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Storage Capacity Diverges with Synaptic Efficiency in an

Associative Memory Model with Synaptic Delay and Pruning

Seiji Miyoshi∗, Member, IEEE, and Masato Okada †

Abstract
It is known that storage capacity per synapse increases by synaptic pruning in the case

of a correlation-type associative memory model. However, the storage capacity of the entire
network then decreases. To overcome this difficulty, we propose decreasing the connecting
rate while keeping the total number of synapses constant by introducing delayed synapses. In
this paper, a discrete synchronous-type model with both delayed synapses and their prunings
is discussed as a concrete example of the proposal. First, we explain the Yanai-Kim theory by
employing the statistical neurodynamics. This theory involves macrodynamical equations for the
dynamics of a network with serial delay elements. Next, considering the translational symmetry
of the explained equations, we re-derive macroscopic steady state equations of the model by
using the discrete Fourier transformation. The storage capacities are analyzed quantitatively.
Furthermore, two types of synaptic prunings are treated analytically: random pruning and
systematic pruning. As a result, it becomes clear that in both prunings, the storage capacity
increases as the length of delay increases and the connecting rate of the synapses decreases
when the total number of synapses is constant. Moreover, an interesting fact becomes clear:
the storage capacity asymptotically approaches 2/π due to random pruning. In contrast, the
storage capacity diverges in proportion to the logarithm of the length of delay by systematic
pruning and the proportion constant is 4/π. These results theoretically support the significance
of pruning following an overgrowth of synapses in the brain and strongly suggest that the brain
prefers to store dynamic attractors such as sequences and limit cycles rather than equilibrium
states.
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1 Introduction

Robustness against noise and damage is often given as a positive feature of neural networks.
Therefore, it is important to analyze neural networks with respect to synaptic pruning. Par-
ticularly in the case of correlation-type associative memory [1], models with randomly pruned
synapses have been discussed in detail [2, 3, 4, 5]D As a result, it became quantitatively clear
that synapse efficiency, which is defined by storage capacity per synapse, increases by synaptic
pruning, although storage capacity of the entire network decreases.

On the other hand, it has often been observed that synapses are pruned following an over-
growth in real neural systems [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Though the functional
significance of this phenomenon is not known, Chechik et al. recently proposed the follow-
ing hypothesis [5]. They considered cutting synapses that are lightly weighted after learning
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with an excess of synapses, expecting synapse efficiency to increase by such systematic prun-
ing. Therefore, they hypothesized that increasing synapse efficiency in this way adds functional
significance to synaptic pruning following an overgrowth. They used a correlation-type auto-
associative memory model to verify this hypothesis. After correlation learning, they left heavily
weighted synapses in the model, in which all neurons are fully connected. Through computer
simulations, they showed that the synapse efficiency increased by obtaining storage capacity.
In this paper, synaptic pruning as described above is called systematic pruning. Although the
hypothesis of Chechik et al. is interesting as neuroscience, there are some unclear or imperfect
points from the theoretical viewpoint: for example, what degree of systematic pruning is more
efficient than random pruning. Accordingly, Mimura et al. [4] analyzed this system by using the
self-consistent signal to noise analysis (SCSNA) [21], which is a method of statistical mechanics.
They showed that systematic pruning increased synapse efficiency by the order of − ln(1 − R)
over random pruning at the limit when R approached unity, where R (0 ≥ R ≥ 1) was the
rate of synaptic pruning. The important point in this case is that the storage capacity of the
entire network decreased, though synapse efficiency increased by random pruning or systematic
pruning.

To overcome this difficulty, we propose decreasing the connecting rate while keeping the
total number of synapses constant by introducing delayed synapses with respect to a discrete
synchronous-type model. In this model, the storage capacity is expected to grow with increases
in synapse efficiency because synapse efficiency increases by synaptic pruning, while the to-
tal number of synapses remains constant. The discrete synchronous-type model with delayed
synapses [16, 24, 28] was proposed by Fukushima [16]. Yanai and Kim [24] theoretically analyzed
this model with the statistical neurodynamics [22]. Their theory closely agrees with the results
of our computer simulation.

In this paper, after defining the model, we explain the Yanai-Kim theory [24, 25, 26] using
the statistical neurodynamics [22], which involves macrodynamical calculations for a network
with delayed synapses. The Yanai-Kim theory needs a computational complexity of O(L4t) to
obtain the macrodynamics, where L and t are the length of delay and the time step, respectively.
Therefore, this theory is intractable for discussing macroscopic properties at the limit where L is
extremely large [25, 27]. Thus, considering the translational symmetry of time steps, which holds
in the steady state of the Yanai-Kim theory, we re-derive the macroscopic steady state equations
by employing the discrete Fourier transformation, where the computational complexity does not
formally depend on L [25, 26]. Using the re-derived steady state equations, storage capacities
can be quantitatively discussed even for a large L limit.

Next, synaptic pruning in the delayed network is investigated theoretically, and storage
capacities are evaluated quantitatively. We deal with two types of pruning: random pruning
and systematic pruning. As a result, it becomes clear that in both types of pruning, storage
capacity increases as the length of delay increases, while the connecting rate of synapses decreases
where the total number of synapses is constant. Moreover, an interesting fact becomes clear: the
storage capacity asymptotically approaches 2/π by random pruning. In contrast, the storage
capacity diverges in proportion to the logarithm of the length of delay L, that is, (4/π) lnL, by
systematic pruning.

2 Delayed Network

2.1 Model

The structure of the delayed network discussed in this paper is shown in Figure 1. This figure
corresponds to the case of fully synaptic connections, meaning no synaptic pruning. The network
has N neurons, and L − 1 serial delay elements are connected to each neuron. All neurons, as
well as all delay elements, have synaptic connections with all neurons. In this neural network,
all neurons and all delay elements change their states simultaneously, i.e., this network employs
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a discrete synchronous updating rule. The output of each neuron is determined by

xt+1
i = F

(

uti
)

, (1)

F (·) = sgn (·) , (2)

uti =

L−1
∑

l=0

N
∑

j=1

J l
ijx

t−l
j , (3)

where xti denotes the output of the ith neuron at time t, and J l
ij denotes the connection weight

from the lth delay elements of the jth neuron to the ith neuron. Here, sgn is the sign function
defined as

sgn (u) =

{

+1, u ≥ 0,
−1, u < 0.

(4)

In this paper, the limit N → ∞ is used unless stated otherwise.
Let us consider the storing sequence of αN memory patterns, ξ1 → ξ2 → · · · → ξµ → · · · →

ξαN . Here, α and αN are the loading rate and the length of the sequence, respectively. Each
component of ξµ is assumed to be an independent random variable that takes a value of either
+1 or −1 according to the following probabilities.

Prob [ξµi = ±1] =
1

2
. (5)

The synaptic weight J l
ij is determined by correlation learning:

J l
ij =

cl
N

∑

µ

ξµ+1+l
i ξµj , (6)

where cl is the strength of the lth delay step.
Correlation learning is an algorithm based on the Hebb rule, and it is inferior to the error

correcting learning in terms of storage capacity. However, as seen in (6), it is not necessary
to re-learn all patterns that were stored in the past when adding new patterns. Furthermore,
correlation learning has been analyzed by many researchers due to its simplicity.

2.2 Dynamical Behaviors of Macroscopic Order Parameters by Statistical

Neurodynamics

In the case of a small loading rate α, if a state close to one or a set of the patterns stored as a
sequence is given to the network, the stored sequence of memory patterns is retrieved. However,
when the loading rate α increases, the memory fails at a certain α. That is, even if a state close
to one or a set of the patterns stored as a sequence is given to the network, the state of the
network tends to omit the stored sequence of memory patterns. Moreover, even if one or a set
of the patterns itself is given to the network, the state of the network tends to leave the stored
sequence of memory patterns. This phenomenon of the memory suddenly becoming unstable at
a critical loading rate can be considered a kind of phase transition. Here, the storage capacity
αC is defined as the critical loading rate where recall becomes unstable.

We define the overlap, or direction cosine, between a state xt =
(

xti
)

appearing in a recall
process at time t and an embedded pattern ξµ = (ξµi ) as

mt
µ =

1

N

N
∑

i=1

ξµi x
t
i. (7)

Using this definition, when the state of the network at time t and the µth pattern agree
perfectly, the overlap mµ

t is equal to unity. When they have no correlation, the overlap mµ
t is

equal to zero. Therefore, the overlap provides a means of measuring recall quality.
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Amari and Maginu proposed the statistical neurodynamics for the associative memory model
[22, 23, 31]. This analytical method handles the dynamical behavior of the associative memory
model macroscopically, where cross-talk noise is regarded as a Gaussian random variable with
a mean of zero and a time-dependent variance of σ2

t . They then derived recursive relations for
the variance and the overlap.

Yanai and Kim applied this method to the present model, and succeeded in obtaining macro-
scopic state transition equations[24]. We will briefly explain their derivation as follows.

The total input of the ith neuron at time t is given as

uti =

L−1
∑

l=0

N
∑

j=1

J l
ijx

t−l
j

= stξt+1
i + zti , (8)

st =
L−1
∑

l=0

clm
t−l
t−l, (9)

zti =

L−1
∑

l=0

cl
∑

ν 6=t

ξν+1
i mt−l

ν−l. (10)

The first term in (8) is the signal useful for recall, while the second term is cross-talk noise that
prevents ξt+1

i from being recalled. This procedure is called a signal-to-noise analysis.
We can then use the first-order Taylor expansion regarding F (·) to obtain

mt
µ =

1

N

N
∑

i=1

ξµi x
t
i

= m̄t
µ + Ut

L−1
∑

l′=0

cl′m
t−l′−1
µ−l′−1, (11)

m̄t
µ =

1

N

N
∑

i=1

ξµi F





L−1
∑

l=0

N
∑

j=1

cl
N

×
∑

ν 6=µ−l−1

ξν+1+l
i ξνj x

t−l−1
j



 , (12)

Ut =
1

N

N
∑

i=1

F ′





L−1
∑

l=0

N
∑

j=1

cl
N

×
∑

ν 6=µ−l−1

ξν+1+l
i ξνj x

t−l−1
j



 , (13)

where F ′(·) is the differentiation of F (·).
Taking the correlation in the cross-talk noise zti into account, we can derive the following

macrodynamical equations using (1)-(13) (see Appendix A).

σ2
t =

L−1
∑

l=0

L−1
∑

l′=0

clcl′vt−l,t−l′ , (14)

vt−l,t−l′ = αδl,l′

+ Ut−lUt−l′

×
L−1
∑

k=0

L−1
∑

k′=0

ckck′vt−l−k−1,t−l′−k′−1

4



+ α (cl−l′−1Ut−l′ + cl′−l−1Ut−l) , (15)

Ut =

√

2

π

1

σt−1
exp

(

−
(

st−1
)2

2σ2
t−1

)

, (16)

st =

L−1
∑

l=0

clmt−l, (17)

mt+1 = erf

(

st√
2σt

)

, (18)

where mt denotes mt
t. vt−l,t−l′ =

∑

µ6=tm
t−l
µ−lm

t−l′

µ−l′ . σ2
t is the variance of the cross-talk noise.

Ut is a kind of susceptibility, which measures the sensitivity of neuron output with respect to
the external input. If t < 0, mt = 0 and Ut = 0. If k < 0, ck = 0. If either k < 0 or k′ < 0,
vk,k′ = 0. The expression erf (x) ≡ 2√

π

∫ x

0 exp
(

−u2
)

du denotes the error function. In this paper,

the initial condition is that the states of all neurons and all delay elements are set to be the
stored pattern sequences. In this case, ml = 1 (l = 0, · · · , L− 1) and vl,l = α (l = 0, · · · , L− 1).

2.3 Macroscopic Steady State Analysis by Discrete Fourier Transformation

and Discussion

The Yanai-Kim theory explained in the previous section, which involves the macrodynami-
cal equations obtained by the statistical neurodynamics, needs a computational complexity of
O(L4t) to obtain the macrodynamics shown in (14) and (15), where L and t are the length of
delay and the time step, respectively [24, 25, 26]. Therefore, in this method, it is difficult to in-
vestigate the critical loading rate for a large L limit, i.e., the asymptotic behavior of the storage
capacity in a large L limit. Thus, Miyoshi, Yanai and Okada considered the Yanai-Kim theory
in a steady state and derived the macroscopic steady state equations of the delayed network.
Furthermore, the storage capacity was analyzed for a large L by solving the derived equations
numerically [25, 26].

We will briefly explain the derivation of the macroscopic steady state equations to make the
present paper self-contained.

For simplicity, let us assume that cl = 1, l = 0, · · · , L− 1. In a steady state, vt−l,t−l′ can be
expressed as vl−l′ because of the translational symmetry in terms of time step. Therefore, by
modifying (14) and (15), we obtain

σ2 =

L−1
∑

n=1−L

(L− |n|) v (n) , (19)

v (n) = αδn,0

+ U2
L−1
∑

i=1−L

(L− |i|) v (n− i) + Uαd (n) , (20)

d (n) =

{

1, |n| = 1, 2, · · · , L
0, otherwise

(21)

where n = l − l′, i = k − k′, v(n) denotes vn and δ is Kronecker’s delta.
Using the discrete Fourier transformation, we can obtain the steady state equations in terms

of the network’s macroscopic variables as (22)-(25) (see Appendix B).

σ2 =

∫ 1

2

− 1

2

α [(1− U) sin(πx) + U sin {(2L+ 1) πx}] [1− cos(2Lπx)]

sin(πx)
[

2 sin2(πx)− U2 {1− cos(2Lπx)}
] dx, (22)
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U =

√

2

π

1

σ
exp

(

− s2

2σ2

)

, (23)

s = mL, (24)

m = erf

(

s√
2σ

)

. (25)

Though the derived macroscopic steady state equations include a simple integral, their com-
putational complexity does not formally depend on L. Therefore, we can easily perform numer-
ical calculations for a large L. Figure 2 shows the results of theoretical calculations in cases
where L = 1, 3 and 10, which are obtained by solving these equations numerically. Figure 3
shows the results of computer simulations. In these Figures, the abscissa is the loading rate α.
In the computer simulations, the number of neurons is N = 500. The initial condition is that
the states of all neurons and all delay elements are set to be the stored pattern sequences. The
steady state overlaps m∞ are obtained by calculations with a sufficient number of steps. Eleven
simulations were carried out for each combination of loading rate α and lengths of delay L. Data
points • , ◦ , � indicate the medians of the sixth largest values for L =1,3 and 10, respectively,
in the eleven trials. Error bars indicate the third and ninth largest values in the eleven trials.
In each trial, the loading rate is increased by adding new patterns.

These figures show that the steady states obtained by the derived theory agree closely with
those obtained by computer simulation. Therefore, in the case of a large L, only the theoretical
calculations are executed. Figure 4 shows the results, while Figure 5 shows the relationship
between the length of delay L and the storage capacity αC .

From these figures, we can see that the storage capacity increases in proportion to the length
of delay L with a large L limit and a proportion constant of 0.195. In other words, the storage
capacity of the delayed network αC equals 0.195L when the length of delay L is large [25, 26].
Although the result indicating that the delayed network’s storage capacity is in proportion to
the length of delay L may be trivial, the fact that this result has been proven analytically is
significant. Moreover, the proportion constant 0.195 is a mathematically significant number
because it represents the limit of the delayed network’s storage capacity.

3 Synaptic Pruning

3.1 Necessity of Analyzing Synaptic Pruning

During brain development, the phenomenon of synaptic pruning following overgrowth [5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15] can be observed. Since this pruning following overgrowth seems to
be a universal phenomenon occurring in almost all areas – visual cortex, motor area, association
area, and so on – it is important to analyze synaptic pruning and to discuss its properties
quantitatively.

In real neural systems, some synaptic delay is inevitable. This property can be analyzed
with a model that involves both delay elements and synaptic pruning. For example, Figure 6
shows that a delay of three time steps can be represented by pruning the first, second, fourth
and fifth synapses, and a five-time-step delay can be represented by pruning the first, second,
third and fourth synapses with a model whose length of delay is five. From this perspective,
analyzing a model with both delay elements and synaptic pruning is significant.

Moreover, in the case of a delayed network with no pruning, it is obvious that storage capacity
increases as the length of delay L increases. On the contrary, it is interesting to analyze the
storage capacity of a delayed network that has a constant number of synapses by introducing
synaptic pruning.

It has been reported that the synapse efficiency, which is defined as storage capacity per
synapse, increases due to synaptic pruning in networks with no delay elements [2, 5]. Two types
of pruning can be considered, namely random pruning and systematic pruning, which are typical
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methods [2, 3, 5]. Mimura et al. [4] showed that synapse efficiency converged to 2
π
by random

pruning and diverged as 2
π
(−2 ln c) by systematic pruning at the limit where the connecting

rate c is extremely small. Here, the relation between connecting rate c and pruning rate R was
given by c = 1−R. The important point here is that the storage capacity of the entire network
decreases, since the number of synapses decreases.

In the following discussion, a delayed network with synaptic pruning is analyzed on the
basis of the macrodynamical equations and macroscopic steady state equations re-derived in the
former section. We consider two types of pruning – random pruning and systematic pruning –
for synaptic pruning.

3.2 Random Pruning

In this section, synapses of a delayed network are randomly pruned. Random pruning of synapses
can be realized without any complicated control mechanism, so it is important to investigate its
effect on the dynamical behavior of pattern recall and storage capacity.

In the random synaptic pruning model, synaptic connections are constituted as

J l
ij =

clc
l
ij

Nc

∑

µ

ξµ+1+l
i ξµj , (26)

Prob[clij = 1] = 1− Prob[clij = 0] = c, (27)

where c is the connecting rate.
Modifying (26), we obtain

J l
ij =

cl
N

∑

µ

ξµ+1+l
i ξµj

+
cl

(

clij − c
)

Nc

∑

µ

ξµ+1+l
i ξµj . (28)

Using (28), we obtain the total input of the ith neuron at time t as

uti =

L−1
∑

l=0

N
∑

j=1

J l
ijx

t−l
j

= stξt+1
i + zti

+

L−1
∑

l=0

∑

j 6=i

cl

(

clij − c
)

Nc

∑

µ

ξµ+1+l
i ξµj x

t−l
j , (29)

st =
L−1
∑

l=0

clmt−l, (30)

zti =

L−1
∑

l=0

cl
∑

ν 6=t

ξν+1
i mt−l

ν−l. (31)

As in the case of a fully connected network, the first, second and third terms of (29) are useful
signals for recall, cross-talk noise and new noise generated by synaptic pruning, respectively.

In the third term of (29),

xt−l
j = F

(

ut−l−1
j

)

=

L−1
∑

l′=0

∑

k 6=j

J l′

jkx
t−l−1−l′

k

7



= F





L−1
∑

l′=0

∑

k 6=j

cl′c
l′

jk

Nc

∑

ν

ξν+1+l′

j ξνkx
t−l−1−l′

k





= x
t−l,(µ)
j +





L−1
∑

l′=0

∑

k 6=j

cl′c
l′

jk

Nc
ξµ+1+l′

j ξµkx
t−l−1−l′

k



x′t−l,(µ)
j , (32)

where

x
t−l,(µ)
j = F





L−1
∑

l′=0

∑

k 6=j

cl′c
l′

jk

Nc

∑

ν 6=µ

ξν+1+l′

j ξνkx
t−l−1−l′

k



 , (33)

x′t−l,(µ)
j = F ′





L−1
∑

l′=0

∑

k 6=j

cl′c
l′

jk

Nc

∑

ν 6=µ

ξν+1+l′

j ξνkx
t−l−1−l′

k



 . (34)

Using (32), the third term of (29) becomes

L−1
∑

l=0

∑

j 6=i

cl

(

clij − c
)

Nc

∑

µ

ξµ+1+l
i ξµj x

t−l
j

=
L−1
∑

l=0

∑

j 6=i

cl

(

clij − c
)

Nc

∑

µ

ξµ+1+l
i ξµj x

t−l,(µ)
j

+

L−1
∑

l=0

∑

j 6=i

cl

(

clij − c
)

Nc

∑

µ

ξµ+1+l
i ξµj

L−1
∑

l′=0

∑

k 6=j

cl′c
l′

jk

Nc
ξν+1+l′

j ξµkx
t−l−1−l′

k x′t−l,(µ)
j . (35)

The second term of (35) becomes

1

c2

L−1
∑

l=0

L−1
∑

l′=0

clcl′
∑

µ

ξµ+1+l
i E

[

ξµkx
t−l−1−l′

k

]

E
[(

clij − c
)

cl
′

jkξ
µ
j x

′t−l,(µ)
j

]

, (36)

where E
[

ξµkx
t−l−1−l′

k

]

and E
[(

clij − c
)

cl
′

jkξ
µ
j x

′t−l,(µ)
j

]

obey N (0, 1/N) and N (0, O (1/N)), re-

spectively. Therefore, the second term of (35) becomes 0 for a large N limit. Here, E[·] and
N
(

a, σ2
)

stand for an average and a Gaussian distribution with average a and variance σ2,
respectively.

Using this result and (35), the third term of (29) becomes [3]

L−1
∑

l=0

∑

j 6=i

cl

(

clij − c
)

Nc

∑

µ

ξµ+1+l
i ξµj x

t−l,(µ)
j ∼ N

(

0,
α(1− c)

c

L−1
∑

l=0

c2l

)

. (37)

As a result, we can obtain the macrodynamical equations for random pruning as follows.

σ̃2
t = σ2

t +
α (1− c)

c

L−1
∑

l=0

c2l , (38)

σ2
t =

L−1
∑

l=0

L−1
∑

l′=0

clcl′vt−l,t−l′ , (39)
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vt−l,t−l′ = αδl,l′

+ Ut−lUt−l′

×
L−1
∑

k=0

L−1
∑

k′=0

ckck′vt−l−k−1,t−l′−k′−1

+ α (cl−l′−1Ut−l′ + cl′−l−1Ut−l) , (40)

Ut =

√

2

π

1

σ̃t−1
exp

(

−
(

st−1
)2

2σ̃2
t−1

)

, (41)

st =

L−1
∑

l=0

clmt−l, (42)

mt+1 = erf

(

st√
2σ̃t

)

, (43)

where the initial conditions are the same as in the case of a fully connected network. δ is
Kronecker’s delta. Equation (38) means that the variance σ̃2

t after pruning is the sum of the
variance of cross-talk noise among patterns and the variance of new noise generated by pruning.
Using the discrete Fourier transformation, as for a fully connected network, the macroscopic
steady state equations in the case of random pruning become

σ̃2 = σ2 +
α (1− c)

c

L−1
∑

l=0

c2l , (44)

U =

√

2

π

1

σ̃
exp

(

− s2

2σ̃2

)

, (45)

s = mL, (46)

m = erf

(

s√
2σ̃

)

, (47)

where σ2 is given by (22).
It is obvious that storage capacity increases with the length of delay L if the connecting

rate c is constant. Therefore, the storage capacity αC is investigated under the condition that
c × L is constant. This means that (44)-(47) are solved numerically and that the steady state
overlaps m∞ are investigated by using c = 1/L, where cl = 1. Figure 7 shows the results of
theoretical calculations and computer simulations when L = 1, 2, 3, 5 and 10. In this figure, the
abscissa is loading rate α. In the computer simulations, the number of neurons is N = 500.
The initial condition is that the states of all neurons and all delay elements are set to be the
stored pattern sequences. The steady state overlaps m∞ are obtained by calculations with a
sufficient number of steps. Eleven simulations were carried out for each combination of loading
rates α and lengths of delay L. Data points • , ◦ , � , � , ∗ indicate the medians of the sixth
largest values for L =1,2,3,5 and 10, respectively, in the eleven trials. Error bars indicate the
third and the ninth largest values in the eleven trials. In each subsequent trial, the loading rate
is increased by adding new patterns.

Figure 7 displays the following results. In the case of L = 1
(

c = 1
L
= 1.0

)

, which is fully con-
nected with no delay elements, the recurrent neural network’s storage capacity αC for sequential
association is 0.269. This agrees with the results of the previous works [29, 30, 31]. As the length
of delay L increases, storage capacity αC increases even though the total number of synapses is
constant. This phenomenon is due to the time lag of synaptic inputs by delays, which reduces
the statistical correlation among synaptic inputs. As a result, variance of the noise component
decreases. This figure shows that theoretical results closely agree with the simulation results.
Therefore, only a theoretical calculation is executed when the length of delay L is large, and the
results of this calculation are shown in Figure 8.
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The properties of L = ∞ in Figure 8 are obtained as follows. The first term of the r.h.s.
of (44) can be written as σ2 = αr from (22). Therefore, we first numerically investigated the
dependence of r on L. Figure 9 shows the results. The straight line in this figure shows a
first-order approximation, which is obtained by using a least squares method, of the relation
between logL and log r at the phase transition point. We can see that r is O(L1.45) by reading
the slope of the line. On the other hand, considering c = 1/L and cl = 1, when L is extremely
large, the second term of the r.h.s. of (44) becomes αL2, that is O(L2). Therefore, only the
second term is effective in the r.h.s. of (44) when L is extremely large, and (44) becomes

σ̃2 → αL2. (48)

Based on these considerations, the properties of L = ∞ in Figure 8 are obtained by ignoring
the first term in the r.h.s. of (44). Figure 8 shows that the steady state overlap asymptotically
approaches that of L = ∞ obtained above as L becomes large.

Now, in the case of L = ∞, the storage capacity can be obtained analytically as follows.
Substituting (46) into (47), we obtain

m = erf

(

mL√
2σ̃

)

. (49)

Equation (49) has nontrivial solutions m 6= 0 within the range where the slope of the r.h.s.
at m = 0 is greater than 1. Here, the slope of the r.h.s. of (49) regarding m can be written as

d

dm
erf

(

mL√
2σ̃

)

=
L

σ̃

√

2

π
exp

(

−m2L2

2σ̃2

)

. (50)

Therefore, we can obtain the critical value of the noise σ̃2
c as

σ̃2
c =

2

π
L2. (51)

From (48) and (51), the storage capacity αC of random pruning at the limit when L ap-
proaches ∞ is obtained as

αC =
2

π
≃ 0.637. (52)

Figure 8 shows that the storage capacity approaches this value asymptotically as L increases.

3.3 Systematic Pruning

Chechik et al.[5] discussed the functional significance of synaptic pruning following overgrowth
on the basis of a correlation-type associative memory model. They pointed out that synapse
efficiency, which is storage capacity per synapse, increases by cutting synapses that are lightly
weighted after correlation learning.

This type of systematic pruning can be expressed by nonlinear function f(·) shown in Figure
10. Synapses in the range of −zth < z < +zth are pruned by f (·). In this case, synaptic
connections are constituted by

J l
ij =

cl
√
αN

N
f
(

T l
ij

)

, (53)

T l
ij =

1√
αN

∑

µ

ξµ+1+l
i ξµj . (54)

Equation (54) is a stochastic variable that obeys normal distribution N(0, 1). Therefore, the
relationship between the connection rate c and zth is given by

c =

∫

{z|f(z)6=0}
Dz = 1− erf

(

zth√
2

)

, (55)
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where Dz stands for 1√
2π

exp
(

− z2

2

)

dz, and the integral is from −∞ to +∞.

Modifying the connection weight J l
ij [3], we obtain

J l
ij =

cl
√
αN

N
f
(

T l
ij

)

=
cl
√
αN

N

(

JT l
ij +

(

f
(

T l
ij

)

− JT l
ij

))

, (56)

where

J =

∫

Dxf ′ (x)

=

∫ ∞

−∞

dx√
2π

exp−x2

2
f ′(x)

=

∫ ∞

−∞

dx√
2π

exp−x2

2
xf(x)

=

∫

Dxxf (x) . (57)

Using these modification, we obtain the total input of the ith neuron at time t is given as

uti =

L−1
∑

l=0

N
∑

j=1

J l
ijx

t−l
j

=

L−1
∑

l=0

N
∑

j=1

cl
√
αN

N

(

JT l
ij +

(

f
(

T l
ij

)

− JT l
ij

))

xt−l
j (58)

=

L−1
∑

l=0

N
∑

j=1

clJ

N

∑

µ

ξµ+1+l
i ξµj x

t−l
j

+

L−1
∑

l=0

N
∑

j=1

cl
√
αN

N

(

f
(

T l
ij

)

− JT l
ij

)

xt−l
j (59)

=

(

J
L−1
∑

l=0

clm
t−l
t−l

)

ξt+1
i

+ J

L−1
∑

l=0

cl
∑

ν 6=t

ξν+1
i mt−l

ν−l

+

L−1
∑

l=0

N
∑

j=1

cl
√
αN

N

(

f
(

T l
ij

)

− JT l
ij

)

xt−l
j . (60)

As in the case of a fully connected network, the first, second and third terms of (60) are
useful signals for recall, cross-talk noise and new noise generated by nonlinear transformation,
respectively. Here, the average of the third term equals 0, and the variance equals [3]

E









L−1
∑

l=0

N
∑

j=1

cl
√
αN

N

(

f
(

T l
ij

)

− JT l
ij

)

xt−l
j





2



= E



α

L−1
∑

l=0

c2l
1

N

∑

j

(

f
(

T l
ij

)

− JT l
ij

)2
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= α

L−1
∑

l=0

c2l

∫

Dx (f(x)− Jx)2

= α

L−1
∑

l=0

c2l

(
∫

Dxf(x)2 − 2J

∫

Dxxf(x) + J2

∫

Dxx2
)

= α
L−1
∑

l=0

c2l

(∫

Dxf(x)2 − 2J2 + J2

)

= α
(

J̃2 − J2
)

L−1
∑

l=0

c2l , (61)

where J̃2 =
∫

Dx (f (x))2. As a result, we can obtain the macrodynamical equations for sys-
tematic pruning as follows.

σ̃2
t = σ2

t + α
(

J̃2 − J2
)

L−1
∑

l=0

c2l , (62)

σ2
t = J2

L−1
∑

l=0

L−1
∑

l′=0

clcl′vt−l,t−l′ , (63)

J̃2 =

∫

Dx (f (x))2 , (64)

J =

∫

Dxxf (x) , (65)

vt−l,t−l′ = αδl,l′

+ Ut−lUt−l′

×
L−1
∑

k=0

L−1
∑

k′=0

ckck′vt−l−k−1,t−l′−k′−1

+ α (cl−l′−1Ut−l′ + cl′−l−1Ut−l) , (66)

Ut =

√

2

π

1

σ̃t−1
exp

(

−
(

st−1
)2

2σ̃2
t−1

)

, (67)

st = J

L−1
∑

l=0

clmt−l, (68)

mt+1 = erf

(

st√
2σ̃t

)

, (69)

where the initial conditions are the same as in the case of a fully connected network. δ is
Kronecker’s delta. Equation (62) means that the variance σ̃2

t after pruning is the sum of the

variance σ2
t of cross-talk noise among patterns and the variance α

(

J̃2 − J2
)

∑L−1
l=0 c2l of new

noise generated by pruning. Using the discrete Fourier transformation, as in the case of full
connections, the macroscopic steady state equations in the case of systematic pruning become

σ̃2 = σ2 + α

(

J̃2

J2
− 1

)

L−1
∑

l=0

c2l , (70)

U =

√

2

π

1

σ̃
exp

(

− s2

2σ̃2

)

, (71)

s = mL, (72)

m = erf

(

s√
2σ̃

)

, (73)
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where σ2 is given by (22).
As for random pruning, the storage capacity αC is investigated under the condition that c×L

is constant. This means that (70)-(73) are solved numerically, and the steady state overlaps m∞
are investigated by using c = 1/L, where cl = 1. Figure 11 shows the results of theoretical
calculations and computer simulations when L = 1, 2, 3, 5 and 10. In this figure, the abscissa is
the loading rate α. In the computer simulations, the number of neurons is N = 500, and the
steady state overlaps m∞ are obtained by calculations with a sufficient number of steps. Eleven
simulations were carried out for each combination of loading rate α and length of delays L. Data
points • , ◦ , � , � , ∗ indicate the medians of the sixth largest values for L =1,2,3,5 and 10,
respectively, in the eleven trials. Error bars indicate the third and the ninth largest values in
the eleven trials. In each trial, the loading rate is increased by adding new patterns.

Figure 11 shows that as the length of delay L increases, storage capacity αC increases, though
the total number of synapses is constant. This figure also shows that theoretical results closely
agree with the simulation results. Therefore, only a theoretical calculation is executed when the
length of delay L is large. Figure 12 shows the results. Figure 13 shows the relationship between
the length of delay L and the storage capacities.

Here, we investigate the dependence of the first and second terms of the r.h.s. of (70) on L
in the same manner as random pruning to obtain the asymptotic storage capacity analytically
when L is extremely large.

The first term of the r.h.s. of (70) can be written as σ2 = αr from (22). Therefore, we first
numerically investigate the dependence of r on L. Figure 14 shows the results. The straight
line in this figure shows a first-order approximation, which is obtained by using a least squares
method, of the relation between logL and log r at the phase transition point. We can see that
r is O(L1.33) by reading the slope of the line.

On the other hand, the dependence of the second term on L can be obtained as follows.
When L is extremely large, that is, when c = 1/L is extremely small and zth is extremely large,
the connection rate c of (55) is as follows.

c =

∫

{z|f(z)6=0}
Dz

= 1− erf

(

zth√
2

)

→
√

2

π
z−1
th exp

(

−z2th
2

)

, zth → ∞. (74)

J and J̃2 of (65) and (64) become

J = 2

∫ ∞

t

Dzz2

=

√

2

π
zth exp

(

−z2th
2

)

+ 1− erf

(

zth√
2

)

→
√

2

π
zth exp

(

−z2th
2

)

, zth → ∞, (75)

J̃2 = 2

∫ ∞

t

Dzz2

= J. (76)

Considering c = 1/L and cl = 1, from (74)C (75) and (76), the second term of (70) can be
transformed as

α

(

J̃2

J2
− 1

)

L−1
∑

l=0

c2l = α

(

1

J
− 1

)

L

13



→ α







1
√

2
π
zth exp

(

− z2
th

2

) − 1






L

→ α

(

1

z2thc
− 1

)

L

→ α
1

z2thc
L

→ α
1

−2c ln c
L

= α
L2

2 lnL
. (77)

Since (77) is O(L2), only the second term is effective in the r.h.s. of (70) when L is extremely
large. Based on these considerations, the storage capacity of systematic pruning can be obtained
as follows. Substituting (72) into (73), we obtain

m = erf

(

mL√
2σ̃

)

. (78)

Equation (78) has nontrivial solutions m 6= 0 within the range where the slope of the r.h.s.
at m = 0 is greater than 1. Here, the slope of the r.h.s. of (78) regarding m can be written as

d

dm
erf

(

mL√
2σ̃

)

=
L

σ̃

√

2

π
exp

(

−m2L2

2σ̃2

)

. (79)

Therefore, we can obtain the critical value of the noise σ̃2
c as

σ̃2
c =

2

π
L2. (80)

From (77) and (80), the storage capacity αC of systematic pruning at the limit when L
approaches ∞ is obtained as

αC =
4

π
lnL. (81)

Figures 13 shows that the storage capacity of large L is parallel with the line of 4
π
lnL when

L is large. This means that the storage capacity approaches 4
π
lnL relatively, and this result

supports the derived theory.
As the length of delay L increases, storage capacity αC increases, even though the total

number of synapses remains constant; the tendency of increase is different from that of random
pruning. Storage capacity is in proportion to the logarithm of the length of delay L, and the
proportion constant is 4

π
. In other words, for systematic pruning, storage capacity diverges with

the increase in the length of delay L. It is amazing that the storage capacity diverges regardless
of whether the total number of synapses is constant.

4 Conclusions

We analyzed a discrete synchronous-type model that adopts correlation learning by using the sta-
tistical neurodynamics and discussed sequential associative memory by recurrent neural networks
with synaptic delay and pruning. First, we explained the Yanai-Kim theory [24], which involves
macrodynamical equations for the dynamics of a network with serial delay elements. Next, con-
sidering the translational symmetry of the explained equations, we explained the macroscopic
steady state equations of the model by using the discrete Fourier transformation [25, 26]. The
storage capacity was analyzed quantitatively. As a result, we showed that the storage capacity
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is in proportion to the length of delay L when the L limit is large and the proportion constant
is 0.195. Furthermore, two types of synaptic prunings were analyzed: random pruning and sys-
tematic pruning. As a result, it became clear that under both pruning conditions, the storage
capacity grows with an increase in delay and a decrease in the connecting rate when the total
number of synapses is constant. Moreover, an interesting fact became clear: the storage capacity
approaches 2/π asymptotically by random pruning. In contrast, the storage capacity diverges
in proportion to the logarithm of the length of delay by systematic pruning, and the propor-
tion constant is 4/π. These results theoretically support the significance of pruning following
overgrowth of synapses in the brain [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and strongly suggest
that the brain prefers to store dynamic attractors such as sequences or limit cycles rather than
equilibrium states.

Appendix A: Derivations of the Macrodynamical Equations of

the Delayed Network

Using (10) and (11), we obtain

zti = zA + zB , (82)

zA =

L−1
∑

l=0

cl
∑

µ6=t

ξµ+1
i

1

N

∑

j

ξµ−l
j x

t−l,(µ−l)
j , (83)

zB =
L−1
∑

l=0

cl
∑

µ6=t

ξµ+1
i Ut−l

L−1
∑

l′=0

cl′m
t−l−l′−1
µ−l−l′−1, (84)

where x
t−l,(µ−l)
j is the variable obtained by removing the influence of ξµ−l

j from xt−l
j . Using

(82),(83) and (84), we obtain

E
[

zti
]

= 0, (85)

... σ2
t = E

[

(

zti
)2
]

(86)

= E
[

z2A + z2B + 2zAzB
]

. (87)

Transforming z2A, z
2
B and zAzB with consideration given to their correlation, we obtain

E
[

z2A
]

= α
L−1
∑

l=0

c2l , (88)

E
[

z2B
]

=
∑

µ6=t

L−1
∑

l=0

L−1
∑

l′=0

L−1
∑

k=0

L−1
∑

k′=0

clcl′ckck′

×Ut−lUt−l′m
t−l−k−1
µ−l−k−1m

t−l′−k′−1
µ−l′−k′−1, (89)

E [2zAzB ] = α

L−1
∑

l=0

L−1
∑

l′=0

clcl′

× (cl−l′−1Ut−l′ + cl′−l−1Ut−l) , (90)

where
vt−l,t−l′ =

∑

µ6=t

mt−l
µ−lm

t−l′

µ−l′ . (91)

Using (87)-(90), we obtain

σ2
t = α

L−1
∑

l=0

c2l
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+

L−1
∑

l=0

L−1
∑

l′=0

L−1
∑

k=0

L−1
∑

k′=0

clcl′ckck′

×Ut−lUt−l′vt−l−k−1,t−l′−k′−1

+ α

L−1
∑

l=0

L−1
∑

l′=0

clcl′ (cl−l′−1Ut−l′ + cl′−l−1Ut−l) . (92)

Using (10) and (86), we obtain

σ2
t =

L−1
∑

l=0

L−1
∑

l′=0

clcl′vt−l,t−l′ . (93)

Comparing (92) and (93) as identical equations regarding clcl′ , we obtain

vt−l,t−l′ = αδl,l′

+ Ut−lUt−l′

×
L−1
∑

k=0

L−1
∑

k′=0

ckck′vt−l−k−1,t−l′−k′−1

+ α (cl−l′−1Ut−l′ + cl′−l−1Ut−l) , (94)

where δ is Kronecker’s delta. Using (13), we obtain

Ut =
1

N

N
∑

i=1

F ′





L−1
∑

l=0

N
∑

j=1

cl
N

×
∑

ν 6=µ−l−1

ξν+1+l
i ξνj x

t−l−1
j





= E
[

F ′
(

ut,(µ)
)]

= E
[

F ′ (ut
)]

=

∫

dz√
2π

e−
z
2

2 ≪ F ′ (ut
)

≫

=
1

σ

∫

dz√
2π

e−
z
2

2 z ≪ F
(

ut
)

≫

=

√

2

π

1

σt−1
exp

(

−
(

st−1
)2

2σ2
t−1

)

, (95)

where ut,(µ) is the variable obtained by removing the influence of ξµ from ut. Here, ≪ · ≫
stands for the average over pattern ξ.

As a result, we can obtain the macrodynamical equations for overlap m, that is, (14)-(18).

Appendix B: Derivations of the Macroscopic Steady State Equa-

tions by Discrete Fourier Transformation

Using the discrete Fourier transformation, we re-derive the general term of v(n), which is ex-
pressed by the recurrence formula in (20) [25, 26]. Applying the discrete Fourier transformation
to (20) and (21), we obtain

V (r) = α+ U2
L−1
∑

i=1−L

(L− |i|)V (r)e−j2π ri

2T+1 + αUD(r), (96)
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D(r) =

T
∑

n=−T

d(n)e−j2π rn

2T+1

=

L
∑

n=1

(

e−j2π rn

2T+1 + ej2π
rn

2T+1

)

, (97)

where V (r) and D(r) are the discrete Fourier transformations of v(n) and d(n), respectively.
Solving (96) and (97) in terms of V (r), we obtain

V (r) =
α
(

1 + U
∑L

n=1

(

e−j2π rn

2T+1 + ej2π
rn

2T+1

))

1− U2
∑L−1

i=1−L(L− |i|)e−j2π ri

2T+1

. (98)

Summations in (98) are calculated as follows.

L
∑

n=1

(

e−j2π rn

2T+1 + ej2π
rn

2T+1

)

=







sin((2L+1) πr

2T+1)
sin( πr

2T+1)
− 1, r 6= 0,

2L, r = 0,
(99)

L−1
∑

i=1−L

e−j2π ri

2T+1 =







sin((2L−1) πr

2T+1)
sin( πr

2T+1)
, r 6= 0,

2L− 1, r = 0.
(100)

When r 6= 0,

L−1
∑

i=1−L

|i|e−j2π ri

2T+1

=
L−1
∑

i=1

ie−j2π ri

2T+1 +
−1
∑

i=1−L

(−i)e−j2π ri

2T+1

= j
2T + 1

2π

∂

∂r

L−1
∑

i=1

(

e−j2π ri

2T+1 − ej2π
ri

2T+1

)

= j
2T + 1

2π

∂

∂r

sin
(

(L− 1) πr
2T+1

)

sin
(

πr
2T+1

)

(

e−jπ rL

2T+1 − ejπ
rL

2T+1

)

=
L cos

(

(L− 1) 2πr
2T+1

)

− (L− 1) cos
(

2Lπr
2T+1

)

− 1

2 sin2
(

πr
2T+1

) . (101)

When r = 0,
L−1
∑

i=1−L

|i|e−j2π ri

2T+1 = L(L− 1). (102)

Substituting (99)-(102) into (98), we obtain

V (r)

=







2α sin( πr

2T+1)((1−U) sin( πr

2T+1)+U sin((2L+1) πr

2T+1))
2 sin2( πr

2T+1)−U2(1−cos( 2Lπr

2T+1))
, r 6= 0,

α(1+2UL)
1−U2L2 , r = 0.

(103)

17



Since the inverse discrete Fourier transformation of (103) equals v (n), we obtain

v(n) = lim
T→∞

1

2T + 1

T
∑

r=−T

V (r)ej2π
rn

2T+1 . (104)

Substituting (104) into (19), we obtain

σ2 = lim
T→∞

1

2T + 1

T
∑

r=−T

V (r)
L−1
∑

n=1−L

(L− |n|) ej2π
rn

2T+1 . (105)

Using (100)-(105) and rewriting r
2T+1 → x , 1

2T+1 → dx, we can express σ2 as a form using
a simple integral like (22). As a result, we can obtain the steady state equations in terms of the
macroscopic variables of the network as (22)-(25).
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Figure Captions

1. Structure of delayed network.

2. Relationship between loading rate α and overlap m (theory).

3. Relationship between loading rate α and overlap m (computer simulation).

4. Relationship between loading rate α and overlap m. These lines are obtained by solving
steady state equations numerically.

5. Relationship between length of delay L and storage capacity αC . This line is obtained by
solving the steady state equations numerically. Storage capacity is 0.195L, with a large L
limit.

6. Representation of delayed synapses by pruning: (a) length of delay is three, and (b) length
of delay is five.

7. Relationship between loading rate α and overlap m when synapses are randomly pruned
(theory(t) and computer simulation(s)).

8. Relationship between loading rate α and overlap m when synapses are randomly pruned
(theory).

9. Relationship between logL and log r when synapses are randomly pruned.

10. Nonlinear function for systematic pruning.

11. Relationship between loading rate α and overlap m when synapses are systematically
pruned (theory(t) and computer simulation(s)).

12. Relationship between loading rate α and overlap m when synapses are systematically
pruned (theory).

13. Relationship between length of delay L and storage capacity αC when synapses are sys-
tematically pruned.

14. Relationship between logL and log σ2 when synapses are systematically pruned.
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Figures

Figure 1: Structure of delayed network.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

O
ve

rl
ap

Loading Rate

L=1
3

10

Figure 2: Relationship between loading rate α and overlap m (theory).
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Figure 3: Relationship between loading rate α and overlap m (computer simulation).
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Figure 4: Relationship between loading rate α and overlap m. These lines are obtained by
solving steady state equations numerically.
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Figure 5: Relationship between length of delay L and storage capacity αC . This line is obtained
by solving the steady state equations numerically. Storage capacity is 0.195L, with a large L
limit.
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Figure 6: Representation of delayed synapses by pruning: (a) length of delay is three, and (b)
length of delay is five.
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Figure 7: Relationship between loading rate α and overlap m when synapses are randomly
pruned (theory(t) and computer simulation(s)).
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Figure 8: Relationship between loading rate α and overlap m when synapses are randomly
pruned (theory).
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Figure 9: Relationship between logL and log r when synapses are randomly pruned.
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Figure 10: Nonlinear function for systematic pruning.
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Figure 11: Relationship between loading rate α and overlap m when synapses are systematically
pruned (theory(t) and computer simulation(s)).
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Figure 12: Relationship between loading rate α and overlap m when synapses are systematically
pruned (theory).
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Figure 13: Relationship between length of delay L and storage capacity αC when synapses are
systematically pruned.
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Figure 14: Relationship between logL and log σ2 when synapses are systematically pruned.
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