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A Study of Pattern Recovery in Recurrent Correlation
Associative Memories

Richard C. Wilson and Edwin R. Hancock

Abstract—In this paper, we analyze the recurrent correlation
associative memory (RCAM) model of Chiueh and Goodman.
This is an associative memory in which stored binary memory
patterns are recalled via an iterative update rule. The update of
the individual pattern-bits is controlled by an excitation function,
which takes as its arguement the inner product between the stored
memory patterns and the input patterns. Our contribution is to
analyze the dynamics of pattern recall when the input patterns
are corrupted by noise of a relatively unrestricted class. We
make three contributions. First, we show how to identify the
excitation function which maximizes the separation (the Fisher
discriminant) between the uncorrupted realization of the noisy
input pattern and the remaining patterns residing in the memory.
Moreover, we show that the excitation function which gives max-
imum separation is exponential when the input bit-errors follow
a binomial distribution. Our second contribution is to develop
an expression for the expectation value of bit-error probability
on the input pattern after one iteration. We show how to identify
the excitation function which minimizes the bit-error probability.
However, there is no closed-form solution and the excitation
function must be recovered numerically. The relationship between
the excitation functions which result from the two different
approaches is examined for a binomial distribution of bit-errors.
The final contribution is to develop a semiempirical approach
to the modeling of the dynamics of the RCAM. This provides us
with a numerical means of predicting the recall error rate of the
memory. It also alllows us to develop an expression for the storage
capacity for a given recall error rate.

Index Terms—Associative memory, error rates, recurrent corre-
lation associative memory (RCAM), storage capacity.

I. INTRODUCTION

C
ORRELATION memories have proved to be powerful

tools for binary pattern recognition and have been studied

in the literature for over 40 years. When presented with an input

pattern, the recall or output state of the memory is adjusted on

the basis of similarity with a set of stored memory patterns.

This idea can be traced back to the “lernmatrix” of Steinbuch

[1]. Moreover, Willshaw’s early work on memory capacity

has had a seminal impact on the field. There have since been

a host of refinements and developments of the idea [5]–[8],

[12], [3]. The memory may be operated in both autoassociative

and heteroassociative modes. Of particular relevance to this

paper is the recurrent correlation associative memory (RCAM)

[6]. This is an autoassociative memory in which updating of

the output state is specified by two ingredients. The first of
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these is a measure of the similarity between the input pattern

and the individual memory patterns. This measure is usually

taken to be the inner product of the pattern-vectors, although

tensor-products have also been used. The second ingredient is

an excitation function which controls the step-size associated

with different levels of pattern similarity. In fact, when the

excitation function is the identity function, then the RCAM is

equivalent to the Hopfield memory [3]. When the excitation

function is the exponential then an interesting structure called

the exponential correlation associative memory (ECAM)

results [6]. This memory may be operated with both binary

and multivalued pattern-vectors [16]. Recently, Hancock and

Pelillo [20] have shown how both the Hopfield memory and

the ECAM can be viewed as performing maximum likelihood

pattern reconstruction via discrete relaxation operations [21].

A closely related structure is the bidirectional exponential

associative memory [17], [18]. Finally, it is important to stress

that the RCAM is of practical interest because of its suitability

for very large-scale integration (VLSI) implementation [5].

Although the RCAM is functionally identical to the Hopfield

memory when the excitation function is the identity, it is im-

portant to note that the philosophy underpinning the two mem-

ories is very different. In a Hopfield memory which stores

patterns each of length bits, the memory patterns reside in an

matrix of weights. As a result weights are required to

specify the memory. In contrast, the RCAM stores all of the

memory patterns as individual vectors and must explicitly com-

pute the full set of inner products when a pattern is presented

for recall. The model, therefore, requires bits of storage.

Clearly, if the maximum number of patterns that can be stored in

a Hopfield memory is , then the RCAM model is more

compact. There is also the added consideration of the overheads

associated with amount of space required to store the memory

patterns (memory data).

The amount of information that can be stored in a given

number of bits of memory is clearly one of critical questions

with regard to associative memories. One of the most popular

approaches is to analyze the storage capacity, that is to say the

number of patterns that can stored in the memory before the

recall quality is compromised. However, this approach does

not address the issue of the density of information contained

in the memory. A more satisfactory measure is the information

density [24], or the number of pattern bits that can be stored

per bit of memory data. For the Hopfield memory, the storage

capacity is rather poor, being typically much less than the length

of the pattern-vector [4]. For instance, McEleice et al. [23] have

shown that all of the patterns stored in the Hopfield memory are

recoverable provided that and that that the

1045-9227/03$17.00 © 2003 IEEE
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target memory pattern is within a Hamming distance

of the input pattern. However, other studies [24], [28], [26]

have suggested a limit of based on vanishingly

small levels of noise. The density of memory bits in this case

is, therefore, 0.14 bits per synapse [24]. Since the synaptic

weights of the Hopfield memory require approximately

bits of storage, the density of memory patterns is

stored bits per memory bit. For comparison, the density of the

RCAM is 1, and is superior in these terms.

Having established that the storage density of the RCAM is

larger than that of the Hopfield memory, the important question

which arises is that of how many of the memory patterns can

be uniquely recalled? There is a suggestion that the exponen-

tial version of the memory (ECAM) can store a number of pat-

terns which is exponential in the length of the pattern vector [6].

However, the analysis of Chiueh and Goodman requires that the

noise-corrupted input pattern must have a Hamming distance

that is closer to the target memory pattern than any of the re-

maining memory patterns. It is our aim here to examine the per-

formance of the RCAM under more general models of noise.

However, to approach this problem, we must abandon the idea

of perfect pattern recall. Since the input pattern may be arbi-

trarily far from the target memory pattern, recall errors will al-

ways occur at some rate. As a result, it is the recall error rate

which is of importance in the analysis of the memory.

Our overall aim in this paper is to provide an analysis of the

problem of pattern recall in the RCAM. We adopt a probabilistic

framework where we model the distribution of inner-products

for noise corrupted pattern vectors. We show that the recall per-

formance of the memory is governed by two probability dis-

tributions. The first of these is a model which describes distri-

bution of patterns which lead to the correct recall of the target

memory pattern. We refer to this component as the foreground

distribution. The second model component describes the distri-

bution of bit errors associated with the recall of patterns other

than the target from the memory. We refer to this second process

as background.

Because of the complexity of the iterative process which

governs the recall of patterns from the RCAM, we can not

model the foreground and background distributions at arbi-

trary epochs. However, we can draw some conclusions about

the performance of a memory from the initial update step.

Using the two component model we consider various ways

in which the degree of pattern discrimination may be used to

assess the recall performance of the RCAM. We investigate

two alternatives. The first of these is the Fisher discriminant,

the second is the probability of bit-errors on the recall pattern.

With these two heuristic performance measures to hand, we

can attempt to identify the excitation function which results

in the best performance with respect to these measures. This

is achieved by searching for the excitation function which op-

timizes each of our two performance measures. When recall

performance is gauged using the bit-error probability, then the

optimal excitation function can only be recovered in numerical

form. The disadvantage is that the excitation function must be

recalculated for each different configuration of the memory. On

the other hand, when the Fisher discriminant is used, then the

optimal excitation function may be estimated in closed-form.

Moreover, when the input bit-errors follow a binomial distri-

bution, then the excitation function is the exponential.

Our final contribution is to present a semiempirical approx-

imation which can be employed to find an expression for the

storage capacity corresponding to a specified recall error rate.

This also furnishes us with a numerical method for predicting

the error rate for given memory.

The outline of this paper is as follows. Section II describes

the process of pattern recall in the RCAM. Section III describes

our two-component pattern model and approximations which

simplify the pattern distributions. In Section IV, we consider

how the probability of bit errors after one iteration can be used

as a measure of pattern recall performance. We also show how

this performance measure can be optimized with respect to the

excitation function. Unfortunately, the problem is not tractable

in closed form and the optimal excitation must be recovered

numerically. For this reason, in Section V we develop a sim-

pler performance measure which is reminiscent of the Fisher

discriminant measure. We demonstrate that the simpler perfor-

mance measure is optimized by an exponential excitation func-

tion. Section VI provides experiments with the two excitation

functions and develops an empirical model for estimating the

storage capacity under conditions of fixed output error rate. Fi-

nally, Section VII offers conclusions and suggests directions for

future investigation.

II. PATTERN RECALL IN THE RCAM

In this paper, we are interested in the the RCAM. This is an

associative memory that can be used for binary pattern recogni-

tion. From a computational standpoint, the memory can be used

to iteratively recall previously stored binary patterns when pre-

sented with their perturbed or noisy variants as input. Suppose

that is the pattern vector residing on

the input of the memory at iteration . The pattern-vector is of

length and each component is drawn from the binary set

. At iteration , the updated realization of the

recalled pattern-vector is . The

RCAM contains stored memory patterns which are available

for recall. Each memory pattern is also a binary vector of length

. If is the pattern index, then we denote the contents of the

memory by the set of binary pattern-vectors

.

The updating of the recalled pattern vectors is controlled by

two factors. The first of these is the similarity between the cur-

rent recall-state of the memory and each of the stored memory

patterns. The similarity between the current output pattern and

the individual memory patterns, is measured using the inner-

product, or dot product, between the pattern-vectors.

The dot product is related to the number of bit-differences or

Hamming distance

The Hamming distance is important, since it will be used to

simplify the description of the probability distributions in a later

section of the paper.
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The second component of the pattern update procedure is an

excitation function . The excitation function con-

trols the contributions that the individual memory patterns make

to the overall update direction for the recall state of the memory.

In other words, the excitation function provides a distance de-

pendant weight for each of the memory patterns.

With these ingredients the recall pattern is iteratively modi-

fied according to the following update rule [5]:

(1)

where

is the mean value of the excitation function over the set of

memory patterns. This is in addition to the update rule in [5],

and is intended to compensate for constant shifts in , i.e.,

has no effect on the memory. When the

number of positive and negative bits is the same, the operation

is identical to [5].

The memory is autoassociative in the sense that it recalls an

output pattern which is close to, but not necessarily identical to,

one of the memory patterns. The excitation function is the key

to the recall performance of the RCAM. Its role is to determine

the weight given to different values of the inner-product between

the output state of the memory and the stored memory patterns.

For example, the choice results in the Hopfield network

[3]. In contrast, the choice (where is a positive

real-valued constant) results in the ECAM model.

It has been shown [5] that given a suitable choice for , then

the stored memory patterns are the fixed-points of the RCAM

update process. Therefore, provided that the input patterns

are sufficiently close to the memory patterns, then the update

process will converge to one of the memory patterns. The main

requirement is that is monotonically increasing.

More importantly to the goals of this paper, the choice of

the excitation function is critical in determining the recall

performance of the RCAM.

To develop a statistical model of the memory, the set of stored

pattern is subpartitioned into two subsets

and . The partition contains the items in which the

component of the memory pattern takes on the value .

Similarly contains those patterns whose component

takes on the complementary value . With this notation,

the update process is captured by the two decision variables

(2)

The components of the recall output-vector at the site indexed

are updated as follows:

if

otherwise
(3)

Suppose that the observed input pattern is generated by the

target memory pattern . Since is a noise corrupted realiza-

tion of , we must admit the possibility that may in-fact ap-

pear to be more similar to one of the remaining, alternative, pat-

terns stored in the memory. In this situation, iterative recovery of

the original pattern may be impossible. It is for this reason that

the recall from the memory will never be completely error-free.

Here we aim to relate the storage capacity of the memory to the

error-rate for the recovery of patterns.

Without any loss of generality, we will study the update of the

bit when . In other words, the correct bit-assignment

at site is 1. Under these circumstances, we can write

(4)

where is the set of memory patterns that

assign the bit 1 to the site when the target pattern is

excluded. In the next section we will examine the probability

distributions of these two decision variables.

III. PATTERN MODEL

As we discussed earlier, we wish to consider situations where

the observed pattern-vector is derived from a stored memory

pattern through the action of a bit-error process. The bit-cor-

rupted pattern is presented to the memory for recall. In order to

model the action of the RCAM, we must first provide a model of

the bit-error process, which is responsible for generating the ob-

served pattern-vector from the relevant memory pattern. If this

pattern corruption model is known, then we can attempt to de-

sign an excitation function that endows the RCAM with good

recall properties. This endeavour is the focus of attention in the

latter part of this paper.

Since we intend to pursue a probabilistic analysis of the

memory, we must define some statistical properties of the

stored memory patterns. Obviously, the population statistics of

the stored pattern sets can vary and this in turn will significantly

affect recall. With this caveat in mind, we confine our attention

to sets of stored memory patterns that satisfy the following

restrictions.

• The number of stored patterns is large and the probability

distributions governing the bit-configurations are well be-

haved.

• The memory pattern-vectors are independently identically

distributed (i.d.d.) random variables. In other words, the

memory pattern vectors are sequences of random variables

governed by an identical probability distribution.

When this is the case, we can apply the central limit theorem to

the population statistics of the stored patterns, and pursue a set

of approximations which will allow us to determine probability

distributions for the pattern classes. It is important to be aware
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that the applicability of the central limit theorem depends on

the distribution of . In particular, this distribution must

satisfy the Lindeberg condition [29].

Our model of the pattern corruption process focusses on

the distribution of the quantities and . We can

invoke the central limit theorem to determine the distributions

of and since they are the sums of a large number

of identically distributed random-variables. As a result, we can

approximate the distribution of by a Gaussian with

mean zero and variance . Similarly, has

a Gaussian distribution with mean

and variance . Again, provided that the

memory patterns are large in number and randomly distributed,

then we can make the following approximation:

(5)

We can, therefore, write the probability distributions for the two

decision variables using the Gaussian approximations

(6)

These two distributions have identical variance. The distribu-

tion mean for the correct choice of bit assignment update is

offset with respect to distribution for the incorrect choice, by

an amount . It is this separation which makes

it possible to determine which distribution gave rise to the cur-

rent bit assignment. The offset and variance of the distributions

determine the error probability of the bit update.

A. Error Probability After One Update

Once we have the approximate probability distributions for

the bit assignment updates, we can calculate the probability of

making an erroneous update at the site indexed . The incorrect

choice is made when and errors occur with

probability . This probability is equal

to the cumulative overlap of the two distribution, i.e.,

(7)

Substituting for the two distributions from (7), we find

(8)

In the above expression, we have made explicit the fact that the

error-probability is a function of the separation between

the means of the two distributions and their common variance

. We refer to the function as the overlap function. Its role

is to quantify the amount of overlap between the background

and foreground distributions. By making the appropriate sub-

stitutions, we can re-write this error probability in terms of the

single variable in the following manner:

(9)

It is clear that the quantity represents the separation be-

tween the foreground and background distributions. Moreover,

it is related to the Fisher class seperation criterion for the prob-

ability distributions for the two decision variables. Since

(10)

depends only on the excitation function and the number of

stored patterns , it is these factors which determine the re-

call ability of the memory (given our background pattern model

and subsequent assumptions). The overlap function also has the

important property of being monotonically decreasing with in-

creasing . This means that increasing the value of will de-

crease the probability of making an error when updating the bit

assignments. In other words, the quantity can be used as a

heuristic measure of the recall “quality” of the memory. Finally,

a good analytical approximation to s is

(11)

Fig. 1 shows a typical examples of this function plotted as a

function of the Hamming distance between the original pat-

tern and its current realization. The overlap function which

governs the update process is a monotonically increasing func-

tion of . This leads us to the conclusion that reducing will

lead to an overall improvement in the bit-error rate.

IV. MEASURING RECALL PERFORMANCE OF THE

EXCITATION FUNCTION

The recall performance of the RCAM (or alternatively the

storage capacity) has been studied previously in [5]. For the

ECAM, Chiueh and Goodman [5] find the storage capacity in

the case where the input patterns are partially corrupted, but still

closer in terms of dot-product to their original source than to any

other memory pattern. There are, therefore, two limitations to

these studies. First, each concentrates on a specific realization

of the RCAM. In this section, we are interested in measuring

the performance of RCAM with arbitrary excitation functions.

Second, the restrictions on the properties of the input patterns

quite limiting. In fact, in these cases, choosing the closest pat-

tern would result in perfect recall.

In general, we would expect the memory to be exposed to

a diversity of input patterns with varying levels of corruption.

Viewed as a population, we can capture the collective proper-

ties of the input patterns using a probability distribution over the

inner-product . To further develop this idea, we intro-

duce a two-component model of the distribution of inner prod-

ucts between the pattern vectors. The first component models

the distribution of inner products between the target memory

pattern and the perturbed or noise corrupted input pattern. Sup-

pose that is the noise distribution of inner-

products for the source pattern indexed . We assume that the
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Fig. 1. Overlap function plotted against the Hamming distance H between the source pattern and its current realization.

source patterns are randomly distributed, i.e., there is nothing

salient concerning the choice of index pattern . The second

model component involves additionally considering the distri-

bution of the inner-product between the different patterns stored

within the memory. This background distribution function is

represented by .

Our problem is intrinsically discrete in nature since the inner

product takes on integer values in the interval between and

. Rather, than attempting to recover a continuously defined

excitation function, we instead recover a discrete representation

of the excitation function. Accordingly, we let de-

note the value of the excitation function when the inner product

takes on the integer value drawn from the set

. Further, we use the shorthand and to

denote the noise (or foreground) and background distribution

functions and . With this

notation

While we cannot compute the final error rate for the output

of the RCAM, one good heuristic is the expectation value of

bit-error probability after one application of the RCAM. With

the discrete problem representation adopted above, this quantity

is given by

(12)

where

We can locate the optimal excitation function with respect to

this measure by minimizing the value of with respect to the

discrete representation of the excitation function . One way of

meeting this goal is to solve the set of stationary-point equations

for the different values of . This involves differentiating

with respect to for each value of in turn.

The family of stationary-point equations is obtained by setting

each of the resulting derivatives to zero. In other words

(13)

for all values of . To compute the required

derivatives we exploit the chain rule and write

(14)

Substituting for and , the set of stationary-point equa-

tions becomes

(15)
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Fig. 2. Optimal functions for the RCAM. The exponential function(scale on right) maximizes Q , whereas the optimal function(left scale) minimizes the
expectation of bit-error probability after one iteration.

We find that this condition is satisfied when

(16)

Each value of must be found by solving a transcendental

equation. In fact the solution is not possible in closed-form and

we must resort to numerical methods to determine the excitation

function. The shape of this function is dependent on both the

number of stored patterns and the number of bits in the pattern

vector and, therefore, must be recalculated when these quanti-

ties change. An example of this function is shown in Fig. 2.

V. PATTERN SPACE MODELS

The main drawback to the use of the expectation-value of the

bit-error probability as a measure of recall quality is that it de-

pends on a series of error-functions and these in turn lead to

a transcendental equation for the excitation function which in-

volves exponentials. Although these transcendental equations

can be solved numerically, we would like to explore a more

tractable route to the excitation function. Our approach is as

follows. We commence by simplifying the quality measure .

This involves making a Taylor approximation to the error-func-

tions. Next, we construct a pattern-space model for the distribu-

tion for the foreground and background inner-products.

We commence by considering the dependence of the bit-error

probability on the quantity . For small and large values of

the error probability, respectively, approaches unity and zero.

The critical factor in determining the pattern recovery behavior

of the memory is the slope of the shoulder of the bit-error prob-

ability function. The shoulder of the function occurs when is

close to zero. Here, the error function can be approximated in

the following linear way:

(17)

Under this approximation, we can write

(18)

Hence, we can turn our attention to locating the excitation func-

tion which maximizes the quantity

(19)

In other words, the measure of recall quality depends on the

the ratio of the separation of the foreground and background

distributions patterns to their spread or width. The separation

measure is, therefore, reminiscent of the Fisher discriminant.

Based on this observation, we turn our attention to finding

the excitation function which maximizes the quadratic Fisher

discriminant measure of pattern separation

(20)
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This performance measure is equal to the average squared

offset between the foreground and background patterns, divided

by the variance or squared width of the distribution . To make

these relationships explicit, we can rewrite the measure as

(21)

where is the average offset from the mean

(22)

and is the variance of the background distribution

(23)

The quantity plays the role of a within-class variance for

the input pattern vectors. The quantity , on the other hand,

can be viewed as the between-class variance. The quantity

is, hence, closely related to the Fisher class separation measure

from statistical pattern recognition. It should be noted that the

quantity does not represent the performance of the memory

in terms of storage capacity.

Table I lists the values of for some familiar functions.

Here, we have used patterns of length 30 bits and have assumed

that follows a binomial distribution with a mean value of

three bit-errors per pattern. These results suggest that the expo-

nential makes a better choice than the linear function, in keeping

with known storage capacity results.

As we mentioned earlier in the introduction, and central to

the motivation of this paper, is the observation that the choice

of excitation function is critical in determining the performance

of the RCAM. For example, the Hopfield network is equivalent

to an RCAM when the excitation function is linear in the inner

product, i.e., . It has been shown [4]

that this memory has a a rather poor storage limit of 0.14

patterns where is the length of the bit-patterns. Other authors

[11] have suggested that the exponential function results in an

exponential storage capacity ( ). By choosing the correct

excitation function, it appears possible to greatly increase the

storage capacity.

A. Optimal Excitation Function for

Given the separation criterion , we can attempt to find the

excitation function which maximizes the separation between

the foreground and background pattern distributions. We

commence from the result proven in Appendix A, namely that

a family of functions, not a single function, all give identical

values of and, hence, identical performance for pattern re-

covery, subject to our model of pattern distributions. Moreover,

in Appendix A we show that simplified recall performance

measure (and, in fact, the overall performance of any

RCAM) remains invariant under similarity transformation

(24)

of the excitation function . Here and are arbitrary con-

stants. In order to define such a similarity transformation, we

TABLE I
VALUES OF Q

must specify two points which fall on the function. For the pur-

pose of recovering the optimal excitation function, the choice

and is convenient.

To proceed, we now solve the saddle-point equations for

with respect to the discrete function values . The details are

provided in Appendix B. For the simplified recall performance

measure , the optimal excitation function is given by

(25)

The general family of optimal functions is, therefore

(26)

The corresponding value of (the maximum possible value of

) is given by

(27)

B. Pattern Space Models

To recover the optimal excitation function using the solution

given in (25), we must provide concrete models of and .

In other words, we must exploit a model of the pattern-space

in which the RCAM operates. We consider the specific case in

which the bit-errors on the input pattern are memoryless. Sup-

pose that each bit of the stored pattern is flipped with a

uniform probability . Under these circumstances, the distri-

bution of Hamming distance is binomial, i.e.,

(28)

Substituting for the definition of Hamming distance the distri-

bution for the inner product between the input and the target

memory pattern is

(29)

To describe the distribution of inner-product for the memory

patterns we require model of the structure of the pattern space.

The basic assumption is that the patterns are random configu-

rations of bits. If we confine our attention to the case when the

different bits occur with equal probability, we obtain the fol-

lowing distribution for Hamming distance:

(30)
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Fig. 3. Comparative recall error rates for the exponential and numerical excitation function.

Again substituting for the Hamming distance, the required dis-

tribution for the inner product is

(31)

With theses two distribution models, the optimal excitation

function is

(32)

This is precisely the exponential function which is known to

provide very good pattern recovery performance. In fact, we can

state that the exponential excitation function works well because

it maximizes the expectation value of the Fisher separation be-

tween the foreground and background pattern distributions. This

excitation function applies only when the distribution of errors

on the input pattern is binomial. It is important to stress, that

after one iteration of the RCAM, the distribution of errors does

not remain binomial, and the error probability will change.

VI. COMPARISION OF THE EXCITATION FUNCTIONS

In this section, we provide some experimental evaluation of

the proposed excitation functions. We commence by comparing

the excitation function obtained by numerical optimization with

the exponential function. Next, we study the overlap properties

of the resulting memory. Finally, we present some results which

show the error-rate achievable with the two excitation functions.

A. Optimal Functions

The more precise quality measure , which is related to

the expectation value of the bit error probability, must be opti-

mized by numerical means. Moreover, the solution to the asso-

ciated equation varies with the number of patterns stored in the

memory. For this reason, the resulting excitation function is less

flexible than the exponential excitation function which results

from the distribution analysis. In Fig. 2, we compare the two

excitation functions. The two curves show the Hamming dis-

tance dependance of the excitation functions. The numerical ap-

proximation to the optimal function is computed for ,

and with stored patterns. The numerical ex-

citation function clearly differs from the exponential at lower

values of the Hamming distance. It is interesting to note that

the excitation is approximately linear and of negative slope for

small Hamming distances. This is reminiscent of the Hopfield

memory excitation function. However, in this region patterns

are almost certain to converge to the correct stored pattern. The

small Hamming distance behavior, therefore, has little impact

on the error rate of the memory. At larger Hamming distances,

the excitation functions decays almost exponentially.

To underline this point Fig. 3 compares the bit error rates for

the numerical excitation function and the exponential excitation

function. This quantity of interest is the bit-error rate for the re-

called patterns, or in other words, the probability that any bit in

a recalled pattern is in error. The bit error rate is plotted as a

function of the number of stored patterns. The results have been

obtained for patterns of length 30 bits. The input pattern noise

is generated by randomly flipping bits with probability 0.1. For

the numerical excitation function, the error rate increases lin-
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Fig. 4. Overlap function and the bit error rate before the first iteration of the RCAM.

early with the number of stored patterns. This function is tuned

to bits and patterns. By contrast, for the ex-

ponential excitation function the bit error probability increases

approximately with the square root of . When we operate the

RCAM with the numerical excitation function, then it performs

well provided that the appropriate value of is used. In fact,

under these conditions it gives performance that is comparable

to that obtained with the exponential excitation function. The

exponential excitation function performs well for a much larger

range of values of .

B. Predicting the Error Rate

As we discussed in Section III-A, the expectation value of

the bit error probability after the first iteration of the RCAM is

given by the overlap function . We can write in the

following analytical form:

(33)

Fig. 4 shows as function of Hamming distance. This func-

tion represents the bit-error transfer function from the original

pattern to the updated pattern after one iteration of the RCAM.

We can determine the approximate error-rate of the memory

using the following argument: Suppose that is probability

of choosing the incorrect bit-assignment for an input pattern

which has inner-product with the desired target pattern. The

expected number of bit-errors, i.e., the Hamming distance after

application of the RCAM is given by . As a result

the expectation value of inner-product after one iterative appli-

cation of the memory is given by . Provided

that then the action of the memory is to further corrupt

the pattern, i.e., to increase the number of bit-errors or Ham-

ming distance. In consequence, the memory will diverge from

the target pattern and correct pattern recall will not occur. Fur-

ther suppose that is the break-even value of the inner-product

which satisfies the equation

(34)

The error-probability is the cumulative area under the distribu-

tion function up to this break-even point. More formally, the

recall error-rate is given by

(35)

Of course, is a discrete function, and only exists at the

integer values of . In order to evaluate the error-rate at nonin-

teger values of we generate a smoothly interpolated function

which passes through the values of . The predicted error

rate is . There is an obvious limitation of this analysis.

The update process is governed by the distribution of errors and

not by the expectation value of the bit-error probability. As a re-

sult, patterns that become increasingly corrupt during early iter-

ations may be restored at later epochs. This effect becomes less

apparent when the error function has a sharp shoulder, i.e., the

transition is abrupt. This process is illustrated in Fig. 4. Patterns

above the shoulder will (on average) diverge from the incorrect

solution, whereas those below it converge to the correct solution

after sufficient iterations of the RCAM update rule. Fig. 5 shows
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Fig. 5. Predicted and measured error rates for the exponential RCAM.

recall error rate plotted as a function of the number of stored

patterns. The two curves are the observed recall error rate and

the predicted recall error rate. In both cases the memory has an

exponential excitation function and the RCAM has parameters

and . The predicted curve deviates from the

actual error rate for low numbers of stored patterns because the

Gaussian approximation is increasingly inaccurate in the region.

At higher loading levels, the experimental and predicted values

agree well.

C. Storage Capacity for a Fixed Error Rate

The purpose of the next experiment is to determine the re-

lationship between the length of the pattern-vectors ( ) and

the number of stored patterns ( ) when the output error rate is

fixed at some predetermined level. In other words, we assume

that some low output error rate is acceptable and determine how

many stored patterns we can accomodate for a given length of

pattern-vector. This may be seen as the analog of the storage ca-

pacity studies of the Hopfield memory and the ECAM. Fig. 6

gives the results of such a study on the ECAM. The storage ca-

pacity is evaluated for an output bit-error rate of , and

input patterns with random bit-flipping errors which occur with

probabilities 0.05, 0.1, 0.125, and 0.15. Note the log-scale on

the -axis of the plot. These results show a very clear exponen-

tial relationship between and .

We can develop a simple empirical model which provides fur-

ther insight into the pattern recall process. For a predetermined

error-rate , we can use (35) to determine the critical value

of the inner-product . This value is plotted in Fig. 7 as a func-

tion of the pattern length for .

From the plot, it is clear that there is an approximately linear

relationship between and the length of the pattern-vector

for the range of bit-pattern lengths studied. The equation of the

best-fit line is . Substituting this linear

relationship into (34), we find that

(36)

Rewriting this equation, we find

(37)

For the ECAM, we can approximate the storage capacity by

Using the data presented in Fig. 6, we find that

and . In other words, for an output

error rate of , the storage capacity of the ECAM is
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Fig. 6. Storage capacity for fixed output error rate for four levels of input corruption.

Fig. 7. Critical Hamming distance (corresponding to critical inner-product u ) against the pattern-length. Over this range, they are close to linearly related.

VII. CONCLUSION

We have shown that the RCAM model of associative recall is

governed by two distributions; a foreground distribution repre-

senting the correct label update and a background distribution

which leads to an erroneous update. When a large number of

patterns are stored in the memory, these distributions can be rep-

resented by Gaussians with the same variance, but separated by

a factor dependent on the current number of bit errors present in

the input pattern. It is this separation, which allows recovery of

the correct pattern.

Study of the first iteration reveals two “quality” measures

which we can use to determine the expected performance of

the RCAM. The first of these involves the expectation value
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of the separation between background and foreground distribu-

tions and leads us to conclude that the exponential RCAM is

the best choice for large storage capacity. The second quality

measure in the expectation of bit-wise error rate after the first

iteration of the RCAM. Consideration of this measure leads to a

numerical solution for an optimal function which performs simi-

larly to the exponential. However, the exponential is more robust

when presented with widely different storage requirements.

Finally, study of the bit error rate after one iteration of the

memory revealed a method of computing the pattern recall error

rate for an RCAM. This method was shown to accurately pre-

dict the error rates of the exponential RCAM. By studying the

storage capacity of a memory at a fixed output error-rate, we

derived an expression for the storage capacity of the ECAM at

an output error rate of 0.01.

APPENDIX A

FAMILY OF FUNCTIONS GIVES CONSTANT

An important step toward the optimal excitation function is to

consider the family of functions that leave invariant. In this

Appendix, we prove the following lemma.

Lemma: under the transformation .

Proof: Let

As a result of this lemma, remains invariant under a sim-

ilarity transform (i.e., translation and scaling) of the excitation

function. Any excitation function that is related to an optimal

excitation function under the similarity transform is, hence, also

optimal.

APPENDIX B

MAXIMAL VALUE OF

In this Appendix, we consider the effect of first-order pertur-

bations of the excitation function . This leads to an optimal

solution to the saddle-point equations for .

We commence by changing just one of the discrete function

values by an amount . The perturbed function is specified

as follows:

if

otherwise
(38)

Under this perturbation, the mean value of the excitation func-

tion changes by an amount

(39)

while, to first-order in , the numerator and denominator of the

quality measure are perturbed in the following way:

(40)

As a result, to first-order the change in is given by

(41)

Since the derivative of is zero at the local maxima of , the

first-order change must also vanish. As a result

(42)

Earlier we proved that (42) is solved by a family of functions re-

lated by a similarity transform. The family of equations may be

further simplified by constraining two of the remaining degrees

of freedom. Specifically, we impose the constraints

(43)

To proceed with our development, we substitute for and

into the condition for the to be maximized. As a result

(44)

We would like to simplify matters by eliminating the summation

over the individual values of the inner product. Accordingly, we

note that the above equation holds for arbitrary values of . In

consequence, we may write

(45)

It is now a simple matter to eliminate the summations by substi-

tution between (44) and (45). After straightforward algebra, we

find that

(46)
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We have now obtained a recurrence relation for and , which

holds for arbitrary . We can, therefore, use the recurrence re-

lation to compute the value of . As a result

(47)

More generally, we may write

(48)

When we take the case , then

(49)

This formula allows us to compute the product . However,

substituting for in (49), we find

(50)

The general family of optimal functions is, therefore, of the form

(51)

The corresponding maximum value of is given by

(52)
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