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Abstract—This paper considers the viability of compact low-res-
olution low-power mini digital-to-analog converters (mini-DACs)
for use in large arrays of neural type cells, where programmable
weights are required. Transistors are biased in weak inversion in
order to yield small currents and low power consumptions, a ne-
cessity when building large size arrays. One important drawback
of weak inversion operation is poor matching between transistors.
The resulting effective precision of a fabricated array of 50 DACs
turned out to be 47% (1.1 bits), due to transistor mismatch. How-
ever, it is possible to combine them two by two in order to build
calibrated DACs, thus compensating for inter-DAC mismatch. It is T
shown experimentally that the precision can be improved easily by
afactor of 10 (4.8% or 4.4 bits), which makes these DACs viable for
low-resolution applications such as massive arrays of neural pro-
cessing circuits. A design methodology is provided, and illustrated
through examples, to obtain calibrated mini-DACs of a given target
precision. As an example application, we show simulation results
of using this technique to calibrate an array of digitally controlled
integrate-and-fire neurons.

Index Terms—Analog design, calibration, current splitters,
digital-to-analog converters, fuzzy circuits, neural networks,
subthreshold, weak inversion.

o~

. INTRODUCTION

ARDWARE very large-scale integration (VLSI) imple-
mentations of neural and fuzzy systems usually have an ®)
array type structure: the same cell is repeated in a large thie- 1. Current splitter using (a) a resistor ladder or (b) an NMOS ladder.
dimensional array for massive parallel processing, and some
additional circuitry is available at the periphery for additionabased on the linear MOS transistor current splitting technique
processing and/or out-of- chip communications. For optimulh] with some extra calibration circuitry to compensate for
area efficiency it is desired to simplify the cell as much agiter-DAC mismatch.
possible at the expense of complicating the periphery. However,This mini-DAC-based calibration technique differs substan-
many times one would like to improve the precision in thtially from floating gate tunneling techniques [2], [3]. These
cells even if this requires some extra cell area. One simple waguire the use of a high voltage node, which imposes very
to provide such precision would be using some very compawnservative layout rules [4], thus sacrificing compactness. As
and low power mini digital-to-analog converters (mini-DACs)a comparison, the cells developed by Hasleal. [3] consume
In this paper, we describe a way to exploit this alternative. Wi area comparable to the mini-DACs in this paper (after
propose a mini-DAC scheme that not only provides a way twrmalizing with respect to minimum feature sizes), although
improve system precision through calibration, but also allov&shieving better precision. Reliability is also an important issue
to have a precise programmable weight value at each cell. Thisanalog tunneling techniques (at least for standard CMOS),
is a many times required feature in massive arrays neural-tygbich is why those techniques are only used by a few very
processing systems. The mini-DACs described in this paper &xpert groups world-wide.
The paper is structured as follows. Section Il describes the
. . . _conventional MOS ladder structure and it is found that it suf-
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by Spanish Grants TIC1999-0446-C02-02, TIC2000-0406-P4-05 (vICTORETS from huge inter-DAC mismatch, although each individual
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Fig. 2. Current splitting principle used in such a way that output transistors operate as current sources.

improvement factors are shown and verified. Section V esta  x° : , .
lishes a parallel behavior between MOS ladders and resis
ladders, resulting in some interesting conclusions. Section '
discusses about achievable precision and layout compactne
and gives design examples for different precisions. Finall 2}
Section VII describes an application example where an arri
of integrate-and-fire neurons is calibrated.

251

[l. VOLTAGE BIASED CURRENT DAC | RE !

In 1992, Bultand Geelen introduced a significant contributio l |
in current mode MOS circuit design [1]. They discovered a | '

inherently linear technique for splitting currents in a similar wa
that do the traditional resistor ladders. Consider, for example, t !
resistor ladder in Fig. 1(a). By doing parallel-series groupings«  °
resistors itis easy to see that the reference curkgnt sees two : : : : . - <

05

2R resistors in parallel, so thdt = I,; = Irrr/2. The same ° ) * 1w5mc * ® *
happens for current,;, so thatly = I,2 = I,1/2 = Irgr/4. 50 . . . . : .
Similarly, 13 B IREF/& I, = IREF/IG, Ig, = IREF/32- sk o o
Consequently, the resistor ladder in Fig. 1(a) provides fiv 0°
binary weighted current; = Tggr/2". a0 . °

Fig. 1(b) shows the original current splitter proposed by Bu | °
and Geelen using MOS transistors. The currents are splitint _ 0°
same way as by the resistor laddér:= Irgr/2°. Bult and §3°" 5°°

Geelen showed that the currents are split in the same way inc
pendently of the bias conditions of the transistors. Transista
can be in weak or strong inversion, in saturation or ohmic re °
gion (obviously, they cannot be off), and the splitting principle 0°
still works the same way. Intuitively, one can understand the ci 0°
cuit in Fig. 1(b) by noting that tw@W/ L transistors in series ' o°

are equivalent to on®/L transistor. Also, twd¥/L transis- sk 0°

tors in parallel are equivalent to o8&/ L transistor, and they o°

0 L I L 1 I 1

would split the current equally (independently of bias condi % 5 10 15 20 25 2 *

w

tions). Bult and Geelen used the binary weighted current splitte, oae

of Fig. 1(b) to build a DAC [1]. In order to select the Current%ig. 3. (Top) Measured output currents for the 50 fabricated DACs. (Bottom)

and combine them, it was necessary to provide a virtual grouaétresponding standard deviations.

node for the transistors with grounded sources, which implies

the use of some high gain amplifier that consumes an importaonnected to sufficiently high voltage nodes, the output currents

power and area. Consequently, this approach would not be varg; = Izgr/2:~1. The drain voltages are not critical as long

efficient for large arrays. as they exceed a certain minimum so that the output transistors
Enz and Vittoz proposed an alternative way of using the curork as current sources, i.e., they are biased in saturation.

rent splitting technique which yields more efficient DACs [5]. We have fabricated a linear array of 50 DACs, like the 5-bit

This alternative is shown in Fig. 2. In this circuit, if the drains arene in Fig. 2, withW = L = 5 um. It was fabricated in the
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Fig. 5. (Top) DACs output currents normalized to their maximum value

(wpac = 31). (Bottom) Standard deviation of the DAC normalized outpu
currents.
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Fig. 7. Digitally controlled MOS (digi-MOS). (a) Symbol. (b) Circuit
schematic.

sistor M,,, which is biased by the reference currdpir. We

call this type of arrangemenbltage biased DACbecause the
gate voltage is fixed and equal for all DACs. The DAC 5-bit
digital control wordwpac = {bsbsbab1by} can be changed
from wpac = 0 to wpac = 31. For each DAC we measured
the output current,,; while sweepingwpsc from 0 to 31.

Fig. 3 (top) shows the measured currents superimposed for all
50 DACs. As can be seen, there is an important mismatch be-
tween the different DACs. Specifically, for the maximum cur-
rent wpac = 31) the standard deviation is; = 7.77%,
which means that 99.7% of the samples are within an interval of
607 = 47% (assuming a normal distribution). Fig. 3 (bottom)
shows the corresponding inter-DAC error

60 (Tow(wpac)) (1)

Ioui(wpac = 31)

in percent. To express this precision in bits, just note that
1 AT 60’[

(i)
¥ " o Tmee In2 @
whereb is the equivalent number of bits. A variation interval
of 60; = 47% corresponds to a precision 6f = 1.1 bits.
Obviously, this circuit cannot be used as a 5-bit DAC but rather
as a 1-bit DAC. The reason for this misbehavior is the mismatch
of the MOS transistors, which produces very high inter-DAC
mismatch. In what follows we will present different alternatives
for lowering this inter-DAC mismatch. These techniques can be

AMS 0.35um CMOS process. All transistors of the 50 DACsused to calibrate arrays of DACs within a single chip, or even
have the gate voltage connected together and to the gate of temeong different chips.
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Fig. 8. (a) Array of uncalibrated DACs of Fig. 2. (b) Calibrated version.
[ll. CURRENT BIASED DAC transistorM, has been substituted by madigi-MOS one for

Although the measurements in Fig. 3 reveal a very hi
inter-DAC mismatch, it is interesting to note that for each DA
we obtain a well-behaved stair-case. This is, for each DA
the stairs progress monotonically increasing, without showi
eventual down steps, as is shown in Fig. 4 for a few sampl
This phenomenon can be further visualized by plotting the d

in Fig. 3, but where each DAC is normalized to its maximu

value. This is shown in Fig. 5 (top). Here we can see that é(two, and using _the first one for calibration through, . This
maximum error is produced in the central part of the rang‘é’.ay’ we end up with 25 callbrafced DACs. Fig. 9 (top) ShOWS the
Fig. 5 (bottom) shows the deviatiaiv (wpac) in percent as a output currents of these 25 calibrated DACs as a function of the

function of the DAC digital control wordsp sc.. The maximum digital control wordwpa . Fig. 9 (bottom) shows the precision
is obtained in the center fasp e = 12 with 601(12) = 3.6% obtained with this approach. As can be seen, a maximum error
This corresponds to a precision in bitsiof 4.8 bits. of 60; = 7.0% is obtained forupac = 30, which is equivalent

As we can see, by normalizing the output current of the DACE z\tTh'&S b.ltf'.t. int tina to h look at th lting 25
with respect to their individual total current we can improve the ' 'S pointit s interesting to have a look at Ine resutting
mismatch frono; = 47% (1.1 bits) to6o; = 3.6% (4.8 bits). calibration wordsw..,,. It tu.rns out that the required (_:allb'ratlon
One way of achieving in practice such normalization would b\gords range frofm a Ta;;mlém 0o = tlgl t(ﬁotcallbratl?n)
by forcing their total currents to be constant, as is shown in tﬁ%_a minimum oM, = 24. Lonsequenty, the twWo most Sig-
circuit of Fig. 6. In this circuit the gate voltages of the Mo§mcant bits are not being used in the calibrations (for this par-

transistors in each DAC is self-adjusted to set the maximutrlﬁmar mismatch distribution). Note that the available precision
current constant and equal to the reference curfept. We without calibration was 1.1 bit. Consequently, it is reasonable
call this bias arrangement tiveirrent biased DAC ' to expect that at least the most significant calibration bit might

not be required. On the other hand, it would be nice to take ad-
IV. CALIBRATED DAC vantage of this unused bit to furthe_r improve the_ca_libration:
note that we have been able to calibrate to 3.8 bits instead of
The problem with the circuit in Fig. 6 is that all currentts  the ideal 4.8 limit observed in Section 1. The circuit in Fig. 10
need to be added permanently and be forced to/agg. Con- intends to pursue this objective. Here, the maximum correction
sequently, we cannot select/deselect any of them arbitrarilyj£o7y /2 instead oflggr, but in steps offggr/64 instead of
form any combination of them, i.e., to form a DAC. One way tgy /32. Fig. 11 shows the results for this calibration strategy.
overcome this problem and to force the sum of all currénts  Fig. 11 (top) shows the absolute output currents in terms of the
be constant is through calibration. digital control wordwpac for all 25 calibrated DACs, while
Consider the part of the circuit in Fig. 2 comprised by brokepig. 11 (bottom) shows the resulting standard deviations in per-
lines. Note that this circuit behaves equivalently to a MOS tragent. The maximum standard deviatiotis = 4.8% obtained
sistor of size2W/L whose source is connected to ground anfgr wpac = 20, which is equivalent td = 4.4 bits. In this situ-

whose Drain to nodé,., but from which we are taking just a ation the calibration words range from a minimumuef,, = 0
fraction of its drain current. This fraction is controlled digitally(no calibration) to a maximum af..; = 18, hence using all

by control wordwpac = {babsb2b1bo}. Let us use the symbol five control bits (for this particular mismatch distribution).
in Fig. 7(a) to represent this circuit, shown in Fig. 7(b), and let
us call it thedigitally controlled MOSor digi- MOS Using this
symbol convention, the circuitin Fig. 2 can be redrawn as shown
in Fig. 8(a), where we represent an array of DACs (instead of Although resistor ladders and MOS ladders are not exactly
just one as in Fig. 2). This circuit (a voltage biased DAC arrayfie same, their behavior in current splitting is identical [1].
presented an important mismatch behavior. In order to force tRegarding their behavior with respect to mismatch, they are
output currentl,,; to be constant fotvpac = 31 (the max- qualitatively and quantitatively very similar. The linear nature of
imum value), we can use the circuit in Fig. 8(b) where glob#he resistors allows us, on the other hand, to study its mismatch

ch cell. For this circuitv., is used to set (calibratd),,
qj/ﬁlwile wpac = 31 is maximum. Decreasing.,, increases the
in of the mirror. Consequently, all valués,; of the DACs
ed to be set to the original uncalibrated maximum value. The
IDal error atl,,; will be of the order of the least significant bit of
e DAC (in this casérr/32). We used this approach with our

near array of 50 DACs (odigi-MOS), by grouping them two

V. COMPARISONWITH RESISTORLADDERS
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Fig. 11. Measurement results for the calibration arrangement of Fig. 10.
Fig. 9. Measured results for the calibrated DAC. (top) Output current vers(iBop) Output current versus digital control woreh A. (Bottom) Resulting

digital control wordw.,, and (bottom) resulting standard deviations. standard deviations.
I - r
IREF
2
llout
2W/L I O/(' j 2W/L
- w - - w — U
cal DAC g

Fig. 10. Alternative calibration arrangement for improved precision.

behavior using relatively simple mathematical models. In ord
to compare our MOS measurements to eventual resistor lad:
numerical (MATLAB) simulations, we need to characterize

L L L L L L s L '

the standard deviation of our individual MOS devices. In o.  *% 5 10 5 20 25 30 3 40 45 50

DAC number

MOS ladder measurements, we have access only to the output

Cu_rrentSIi [see Figs. 1(b) an_d 2 or Fig. 6]. Note that th%ig. 12. Measured current at transisidi for the 50 DACs over a distance of
mismatch of these currents is a function of the mismates mm.
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Fig. 13. Current mismatch measurements (in percent) for arrays of transistors of 30 different sizes, as a function of their nominal operasiomhageent
measurements correspond to a different :3%-CMOS process.

of all MOS transistors in the circuit, except for curreit by extending a systematic procedure published elsewhere [8]
and transistorM; in the voltage biased configuration. Forto subthreshold region. These measurements correspond to a
this configuration the mismatch & depends only on the different 0.35um CMOS process than the one used for the
mismatch of transistoiM/; of size W/L. Consequently, the fabricated mini-DACs. Horizontal axes are nominal currents
standard deviation measured for thecurrentss([;) is equal and vertical axes are standard deviations at the drain-to-source
to the standard deviation of the drain- to-source current ofirrentso(Iyy 1) in percent. For high currents, the transistors
oneW/L transistoro (Iyy 1,). By looking at the output current operate in strong inversion and(/y1,) reaches minimum

for wpac = 16 we are observing the currery produced values. For lower currents(/y 1) tend to stay at maximum

by transistorsM; only. Fig. 12 shows this current for all 50current independent values. By looking at the subfraie=
fabricated DACs as a function of DAC position. The overah xm and curvel, = 5 um (crosses) for nominal currentZA,
standard deviation for this current is equaldg; = 8.13%. the measured current mismatch standard deviation was actually
The 50 DACs are arranged in a linear array of total lengtrery close to 3.8% (the gradient-less mismatch observed for
equal to 2.6 mm. As can be seen in Fig. 12, there is a gradi¢éim¢ data in Fig. 12).

component plus a random component. Fitting the measured_et us now use this value as the standard deviation con-
data to a third-order polynomial yields the continuous curweibuted by each resistdk of the current biased resistor ladder
shown in Fig. 12. Subtracting this curve from the measurethown in Fig. 14. Resistors of valu@ R are implemented with
data results in the pure random component. The standam R resistors in series. Fig. 15 (top) shows the MATLAB
deviation for this pure random componentds/;) = 3.8%. simulated currents obtained statistically for all digital combi-
Let us assume that this mismatch is approximately the samagions of currents £y, I», I3, 14, I5} in terms of the digital

for all transistors in the ladder, independently of their operatirgpntrol wordwpac. Fig. 15 (bottom) shows the corresponding

currents. This assumption is approximately true, if all transistors, , _
ithi bth hold 161 I71. Fia. 13 sh For MOS ladders, since the current decreases for each branch, transistor

operate within subthresho 6], [7]- I9. 15 shows measuredsmatch increases slightly, as can be seen in Fig. 13. However, for weak in-

standard deviations (/v,1,) of the drain-to-source currentsversion the mismatch tends to stabilize as current decreases. For example, for

for arrays of NMOS transistors of 30 different sizé¥: = 'V = L =5 um, o changes from about 3% for/LA to about 5% for 1 nA
(three decades). Consequently, it is reasonable to ass@pproximately con-

{407 20, 10, 5, 2, 0~8} pm, L = {107 5, 2,0.8, 0'35} KM, stant for all branches because the maximum current ratio is 16.
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o o o o Fig. 16. Current biased resistor DAC effective precisions as function
5r o, o°° ©%o" o ] of resistor mismatcho(R) and DAC resolution, expressed (top) as
max(60(I,..)) and (bottom) as effective bits.
4t 4
§ o [e]
sl ° o | Taking advantage of this conjecture, let us now study, for the
g‘ ° ° resistor current biased DAC structure of Fig. 14, how the DAC
S ° ° precision
2r 4
o o 60(Iout) = max{6o(wpac)} 3)
1 o o E WDAC
o o
depends on the standard deviatiofi?) of the individual re-
3 . m s 20 25 m 5 sistors. The results of this study are shown in Fig. 16 (top),
¥pac wheres(R) has been swept from 0.1% to 10%. Each line corre-

sponds to a different DAC resolution (i.e, the number of output
Fig. 15. Current biased resistor DAC numerical MATLAB results. (topfranches), which has been changed from three to nine bits. As
Output currents. (bottom) Resulting standard deviations. can be seen, the following relationship:

standard deviatior6o; in percent. Comparing Fig. 15 for 60 (Lout) = 20(R) 4
resistors with Fig. 5 for MOS transistors, we can see that both

ladder structures provide similar DAC precision. Consequently, satisfied approximately for the whole range, independently
we have reasons to believe that the mismatch behavior affDAC resolution. Consequently, we can state tHat & cur-
resistor ladders and MOS ladders might be similar. rent biased resistor DAC the worst-case output current standard
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deviationo (1, ) is approximatelyl/3that of its individual re-
sistor components (R).” Using (2), we can express the DAC
precision in bits as well

b In 60 (Lout) In20(R) 5) - . . \
= - = - 1 1 1 1 1 1
In2 n2 pllt el s ] “iq@is el

P P— . e i i B
whl_ch is shown in F.|g.. 16 (pottom). Since we have reasons 1 J__f_\zﬂL oy o N i—lzm
believe there is a similar mismatch behavior between resist i = - — —
ladders and MOS ladders, Fig. 16 might be extensible to MO _ al a2 a3 a4
current biased DACs as well.

IREF
2

Fig.17. Alternative ladder arrangement to make the mismatch of all the output
currents to be intercorrelated.

VI. ACHIEVABLE PRECISION AND LAYOUT FOR MOS
Low-PowER MINI-DACs

qut

Fig. 16 and (5) provide hints on how the effective precision of
current biased DACs depend on the mismatch of their individual
components. On the other hand, Fig. 13 showed the mismatc
of individual MOS devices (Iyy,1,) as functions of current op-
erating level and transistor sizes. Combining both Figs. 13 anc
16, one can select the optimum transistor $iZ£L for a given
DAC precision to achieve. For example, Fig. 13 reveals that for
W = L = 5 pm and currents between 1A and1/16 uA =
62.5 nA the current mismatch standard deviatiofVyy, 1) is
between 2.5% and 5%. Using this in Fig. 16 (bottom) yields an
effective DAC precision around 4 bits, as we obtained experi-
mentally in Sections Il and IV. If we would need a 6-bit DAC,
Fig. 16 (bottom) reveals that we need components with a mis
match of aboutr = 0.9%. From Fig. 13 we can see that the
transistor size achieving = 0.9% with minimum current is

[T DR RS
Vend

W =5 um, L = 10 pm at 6 uA. If on the other hand we need Bve Va"":

an 8-bit DAC, then according to Fig. 16 (bottom) we require
F'g. 18. Example layout of a 5-bit NMOS mini-DAC ladder structurelfor=

components with a mismatch of about 0.22%. Then Iookingg
Fig. 13 we can see that for transistors of si¥e= 40 xm and
L = 10 pm operating at or above 1 mA we would be able to

= 3 pm. Size is 22umx 18um.

v

obtain an 8-bit DAC. ToP
In the ladder structures seen so far, one can see that the mis- |°
match of the output currenfs depends on the mismatch of all o .
devices in the structure, except for curréntind the transistors g C_L n
in the first branch of the ladder. Consequently, there will be an I }— v 5
BOTTOM

important correlation in the resulting mismatches. This might be L —

one of the reasons why the standard deviation of the ladder struc- ' |
ture improves a factor of three that of the individual devices. If

this is the case, building the ladder structure as shown in Fig. 17 =
would improve the overall precision, since now all output cur-

rents will be correlated. In order to verify this postulate we haydd: 19-  Circuit schematic of current-driven 1&F neuron.

used our 5-bit DACs data to emulate 4-bit calibrated DACs. One

of them using currentsk{, I», I3, I,} as outputs, and the other VII. EXAMPLE APPLICATION TO NEURAL SYSTEMS

using currents {y, I3, Iy, Is} as outputs. Itis found that there is  The calibrated mini-DACs described so far have potential ap-
a slight improvement in precision (from 5.2% to 4.8%), but ngjjication in many low-moderate precision massive array VLSI
very significant: about a 10% of improvement only. structures, such as neural and fuzzy systems. In our particular
The layout for these DACs can be made very compact. As géise, we intend to exploit them in arrays of integrate-and-fire
illustrative example, Fig. 18 shows the layout for a MOS laddefs.F) neurons [9]. Fig. 19 shows the circuit of an I&F neuron
structure corresponding to 5-bit resolution, including the selegrat transforms input currerdi; into an output frequency;;.
tion switches. The unit transistor sizel§ = L = 3 ym, and Current/;; could be produced by photo detectors [10] or analog
the resulting total area is 22mx 18 um. This layout corre- current-mode signal processing circuits [11]. The dependence
sponds to the design rules for the AMS 0,3fr3-metal, double betweenl;; and f;; is fairly linear, although the slope suffers
poly design rules. One calibrated DAC would use two of the$em important mismatch between neurons and also between
structures, as was shown in Fig. 8(b) or Fig. 10. different chips. Using the mismatch characterization results
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It is found that the standard deviation of the ladder structure is

shown in Fig. 13 we have performed Monte Carlo simulatiorf?0ut one third of that of the single devices used. It is shown
to estimate the variations in the slopgs/I;;. These results how to use the provided experimental data to design calibration

are shown in Fig. 20 (top). Curreiiy; is set to be proportional Mini-DACs for a target precision. As an application, the use of
to aweight = wpac, such thatl;; = weight;; x . Fig. 20 mini-DACs to calibrate an array of 1&F neurons is described.
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