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Neural Associative Memory Storing Gray-Coded Gray-Scale Images

Giovanni Costantini, Daniele Casali, and Renzo Perfetti

Abstract—In this paper, we present a neural associative memory usingR independenbinary neural networks. The total number
storing gray-scale images. The proposed approach is based on agf interconnections is>R, but each independent network has
suitable decomposition of the gray-scale image into gray-coded only n? interconnections. Th& networks can be implemented

binary images, stored in brain-state-in-a-box-type binary neural . lel hard both for | . d I with
networks. Both learning and recall can be implemented by parallel via parallel hardware, both for fearning and recall, with con-

computation, with time saving. The learning algorithm, used to Siderable saving in time. This approach retains the two main
store the binary images, guarantees asymptotic stability of the advantages of binary neural networks: the robustness of the

stored patterns, low computational cost, and control of the weights  steady state solutions, with respect to noise and to inaccuracies
precision. Some design examples and computer simulations are ¢ implementation; the availability of efficient and simple
presented to show the effectiveness of the proposed method. design methods ’
Index Terms—Associative memories, brain-state-in-a-box (BSB) - gayeral neural models have been proposed in the literature
neural networks, gray-scale images, neural networks with finite . . " .
precision weights. to realize binary associative memories. Among these, the
brain-state-in-a-box (BSB) neural network is frequently used
[8]-[12]. The connection weights of BSB neural networks
. INTRODUCTION can be computed by solving a set of linear constraints. This

HE realization of binary associative memories by recugPProach was developed by different researchers, using it-

rent neural networks has been widely explored [1]_[3Frative algorithms [10], analog “designer” networks [11], or
One of the most promising area of application of associatiggmidefinite programs for linear matrix inequalities [12]. In
memories is that of image recognition in presence of noidBis paper, we use the algorithm proposed in [13], which faces
The design goal is to recognize a noisy image, even if it dift important, rarely addressed, problem, i.e., the precision re-
fers from the original one in any pixel, as the human eye dodluired to implement the neural network using digital hardware.
An image withn pixels andL gray levels can be represented© this end, we compute weights with controlled precision,
using R = log, (L) bits for each pixel. It can be stored using &° that the digital hardware implementation of the associative
binary neural network witl R neurons; however, the numberfmemory will exhibit the same storage and retrieval performance
of interconnections is very large, i.@2R2. of simulations. _

A second approach is based on a multilevel activation func-ThiS paper is organized as follows. The BSB neural model
tion with L plateaus, in place of two as in the usual sigmoida”d the proposed learning algorithm, are shortly summarized in
function [4], [5]. The resulting neural network presents stabf@ection Il. In Section Ill, the decomposition of gray-scale im-
equilibria with multivalued components, corresponding to thg€s into binary ones is discussed. In Section 1V, the algorithm
different gray levels. The number of neuronsjshe number of Used to generate random gray-scale images for simulations, is
interconnections is2. For networks with multilevel sigmoidal Outlined. Section V presents some design examples and simula-
functions, sophisticated but heavy design methods have bdieR results. Some comments in Section VI conclude the paper.
proposed.

A third approach is based on complex-valued neural networks Il. BSB MODEL AND LEARNING ALGORITHM

[6], [7]. The neuron state can assume ond.@omplex values, To implement a binary associative memory, we use the BSB

with unit magnitude and different phases, regularly spa_ced kH"e'ural model described by the following difference equation:
tween 0 and 2. Each phase angle corresponds to a different

gray level of the image pixel. The number of neurons:.js k . .

. . . . 1) = k W x(k k=0,1,2.... (1
the number of interconnectionsi€. For networks with com- x(k +1) = glx(k) + W x(k)] T @)
plex-valued neurons, only the simple Hebb rule is available, a

) ) xEk) = [z;(k)] € [-1,+1]", is the state vector at timke. n
the best of our knowledge. It is well known that Hebb rule 9IVe] e number of neurondV — [wi;] € R™* is the weight

poor performance in the case of bmary IMages, as concerns br% rix. g is a vector valued function, whosgéh component is
storage capacity and noise suppression. )
. ) . . . ., _defined as
A different approach, investigated in this paper, consists in
the decomposition of the image inf® binary images, stored (gly)),; =1, if y; > 1

(8(¥)); = vi, if—1 <y <+1
Manuscript received March 7, 2002; revised October 21, 2002. .
G. Costantini and D. Casali are with the Department of Electronic Engi- (g(y))z =-1, if y; < —1. (2)
neering, University of Rome “Tor Vergata,” Rome, ltaly.
R. Perfetti is with the Dipartimento di Ingegneria Elettronica e deII’InforSevera| analysis results are available for the above neural model.

mazione, Universita di Perugia, 06125 Perugia, Italy (e-mail: perfetti@diei, . K .
unipg.it). 9 9 v P @9} the following, we review only the most significant; the proof
Digital Object Identifier 10.1109/TNN.2003.810596 can be found in [10].
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Fig. 1. Proposed architecture in the case of 16 gray levels.
011
Property 1 010
Letw; > 0fori = 1,...,n. Then, only the vertices of %01
[—1,+1]™ can be asymptotically stable equilibria of system (1 000 >
As a consequence,W has nonnegative diagonal terms, onl 0 I 2 3 4 5 6 7quantization intervals

binary steady-state solutions can be observed.
Fig. 2. Gray coding.

Property 2 -
Let¢ € B", B = {—1,+1}. ¢ is an asymptotically stable A D A ' D
equilibrium point of system (1) iff
E G
> wi&i& >0, di=1,...,n. ©) B C B - C
j=1 G)) ®)

Constraints (3) represent existence and stability conditions for o _

a given binary equilibrium poing. They can be used as desigrf'9: 3= Description of the RMD algorithm.
constraints, by solving (3) with respect to the weights, for a
given set of desired binary equilibrium poirgts. .. .¢M.

Property 3

Letw;; = 0,fors = 1,...,n. Assume thatt € B™ is
an asymptotically stable equilibrium point of system (1). The
none of the vector§’ € B™ at Hamming distance one frofm
is an equilibrium point.

A zero-diagonal connection matrix guarantees the absence
two or more equilibria at Hamming distance one, i.e., in clos
proximity. Even if a trajectory starting gt not necessarily con-
vergestd, the conditionw;; = 0,i=1,...,n,isa prerequisite Fig. 4. Two images generated by the modified RMD algorithm.
to obtain large basins of attraction for the stored patterns [10].

Moreover, setting to zero the diagonal entrie¥%fwe avoid the |n order to compute the weights satisfying constraints (4), we
trivial solutionw;; > Z;'Lzl |’U)ij| (aII the vertices 0{—1, +1]n use the f0||owing iteration [13]

would be asymptoticallj)f:stable equilibria [8]). M
The design of a binary associative memory, based on model (£ + 1) = w;; ()¢ Y €§m)C§m)P(A§m)(t))
(1), can be formulated as follows. Find the connection matrix m=1
WSOthat: t:(),l,27 2,3:1,,71,7,;&] (5)
« agiven set of binary vectogs?) . .. .¢(*) ¢ B™ represent where
as many asymptotically stable equilibria of system (1);

« the attractivity of the desired equilibria is as large as pos- n >0
sible; P(z)=1,ifz <0,P(x)=0, ifz>0.
 the number of not desired stable equilibria is as small as (m) n (m) o(m)
possible. A = wME™ - 6. (6)
J=1

Taking into account the properties above, the design can be for-
mulated as a constraint satisfaction problem: fiWdsuch that

J#i
Each term of the sums in (5) can Bel or zero. As a conse-
n (m) »(m) . guence, the learning algorithm (5) has the following properties.
Zwii&i &G 26>0 i=L....mm=1...M 1) Only additions are required for its implementation.
]le 2) Starting fromw;;(0) = 0, the weights can be represented
4 asw;;(t) = £nN;;(t), whereN;;(t) is a positive integer.
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Fig. 5. Gray-level distribution for image in Fig. 4(a).

Hence, all the weights (at each iteration) have finite preci-
sion. The required number of bitsligs, (Nyax) + 1, where
Nuax is the maximum value aiv;;.

3) The algorithm can be implemented or simulated on a dig-
ital hardware, without numerical errors, since no rounding
or truncation is required to represent the weights. A digital
implementation of the algorithm is described in [13].

Asymptotic convergence of (5) to a solution of (4) is not guar-
anteed, since the iteration can approach a limit cycle in the so-
lution space [13]. In our experiments, the algorithm is stopped
when all the termsﬁgm) become nonnegative, for evenand Fig. 6. Image used to test the RMD algorithm.

m. If this condition is not reached within a given number of iter-

ations, we say that the desired patterns cannot be stored withti{s¢ gaussian noise results in the minimal Hamming distance,

stability marginé. By choosingy sufficiently small, we obtain in each layer, between the stored pattern and its noisy version.

satisfactory performance, as it will be shown in Section V.  As a consequence, the probability of correct recall is improved.

I1l. DECOMPOSITION OFGRAY SCALE IMAGES IV. RANDOM MIDPOINT DISPLACEMENT ALGORITHM

Let consider an image with pixels and L gray levels.  To test the proposed associative memory design for gray-
Each pixel can be represented B bits, b; .....bg, being scaleimages, we need a reliable method to generate random im-
R = log, L. So the image can be decomposed iftdinary ages, whose gray levels distribution is similar to that of real-life
images, each with pixels. Each binary image can be storedmages. To this end, we modified the random midpoint displace-
into a binary associative memory, calléaler, designed as ment (RMD) algorithm invented by Mulvey [14], widely used in
explained in Section Il. The recall process will recover a storetifferent fileds to generate fractal pseudorandom images, called
binary pattern in each layer. By combining the binary comp@iasmas
nents in each layer, we can reconstruct the original image. InThe RMD can be outlined as follows.

Fig. 1 the cas€. = 16 is shown. Each pixel is represented by;

R = 4 bits. Four neural networks are used, each storing ong
bit for each pixel. The four networks are not coupled, so a full

parallel implementation is possible, both for computation 05)
the weights, and for the recall process.

Consider a rectangle with the same size as the image to be
generated [Fig. 3(a)]. Pick at random the gray levels of the
four pixels A,B,C and D.

Divide the rectangle into four sub-rectangles, as shown in
Fig. 3(b). The intensity of pixel E is computed as the mean

The coding strategy is of crucial importance. The usual intensity value between pixels A and B, plus a small signed
binary-weighted coding entails a high sensitivity to additive random value, proportional o the size of segment AB. The

Gaussian noise. Additive Gaussian noise with zero mean, gives. . L . )
a high probability of jumping from a quantization interval intensity of the remaining pixels F'_G’ _and H. |s_compL_Jted
to an adjacent one. However, this jump could correspond to the same way. Finally, the central pixel intensity is obtained
the reversing of several bits. For example, moving from the by adding a random value to the mean of the four intensities
integer 3 to the integer 4, all the bits changél(— 100). As a E, F, G, and H. _

consequence, gaussian noise amplifies the Hamming distarfge!terate Step 2 fqr each subrectangle, until the subrectangles
between the stored pattern and its noisy version, in each layer. have the pixel size.

To circumvent this problem, we used the reflected-binary or The images generated by this algorithm share some useful
Gray codewhich has the property that only one bit can changégatures. In particular, nearby pixels have similar intensities, and
moving from one quantization interval to an adjacent one. TH@e mean value of the intensity is varying over the image. The
input-output relation for a three-bit Gray coding is shown ifimnages generated by the RMD have a smooth appearance, but
Fig. 2. using a threshold we can create objects with definite contours.

Now, moving from integer 3 to integer 4, only one bit~or example, if all the intensities below a given threshold are set
changes{10 — 110). Using the Gray code, zero-mean addito zero, we obtain black objects on a smooth background.
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Fig. 7. Gray-level distribution for image in Fig. 6.

The intensity distribution of real-life images is characterized TABLE |
by some sharp peaks, with irregular size and position. To gen- RESULTS OFEXAMPLE 1
erate images with this property, we modified the RMD algo- 777 T
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a seconghlasmaimage below the first, generated with the same ™1 95 ] 19
algorithm. Using different thresholds, we obtain several hole 10 10 8 22
which can be filled with differenplasmaimages. Using this 20 11.7 8 24
procedure we can closely approximate a practical image hi: _30 11.6 8 27
togram. 40 12.6 8 32
Two examples of images generated by the modified RMD al 30 13.9 9 31
gorithm, with 256 gray levels, are shown in Fig. 4. Fig. 5 show: gg ig'g Z gg
the histogram corresponding to Fig. 4(a). For sake of compa 20 17'7 9 47
ison, Fig. 7 shows the histogram of the image in Fig. 6. 9 19 ) 30
100 20.5 9 58

V. EXPERIMENTAL RESULTS 200 34.1 10 94

Some desigh examples are presented to show the effecti 300 47.9 10 131

ness of the proposed method. In all the following examples we

assumex = 1in (1) andn = 0.1 in (5). corrupted versions. The images were randomly generated by

the modified RMD algorithm described above, and stored
using four neural networks with 2500 neurons each. We used
In this example we try to store 50 gray-scale images of siggo different values fos,i.e., 100 and 500; storage of the 32
25x 25, with I = 16 gray levels { = 4 bits). The images are jnages is accomplished in both cases. Then, we tried to recall
stored using four neural networks wifR5)” = 625 neurons e stored images, starting from a noisy version. Noisy initial

each. . . . states were generated by adding zero mean Gaussian noise,
The images are generated by the modified RMD algorithm, siandard deviation = 1.5, to each pixel of the stored

descrl_bed In Section IV. Table | summarizes the resuilts of tr"ﬁages. We observed an improvement of error correction while
experiment. The first column shows the valugyofrhe second increasings. Usings = 100, the stored images were correctly

colymn represents the maximum magmtude of the conneculpeqrieved only in a few cases. Usiig= 500 we obtained a

weights|w;;| . The number of bits needed to represent the bability of i Il of about 98%

weights is shown in the third column (see Section Il). The |aBfoPability ot correct recail of abou o

column shows the number of iterations needed for the conver-

gence of the learning algorithm. In all the cases the 50 imaggs

were stored correctly (all the constraints were satisfied). The design objective is to store two images with 20000
Increasingd, more iterations are required for convergencgijxels andL. = 16 gray levels. The images alennaandstefan

and an increasing number of bits is required to represent &i@wn in Fig. 8. Due to computer memory limitations, we par-

weights (Table I). Hence, the learning time and the spatition each image into 16 parts, each of sizex580. This way

(memory) required by the network, increase withtHowever, we obtain 32 images 5050 which can be stored using four

the increased weight precision, improves the recall, as it wilural networks with 2500 neurons each. We used three dif-

be shown in the following examples. So, the choice)a$ a ferent values of,i.e., 100, 250, 800; storage is accomplished

trade-off between network complexity and noise suppressi@fith the values outlined in Table II.

capacity. Then, we tried to recall the stored images starting from a cor-

rupted version. Noisy initial states were generated by adding to

each pixel of the stored images, a zero mean Gaussian noise,
The design objective is to store 32 images withx880 with standard deviatioa. Some examples of noisy images are

pixels, . = 16 gray levels, and then recall them starting fronshown in Fig. 9.

A. Example 1

Example 3

B. Example 2
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Fig. 8.

Images stored in example 3.

TABLE 1

RESULTS OFEXAMPLE 3

707

However, only few experimental results, on real images, are
available, since these approaches have been investigated mainly
from a theoretical viewpoint.

In the case of complex-valued networks, an estimation of
storage capacity is available, but only for networks designed by
the Hebb rule. The capacity depends on the ratio, wherep
is the number of stored images. The storage probability, derived
in [7], is comparable to our experimental results. However, the
ratiop/n used in our experiments is quite low, due to computer
memory limitations and computation time. An investigation on
the capacity should be carried out with higip¢r. ratios.

The main advantages of the proposed decomposition ap-
proach, with respect to existing methods, can be summarized
as follows. Learning is easier, since several efficient and robust
methods are available for binary neural networks; even some
methods developed for bidirectional associative memories, as
that proposed in [15], [16], could be adapted to this scope. The
R networks evolve in parallel; so, a parallel implementation is
possible both for storage and retrieval, giving the same learning
and recall speed of a binary neural network witheurons.

(1]

(2]
(3]
(4]

[5]
Fig. 9. Noisy versions of images in Fig. 8, with= 1.7.
6

The recall results are summarized below. o

- 6 = 100, o = 1. The four networks reached a stable
state within a maximum of 56 iterations. Only 24 out [7]
of 32 images were correctly recalled.

- 6 = 250, 0 = 1. The four networks reached a stable [g]
state within a maximum of seven iterations. All the 32
images were correctly recalled. By recombining them (g
we obtain the two full-size images in Fig. 8.

- 6 = 250, o0 = 1.7. The four networks reached a stable
state within a maximum of 47 iterations. Only 14 im-
ages were correctly recalled.

- 6 = 800, o = 1.7. The four networks reached a stable
state within a maximum of ten iterations. All the 32
images were correctly recalled. By recombining them
we obtain the two full-size images in Fig. 8.

[10]
[11]
[12]

[13]
VI. COMMENTS AND CONCLUSION

A neural architecture, storing gray-scale images, has bedh’
proposed. The design examples show a reliable image retrieval
in presence of zero-mean additive Gaussian noise, for imag?ﬂ_]
with 16 gray levels. Simulation results, not included here, show
a worse performance in the case of images with 256 gray levels.

Different methods have been proposed in the literature 5!
store multivalued images into a neural associative memory.
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