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Abstract  This paper presents the tuning of the structure and parameters of a neural network 

using an improved genetic algorithm (GA).  It will also be shown that the improved GA performs 

better than the standard GA based on some benchmark test functions.  A neural network with 

switches introduced to its links is proposed.  By doing this, the proposed neural network can 

learn both the input-output relationships of an application and the network structure.  The 

number of hidden nodes should be chosen manually starting from a small number.  The number 

of hidden nodes should be increased if the learning performance in terms of fitness value is not 

acceptable.  Using the improved GA, the structure and the parameters of the neural network can 

be tuned.  Application examples on sunspot forecasting and associative memory are given to 

show the merits of the improved GA and the proposed neural network. 

 

I.  INTRODUCTION 

 GA is a directed random search technique [1] that is widely applied in optimization problems 

[1-2, 5].  This is especially useful for complex optimization problems where the number of parameters 

is large and the analytical solutions are difficult to obtain.  GA can help to find out the optimal solution 

globally over a domain [1-2, 5].  It has been applied in different areas such as fuzzy control [9-11, 15], 

path planning [12], greenhouse climate control [13], modeling and classification [14] etc. 

 A lot of research efforts have been spent to improve the performance of GA.  Different 

selection schemes and genetic operators have been proposed.  Selection schemes such as rank-based 

selection, elitist strategies, steady-state election and tournament selection have been reported [32].  
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There are two kinds of genetic operators, namely crossover and mutation.  Apart from random mutation 

and crossover, other crossover and mutation mechanisms have been proposed.  For crossover 

mechanisms, two-point crossover, multipoint crossover, arithmetic crossover and heuristic crossover 

have been reported [1, 31-33].  For mutation mechanisms, boundary mutation, uniform mutation and 

non-uniform mutation can be found [1, 31-33]. 

 Neural network was proved to be a universal approximator [16].  A 3-layer feed-forward 

neural network can approximate any nonlinear continuous function to an arbitrary accuracy.  Neural 

networks are widely applied in areas such as prediction [7], system modeling and control [16].  Owing 

to its particular structure, a neural network is very good in learning [2] using some learning algorithms 

such as GA [1] and back propagation algorithm [2].  In general, the learning steps of a neural network 

are as follows.  First, a network structure is defined with fixed numbers of inputs, hidden nodes and 

outputs.  Second, an algorithm is chosen to realize the learning process.  It can be seen that a fixed 

structure may not provide the optimal performance within a given training period.  A small network 

may not provide good performance owing to its limited information processing power.  A large network, 

on the other hand, may have some of its connections redundant [18-19].  Moreover, the implementation 

cost for a large network is high.  To obtain the network structure automatically, constructive and 

destructive algorithms can be used [18].  The constructive algorithm starts with a small network.  

Hidden layers, nodes and connections are added to expand the network dynamically [19-24].  The 

destructive algorithm starts with a large network.  Hidden layers, nodes and connections are then 

deleted to contract the network dynamically [25-26].  The design of a network structure can be 

formulated into a search problem.  Genetic algorithms [27-28] were employed to obtain the solution.  

Pattern-classification approaches [29] can also be found to design the network structure.  Some other 

methods have been proposed to learn both the network structure and connection weights.  The evolution 

cycle of these methods can be summarized by three steps as follows.  1)  Evaluate each individual, i.e., 

chromosome, according to a defined fitness function.  2)  Select individual for reproduction and genetic 

operation.  3)  Apply different kinds of genetic operations to the chromosomes to obtain the next 
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generation.  An ANNA ELEONORA algorithm was proposed [36].  New genetic operator and encoding 

procedures (binary) which allows the algorithm to obtain an opportune length of the coding string were 

introduced.  Each gene consists of two parts, connectivity bits and the connection weight bits.  The 

connectivity bits are to indicate the absence or present of a link.  The connection weight bits are related 

to the value of the weight of a link.  A GNARL algorithm was also proposed in [37].  At first, the 

population of the chromosomes representing the network structure will be generated randomly.  The 

number of hidden nodes and connection links for each network is randomly chosen within some defined 

ranges.  Three steps were proposed to generate an offspring: copying the parents, determining the 

mutations to be performed and mutating the copy.  The severity of mutations measuring the 

performance of the network will be used to anneal the structural and parametric similarity between 

parent and offspring.  The networks with high similarity will be mutated severely, on the contrary, the 

networks with low similarity will be mutated slightly.  Mutation of the copy is separated into two 

classes, parametric mutations which alter the connection weights and structural mutations alter the 

number of hidden nodes and the presence of links in the network.  An evolutionary system named 

EPNet can also be found for evolving the neural networks.  Rank-based selection and five mutations 

were employed to modify the network structure and connection weights.  The five mutations are hybrid 

training, node deletion, connection deletion, connection addition and node addition.  Hybrid training, 

based on a modified back-propagation with adaptive learning rate and simulated annealing, is the 

mutation used to modify the connection weights.  The other four mutations are used to grow and prune 

hidden node nodes and connections of the network.  Some other algorithms can also be found to evolve 

the network structure and connection weights simultaneously. 

 In this paper, a three-layer neural network with switches introduced in some links is proposed 

to facilitate the tuning of the network structure.  As a result, for a given fully connected feedforward 

neural network, it may no longer be a fully connected network after learning.  This implies that the cost 

of implementing the proposed neural network, in terms of hardware implementation and processing 

time, can be reduced.  The network structure and parameters will be tuned simultaneously using a 
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proposed improved GA.  As application examples, the proposed neural network with link switches 

tuned by the improved GA is used to estimate the number of sunspots [7-8] and realize an associative 

memory.  The results will be compared with those obtained by traditional feed-forward networks [2] 

trained by (i) the standard GA with arithmetic crossover and non-uniform mutation [1-2, 5] and (ii) the 

back-propagation with momentum and adaptive learning rate [30]. 

 This paper is organized as follows.  In session II, the improved genetic algorithm is presented.  

In session III, it will be shown that the improved GA performs more efficiently than the standard GA 

[1-2, 5] based on some benchmark test functions [3-4, 6, 17].  In session IV, the neural network with 

link switches, and tuning of its structure and parameters using the improved GA, will be presented.  

Application examples will be presented in session V.  A conclusion will be drawn in session VI. 

 

II.  IMPROVED GENETIC ALGORITHM 

 Genetic algorithms (GAs) are powerful searching algorithms.  The standard GA process [1-2, 

5] is shown in Fig. 1.  First, a population of chromosomes is created.  Second, the chromosomes are 

evaluated by a defined fitness function.  Third, some of the chromosomes are selected for performing 

genetic operations.  Forth, genetic operations of crossover and mutation are performed.  The produced 

offspring replace their parents in the initial population.  In this reproduction process, only the selected 

parents in the third step will be replaced by their corresponding offspring.  This GA process repeats until 

a user-defined criterion is reached.  In this paper, the standard GA is modified and new genetic operators 

are introduced to improve its performance.  The improved GA process is shown in Fig. 2.  Its details will 

be given as follows. 

 

A.  Initial Population 

 The initial population is a potential solution set P.  The first set of population is usually 

generated randomly. 
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where pop_size denotes the population size; no_vars denotes the number of variables to be tuned;  
jip , 

i = 1, 2, …, pop_size; j = 1, 2, …, no_vars, are the parameters to be tuned; jparamin  and jparamax  are 

the minimum and maximum values of the parameter 
jip  for all i.  It can be seen from (1) to (3) that the 

potential solution set P contains some candidate solutions ip  (chromosomes).  The chromosome ip  

contains some variables 
jip  (genes). 

 

B.  Evaluation 

 Each chromosome in the population will be evaluated by a defined fitness function.  The better 

chromosomes will return higher values in this process.  The fitness function to evaluate a chromosome 

in the population can be written as, 

)( iffitness p  (4) 

The form of the fitness function depends on the application. 

 

C.  Selection 

 Two chromosomes in the population will be selected to undergo genetic operations for 

reproduction by the method of spinning the roulette wheel [1].  It is believed that high potential parents 

will produce better offspring (survival of the best ones).  The chromosome having a higher fitness value 

should therefore have a higher chance to be selected.  The selection can be done by assigning a 

probability qi to the chromosome ip : 
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The cumulative probability iq̂  for the chromosome ip  is defined as, 
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The selection process starts by randomly generating a nonzero floating-point number,  10d .  

Then, the chromosome ip  is chosen if ii qdq ˆˆ 1  , i = 1, 2, …, pop_size, and 0ˆ0 q .  It can be 

observed from this selection process that a chromosome having a larger f( ip ) will have a higher chance 

to be selected.  Consequently, the best chromosomes will get more offspring, the average will stay and 

the worst will die off.  In the selection process, only two chromosomes will be selected to undergo the 

genetic operations. 

 

D.  Genetic Operations 

 The genetic operations are to generate some new chromosomes (offspring) from their parents 

after the selection process.  They include the crossover and the mutation operations. 

1.  Crossover 

 The crossover operation is mainly for exchanging information from the two parents, 

chromosomes p1 and p2, obtained in the selection process.  The two parents will produce one offspring.  

The details of the crossover operation are as follows.  First, four chromosomes will be generated 

according to the following mechanisms, 
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where  10w  denotes the weight to be determined by users,  21,max pp  denotes the vector with 

each element obtained by taking the maximum among the corresponding element of p1 and p2.  For 

instance,       332132,321max  .  Similarly,  21,min pp  gives a vector by taking the 

minimum value.  For instance,       121132,321min  .  Among 1

cos  to 4

cos , the one 

with the largest fitness value is used as the offspring of the crossover operation.  The offspring is 

defined as, 

  osi

csnoososos osos  var_21   (13) 

ios denotes the index i which gives a maximum value of   i

cf os , i = 1, 2, ,3 ,4. 

 The offspring generated by the crossover operation will undergo the mutation operation.  If the 

crossover operation can provide a good offspring, a higher fitness value can be reached in less iteration.  

In general, two-point crossover, multipoint crossover, arithmetic crossover or heuristic crossover can be 

employed to realize the crossover operation [1, 31-33].  The offspring generated by these methods may 

not be better than that form our approach.  As seen from (7) to (10), the offspring spreads over the 

domain: (7) and (10) will move the offspring near centre region of the concerned domain (as w in (10) 

approaches 1, 4

cos  approaches 
2

21 pp 
), and (8) and (9) will move the offspring near the domain 

boundary (as w in (8) and (9) approaches 1, 2

cos  and 3

cos  approaches pmax and pmin respectively). 

 

2.  Mutation 
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 The offspring (13) will then undergo the mutation operation.  The mutation operation is to 

change the genes of the chromosomes.  Consequently, the features of the chromosomes inherited from 

their parents can be changed.  Three new offspring will be generated by the mutation operation: 

   snosnosnoj nosbnosbnosbososos var_var_2211var_21  nos , j = 1, 2, 3 (14) 

where bi, i = 1, 2, …, no_vars, can only take the value of 0 or 1, inos , i = 1, 2, …, no_vars, are 

randomly generated numbers such that i
i

j
i

i paranosospara maxmin  .  The first new offspring (j = 

1) is obtained according to (14) with that only one ib  (i being randomly generated within the range) is 

allowed to be 1 and all the others are zeros.  The second new offspring is obtained according to (14) 

with that some randomly chosen bi are set to be 1 and others are zero.  The third new offspring is 

obtained according to (14) with all ib  = 1.  These three new offspring will then be evaluated using the 

fitness function of (4).  A real number will be generated randomly and compared with a user-defined 

number  10ap .  If the real number is smaller than pa, the one with the largest fitness value lf  

among the three new offspring will replace the chromosome with the smallest fitness sf  in the 

population.  If the real number is larger than pa, the first offspring will replace the chromosome with the 

smallest fitness value sf  in the population if sl ff  ; the second and the third offspring will do the 

same.  pa is effectively the probability of accepting a bad offspring in order to reduce the chance of 

converging to a local optimum.  Hence, the possibility of reaching the global optimum is kept. 

 In general, various methods like boundary mutation, uniform mutation or non-uniform 

mutation [1, 32-33] can be employed to realize the mutation operation.  Boundary mutation is to change 

the value of a randomly selected gene to its upper or lower bound.  Uniform mutation is to change the 

value of a randomly selected gene to a value between its upper and lower bounds.  Non-uniform 

mutation is capable of fine-tuning the parameters.  The value of a randomly selected gene will be 

increased or decreased by a weighted random number.  The weight is usually a monotonic decreasing 

function of the number of iterations.  In our approach, we have three offspring generated in the mutation 



 9 

process.  From (14), the first mutation is in fact a uniform mutation.  The second mutation allows some 

randomly selected genes to change simultaneously.  The third mutation changes all genes 

simultaneously.  The second and the third mutations allow multiple genes to be changed.  Hence, the 

domain to be searched is larger as compared with a domain characterized by changing a single gene.  As 

the initial values are generated randomly, the genes will have a larger space for improving the fitness 

value when the fitness value is small.  On the contrary, when the fitness values are large and nearly 

steady, changing the value of a single gene (the first mutation) may be enough as some genes may have 

reached the optimal values. 

 After the operation of selection, crossover, and mutation, a new population is generated.  This 

new population will repeat the same process.  Such an iterative process can be terminated when the 

result reaches a defined condition, e.g., the change of the fitness values between the current and the 

previous iteration is less than 0.001, or a defined number of iterations is reached. 

 

III.  BENCHMARK TEST FUNCTIONS 

 Some benchmark test functions [3-4, 6, 17] are used to examine the applicability and 

efficiency of the improved GA.  Six test functions, )(xif , i = 1, 2, 3, 4, 5, 6 will be used, where 

 nxxx 11x .  n is an integer denoting the dimension of the vector x.  The six test functions are 

defined as follows, 


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where n = 5 and the minimum point is at f3([5.12, 5], …, [5.12, 5]) = 0.  The floor function, floor(), is to 

round down the argument to an integer. 
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where n = 3 and the minimum point is at f4(0, 0, 0) = 0.  Gauss(0, 1) is a function to generate uniformly 

a floating-point number between 0 and 1 inclusively. 
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k = 500 and the maximum point is at f5(32, 32) ≈ 1. 
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where n = 3 and the minimum point is at f6(0, 0, 0) = 0. 

 

It should be noted that the minimum values of all functions in the defined domain are zero except for 

)(5 xf .  The fitness functions for 1f  to 4f  and 6f are defined as, 

)(1

1

xif
fitness


 , i = 1, 2, 3, 4, 6. (21) 

and the fitness function for 5f  is defined as, 

)(5 xffitness   (22) 

 The proposed GA goes through these 6 test functions.  The results are compared with those 

obtained by the standard GA with arithmetic crossover and non-uniform mutation [1, 31-33].  For each 

test function, the simulation takes 500 iterations and the population size is 10 for the proposed and the 
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standard GAs.  When the standard GA is used, the probability of crossover is set at 0.8 for all functions, 

and the probability of mutation for functions f1 to f6 are 0.8, 0.8, 0.7, 0.8, 0.8, 0.35 respectively.  The 

shape parameters b of the standard GA [2] for non-uniform mutation, which is selected by trial and error 

through experiments for good performance, are set at b = 5 for f1, f2 and f5, b = 0.1 for f3, b = 1 for f4 and 

f6.  For the proposed GA, the values of w are set to be 0.5, 0.99, 0.1, 0.5, 0.01 and 0.01 for the six test 

functions respectively.  The probability of acceptance ap  is set at 0.1 for all functions.  These values 

are selected by trial and error through experiments for good performance.  The initial values of x in the 

population for a test function are set to be the same for both the proposed and the standard GAs.  For 

tests 1 to 6, the initial values are  111 ,  5.05.0 ,  11  ,  5.05.0  ,  1010   and 

 111  respectively.  The results of the average fitness values over 100 times of simulations based on 

the proposed and standard GAs are shown in Fig. 3 and tabulated in Table I.  Generally, it can be seen 

that the performance of the proposed GA is better than that of the standard GA. 

 

IV.  NEURAL NETWORK WITH LINK SWITCHES AND TUNING USING THE IMPROVED GA 

 In this section, a neural network with link switches is presented.  By introducing a switch to a 

link, the parameters and the structure of the neural network can be tuned using the improved GA. 

 

A.  Neural Network with Link Switches 

 Neural networks [5] for tuning usually have a fixed structure.  The number of connections has 

to be large enough to fit a given application.  This may cause the neural network structure to be 

unnecessarily complex and increase the implementation cost.  In this section, a 

multiple-input-multiple-output three-layer neural network is proposed as shown in Fig. 4.  The main 

different point is that a unit step function is introduced to each link.  Such a unit step function is defined 

as, 
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This is equivalent to adding a switch to each link of the neural network.  Referring to Fig. 4, the 

input-output relationship of the proposed multiple-input multiple-output three-layer neural network is 

as follows, 
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)(tzi , i = 1, 2, …, inn , are the inputs which are functions of a variable t; inn  denotes the number of 

inputs; hn  denotes the number of the hidden nodes; jkw , j = 1, 2, …, hn ; k = 1, 2, …, outn , denote the 

weight of the link between the j-th hidden node and the k-th output; ijv  denotes the weight of the link 

between the i-th input and the j-th hidden node; 1
ijs  denotes the parameter of the link switch from the 

i-th input to the j-th hidden node; 2
jks  denotes the parameter of the link switch from the j-th hidden node 

to the k-th output; outn  denotes the number of outputs of the proposed neural network; 1
jb  and 2

kb  

denote the biases for the hidden nodes and output nodes respectively; 1
js  and 2

ks  denote the parameters 

of the link switches of the biases to the hidden and output layers respectively; logsig() denotes the 

logarithmic sigmoid function: 
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e
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)(tyk , k = 1, 2, …, outn , is the k-th output of the proposed neural network.  By introducing the switches, 

the weights jkw  and ijv , and the switch states can be tuned.  It can be seen that the weights of the links 

govern the input-output relationship of the neural network while the switches of the links govern the 

structure of the neural network. 

 

B.  Tuning of the Parameters and Structure 
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 The proposed neural network can be employed to learn the input-output relationship of an 

application using the improved GA.  The input-output relationship is described by, 

 )()( tt dd
zgy  , t = 1, 2, …, dn  (26) 
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inputs and the desired outputs of an unknown nonlinear function )(g  respectively.  dn  denotes the 

number of input-output data pairs.  The fitness function is defined as, 
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The objective is to maximize the fitness value of (27) using the improved GA by setting the 

chromosome to be  221112
kkjjijijjkjk bsbsvsws  for all i, j, k.  It can be seen from (27) and 

(28) that a larger fitness value implies a smaller error value. 

 

V.  APPLICATION EXAMPLES 

 Two application examples will be given in this section to illustrate the merits of the proposed 

neural networks tuned by the improved GA. 

A.  Forecasting of the Sunspot Number 

 An application example on forecasting of the sunspot number [7-8, 27] will be given in this 

section.  The sunspot numbers from 1700 to 1980 are shown in Fig. 5.  The cycles generated are 

non-linear, non-stationary, and non-Gaussian which are difficult to model and predict.  We use the 

proposed 3-layer neural network (3-input-single-output) with link switches for the sunspot number 

forecasting.  The inputs, zi, of the proposed neural network are defined as )1()( 11  tytz d , 

)2()( 12  tytz d  and )3()( 13  tytz d
 where t denotes the year and )(1 tyd  is the sunspot numbers at 
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the year t.  The sunspot numbers of the first 180 years (i.e. 18841705  t ) are used to train the 

proposed neural network.  Referring to (24), the proposed neural network used for the sunspot 

forecasting is governed by, 
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The value of nh is changed from 3 to 7 to test the learning performance.  The fitness function is defined 

as follows, 
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The improved GA is employed to tune the parameters and structure of the neural network of (29).  The 

objective is to maximize the fitness function of (30).  The best fitness value is 1 and the worst one is 0.  

The population size used for the improved GA is 10; w = 0.9 and pa = 0.1 for all values of nh.   The lower 

and the upper bounds of the link weights are defined as 
h

jjkij
h n

bbwv
n

3
,,,

3 2
1

1 
  and, 

1,,,1 2
1

112
1  ssss jijj , i = 1, 2, …, 3; j = 1, 2, …, nh, k = 1 [16].  The chromosomes used for the 

improved GA are  2

1

21112

1 bsbsvsws kjjijijjkj .  The initial values of all the link weights 

between the input and hidden layers are 1 and those between the hidden and output layers are –1 

respectively.  The initial values of the switches are all 0.5. 

 For comparison purpose, a fully connected 3-layer feed-forward neural network 

(3-input-1-output) [2] is trained by (i) the standard GA with arithmetic crossover and non-uniform 

mutation [1-2, 5], and (ii) back-propagation with momentum and adaptive learning rate [30].  On the 

other hand, the proposed neural network is also trained with the standard GA for comparsion.  For 

standard GA, the population size is 10, the probability of crossover is 0.8 and the probability of 

mutation is 0.1.  The shape parameters b of the standard GA with arithmetic crossover and non-uniform 
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mutation, which is selected by trial and error through experiments for good performance, is set to be 1.  

For the back-propagation with momentum and adaptive learning rate, the learning rate is 0.2, the ratio 

to increase learning rate is 1.05, the ratio to decrease the learning rate is 0.7, the maximum validation 

failures is 5, the maximum performance increase is 1.04, and the momentum constant is 0.9.  The initial 

values of the link weights are the same as those in the proposed neural network.  For all approaches, the 

learning processes are carried out by a personal computer with a P4 1.4GHz CPU.  The number of 

iterations for all approaches is 1000. 

 The tuned neural networks are used to forecast the sunspot number during the years 1885-1980.  

Fig. 6 shows the simulation results of the forecasting using the proposed neural network trained with the 

improved GA (dashed lines) and the actual sunspot numbers (solid lines).  The number of hidden nodes 

nh is changed from 4 to 8.  The simulation results for the comparisons are tabulated in Table II and Table 

III.  From Table II, it is observed that the proposed neural network trained with the improved GA 

provides better results than those of the proposed neural network with standard GA, the traditional 

feed-forward neural network trained with standard GA and back-propagation with momentum and 

adaptive learning rate in terms of accuracy (fitness values) and number of links.  The training error 

(governed by (31)) and the forecasting error (governed by 


1980

1885

11

96

)()(

t

d tyty
) are tabulated in Table 

III.  It can be observed from Table III that our approach performs better than the traditional approaches.  

Refer to Table III, the best result is obtained when the number of hidden node is 6.  The number of 

connected link is 18 after learning (the number of links of a fully connected network is 31, including the 

bias links).  It is about 41.9% reduction of the number of  links after learning.  The training error and the 

forecasting error in term of mean absolute error (MAE) are 11.5730 and 14.0933 respectively. 

 

B.  Associative Memory 

 Another application example on tuning an associative memory will be given in this section.  In 

this example, the associative memory, which maps its input vector into itself, has 10 inputs and 10 
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outputs.  Thus, the desired output vector is its input vector.  Referring to (24), the proposed neural 

network used for the sunspot forecasting is reused, 

  22

1 1
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n
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i
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










  

 

, i = 1, 2, …, 10, k = 1, 2, …, 10 (32) 

50 sets of input vector (each input vector has the property that 1)( tz ) will be employed to train the 

proposed neural network.  The value of nh is changed from 4 to 8 to test the learning performance.  The 

fitness function is defined as follows, 
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The improved GA is employed to tune the parameters and structure of the neural network of (32).  The 

objective is to maximize the fitness function of (33).  A larger value of the fitness function indicates a 

smaller value of err of (34).  The best fitness value is 1 and the worst one is 0.  The population size used 

for the improved GA is 10; w = 0.8 and pa = 0.1 for all values of nh.  The lower and the upper bounds of 

the link weights are defined as 

h

kjjkij

h n
bbwv

n

3
,,,

3 21 


 and, 1,,,1 2112  kjijjk ssss , i = 1, 2, …, 3; 

j = 1, 2, …, nh, k = 10 [16].  The chromosomes used for the improved GA are 

 221112
kkjjijijjkjk bsbsvsws .  The initial values of the link weights are all zero.  For 

comparison purpose, the proposed neural network trained by the standard GA (with arithmetic 

crossover and non-uniform mutation [1-2, 5]), a fully connected 3-layer feed-forward neural networks 

(10-input-10-output) [2] trained by the standard GA and back-propagation (with momentum and 

adaptive learning rate [30]) are used again.  For the standard GA, the population size is 10, the 

probability of crossover is 0.8 and the probability of mutation is 0.03.  The shape parameters b of the 

standard GA with arithmetic crossover and non-uniform mutation, which is selected by trial and error 
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through experiments for good performance, is set to be 3.  For the back-propagation with momentum 

and adaptive learning rate, the learning rate is 0.2, the ratio to increase the learning rate is 1.05, the ratio 

to decrease the learning rate is 0.7, the maximum validation failures is 5, the maximum performance 

increase is 1.04, and the momentum constant is 0.9.  The initial values of the links weights are the same 

as those of the proposed approach.  The number of iterations for all approaches is 500.  The simulation 

results are tabulated in Table IV.  It can be seen from Table IV that the fitness values for different nh by 

the standard GA (with arithmetic crossover and non-uniform mutation) and the back-propagation (with 

momentum and adaptive learning rate) are similar to those by our approach, which offer smaller 

networks. 

 

VI.  CONCLUSION 

 An improved GA has been proposed in this paper.  By using the benchmark test functions, it 

has been shown that the improved GA performs more efficiently than the standard GA.  Besides, by 

introducing a switch to each link, a neural network that facilitates the tuning of its structure has been 

proposed.  Using the improved GA, the proposed neural network is able to learn both the input-output 

relationship of an application and the network structure.  As a result, a given fully connected neural 

network can be reduced to a partly connected network after learning.  This implies a lower cost of 

implementation of the neural network.  Application examples on forecasting the sunspot numbers and 

tuning of an associative memory using the proposed neural network trained with the improved GA have 

been given.  The simulation results have been compared with those obtained by a traditional 

feed-forward network trained by (i) the standard GA with arithmetic crossover and non-uniform 

mutation, and (ii) the back-propagation with momentum and adaptive learning rate. 
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Fig. 1.  Procedure of standard GA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Procedure of the improved GA. 

Procedure of the standard GA 

begin 

 0 // : iteration generation 

initialize P()  //P(): population for iteration t 

              evaluate f(P())                  // f(P()):fitness function 

while (not termination condition) do 

           begin 

                    +1 

                    select 2 parents p1 and p2 from P(-1) 

                    perform genetic operations (crossover and mutation) 

                    reproduce a new P() 

                    evaluate f(P())                   

            end 

end 

end 

Procedure of the improved GA 

begin 

 0 // : iteration 

initialize P()  //P(): population for iteration t 

 evaluate f(P()) // f(P()):fitness function 

while (not termination condition) do 

 begin 

 +1 

 select 2 parents p1 and p2 from P(-1) 

 perform crossover operation according to equations (7) to (13) 
 perform mutation operation according to equation (14) to three 

offspring nos1, nos2 and nos3 

 // reproduce a new P() 

             if random number < pa   // pa: probability of acceptance 

The one among nos1, nos2 and nos3 with the largest fitness 

value replaces the chromosome with the smallest fitness 

value in the population 

else 

if f(nos1) > smallest fitness value in the P(-1) 

nos1 replaces the chromosome with the smallest fitness 

value 

end 

if f(nos2) > smallest fitness value in the updated P(-1) 

nos2 replaces the chromosome with the smallest fitness 

value 

end 

if f(nos3) > smallest fitness value in the updated P(-1) 

nos3 replaces the chromosome with the smallest fitness 

value 

end 

end 

 evaluate P() 

 end  

end 
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(a).  The averaged fitness value of the test function )(1 xf  obtained by the improved (solid line) and 

standard (dotted line) GAs. 
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(b).  The averaged fitness value of the test function )(2 xf  obtained by the improved (solid line) and 

standard (dotted line) GAs. 
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(c).  The averaged fitness value of the test function )(3 xf  obtained by the improved (solid line) and 

standard (dotted line) GAs. 
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(d).  The averaged fitness value of the test function )(4 xf  obtained by the improved (solid line) and 

standard (dotted line) GAs. 
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(e).  The averaged fitness value of the test function )(5 xf  obtained by the improved (solid line) and 

standard (dotted line) GAs. 
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(f).  The averaged fitness value of the test function )(6 xf  obtained by the improved (solid line) and 

standard (dotted line) GAs. 

Fig. 3.  Simulation results of the improved and standard GAs. 
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Fig. 4.  Proposed 3-layer neural network. 
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Fig. 5.  Sunspot numbers from year 1700 to 1980. 
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(a)  Number of hidden nodes ( hn ) = 4. 
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(b).  Number of hidden nodes ( hn ) = 5. 
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(c).  Number of hidden nodes ( hn ) = 6. 
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(d).  Number of hidden nodes ( hn ) = 7. 
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(e).  Number of hidden nodes ( hn ) = 8. 

Fig. 6.  Simulation results of a 96-year prediction using the proposed neural network with the proposed 

GA (dashed line) and actual sunspot numbers (solid line) for the years 1885-1980. 

 

Test function Proposed GA Standard GA 

)(1 xf  1.0000 1.0000 

)(2 xf  0.9707 0.6393 

)(3 xf  1.0000 1.0000 

)(4 xf  0.8349 0.8037 

)(5 xf  1.0000 1.0000 

)(6 xf
 1.0000 0.7297 

Table I.  Simulation results of the proposed GA and the standard GA based on the benchmark test 

functions. 
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 Our Approach Standard GA with proposed neural 

network 

hn  Fitness Values Number of Links Fitness Values Number of Links 

4 0.9429 9 0.9357 9 

5 0.9448 17 0.9348 9 

6 0.9453 18 0.9385 11 

7 0.9426 13 0.9402 14 

8 0.9407 13 0.9261 5 

(a) 

 

 Standard GA with traditional neural 

network 

Back-Propagation with Momentum and 

Adaptive Learning Rate 

hn  Fitness Values Number of Links Fitness Values Number of Links 

4 0.9356 21 0.9242 21 

5 0.9306 26 0.9034 26 

6 0.9401 31 0.8961 31 

7 0.9402 36 0.8919 36 

8 0.9366 41 0.8919 41 

(b) 

 

Table II.  Simulation results for the application example of forecasting the sunspot number after 1000 

iterations of learning. 

 

 Our Approach Standard GA with proposed neural 

network 

hn  Training error Forecasting error Training error Forecasting error 

4 12.1116 13.9734 13.7473 14.6301 

5 11.6850 13.8354 13.9495 15.7997 

6 11.5730 14.0933 13.1060 14.8927 

7 12.1791 14.7434 12.7207 13.9798 

8 12.6076 14.3516 15.9594 19.5594 

(a) 

 

 Standard GA with traditional neural 

network 

Back-Propagation with Momentum and 

Adaptive Learning Rate 

hn  Training error Forecasting error Training error Forecasting error 

4 13.7666 15.6682 16.4123 20.1037 

5 14.9151 15.7705 21.3844 26.2723 

6 12.7433 16.9341 23.1991 28.5170 

7 12.7207 14.1280 24.2294 29.6302 

8 13.5383 14.2857 24.2323 29.8156 

(b) 

 

Table III.  Training error and forecasting error in mean absolute error (MAE) for the application 

example on forecasting the sunspot number. 
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 Our Approach Standard GA with proposed neural network 

hn  Fitness Values Number of 

Links 

Fitness Values Number of Links 

4 0.9648 79 0.9660 87 

5 0.9629 91 0.9682 110 

6 0.9651 113 0.9688 132 

7 0.9642 137 0.9647 149 

8 0.9607 153 0.9649 173 

(a) 

 

 Standard GA with traditional neural 

network 

Back-Propagation with Momentum and 

Adaptive Learning Rate 

hn  Fitness Values Number of 

Links 

Fitness Values Number of Links 

4 0.9678 94 0.9678 94 

5 0.9681 115 0.9669 115 

6 0.9668 136 0.9677 136 

7 0.9688 157 0.9677 157 

8 0.9694 178 0.9677 178 

(b) 

 

Table IV.  Simulation results for the application example of associative memory after 500 iterations of 

learning. 

 


