑐 (𝑒)) where 𝑓 (𝑒) is the total flow on 𝑒 . In each iteration the goal

is to find a good commodity/pair to route. To this end the algorithm computes for each commodity

(𝑠𝑖 , 𝑡𝑖 ) a minimum-cost 𝑠𝑖-𝑡𝑖 flow of 𝑑𝑖 units where the cost on 𝑒 is equal to ℓ (𝑒). Let this cost be
𝜌 (𝑖). It then chooses the commodity 𝑖∗ that has the smallest 𝜌 (𝑖)/𝑤𝑖 ratio among all pairs, as the

currently best commodity to route. The algorithm then routes a small amount for 𝑖∗ along the

minimum cost flow computed in that iteration. This corresponds to the step size 𝛿 which is chosen

to be sufficiently small but not too small to ensure the correctness of the algorithm. After routing

the flow for 𝑖∗ the lengths on the edges are updated to reflect the increase in flow on the edges. The

algorithm proceeds in this fashion for several iterations until termination. One can terminate using

several different criteria while ensuring correctness. Here we stop the algorithm when we try to

route a commodity with the given step size and realize that it violates some edge capacity.

Analysis of iterations, run-time and space: The algorithm’s running time is dependent on

the time to compute minimum-cost flow and on the total number of iterations. It is known that

the MWU algorithm, as suggested above, terminates in 𝑂 (𝑚 log𝑚/𝛾2) iterations. Each iteration

requires computing 𝑘 minimum-cost flows. Many algorithms are known for minimum-cost flow
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ranging from strongly polynomial-time algorithms to polynomial-time scaling algorithms as well as

practically fast algorithms based on network-simplex. Instead of listing these we can upper bound

the run-time by 𝑂 (MCF(𝑛,𝑚)𝑘𝑚 log𝑚/𝛾2) where MCF(𝑛,𝑚) is min-cost flow running time on a

graph with 𝑛 nodes and𝑚 edges. In terms of space we observe that the algorithm only maintains

the total flow on each edge and for each commodity the total flow it has routed as well as the

lengths on the edges. This is 𝑂 (𝑘 +𝑚). The algorithm also needs space to compute minimum-cost

flow and that depends on the algorithm used for it. Most algorithms for minimum-cost flow use

space near-linear in the input graph.

The algorithm as described above is a plain "vanilla" implementation of the general MWU

algorithm. As such the running time is rather high and computing 𝑘 minimum-cost flows in each

iteration is expensive. Several optimization can be done from both a theoretical and a practical

point of view. We do not discuss these issues in detail since this is not the main focus of this paper.

We develop a simple heuristic – the permutation routing heuristic – based on these ideas that has

also theoretical justification, which will be discussed and used for the simulations in Section 8.

5 RANDOMIZED ROUNDING ALGORITHM
Algorithm 2 describes the randomized rounding algorithm that we will use in our simulations.

This algorithm performs randomized rounding on the total flow variables of the compact LP

and therefore can be viewed as a special case of the randomized rounding algorithm outlined

in Section 2.2 (since we have proven that the set of feasible solutions to the compact LP can be

viewed as a subset of the feasible solutions to the packing LP). Algorithm 2 leads to a simpler,

more streamlined implementation (also because the randomized rounding approach will be based

on a number of variables that is linear in the number of commodities) than if we were using the

approach based on the rounding of the variables of the packing LP directly. We assume, as we did

in Section 2, that we discard any commodity 𝑖 that cannot be routed by itself in 𝐺 .

We use randomized rounding to round the total fraction
˜𝑓𝑖 of 𝑑𝑖 that the compact LP routes for

commodity 𝑖 to 𝑓𝑖 = 1, with probability
˜𝑓𝑖 , and to 0 otherwise. If we set 𝑓𝑖 to 1, then in order to satisfy

flow conservation constraints (e.g., constraint (3) of Figure 3), we need to re-scale all the
˜𝑓𝑖,𝑒 values by

1/ ˜𝑓𝑖 , obtaining the flows 𝑓𝑖,𝑒 (if 𝑓𝑖 = 0 then 𝑓𝑖,𝑒 = 0, for all 𝑒 ∈ 𝐸). We repeat Steps 2-3 of Algorithm 2

Θ((ln𝑚)/𝜖2) times or until we obtain the desired ((1 − 𝜖), 3𝑏 ln𝑚/ln ln𝑚)-approximation bounds,

amplifying the probability of getting a desired outcome.

Algorithm 2: Randomized Rounding Algorithm

Input :Directed graph 𝐺 (𝑉 , 𝐸) with edge capacities 𝑐𝑒 > 0,∀𝑒 ∈ 𝐸; set of 𝑘 pairs of

commodities (𝑠𝑖 , 𝑡𝑖 ), each with demand 𝑑𝑖 ≥ 0 and weight𝑤𝑖 ≥ 0; 𝜖 ∈ (0, 1]
Output :The final values of 𝑓𝑖 and 𝑓𝑖,𝑒 and

∑
𝑤𝑖 𝑓𝑖

1 Let
˜𝑓𝑖 , ˜𝑓𝑖,𝑒 , ∀𝑖 ∈ [𝑘],∀𝑒 ∈ 𝐸, be a feasible solution to compact LP.

2 For each 𝑖 ∈ [𝑘], independently, set 𝑓𝑖 = 1 with probability
˜𝑓𝑖 , otherwise set 𝑓𝑖 = 0.

3 Rescale the fractional flow
˜𝑓𝑖,𝑒 from the LP solution on edge 𝑒 for commodity 𝑖 by 1

˜𝑓𝑖
: I.e.,

𝑓𝑖,𝑒 =
˜𝑓𝑖,𝑒
˜𝑓𝑖
· 𝑓𝑖 and the flow for commodity 𝑖 on 𝑒 is given by 𝑓𝑖,𝑒𝑑𝑖 .

4 If

∑
𝑖 𝑤𝑖 𝑓𝑖 ≥ (1 − 𝜖)

∑
𝑤𝑖 ˜𝑓𝑖 and

∑
𝑖 𝑓𝑖,𝑒𝑑𝑖 ≤ (3𝑏 ln𝑚/ln ln𝑚)𝑐 (𝑒) for all 𝑒 ∈ 𝐸, return the

corresponding flow assignments given by 𝑓𝑖 and 𝑓𝑖,𝑒 ,∀𝑖 ∈ [𝑘] and 𝑒 ∈ 𝐸. Otherwise, repeat
steps 2 and 3, 𝑂 ((ln𝑚)/𝜖2) times.
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Given the equivalence that we showed between the packing and the compact LP, which implied

among other things that the two LPS have optimal solutions of the same value and that Algorithm 2

corresponds to the packing randomized rounding approach described in Section 2 when restricted

to the subset of solutions to the compact LP, we get the following corollary to Theorem 2.6:

Corollary 5.1. Algorithm 2, when run on an optimum solution to the compact LP, achieves
a ((1 − 𝜖), 3𝑏 ln𝑚/ln ln𝑚)-approximation for the ANF problem on arbitrary networks with high
probability, for a suitable constant 𝑏 > 1/𝑚, e.g. 𝑏 = 1.85, and any 1/𝑚 ≤ 𝜖 < 1.

In our implementations, we will also run Algorithm 2 using the solution output by the MWU

algorithm, which only guarantees a (1 − 𝛾) approximation on the throughput for 𝛾 ∈ (0, 1).
In that case, we let

˜𝑓𝑖 = 𝑓 (𝑠 ′𝑖 , 𝑠𝑖 )/𝑑𝑖 , where 𝑓 (𝑠 ′𝑖 , 𝑠𝑖 ) is as defined in Algorithm 1, and the values

of
˜𝑓𝑖,𝑒 are defined according to the flows chosen for each commodity 𝑖 . Note that the throughput

approximation guarantee for Algorithm 2 in this case will be (1 − 𝜖) (1 − 𝛾).
Another advantage of Algorithm 2 is that it leads to a surprisingly simple derandomized algorithm,

as we will see in Section 6, that was also implemented for our simulations.

6 AN EFFICIENT DETERMINISTIC ALGORITHM
In this section, we give a derandomization of Algorithm 2. Our derandomized algorithm is partic-

ularly attractive for its simplicity and efficiency in practice (see Section 8), unlike most existing

derandomized algorithms in the literature whose implementations in practice are cumbersome

and ineffective. Our deterministic algorithm leverages the method of pessimistic estimators first

introduced by Raghavan [25] to efficiently compute conditional expectations, which will guide the

construction of the (𝛼, 𝛽)-approximate solution. Given the analysis in Section 2.2 and Corollary 5.1,

in the forthcoming analysis, we always assume 𝛼 = 1 − 1/𝑚 and 𝛽 = 3𝑏 ln𝑚/ln ln𝑚 for𝑚 ≥ 9 and

𝑏 = 1.85.

We first introduce the following notation. Let 𝑧𝑖 = 0 if Algorithm 2 has not selected commodity 𝑖

to be routed, and let 𝑧𝑖 = 1 if 𝑖 was admitted. Now, let fail(𝑧1, . . . , 𝑧𝑘 ) → {0, 1} denote the failure
function of not constructing an (𝛼, 𝛽)-approximate solution, i.e., fail(𝑧1, . . . , 𝑧𝑘 ) = 1 if and only if the

constructed solution either does not achieve an 𝛼-fraction of the LP’s (weighted) throughput or the

capacity of some edge is exceeded by a factor larger than 𝛽 . We use 𝑍𝑖 to denote the {0, 1}-indicator
random variable for whether commodity 𝑖 is routed in one execution of Steps 3-4 of Algorithm 2, i.e.,

Pr (𝑍𝑖 = 1) = ˜𝑓𝑖 and Pr (𝑍𝑖 = 0) = 1− ˜𝑓𝑖 . We have shown in Section 2.2 that Ex (fail(𝑍1, . . . , 𝑍𝑘 )) < 1

holds (cf. Theorem 2.6), implying the existence of an (𝛼, 𝛽)-approximate solution. Given the above

definitions, we employ the following notation to denote the conditional expectation of a function

f : {0, 1}𝑘 → {0, 1}:
Ex (f (𝑧1, . . . , 𝑧𝑖 , 𝑍𝑖+1, . . . , 𝑍𝑘 )) = Pr (f (𝑍1, . . . , 𝑍𝑘 ) = 1 | 𝑍1 = 𝑧1, . . . , 𝑍𝑖 = 𝑧𝑖 ) .

As computing Ex (fail(𝑧1, . . . , 𝑧𝑖 , 𝑍𝑖+1, . . . , 𝑍𝑘 )) is generally computationally prohibitive, we will

now derive a pessimistic estimator est : {0, 1}𝑘 → R≥0, such that the following holds for all 𝑖 ∈ [𝑘]
and all (𝑧1, . . . , 𝑧𝑖 ) ∈ {0, 1}𝑖 :
Upper Bound Ex (fail(𝑧1, . . . , 𝑧𝑖 , 𝑍𝑖+1, . . . , 𝑍𝑘 )) ≤ Ex (est(𝑧1, . . . , 𝑧𝑖 , 𝑍𝑖+1, . . . , 𝑍𝑘 )). (8)

Efficiency Ex (est(𝑧1, . . . , 𝑧𝑖 , 𝑍𝑖+1, . . . , 𝑍𝑘 )) can be computed efficiently. (9)

Furthermore, the estimator’s value must initially be strictly less than 1 for the derandomization:

Base Case Ex (est(𝑍1, . . . , 𝑍𝑘 )) < 1 holds initially. (10)

In the following, we discuss how such a pessimistic estimator is used to derandomize the decisions

made by the algorithm informally presented in Section 2 before introducing the actual estimator
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Algorithm 3: Deterministic Approximation for the All-or-Nothing Flow Problem

Input :Directed Graph 𝐺 (𝑉 , 𝐸)
Source-Sink Pair (𝑠𝑖 , 𝑡𝑖 ) for each satisfiable commodity 𝑖 ∈ [𝑘]
Capacity 𝑐 (𝑢, 𝑣) ∀(𝑢, 𝑣) ∈ 𝐸
Estimator est𝛼

𝛽
: {0, 1}𝑘 → R≥0 for obtaining an (𝛼, 𝛽)-approximate sol.

Output : (𝛼, 𝛽)-approximate solution to the ANF instance

1 compute optimal solution
®̃
𝑓 to compact edge-flow LP (cf. Figure 3)

2 let 𝑍𝑖 ∈ {0, 1} be the random variable s.t. Pr (𝑍𝑖 = 1) = ˜𝑓𝑖 and Pr (𝑍𝑖 = 0) = 1 − ˜𝑓𝑖 for 𝑖 ∈ [𝑘]
3 compute failure_estimate← Ex

(
est𝛼

𝛽
(𝑍1, ..., 𝑍𝑖−1, 𝑍𝑖 , ..., 𝑍𝑛)

)
4 foreach 𝑖 ∈ [𝑘] do // iterate over all commodities

5 if Ex
(
est𝛼

𝛽
(𝑧1, . . . , 𝑧𝑖−1, 0, 𝑍𝑖+1, ..., 𝑍𝑛)

)
< failure_estimate then

6 set 𝑧𝑖 ← 0 // commodity 𝑖 is not routed

7 else
8 set 𝑧𝑖 ← 1 // commodity 𝑖 is routed

9 update failure_estimate← Ex
(
est𝛼

𝛽
(𝑧1, . . . , 𝑧𝑖 , 𝑍𝑖+1, . . . , 𝑍𝑛)

)
10 return solution given by ®𝑧: if 𝑧𝑖 = 1 then 𝑓𝑖 = 1 and 𝑓𝑖,𝑒 = ˜𝑓𝑖,𝑒/ ˜𝑓𝑖 , else 𝑓𝑖 = 𝑓𝑖,𝑒 = 0, ∀𝑖 ∈ [𝑘]

est𝛼
𝛽
in Lemma 6.1. Algorithm 3 first computes an LP solution just as Algorithm 2, but then uses the

pessimistic estimator to guide its decision towards deterministically constructing an approximate so-

lution. Specifically, each commodity is either routed or rejected such that the conditional expectation

Ex
(
est𝛼

𝛽
(𝑧1, ..., 𝑧𝑖 , 𝑍𝑖 , ..., 𝑍𝑛)

)
is minimized. Given that initially Ex

(
est𝛼

𝛽
(𝑍1, . . . , 𝑍𝑘 )

)
< 1, this pro-

cedure terminates with a solution (𝑧1, . . . , 𝑧𝑘 ) such that the failure function fail(𝑧1, . . . , 𝑧𝑘 ) is strictly
upper bounded by 1. Specifically, 1 > Ex

(
est𝛼

𝛽
(𝑍1, . . . , 𝑍𝑘 )

)
≥ Ex

(
est𝛼

𝛽
(𝑧1, 𝑍2, . . . , 𝑍𝑘 )

)
≥ . . . ≥

Ex
(
est𝛼

𝛽
(𝑧1, . . . , 𝑧𝑘 )

)
is guaranteed and therefore, for the binary function fail, fail(𝑧1, . . . , 𝑧𝑘 ) = 0

must hold. Furthermore, the algorithm is efficient (i.e., runs in polynomial time) as long as the

pessimistic estimator function est𝛼
𝛽
can be evaluated in polynomial time. W.l.o.g., we assume that

only commodities that can be satisified in 𝐺 are given as input to Algorithm 3.

We now introduce the following specific pessimistic estimator est𝛼
𝛽
for which the above three

correctness criteria (upper bound, efficiency, base case) are proven. As before, in the following we

always assume 𝛼 = 1 − 1/𝑚 and 𝛽 = 3𝑏 ln𝑚/ln ln𝑚 for𝑚 ≥ 9 and 𝑏 = 1.85.

Lemma 6.1 (Pessimistic Estimator). The function est𝛼
𝛽
is a pessimistic estimator for the ANF:

est𝛼
𝛽
(𝑍1, . . . , 𝑍𝑘 ) = est𝛼 (𝑍1, . . . , 𝑍𝑘 ) +

∑︁
(𝑢,𝑣) ∈𝐸

est(𝑢,𝑣)
𝛽
(𝑍1, . . . , 𝑍𝑘 ), where

est𝛼 (𝑍1, . . . , 𝑍𝑘 ) = 𝑒−𝜃𝛼 (1−𝛿𝛼 ) 𝜇̃
∏
𝑙 ∈[𝑘 ]

Ex
(
𝑒
𝜃𝛼𝑍𝑖

𝑤𝑖
𝑤max

)
, with 𝛿𝛼 =

1

𝑚
, 𝜇̃ =

𝑤𝐿𝑃

𝑤max

, 𝜃𝛼 = ln(1 − 𝛿𝛼 );

and est(𝑢,𝑣)
𝛽
(𝑍1, . . . , 𝑍𝑘 ) = 𝑒−𝜃𝛽 (1+𝛿𝛽 )𝜇

∏
𝑙 ∈[𝑘 ]

Ex

(
𝑒
𝜃𝛽𝑍𝑖

(𝑓𝑖,(𝑢,𝑣) / ˜𝑓𝑖 )
𝑐 (𝑢,𝑣)

)
, with 𝛿𝛽 =

3𝑏 ln𝑚

ln ln𝑚 − 1

, 𝑏 = 1.85,

𝜇 = 1, 𝜃𝛽 = ln(1 + 𝛿𝛽 ) .
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Proof. The following three properties are to be shown: (i) upper bound, (ii) efficiency, and (iii)

base case (cf. Equations 8 - 10). We first discuss properties (i) and (iii).

The analysis in Section 5 has demonstrated that the probability of obtaining an

(𝛼, 𝛽)-approximate solution via randomized rounding is bounded from below by 1/(6 ·𝑚2) (cf.
Corollary 5.1). To obtain this result, a union bound argument was employed, which used proba-

bilistic bounds on not achieving at least an 𝛼 fraction of the optimal throughput and exceeding the

capacity of each single edge by a factor of 𝛽 .

For the throughput, the Chernoff bound of Theorem B.7 is applied, while for each edge’s capacity

violation, the Chernoff bound of Theorem B.8 is used. The pessimistic estimators est𝛼 and est(𝑢,𝑣)
𝛽

are a direct result of these respective theorems:

• est𝛼 is obtained from the application of the Chernoff bound of Theorem B.7 within the proof

of Lemma 2.4. Specifically, the application of the Chernoff bound in Lemma 2.4 yields the

following — restated over the variables 𝑍𝑖 — with the parameters 𝛿𝛼 , 𝜃𝛼 and 𝜇̃ as specified

above:

Pr ©­«
∑︁
𝑙 ∈[𝑘 ]

𝑤𝑙 · 𝑍𝑙 < 𝛼 ·𝑤𝐿𝑃
ª®¬ ≤ 𝑒−𝜃𝛼 · (1−𝛿) ·𝜇̃ ·

∏
𝑖∈[𝑘 ]

Ex
(
𝑒𝜃𝛼 ·𝑍𝑖 ·𝑤𝑖/𝑤max

)
≤ 𝑒−1/(2·𝑚2)

The middle expression directly yields the pessimistic estimator for the throughput.

• est(𝑢,𝑣)
𝛽

is analogously obtained from the application of the Chernoff bound of Theorem B.8

in the Lemma 2.5 for each edge (𝑢, 𝑣) ∈ 𝐸. Specifically, for a single edge (𝑢, 𝑣), the following
is obtained when using the constants defined above:

Pr ©­«
∑︁
𝑖∈[𝑘 ]

𝑓𝑖,(𝑢,𝑣) > 𝛽 · 𝑐 (𝑢, 𝑣)ª®¬ ≤ 𝑒−𝜃𝛽 · (1+𝛿𝛽 ) ·𝜇 ·
∏
𝑖

Ex
(
𝑒𝜃𝛽 ·𝑍𝑖 ·𝑓𝑖,(𝑢,𝑣) /𝑐 (𝑢,𝑣)

)
≤ 1/(6 ·𝑚2)

Again, the middle expression is used to obtain the pessimistic estimator est(𝑢,𝑣)
𝛽

for the specific

edge (𝑢, 𝑣) ∈ 𝐸.
Revisiting the union bound argument, we obtain that est𝛼

𝛽
indeed yields an upper bound

on the failure probability to construct an (𝛼, 𝛽)-approximate solution, and that initially

Ex
(
est𝛼

𝛽
(𝑍1, . . . , 𝑍𝑘 )

)
≤ 1 − 1/(6 ·𝑚2) < 1 holds for𝑚 ≥ 9. This shows that properties (i) and (iii)

are satisfied.

Considering the efficiency property (ii), we note the following. Both est𝛼 and est(𝑢,𝑣)
𝛽

consist of

products, where expectations for different commodities can be computed independently. Due to

the binary nature of the variables 𝑍𝑖 , these expectations can be computed in constant time. □

Given the above outlined intuition of the derandomization process and the correctness of the

pessimistic estimator due to Lemma 6.1, the following main theorem of this section is obtained.

Theorem 6.2. Using est𝛼
𝛽
as a pessimistic estimator, Algorithm 3 is a deterministic (𝛼, 𝛽)-approximation

for the ANF problem with 𝛼 = 1 − 1/𝑚 and 𝛽 = 3𝑏 ln𝑚/ln ln𝑚 , with 𝑏 = 1.85, for𝑚 ≥ 9.

7 POTENTIAL PROBLEM EXTENSIONS
The packing formulation for the ANFwas introduced in Section 2 together with a simple randomized

rounding algorithm. Besides the practical tractability established in Section 4, the proposed packing

framework for the ANF has further advantages. Specifically, it can be easily adapted to cater for

problem extension such as when flows are restricted to 𝑘-splittable flows, must obey fault-tolerance

criteria, or are restricted to shortest paths.
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In the following we describe some of these extensions and how the packing formulation may

be adapted together with the separation procedure. Notably, some problem extension allow for

compact LP formulations, however, casting the problems in terms of the packing formulation is

generally less complex and therefore helps in establishing whether a problem extension can be

efficiently approximated in the first place.

Henceforth, our goal is to solve the maximum throughput problem in the all-or-nothing model

while restricting the nature of flows that are allowed for each commodity. The ANF allows flow

for each commodity to be split in arbitrary ways while unsplittable flow requires all the flow for

a commodity to use a single path. However, there are several intermediate settings of interest,

and other constraints, that occur in practice. Recall that in setting up the formulation in Figure 1,

F𝑖 for each pair 𝑖 is the set of valid 𝑠𝑖-𝑡𝑖 flows in 𝐺 . This is a large implicit set, and the way we

solve the LP relaxation is via the separation oracle. The separation oracle corresponds to finding a

minimum-cost flow from F𝑖 given some edge lengths/costs. The MWU algorithm can be viewed as

an efficient, albeit approximate, way to solve the large implicit LP relaxation via the separation

oracle. Moreover, once the LP is solved, the randomized rounding step picks one of the flows per

commodity. This flexibility allows us to solve the LP and round even when F𝑖 is restricted in some

fashion. We outline a few extensions that can be addressed via this framework.

Integer flows: Recall that in ANF we allow splittable flows. However in some settings it is useful

to have flow for each commodity on each edge to be integer valued; here we assume that 𝑑𝑖 is an

integer for each 𝑖 . In order to handle this we can set F𝑖 to be the set of all integer 𝑠𝑖 -𝑡𝑖 flows. Now

the min-cost flow routine needs to find an integer flow between 𝑠𝑖 and 𝑡𝑖 of 𝑑𝑖 units. This is easy to

ensure since there always exists an integer valued min-cost flow as long as the demands and the

edge capacities are all integer valued. We reduce each 𝑐 (𝑒) to ⌊𝑐 (𝑒)⌋ without loss of generality.
Splitting into a small number of paths: In some applications it is important that the flow for

each pair is not split by too much. How do we quantify this? One way is to consider ℎ-splittable

flows where ℎ is an integer parameter. This means that flow for each pair can be decomposed into

at most ℎ paths. When ℎ = 1 we obtain unsplittable flow and if we set ℎ = |𝐸 | we obtain ANF. We

can handle the special case where each of the ℎ flow paths has to be used to send the same amount

of flow which is 𝑑𝑖/ℎ. For this purpose we define F𝑖 to be the set of all such flows. To compute a

min-cost flow in F𝑖 we simply need to find a min-cost flow of ℎ units from 𝑠𝑖 to 𝑡𝑖 in the graph with

capacities adjusted as follows: for each edge 𝑒 with capacity 𝑐 (𝑒) we change it to ⌊ℎ𝑐 (𝑒)/𝑑𝑖⌋. Baeier
et al. [5] considered this maximum throughput problem, however, they only considered uni-criteria

approximation algorithms and provided a reduction to the unsplittable case; the approximation

ratios that one can obtain without violating capacities are very poor while our focus here is on

bicriteria approximation that achieve close to optimum throughput.

Fault-tolerance and routing along disjoint paths: In some settings the flow for a pair (𝑠𝑖 , 𝑡𝑖 )
needs to be fault-tolerant to edge and/or node failures. There are several ways this is handled in

the networking literature. One common approach is to send the flow for each commodity along

ℎ disjoint paths, each carrying 𝑑𝑖 units. This can be handled by an approach very similar to the

preceding paragraph where we compute min-cost flow onℎ disjoint paths; note that in the preceding

paragraph the ℎ paths could share edges. Another approach to fault-tolerance is to use what are

called ℎ-route flows [1, 20]. One can find a min-cost ℎ-route flow in polynomial time [1]. Hence,

one can also use the framework to maximize throughput while each routed pair uses an ℎ-route

flow.

Using few edges or short paths:We now consider the setting when the flow for a commodity

is required to use a small number of edges or the flow has to be routed along paths with small

number of hops. These constraints not only arise in practice but also help improve the theoretical
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bounds on congestion. One can show that if each flow uses only 𝑑 edges then the bicriteria

approximation can be improved; the congestion required for a constant factor approximation

becomes 𝑂 (log𝑑/log log𝑑) rather than 𝑂 (log𝑚/log log𝑚); for single paths the analysis can be

seen from [6] and we can generalize it to our setting. Suppose we wish to route flow for each

commodity whose support consists only of some given number ℎ of edges. As above we need to

solve for min-cost 𝑠𝑖 -𝑡𝑖 flow that satisfies this extra constraint. However this additional constraint is

no longer so easy to solve and in some cases can be NP-Hard. However, if one allows for a constant

factor relaxation for the number of edges ℎ, and an additional constant factor in the edge congestion

one can address this more complex constraint by using linear programming based ideas (see [9] for

an example).

8 SIMULATION RESULTS
In this section we study the performance of our approximation algorithms for the ANF problem on

real-world networks. Our proof-of-concept computational evaluation is meant to provide general

guidelines about the relative efficacy of the algorithms in terms of the achieved throughput approxi-
mation factor 𝛼 and the edge capacity violation ratio 𝛽 . The achieved throughput approximation

ratio is taken as the solution obtained by the run divided by the optimal LP solution (which is a

lower bound on the exact approximation ratio based on the optimal IP solution rather that its LP

relaxation). Notably, due to the bi-criteria nature of our approximations with solutions being al-

lowed to exceed edge capacities (by at most a factor of 𝛽), solutions may yield empirical throughput

approximation factors of 𝛼 > 1.

Beyond analyzing the performance of our randomized rounding and derandomized algorithms,

we also investigate the impact of varying the methodology by which the LP is solved. Specifically, we

study the performance of solving the compact LP formulation directly, of solving the multiplicative

weight update algorithm (MWU), and of solving theMWU-based Permutation Routing (PR) heuristic

described below.While the runtime of our prototypical MWU implementation generally exceeds the

runtime of solving the compact LP formulation using a commercial solver, ourMWU implementation

serves as a proof-of-concept of its practical applicability and will also enable the extensions outlined

in Section 7, which depend on the packing formulation. In addition, we remark that MWU may be

useful for larger networks in practice (larger than the ones considered here), as it does not suffer

from the same space complexity limitations as solving the compact LP via standard LP solvers.

Note that the simulation results for the current state-of-the-art algorithm for constant-throughput

approximations for the ANF problem [21] — originally designed in to handle uniform demands,

edge capacities and weights — have been reproduced in this paper when running the randomized

rounding algorithm with the compact edge-flow LP, since this algorithm is in essence the same as

the algorithm in [21], adapted here to handle non-uniform demands, edge capacities and weights

(in addition to some fine tuning optimizations). Our theoretical approximation results in this paper

actually also validate the simulation results in [21], since the simulations in [21] already suggested

that the edge capacity violations incurred by randomized rounding based on the compact edge-flow

LP were logarithmic (and not polynomial as the theoretical guarantees of [21] suggested).

8.1 Permutation Routing Heuristic
Without proper optimization, the runtime of theMWUalgorithm can be slow due to the computation

of 𝑘 minimum-cost flows as a separate procedure in each iteration. As a practical solution, we

introduce a heuristic based on Algorithm 1 that provides a significant reduction in computational

cost, while still yielding solutions comparable to those by MWU in practice. We refer to this as the

Permutation Routing (PR) algorithm. In the following we outline how this new algorithm differs from
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the original MWU algorithm and we refer the reader to Algorithm 5 for the complete pseudocode

description.

Algorithm 5: Permutation Routing Algorithm

Inputs: 𝛾 ∈ R+, Directed Graph G(V,E), 𝑐 : 𝐸 → R+, a set 𝑆 of 𝑘 pairs of commodities (𝑠𝑖 , 𝑡𝑖 )
each with demand 𝑑𝑖 , weight𝑤𝑖 , an estimate 𝐸𝑠𝑡 of the optimal fractional ANF solution for

(𝐺, 𝑆)
1: Initialize an empty flow 𝑓 (𝑒) ← 0,∀𝑒 ∈ 𝐸
2: Set 𝜂 ← ln |𝐸 |

𝛾

3: Set 𝑟 ← ln |𝐸 |
𝛾2

4: Let 𝑓𝑖,𝑒 ← 0 be the fractional flow assignment for commodity 𝑖 on edges 𝑒 for all 𝑖 ∈ 𝑆, 𝑒 ∈ 𝐸
5: Define edge costs ℓ (𝑒) = 1,∀𝑒 ∈ 𝐸
6: Make 𝑟 copies the 𝑘 commodities of 𝑆 and let 𝐴 be a list of these 𝑟𝑘 commodities

7: Let 𝐵 be a random permutation of 𝐴

8: for each commodity copy 𝑗 in 𝐵 do
9: Let commodity 𝑗 in 𝐵 correspond to original demand (𝑠𝑖 , 𝑡𝑖 )
10: Compute min-cost flow of 𝑑𝑖 units from 𝑠𝑖 to 𝑡𝑖 with edge costs defined by ℓ and obtain

flow assignment 𝑓 ′ and solution cost 𝜌 =
∑
𝑒∈𝐸 ℓ (𝑒) 𝑓 ′(𝑒)

11: Compute 𝜏 =
∑
𝑒∈𝐸 ℓ (𝑒)𝑐 (𝑒)

12: if 𝑤𝑗

𝜌
≥ 𝐸𝑠𝑡

𝜏
and none of the following updates cause an edge capacity violation then

13: for each edge 𝑒 ∈ 𝐸 do
14: Update 𝑓 (𝑒) ← 𝑓 (𝑒) + 𝑓 ′ (𝑒)

𝑟

15: Update 𝑓𝑖,𝑒 ← 𝑓𝑖,𝑒 + 1

𝑟

16: Update ℓ (𝑒) ← exp

(
𝜂 ·𝑓 (𝑒)
𝑐 (𝑒)

)
17: Return 𝑓 (𝑒), 𝑓𝑖,𝑒 for all 𝑖 ∈ 𝑆, 𝑒 ∈ 𝐸

Our algorithm is motivated by theoretical algorithms for maximum throughput packing problems

in the online arrival model and the random arrival order models. It is known that for packing

problems, in the random arrival model, one can obtain arbitrarily good performance compared to

the offline optimal solution if the resource requirements of the arriving items (these correspond

to flows in our setting) are sufficiently small when compared to the capacities [2, 17, 19]. The

analytical ideas are related to online learning and MWU.

We develop our heuristic as follows: Recall that we are seeking a fractional solution. We take

each commodity pair 𝑖 with demand 𝑑𝑖 and split it into 𝑟 “copies," each with a demand of 𝑑𝑖/𝑟 .
Here 𝑟 is a sufficiently large parameter to ensure the property that 𝑑𝑖/𝑟 is “small" compared to the

capacities. From the MWU analysis, and also the analysis in random arrival order models, one sees

that 𝑟 = Ω(ln𝑚/𝛾2) suffices. Given the 𝑘 original pairs, we create 𝑘 · 𝑟 total pairs from the copies.

We now randomly permute these pairs and consider them by one-by-one. When considering a pair,

the algorithm evaluates the “goodness” of the pair in a fashion very similar to that of the MWU

algorithm. It maintains a length for each edge that is exponential in its current loads, and computes

a minimum cost flow for the current pair (note that the pair’s demand is only a 1/𝑟 fraction of its

original demand); it accepts this pair if the cost of the flow is favorable compared to an estimate of

the optimum solution. If it accepts the pair, it routes its entire demand (which is the 1/𝑟 ’th fraction

of the original demand). Otherwise this pair is rejected and never considered again. Thus the total
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number of minimum cost flow computations is𝑂 (𝑘 · 𝑟 ) when compared to𝑂 (𝑘 ·𝑚 · log𝑚/𝛾2) in the

MWU algorithm. As mentioned above, a worst-case theoretical analysis requires 𝑟 = Ω(log𝑚/𝛾2)
to guarantee a (1−𝛾)-approximation, however, in practice a smaller value of 𝑟 can be chosen. Note

that an original pair (𝑠𝑖 , 𝑡𝑖 ) with demand 𝑑𝑖 is routed to a fraction 𝑟𝑖/𝑟 where 𝑟𝑖 is the number of

copies of 𝑖 that are admitted by the random permutation algorithm. The algorithm requires an

estimate of the optimum solution which can be obtained via binary search or other methods.

8.2 Methodology
We now describe the problem instances and the implementations of our approximation algorithms.

Problem Instances. Following [21], we study real-world networks together with corresponding
real-world source-sink pairs obtained from the survivable network design library (SNDlib) [24]. We

randomly perturb the uniform weights, demands and edge capacities of the chosen networks to test

our algorithms’ ability to accommodate variable weights and demands on networks with varying

edge capacities. Due to this choice, we find that only a fraction of the given commodities can be

concurrently satisfied. Our choice of networks from the SNDlib is given in Table 1, covering several

general scenarios, e.g. a small network with large number of commodities, or a dense network

with large number of commodities. We chose independent uniform random edge capacities from

20 to 60, commodity demands from 25 to 75, and commodity weights from 1 to 10 (the benchmark

SNDlib data has all edge capacities at 40, demands at 50, and weights at 1).

Network Vertices Edges Commodities General Description
Atlanta 15 44 210 Small network, high commodity count

Germany50 50 176 662 Sparse network, high commodity count

Di-yuan 11 84 22 Dense network, low commodity count

Dfn-gwin 11 94 110 Dense network, high commodity count

Table 1. List of studied adapted instances from SNDlib [24]

Algorithms. We have implemented both the randomized and derandomized rounding algo-

rithms detailed in Sections 5 and 6. We solve the compact formulation via CPLEX V12.10.0

and approximately solve the packing LP via the MWU algorithm or the faster permutation

routing heuristic. We choose 𝜖 = 1

9
and 𝑏 = 1.85 in Algorithms 2 and 3, implying a target

throughput approximation factor of 𝛼 ≥ 1 − 𝜖 = 8

9
and target edge capacity violation ratio

of 𝛽 ≤ 3𝑏 ln𝑚/ln ln𝑚 = 5.55 ln𝑚/ln ln𝑚, where𝑚 is the number of network edges, for the al-

gorithms. More specifically, for the Atlanta and Germany50 networks, we target edge capacity

violations 𝛽 ≤ 15.78 and 17.47, respectively.

We define an experiment as the execution of a higher level algorithm (either randomized or

derandomized rounding) in concert with an LP-solving subroutine (CPLEX for compact LP or

our MWU and PR implementations) on a particular network. For an experiment that includes

randomized rounding, we execute this algorithm 10 times to obtain a total of 10 different samples

per experiment. For each of these 10 executions, 100 rounds of rounding are recorded and of these

rounded solutions, we report on the solution of highest throughput whose capacity violations lie

below our theoretical bounds. We consider three different 𝛾 values, namely 0.15, 0.2, and 0.3, to

study performance vs. runtime trade offs of the MWU algorithm and the PR heuristic. Due to the

slow convergence of MWU, we introduce speed-up mechanisms where (i) during any iteration, if

the post-update smallest mincost flow solution is not at least 50 percent larger than the pre-update

smallest min-cost flow solution, then we do not recompute this in the subsequent iteration, and (ii)

the maximum number of iterations is capped at 10k.
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Fig. 5. Experimental results on the Atlanta (top) and Germany50 (middle) networks and their runtimes
(bottom); RR refers to the randomized and DR to the derandomized rounding algorithm. Edge capacities
vary uniformly at random from 20 to 60, commodity demands vary uniformly at random from 25 to 75, and
commodity weights vary uniformly at random from 1 to 10.

8.3 Experimental Results
In this section we report on our computational results. We first focus our attention on the perfor-

mance of the Atlanta and Germany50 networks but will then also discuss two smaller networks.
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We report results in terms of the achieved throughput factor 𝛼 , edge capacity violation factor 𝛽 ,

and the wall-clock running times.

Our experiments are summarized visually in Figure 5, and we will refer to this figure for the

remainder of this section. The qualitative plots at the top and the middle show the empirical

throughput and edge capacity violation ratios obtained by executions of the various algorithms.

Note that we report on 10 data points when applying randomized rounding in contrast to the

single data point for the derandomized algorithm. For reference, we include a red star data point

indicating the optimal LP solution.

We see for both the Atlanta and Germany50 networks that the compact LP combined with

both the randomized and derandomized algorithms produces 𝛽 values that are well within our

established theoretical bounds, although we see noticeably larger values of 𝛼 and marginally larger

values of 𝛽 when the derandomized rounding is employed. The values of 𝛼 and 𝛽 obtained from

MWU are similarly concentrated around their means. Interestingly, in combination with the MWU

algorithm, the deterministic rounding shows for Germany50 a significant increase in edge capacity

violations while also achieving a much higher throughput. For the deterministic rounding of MWU,

we observe that 𝛼 increases as 𝛾 decreases under roughly constant capacity violations. With respect

to the permutation routing subroutines, we observe more variance over the parameter space, and

we typically see much higher capacity violation without a significant gain in throughput.

Regarding the runtimes, we remark that the solving the compact LP using CPLEX is in general

significantly faster than our MWU or PR implementations. Furthermore, the randomized rounding

algorithm significantly outperforms our efficient deterministic rounding algorithm. We believe this

to be mainly due to our naive implementation of the pessimistic estimators, that does not cache

intermediate results.

Regarding the performance of the permutation routing algorithm, we note the following: For

both networks we see a runtime decrease of a factor of at least half compared to the vanilla MWU

algorithm while slightly compromising on the generally less favorable higher capacity violations.

For the MWU algorithm, we expect in general to see the runtime increase as 𝛾 decreases, however,

due to our speed-up mechanism, the opposite may be true. This is attributed to the fact that with a

smaller 𝛾 , the increase in flow is likewise smaller, and thus the updates to edge costs are smaller,

implying that the threshold for skipping min-cost flow calculations is met more often. Thus, runtime

is reduced for smaller values of 𝛾 , though at the expense of worse throughput approximations.

Figure 6 summarizes the results on networks Atlanta and Germany50 under the default uniform

weights, demands and edge capacities given by [24]. This figure also replicates experiments from

[21], though here we additionally test Algorithms 1,5 in conjunction with Algorithms 2,3. In Figure 7,

we present experimental results on two additional networks from [24], namely DFN-GWIN and

DI-YUAN. In these experiments, we randomly perturb the weights, demands and edge capacities

in the same manner given in Figure 5. Lastly, in Figure 8, we again present experimental results

on DFN-GWIN and DI-YUAN, though we test uniform commodity weights, demands and edge

capacities.
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Fig. 6. Experimental results on the Atlanta (top) and Germany50 (middle) networks and their runtimes
(bottom); RR refers to the randomized and DR to the derandomized rounding algorithm. Edge capacities,
commodity weights and commodity demands are fixed to 40, 1 and 50, respectively per [24].
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Fig. 7. Experimental Results: 𝛼 × 𝛽 plots and running times. Note that our theory maintains that 𝛽 ≤ 16.52

and 𝛽 ≤ 16.66 for the Di-yuan and DFN-GWIN networks, respectively. Edge capacities vary uniformly at
random from 20 to 60, commodity demands vary uniformly at random from 25 to 75, and commodity weights
vary uniformaly at random from 1 to 10.
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Fig. 8. Experimental Results: 𝛼 × 𝛽 plots and running times. Note that our theory maintains that 𝛽 ≤ 16.52

and 𝛽 ≤ 16.66 for the Di-yuan and DFN-GWIN networks, respectively. Network capacities, commodity
weights and commodity demands are fixed to 40,1 and 50, respectively per [24].

Concluding, we note that we see our results as a first step towards efficiently approximating

the ANF and its potential extensions. While randomized rounding wins in terms of runtime, the

deterministic rounding generally achieves slightly higher throughputs. Furthermore, while solving
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the compact LP is shown to be much quicker in practice, the proposed MWU algorithm will render

tackling the problem extensions of Section 7 tractable and our proposed permutation routing

heuristic can in practice substantially reduce runtimes. With respect to space, it is least efficient to

solve the compact LP directly. In fact, it may be impossible to do so if the network is large enough.

The MWU and Permutation Routing algorithms, on the other hand, rely on repeated and discarded

computations of single commodity min-cost flow, whose corresponding LPs exhibit much fewer

constraints than multicommodity ANF on the same network.

9 CONCLUSION
We presented a novel and significantly improved approximation of the maximum throughput

routing problem for all-or-nothing multiple commodities with arbitrary demands. To this end, we

derived formal bi-criteria approximation bounds and presented a proof of concept on efficient

implementations of our algorithms in practice. We also showed that our packing framework is very

flexible and may hence be of interest beyond the specific model considered in this paper, and apply,

e.g., to scenarios where flows should only be split into a small number of paths or use few edges.

In future research, it would be interesting to develop improved rounding approaches, e.g., using

resampling ideas from the Lovasz-Local-Lemma, to explore the additional applications introduced

by our packing framework, as well as to study opportunities for algorithm engineering, further

improving the performance of our algorithms in practice.
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A ALTERATION APPROACH
We describe an alternative rounding approach to the one presented in Section 2 that has some

advantages in certain settings and gives a better tradeoff in terms of repetitions. The algorithm

consists of two phases. In the first phase, for each pair 𝑖 we randomly pick at most one flow as

described above (note that we may not pick any flow in which case we think of it as an empty flow).

For pair 𝑖 , let 𝑔𝑖 be the chosen flow. The second phase is an alteration phase to ensure that the

constraints are not violated more than the desired amount. We order the pairs arbitrarily (without

loss of generality from 1 to 𝑘) and consider them one by one. When considering pair 𝑖 we try to

route 𝑖 via flow 𝑔𝑖 if it is not empty. If adding the 𝑔𝑖 to the already chosen flows for pairs 1 to

𝑖 − 1 does not violate any edge capacity by more than a factor (1 + 3𝑏 log𝑚/log log𝑚), we add 𝑖 to
the routed pairs, otherwise we discard pair 𝑖 . Note that a pair 𝑖 that was chosen in the first phase

may get discarded in this second alteration step. Let 𝑆 be the random set of routed pairs. From the

construction it is clear that we can route pairs in 𝑆 without violating any edge’s capacity by a factor

larger than (1 + 3𝑏 log𝑚/log log𝑚). Note that unlike the basic randomized rounding algorithm we

have a deterministic guarantee on this property. Now we lower bound the expected weight of 𝑆 .

Lemma A.1. Let 𝑆 be set of pairs routed at the end of the alteration phase. Then 𝐸 [𝑤 (𝑆)] ≥
(1 − 1/𝑚Ω (𝑏) )𝑊LP. Moreover, if 𝑦 is a fractional solution sucht that𝑊LP ≥ 𝑐OPTLP, for some 𝑐 ≤ 1

then with probability at least 𝜖−𝑚−Ω (𝑏)
𝑐 (1+3𝑏 ln𝑚/ln𝑚) ,𝑤 (𝑆) ≥ (1 − 𝜖)𝑊LP.
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Proof. Consider a pair 𝑖 . Let 𝑌𝑖 be a binary random variable that is 1 if a non-empty flow is

chosen in the random rounding stage. Let 𝑍𝑖 be binary random variable that is 1 if 𝑖 ∈ 𝑆 , that is, if 𝑖
is routed after the alteration phase. We have𝑤 (𝑆) = ∑

𝑖 𝑤𝑖𝑍𝑖 and hence by linearity of expectation

we have 𝐸 [𝑤 (𝑆)] = ∑
𝑖 𝑤𝑖 Pr[𝑍𝑖 = 1].

We now lower bound Pr[𝑍𝑖 = 1]. We observe that Pr[𝑌𝑖 = 1] = ∑
𝑓 ∈F𝑖 𝑦 (𝑓 ) by the random

choice in the first step. We have Pr[𝑍𝑖 = 1] = Pr[𝑌𝑖 = 1] (1 − Pr[𝑍𝑖 = 0 | 𝑌𝑖 = 1]). The quantity
Pr[𝑍𝑖 = 0 | 𝑌𝑖 = 1] is the probability that pair 𝑖 is rejected in second phase of the algorithm

conditioned on the event that it is chosen in the first stage. Pair 𝑖 is rejected only if there is

some edge 𝑒 such that the total flow on 𝑒 is more than (3𝑏 log𝑚/log log𝑚)𝑐 (𝑒) from the flows

chosen in the first step of the algorithm; from Lemma 2.5 this probability is at most 1/𝑚Ω (𝑏)
.

Thus Pr[𝑍𝑖 = 0 | 𝑌𝑖 = 1] ≤ 1/𝑚Ω (𝑏)
and hence Pr[𝑍𝑖 = 1] ≥ (1 − 1/𝑚Ω (𝑏) )∑𝑓 ∈F𝑖 𝑦 (𝑓 ). Since

𝐸 [𝑤 (𝑆)] = ∑
𝑖 𝑤𝑖 Pr[𝑍𝑖 = 1], we see that 𝐸 [𝑤 (𝑆)] ≥ (1 − 1/𝑚Ω (𝑏) )𝑊LP.

We now argue the second part. Let OPTLP denote the value of an optimum solution to the LP

relaxation. Consider the random variable𝑤 (𝑆). We claim that𝑤 (𝑆) ≤ (1+3𝑏 log𝑚/log log𝑚)OPTLP

deterministically. To see this recall that 𝑆 admits a routing that satisfies the capacity constraints

to within a congestion of (1 + 3𝑏 log𝑚/log log𝑚). Therefore, by scaling down the routing of each

demand in 𝑆 by a (1 + 3𝑏 log𝑚/log log𝑚) factor, one obtains a feasible fractional solution to the

LP relaxation whose value is at least 𝑤 (𝑆)/(1 + 3𝑏 log𝑚/log log𝑚). This implies that OPTLP ≥
𝑤 (𝑆)/(1 + 3𝑏 log𝑚/log log𝑚), which proves the claim. Thus, if𝑊LP ≥ 𝑐OPTLP we have 𝐸 [𝑤 (𝑆)] ≥
(1 − 1/𝑚Ω (𝑏) )𝑊LP ≥ 𝑐 (1 − 1/𝑚Ω (𝑏) )OPTLP, and 𝑤 (𝑆) ≤ (1 + 3𝑏 log𝑚/log log𝑚)OPTLP. Let 𝛼 be

the probability that𝑤 (𝑆) < (1 − 𝜖)𝑊LP. Then we have the following.

𝐸 [𝑤 (𝑆)] ≤ (1 − 𝛼) (1 + 3𝑏 log𝑚/ln ln𝑚)OPTLP + 𝛼 (1 − 𝜖)𝑊LP

≤ (1 − 𝛼) (1 + 3𝑏 log𝑚/ln ln𝑚)𝑊LP/𝑐 + (1 − 𝜖)𝑊LP

However 𝐸 [𝑤 (𝑆)] ≥ (1 − 1/𝑚Ω (𝑏) )𝑊LP. Rearranging and simplifying we have

(1 − 𝛼) ≥ 𝑐 (𝜖 −𝑚−Ω (𝑏) )/(1 + 3𝑏 ln𝑚/ln ln𝑚).
Note that (1 − 𝛼) is the probability that𝑤 (𝑆) ≥ (1 − 𝜖)𝑊LP. This finishes the proof. □

From the preceding lemma we see that the alteration algorithm guarantees deterministically that

the congestion is 𝑂 (𝑏 ln𝑚/ln ln𝑚) while the expected weight of the commodities routed by it is

very close to𝑊LP. In fact with probability roughly Ω(𝜖/(1 + 𝑏 ln𝑚)) the value of the routed pairs

is at least (1 − 𝜖)𝑊LP assuming that𝑊LP is a constant factor of OPTLP. In most settings we would

want to start with a fractional solution that is very close to OPTLP and hence the assumption is

reasonable. To guarantee a high probability bound
5
on achieving at least (1−𝜖)𝑊LP ≥ (1−𝜖)OPTIP,

it suffices to repeat the algorithm 𝑂 (ln𝑚/𝜖2) times.

B PROOFS OF CHERNOFF CONCENTRATION BOUNDS
In this appendix we prove extended versions of the classic Chernoff bounds presented in Theorem 2.3

to derandomize our approximation algorithm. The specific Chernoff extensions can be found in

Appendix B.2, we first state some common convexity arguments below.

B.1 Some Convexity Arguments
Lemma B.1. The following holds for any 𝜃 ∈ R and 𝑥 ∈ [0, 1]:

exp(𝜃 · 𝑥) ≤ 1 + (exp(𝜃 ) − 1)
5
We say that an event occurs with high probability, if it occurs with probability at least 1 − 1/𝑥𝑐 , where 𝑥 is the size of the

input and 𝑐 > 0 is a constant.
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Lemma B.2. The following holds for any 𝜃 ∈ R and 𝑥 ∈ [0, 1]:
1 + (exp(𝜃 ) − 1) · 𝑥 ≤ exp((exp(𝜃 ) − 1) · 𝑥)

Lemma B.3. Let 𝑋𝑙 ∈ [0, 1] denote a single random variable of expectation 𝜇𝑙 = Ex (𝑋𝑙 ). For any
𝜃 ∈ R the following holds for the random variable 𝑌𝑙 = exp(𝜃 · 𝑋𝑙 ):

Ex (𝑌𝑙 ) ≤ exp((exp(𝜃 ) − 1) · 𝜇𝑖 ) (11)

Lemma B.4. The following inequality holds for any 𝑥 ∈ [0, 1]:
(1 + 𝑥) ln(1 + 𝑥) − 𝑥 ≥ 𝑥2/3 . (12)

Lemma B.5. The following inequality holds for any 𝑥 ∈ [0, 1):
−𝑥 − (1 − 𝑥) ln(1 − 𝑥) ≤ −𝑥2/2 . (13)

Lemma B.6. The following inequality holds for any 𝑥 > 0:

ln ln𝑥 − ln ln ln𝑥 ≥ 0.5 · ln ln𝑥 . (14)

B.2 Chernoff Bounds
In the following, Theorems B.7 and B.8 extend the classic Chernoff bounds of Theorem 2.3, enabling

us to obtain pessimistic estimators for the sake of derandomization.

Theorem B.7. Let 𝑋 be the sum of 𝑘 independent random variables 𝑋1, . . . , 𝑋𝑘 with 𝑋𝑙 ∈ [0, 1] for
𝑙 ∈ [𝑘]. Denoting by 𝜇̃𝑙 ≤ 𝜇𝑙 = Ex (𝑋ℓ ) lower bounds on the expected value of random variable 𝑋𝑙 ,
𝑙 ∈ [𝑘], the following holds for any 𝛿 ∈ (0, 1) with 𝜇̃ = ∑

𝑙 ∈[𝑘 ] 𝜇̃𝑙 and 𝜃 = ln(1 − 𝛿);

Pr (𝑋 ≤ (1 − 𝛿) · 𝜇̃)
(𝑎)
≤ 𝑒−𝜃 · (1−𝛿) ·𝜇̃ ·

∏
𝑙 ∈[𝑘 ]

Ex
(
𝑒𝜃 ·𝑋𝑙

) (𝑏)
≤ 𝑒−𝛿

2 ·𝜇̃/2
(15)

Proof. We first prove the inequality Pr (𝑋 ≤ (1 − 𝛿) · 𝜇̃) ≤
(

𝑒−𝛿

(1−𝛿)1−𝛿

) 𝜇̃
for 𝛿 ∈ (0, 1). Let 𝑌𝑙 =

exp(𝜃 · 𝑋𝑙 ), 𝑙 ∈ [𝑘], for 𝜃 = ln(1 − 𝛿). Note that 𝜃 < 0 holds.

By Lemma B.3 Equality 11 holds. As exp(𝜃 ) − 1 = −𝛿 < 0 holds for 𝜃 < 0, the exponential

function 𝑓 (𝑧) = exp((exp(𝜃 ) − 1) · 𝑧) is monotonically decreasing. Using the lower bound 𝜇̃𝑙 ≤ 𝜇𝑙
and 𝜇̃ =

∑
𝑙 ∈[𝑘 ] 𝜇̃𝑙 the following is obtained:

Ex (𝑌𝑙 ) ≤ exp((exp(𝜃 ) − 1) · 𝜇̃𝑙 ) (16)

As the variables 𝑋1, . . . , 𝑋𝑘 are pairwise independent, the variables 𝑌1, . . . , 𝑌𝑘 are also pairwise

independent. Accordingly, the following holds for 𝑌 = 𝑒𝜃 ·𝑋 :

Ex (𝑌 ) = Ex
(
𝑒𝜃 ·

∑
𝑙∈[𝑘 ] 𝑋𝑙

)
= Ex ©­«

∏
𝑙 ∈[𝑘 ]

𝑒𝜃 ·𝑋𝑙
ª®¬ =

∏
𝑙 ∈[𝑘 ]

Ex (𝑌𝑙 ) . (17)

Accordingly, the following is obtained:

Pr[𝑋 ≤ (1 − 𝛿) · 𝜇̃] (18)

= Pr[𝑒𝜃 ·𝑋 ≥ 𝑒𝜃 · (1−𝛿) ·𝜇̃] [as 𝜃 < 0] (19)

≤Ex (exp[𝜃 · 𝑋 ])
𝑒𝜃 · (1−𝛿) ·𝜇̃

[by Markov’s inequality] (20)

=

∏
𝑙 ∈[𝑘 ] Ex (𝑌𝑙 )
𝑒𝜃 · (1−𝛿) ·𝜇̃

[by Equation 17] (21)
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≤
∏
𝑙 ∈[𝑘 ] 𝑒

(exp(𝜃 )−1) ·𝜇̃𝑖

𝑒𝜃 · (1−𝛿) ·𝜇̃
[by Equation 16] (22)

=𝑒

(∑
𝑙∈[𝑘 ] 𝑒

𝜃−1·𝜇̃𝑙
)
−
(
𝜃 · (1−𝛿) ·𝜇̃

)
[one exponent] (23)

=𝑒

(∑
𝑖∈[𝑁 ] ( (1−𝛿)−1) ·𝜇̃𝑖

)
−
(

ln(1−𝛿) ·(1−𝛿) ·𝜇̃
)

[using 𝜃 = ln(1 − 𝛿)] (24)

=𝑒

(
−𝛿 ·𝜇̃

)
−
(

ln(1−𝛿) ·(1−𝛿) ·𝜇̃
)

[definition of 𝜇̃ =
∑︁

𝑙 ∈[𝑘 ]
𝜇̃𝑙 ] (25)

=

(
𝑒−𝛿

(1 − 𝛿)1−𝛿

) 𝜇̃
(26)

Given Equation 26, Inequality (b) is a corollary of Lemma B.5, which showed the following for

𝛿 ∈ (0, 1)

−𝛿 − (1 − 𝛿) ln(1 − 𝛿) ≤ −𝛿2/2 . (27)

Multiplying both sides with 𝜇̃ and exponentiating both sides yields the desired result.

Regarding the Inequality (a), we note that this follows by the above proof from Equation 21. □

Theorem B.8. Let 𝑋 be the sum of 𝑘 random variables 𝑋1, . . . , 𝑋𝑘 with 𝑋𝑙 ∈ [0, 1] for 𝑙 ∈ [𝑘].
Denoting by 𝜇𝑙 ≥ 𝜇𝑙 = Ex (𝑋ℓ ) upper bounds on the expected value of random variable 𝑋𝑙 , 𝑙 ∈ [𝑘], the
following holds for any 𝛿 > 0 with 𝜇 =

∑
𝑙 ∈[𝑘 ] 𝜇𝑙 and 𝜃 = ln(𝛿 + 1):

Pr (𝑋 ≥ (1 + 𝛿) · 𝜇)
(𝑎)
≤ 𝑒−𝜃 · (1+𝛿) ·𝜇 ·

∏
𝑙 ∈[𝑘 ]

Ex
(
𝑒𝜃 ·𝑋𝑙

) (𝑏)
≤

(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇
. (28)

Proof. Let 𝑌𝑖 = exp(𝜃 · 𝑋𝑖 ) for 𝜃 = ln(𝛿 + 1), 𝑙 ∈ [𝑘]. Note that 𝜃 > 0 holds. As the variables

𝑋1, . . . , 𝑋𝑘 are pairwise independent, the variables 𝑌1, . . . , 𝑌𝑘 are also pairwise independent. Con-

sidering 𝑌𝑙 = exp(𝜃 · 𝑋𝑙 ), the following holds due to the pairwise independence of the variables

𝑌1, . . . , 𝑌𝑘 :

Ex (𝑌𝑙 ) =Ex (exp(𝜃 · 𝑋 )) = Ex
(
𝑒𝜃 ·

∑
𝑙∈[𝑘 ] 𝑋𝑙

)
=Ex ©­«

∏
𝑙 ∈[𝑘 ]

𝑒𝜃 ·𝑋𝑙
ª®¬ =

∏
𝑙 ∈[𝑘 ]

Ex (𝑌𝑖 ) . (29)

By Lemma B.3 the Inequality 11 holds. As 𝜃 > 0 holds, the exponential function

𝑓 (𝑧) = exp((exp(𝜃 ) − 1) · 𝑧) is monotonically increasing. Using the upper bound 𝜇𝑙 ≥ 𝜇𝑙 = Ex (𝑋𝑙 )
on the expectation of 𝑋𝑙 , 𝑙 ∈ [𝑘], with 𝜇 =

∑
𝑙 ∈[𝑘 ] 𝜇𝑙 , the following is obtained:

Ex (𝑌𝑙 ) ≤ exp((exp(𝜃 ) − 1) · 𝜇𝑙 ) . (30)

Using Equations 17 and 30 together with Markov’s inequality, the left inequality of the Chernoff

bound 28 is obtained for any 𝛿 > 0 by setting 𝜃 = ln(𝛿 + 1) > 0:

Pr[𝑋 ≥ (1 + 𝛿) · 𝜇] (31)

= Pr[exp(𝜃 · 𝑋 ) ≥ exp(𝜃 · (1 + 𝛿) · 𝜇)] (32)

≤ Ex (exp(𝜃 · 𝑋 ))
exp(𝜃 · (1 + 𝛿) · 𝜇) [by Markov’s inequality] (33)

=

∏
𝑖∈[𝑁 ] Ex (𝑌𝑖 )

exp(𝜃 · (1 + 𝛿) · 𝜇) [by Equation 17] (34)
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≤
∏
𝑖∈[𝑁 ] exp((exp(𝜃 ) − 1) · 𝜇𝑖 )

exp(𝜃 · (1 + 𝛿) · 𝜇) [by Equation 30] (35)

= exp

( ( ∑︁
𝑖∈[𝑁 ]

(exp(𝜃 ) − 1) · 𝜇𝑖
)
−

(
𝜃 · (1 + 𝛿) · 𝜇

) )
(36)

= exp

( ( ∑︁
𝑖∈[𝑁 ]

((1 + 𝛿) − 1) · 𝜇𝑖
)
−

(
ln(1 + 𝛿) · (1 + 𝛿) · 𝜇

) )
[using 𝜃 = ln(𝛿 + 1)] (37)

= exp

( (
𝛿 · 𝜇

)
−

(
ln(1 + 𝛿) · (1 + 𝛿) · 𝜇

) )
[def. of 𝜇 =

∑︁
𝑖∈[𝑁 ]

𝜇𝑖] (38)

=

exp

(
𝛿 · 𝜇

)
exp

(
ln(1 + 𝛿) · (1 + 𝛿) · 𝜇

) =

(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇
(39)

This completes the proof of inequality (b). Regarding the Inequality (a), we note that this follows

by the above proof from Equation 34. □
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