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Dynamical Analysis of Neural Oscillators in an
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Abstract—This paper presents a theoretical approach to under-
stand the basic dynamics of a hierarchical and realistic computa-
tional model of the olfactory system proposed by W. J. Freeman.
While the system’s parameter space could be scanned to obtain the
desired dynamical behavior, our approach exploits the hierarchical
organization and focuses on understanding the simplest building
block of this highly connected network. Based on bifurcation anal-
ysis, we obtain analytical solutions of how to control the qualita-
tive behavior of a reduced KII set taking into consideration both
the internal coupling coefficients and the external stimulus. This
also provides useful insights for investigating higher level struc-
tures that are composed of the same basic structure. Experimental
results are presented to verify our theoretical analysis.

Index Terms—Bifurcation, differential equations, nonlinear os-
cillators, olfactory system, stability.

I. INTRODUCTION

AREALISTIC computational model of the olfactory system
proposed by Freeman describes brain function as a spatio-

temporal lattice of groups of neurons (neural assemblies) with
dense interconnectivity [1]. Generally, a th-order system is
defined by

(1)

where and are time constants that define the second-
order dynamics. Each processing element (PE) in (1) models
the independent dynamics of the wave density for the action
dendrites and the pulse density for the parallel action of axons.
Note that there is no auto-feedback in the model. is the
asymmetric nonlinear function (at the output stage) in each PE,
and it describes the wave to pulse transformation. The mathe-
matical model and properties of will be discussed later in
this paper. Freeman’s model is a locally stable and globally un-
stable dynamical system in a very high-dimensional space. In
spite of its complexity, the model is built from a hierarchical
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embedding of simpler and similar structures. Based on the sem-
inal work of Katchalsky [1], four different levels named K0, KI,
KII, and KIII are included in the model, and are defined as fol-
lows [1], [2].
K0 The K0 set is the most basic and simplest building

block in the hierarchy. All higher level structures
are made of interconnected K0 sets. The K0 in-
cludes three stages, as illustrated in Fig. 1. Spatial
inputs to a K0 set are weighted and summed. And
the resulting signal is passed through a linear time-
invariant system with second-order dynamics. The
output of the linear system is shaped by the asym-
metric nonlinear function . Two categories of
K0 sets (excitatory and inhibitory) are defined by the
sign of the nonlinear function. There is no coupling
among the K0 sets when forming a K0 network.

KI K0 sets with common sign (either excitatory or in-
hibitory) are connected through forward lateral feed-
back to construct a KI network. No auto-feedback is
allowed in the network.

KII A KII set in the model is a coupled oscillator that
consists of two KI sets (or four K0 sets). Each set has
fixed coupling coefficients obtained from biological
experiments. A KII set is the basic computational el-
ement in Freeman’s olfactory system. The measured
output from any of the nonlinear functions has two
stable states that are controlled by the external stim-
ulus. The resting state occurs when external input
is in the zero state while an oscillation occurs when
the external input is present. Therefore a KII set is
an oscillator controlled by the input. The KII net-
work is built from KII sets interconnected with both
the excitatory cells (denoted by M1) and inhibitory
cells (G1). This interconnected structure represents
a key stage of learning and memory in the olfac-
tory system. Input patterns through M1 cells are
mapped into spatially distributed outputs. Excitatory
and inhibitory interconnections enable cooperative
and competitive behaviors, respectively, in this net-
work. The KII network functions as an encoder of
input signals or as an auto-associative memory [1],
[2].

KIII The KIII network embodies the computational
model of the olfactory system. It has different layers
representing anatomical regions of a mammalian
brain. In a KIII network, basic KII sets and a KII
network are tightly coupled through dispersive
connections (mimicking the different lengths and
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thicknesses of nerve bundles). Since the intrinsic
oscillating frequencies of each one of the KII sets
in different layers are incommensurate among
themselves, this network of coupled oscillators will
present chaotic behavior.

Freeman’s model quantifies the function of one of the oldest
sensory cortices, where there is an established causal relation
between stimulus and response. It also presents the function
as an association between stimulus and stored information, in
line with the auto-content addressable memory (CAM) frame-
work studied in artificial neural networks [3]. Freeman utilizes
the language of dynamics to model neural assemblies, which
seems a natural solution due to the known spatio-temporal char-
acteristics of brain function [4]. Although we believe that the
full dynamical description of the KIII network is beyond our
present analytical ability, one may still be able to understand
the dynamics of the KII network from first principles. One of
the advantages of a dynamical framework to quantify meso-
scopic interactions is related to the possibility of creating analog
VLSI circuits that implement similar dynamics [2], [5]. In this
respect, dynamics are also independent of the hardware, mim-
icking the well known hardware independence characteristics of
formal systems. However, the dynamical approach to informa-
tion processing is much less developed when compared with the
statistical reasoning used in pattern recognition. Only recently
were nonlinear dynamics used to describe computation [6] and a
nonlinear dynamical theory of information processing is still an
illusory goal. Hence, we are at the same time developing the sci-
ence and understanding the tool capabilities, which is far from
the ideal situation. The challenge is particularly important in the
case of Freeman’s model, where the distributed system is locally
stable but globally unstable, creating nonconvergent (eventually
chaotic) dynamics. Nonconvergent dynamics are very different
from the simple dynamical systems with point attractors studied
by Hopfield [7], because they have positive Lyapunov exponents
[8]. Freeman’s computational model of olfactory system has al-
ready been applied to several information processing applica-
tion [2], [5], [9], [10]. Ultimately, we plan to use Freeman’s
model as a signal to symbol translator, quantify its performance
and implement them in analog VLSI circuits for low power, real
time processing in intelligent sensory processing applications.

To accomplish the tasks mentioned above. It is of great
interest to understand the dynamical behavior of this system,
starting from the most basic elements. For example, in hardware
designs, variations in design processes and fabrication as well
as noise may degrade the performance of the system. We want
to quantify the sensitivity of the key parameters in the model
and make sure that noise and errors could not significantly
change the dynamical system behavior. From the information
processing point of view, we want to make sure each PE re-
mains in the appropriate dynamic regime and does not generate
complicated behavior. On the other hand, evaluating specific
properties of the network could also help us choose the best way
to use it. Bifurcation analysis of several oscillatory neural net-
works constructed from KI set are discussed in [11]. Numerical
approaches are used to obtain the bifurcation diagram of those
networks. In this paper, we will perform bifurcation analysis in
a theoretical way and focus on the dynamical behaviors of the

Fig. 1. Diagram of K0 sets. (a) An excitatory K0 set. (b) An inhibitory K0 set.

reduced KII (RKII) set, which is a simplified version of the KII
set. Section II-A gives a brief review of the techniques needed
to analyze the system. The rest of Section II presents a RKII set
as a nonlinear dynamical system and investigates its qualitative
dynamic behavior. Conditions on control parameters such as
the coupling coefficients and external stimulus are discussed.
Section III gives the experimental results that verify the theo-
retical analysis given in Section II. The main conclusions are
summarized in Section IV.

II. BIFURCATION ANALYSIS OF RKII SETS IN

THE OLFACTORY MODEL

A. Nonlinear Dynamic Systems Analysis

A linear time-invariant system is defined as

(2)

where . is a constant matrix.
The qualitative behavior of (2) is determined by the eigen-

values of . The solution may have the fol-
lowing possible dynamical behaviors:

1) The system has a fixed point solution if the real parts of
all the eigenvalues of are negative;
2) The system is unstable if at least one of the eigenvalues
of has positive real part.
3) In the case that all eigenvalues of have a real part that
is less than or equal to zero, if all eigenvectors corresponding
to the eigenvalues with zero real part are independent, the
system is stable, otherwise it is unstable.
We see that the analysis of a linear system is rather simple

and straightforward since all dynamics are clearly determined
by the eigenvalues of . For a nonlinear system, more compli-
cated behaviors may exist. In most cases, a nonlinear system is
linearized around its equilibrium so that an explicit solution and
qualitative analysis could be achieved around the neighborhood
of the equilibrium points [12]. The conditions that guarantee a
qualitatively similar phase portrait between a nonlinear system
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and its linearized version is described by the Hartman-Grobman
Theorem [13]. According to the theorem, a nonlinear system

(3)

is locally topologically equivalent (preserving the parameteriza-
tion) to its linearization as defined in (2) (that is, there is a home-
omorphism in a neighborhood of the equilibrium that maps or-
bits of the nonlinear to the linear flows.), if the linearization

has no purely imaginary eigenvalues. In this case, this
nonlinear system is a locally hyperbolic dynamical system.

Thus, the stability analysis of a nonlinear system could be
greatly simplified while preserving qualitative properties. Of
course, this happens when the system is not at a bifurcation
point [13]. Bifurcation occurs when a system is structurally dif-
ferent with respect to the variation of its parameter set. A param-
eter-dependent system may present different behavior in phase
space when the parameter passes through a certain point called
a bifurcation point [13]. While bifurcation analysis is important
to understand complex systems, in this paper, we will use it to
guarantee that the system behavior remains basically unchanged
in the neighborhood of the operating point. For a simple 2-di-
mensional planar system, the Poincaré-Bendixon theorem gives
more information about the exact system state [12], [14], [15].

Consider a second-order autonomous dynamical system in
the following form:

(4)

Let be a closed and bounded region in containing a
finite number of equilibrium points of (4). A solution of (4) re-
mains entirely in . Then, based on the Poincaré-Bendixon the-
orem, the solution has three possible behaviors: 1) it approaches
an equilibrium point; 2) it approaches a closed path; 3) the solu-
tion is a union of saddles and their connections. Note that the
Poincaré-Bendixon theorem deals only with a 2-dimensional
system and it does not generalize to higher order systems. In
the following sections, we will utilize these concepts to ana-
lyze the qualitative behavior of a RKII set. From experimental
observations, we will propose a hypothesis that uses the same
concept as the Poincaré–Bendixon theorem but can be applied
to our fourth-order system.

B. Dynamics of a RKII Set

A RKII set is a simplified version of the KII set [5]. Instead
of having four PEs (two excitatory K0 sets and two inhibitory
K0 sets) in the set, it only has one excitatory (mitral) and one
inhibitory (granule) PE (Fig. 2). The M and G PEs are cou-
pled by two coupling coefficients and . is the
external stimulus. In this paper, we will only consider a time-in-
variant input. That is, will only have either off or on state
that represents zero or positive input, respectively. In a KII net-
work with large number of channels, the KII set can be re-
placed by the RKII set [5]. Because of its simplicity, we start
our analysis from the RKII set and hope to understand higher
level structures by investigating the dynamical behavior of this

Fig. 2. RKII set consists of one mitral PE and one granule PE that are coupled
through K (> 0) and K (< 0).

Fig. 3. Plot of the nonlinear function Q(x) defined by (6) whenQ = 5.

basic building block. A RKII set is described by the following
system of second-order ordinary differential equations (ODEs):

(5)

and are time constants of the second-order dynamics.
They are given experimentally as and [1].

is the nonlinear function that models the spatio-temporal
integration of spikes into mesoscopic waves measured in the
cortex [1] and is defined by

(6a)

else (6b)

where . is an adjustable
parameter that controls the ratio between positive and negative
saturation values of (Fig. 3). In this paper, we only use
(6a) for all . The discontinuity should not change the results
we obtain here. Simulation results in Section III will verify all
the analysis.

In simulations, we observe as predicted that a RKII set only
has two stable behaviors: a fixed point or a limit cycle. In the
following we will give the analytical solution of how the internal
coupling coefficients determine the dynamical behavior of (5).
This is achieved by computing the real part of the eigenvalues
of the system’s Jacobian matrix. Their signs indicate the state
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of the RKII set. The analysis helps avoid bifurcation regions in
the parameter space and guarantee simple dynamics.

C. Bifurcation Analysis of a RKII Set

Using proper substitutions, we could rewrite (5) as

(7)
As stated in the Hartman–Grobman theorem, a nonlinear

system is topologically equivalent to its linearization around
equilibrium if the linearization has no purely imaginary eigen-
values. In this case, if we set and so that (7) is a locally
hyperbolic system, the dynamical behavior then becomes a
stability analysis at equilibrium. In our case, the equilibrium will
be either stable or unstable based on the sign of the real part of
eigenvalues computed from the Jacobian matrix. With a stable
equilibrium, we expect the system to converge to a fixed point
from any initial condition. If the equilibrium is unstable, we know
that any deviation from it will diverge. However, the system is
bounded thanks to the nonlinear function . According to the
Poincaré-Bendixon theorem, if the system is 2-dimensional, the
solution in this case should be a limit cycle. Although without
proof, here we also expect our system to approach a limit cycle
and give the following hypothesis:

Hypothesis: Assume that a RKII set is not at a bifurcation
point, then its dynamical behavior is determined by the qualita-
tive behavior at its equilibrium points. More specifically, if the
equilibrium point is stable, the solution of a RKII set will ap-
proach a fixed point; if the equilibrium is unstable, the solution
of a RKII set will approach a stable limit cycle.

The equilibrium can not be solved analytically, but a numer-
ical solution and properties of the equilibrium will be pursued
below. First, we will see that this system has a unique equilib-
rium. Let us assume and are the state variables of (7) at
equilibrium. (8) gives the equations that determine the equilib-
rium. As shown in Fig. 4, the equilibrium should be the inter-
sections of the two nullclines defined as

(8)

The following gives some of the properties of the equilibrium
of (7):

Property 1: Assume that , and ,
there is one and only one equilibrium in a RKII set defined by

Fig. 4. Equilibrium determined by intersection of nullclines.

(7). The equilibrium is always in the first quadrant, i.e.,
and .

Proof: By determining the intersection between the two
nullclines in Fig. 4, the proof is trivial.

Property 2: With a fixed input :

a is a decreasing function with respect to both and
;

b is an increasing function with respect to and a
decreasing function with respect to ;

Proof: From property 1, and , so we have
and . Also,

. Computing the first-order derivatives from (8), the following
are easily proven:

(9)

A unique equilibrium is a very good property because the
system can not have different attractors at the same time. To de-
termine the stability and dynamical behavior, we will investigate
the stability of a linearized system of (7) around its equilibrium.
The Jacobian matrix of (7) is (see first equation at the bottom
of the page) where and are the fixed point solutions that
are determined by , and . is the derivative of

.
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To calculate the eigenvalues, we have (see second equation at
the bottom of the page).

Thus, we obtain

Let denote the term
related to the equilibrium (thus, also related to the coupling co-
efficients). We have

(10)
By solving (10), we obtain the eigenvalues as (see (11) at the

bottom of the page).
Let

(12)

It is clear that and . Because
determines the sign of , we have the following sufficient
and necessary conditions for the two equilibrium states that we
are interested in:

1) A RKII set (7) has a unique stable equilibrium iff

2) A RKII set (7) has a unique unstable equilibrium iff

When , the system is at a bifurcation point. This
is the operating point we want to avoid for the purpose of con-
trolling the behavior of a RKII set.

Let and
. Note that

(13)

By solving , we obtain that the bifurcation
occurs when

(14)

Under a fixed external input, (14) sets the boundary of stable
fixed point solution and limit cycle with respect to the coupling
coefficients. Generally, the right side of (14) cannot be explicitly
solved. However, the boundary is still easy to find, because only
the equilibrium needs to be solved instead of scanning the whole
parameter space. In the case of zero input (stable fixed point
state), equals to 1. Time constants and
are both determined, so we have an explicit upper bound for

(a hyperbolic curve in the first quadrant).
In general, with a fixed external input, deter-

mines the dynamical behavior of a RKII set by

when (15a)

when (15b)

Theorem 1: The two sufficient and necessary conditions on
the coupling coefficients to control the dynamics (i.e., fixed
point solution with zero input or limit cycle with positive input)
of the system defined by (7) are as follows:

Condition
1) A RKII set stays in an equilibrium state when the input

is off (i.e., ). We require

Condition
2) A RKII set oscillates when the input is on (i.e.,

). We require

Proof: Previous discussions on stability analysis of (7)
serve as proofs.

Note that the right side of (15b) is also a function of
and , so the condition is actually nonlinearly dependent on

.

(11)



1058 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEPTEMBER 2004

Fig. 5. Derivative of Q(x) when Q = 5.

Condition 2 also sets restrictions on the value of in .
in (14) is the derivative of and is defined by

(16)
else (17)

where . Fig. 5 shows a
plot of . and has a maximum value of

when .
To satisfy condition 2, must be greater than 1 for some

. Solving the maximum values, we have . This is
in accordance with the requirement in biological models that
asymmetry of is a necessary source of instability in the
neural networks [2].

D. Determining the Right Coupling Coefficients and

Here we provide the specific procedures to choose the right
and that satisfy both (15a) and (15b).

1) As in the case when , the
boundary of and is well defined as

(18)

2) The second case is more complicated because (15b) is
nonlinearly related to and . Although we could not
calculate an analytical solution of the region where a valid

and exist, we will show how to determine an ap-
proximate region. Again, the equilibrium is determined by

where and are the fixed point solutions.

Solving the above equations and substituting with
, the boundary of Condition 2 (i.e.,

) could also be defined as

(19)

where and are also functions of and
. It is hard to find an explicit solution for the lower bound

of the desired and , especially in the form of
. However, we can still find ways to determine a subset

of the desired regions. The following properties obtained from
(19) guide us in finding the appropriate coupling coefficients.

Property 3: Given and , if

then

for all .
Proof: has similar shape as
, So it has a lower bound of 1 when decreases.

Property 4: Suppose that and is a set of values
that satisfy both conditions. If we fix the value of
and increase until , then

is
automatically satisfied

Proof: At the point where
, we have . Increasing

, both and are decreased (Properties 1). According to
Properties 3, is also true when
is increased to . Thus

is automatically satisfied.
Based on the above properties and because (19) is a contin-

uous function, we can start from ,
then fix the value of , decrease the value of slightly,
and apply a positive external input to satisfy both Condition 1
and Condition 2. The first term in (19) will be exponentially in-
creasing while the other two terms will be linearly decreasing
with respect to an increase of and . If we keep decreasing

, two cases can possibly occur. drops until
Condition 2 is not satisfied. Or, it will reach another bifurca-
tion point before that. Similarly, starting from

and increasing only the
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Fig. 6. Temporal development of M-PE and G-PE: fixed point state. External input P = 0. Product of coupling coefficients jK �K j = 5:5 whileK = 1
and jK j = 5:5. Starting from initial conditions m (t ) = 0:1 and g (t ) = 0:1, the RKII set converges to a stable fixed point at (0,0). (a) Temporal
development of M-PE and G-PE. (b)Phase plot.

value of will also provide a range of valid values. How-
ever, there is no guarantee that these two areas overlap. Never-
theless, experiments show that for reasonable and normally used
parameters (such as the and given previously, and ),
we can use the above procedures as a rule of thumb to easily
determine in which direction to change the invalid values and
reach the desired ones.

E. Dynamics Controlled by an External Input

The state of a RKII set is controlled by an external stimulus
. Here, is a time-invariant input with two states: off and on.

Off state is guaranteed by Condition 1 to be stable.
However, not every positive value (on) could induce the oscil-
latory state in a RKII set. We will see in the following that
creates oscillatory behavior only in a bounded region.

Property 5: In the system defined by (7), the fixed point so-
lutions and are both monotonically increasing functions
with respect to the external input .

Proof: The first-order derivatives of and with re-
spect to are

(20)

Recall that and . So both derivatives in
(20) are positive. and are both monotonically increasing
functions with respect to the external input .

Theorem 2: Given a set of fixed coupling coefficients
and , the values of external input that enable oscillatory
state in a RKII set only exist in a bounded region.

Proof: According to Condition 2 and the properties of
, we have

Thus, both and are bounded. According to Property 5,
must be bounded.

III. EXPERIMENTAL RESULTS

A. Control of RKII Dynamics by the Coupling Coefficients

We will give two examples in which the external input is fixed
to either zero or a positive value. In the case of zero input, an
exact boundary is shown.

1) When , (15a) gives a fixed bifurcation boundary
that divides the space into areas of oscillation and fixed point
solutions. As given in [1], and . So we
have

a) : A RKII set is stable and has a
fixed point solution of (0,0);

b) : A RKII set oscillates.
Note that in this case, the actual values of and do
not change the qualitative behavior as long as
is unchanged. In the examples, is fixed to one and
will be changed to different values of . In Fig. 6,
when and the output goes to a
fixed point with a very long transient time. When we increase

to 5.6, the output presents an oscillatory state (Fig. 7).
2) In the second example, we set the input to . As
discussed in the previous section, there is no explicit expres-
sion of a lower bound in but once we determine
one set of valid values, all other values with a larger
are all possible choices to keep the system oscillating with a
positive external input. Again, we will set to 1. Fig. 8
shows the transient output of M-PE and G-PE with a value
of . Apparently, the coupling strength is not large
enough to produce an oscillating system. The system has a
equilibrium at (0.1776, 0.1906) and

Trying another , we have an oscillatory state, as
shown in Fig. 9. In this case, the equilibrium with decreased
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Fig. 7. Temporal development of M-PE and G-PE: oscillatory state. External input P = 0. Product of coupling coefficients jK � K j = 5:6 while
K = 1 and jK j = 5:6. Starting from initial conditions m (t ) = 0:1 and g (t ) = 0:1, the RKII set converges to a stable limit cycle. (a) Temporal
development of M-PE and G-PE. (b) Phase plot.

Fig. 8. Temporal development of M-PE and G-PE: fixed point state. External input P = 1. Product of coupling coefficients jK � K j = 4 while
K = 1 and jK j = 4. Starting from initial conditions m (t ) = 0:1 and g (t ) = 0:1, the RKII set converges to a stable fixed point at (0,0). (a)
Temporal development of M-PE and G-PE. (b)Phase plot.

values of and is at (0.1502,0.1595) and condition 2 is
satisfied

After scanning different value of , we obtained an ap-
proximate minimum value 4.237 as the lower bound. So, in
this case, and are
possible solutions to achieve the desired dynamical behavior
in a RKII set. Note that, with a relative small , the am-
plitude of the oscillation will be very small and the transient
time to reach a stable limit cycle is rather large. So, normally,
a large enough is desired.

B. Controlling a RKII Set by the External Input

To show that a valid stimulus to the system only exists in a
bounded region of , we fix and and scan
different values of . Approximately, with this set of coupling

coefficients, must be in the region (0.42, 26.06) to effectively
make the RKII set oscillating. Fig. 10 shows the transient signal
of the system with two different values: 0.35 and 26.1. We see
that, even in the positive region, should neither be too small
nor too large to satisfy condition 2

when

when

C. Parameter Space

We scanned the space of and to provide a sense
of the shape of the boundaries (Fig. 11). The result is under the
conditions and . We see that in the scanned
ranges, the lower bound follows the properties we discussed in
Section II-D. If an arbitrarily determined c oupling coefficient
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Fig. 9. Temporal development of M-PE and G-PE: oscillatory state. External input P = 1. Product of coupling coefficients jK �K j = 5 while K = 1
and jK j = 5. With stronger coupling, starting from initial conditions m (t ) = 0:1 and g (t ) = 0:1, the RKII set oscillates and converges to a stable limit
cycle under a positive external input. (a) Temporal development of M-PE and G-PE. (b) Phase plot.

Fig. 10. Temporal development of M-PE and G-PE: fixed point state. Product of coupling coefficients jK � K j = 5 while K = 1 and jK j = 5.
Starting from initial conditionsm (t ) = 0:1 and g (t ) = 0:1, the RKII set converges to a stable fixed point even with positive inputs. (a) Temporal development
of M-PE and G-PE. External input P = 0:35. (b) Temporal development of M-PE and G-PE. External input P = 26:1.

can not make the RKII set controllable as expected, we just need
to increase the value of , while keeping unchanged.

IV. CONCLUSION

We presented a dynamical analysis of a RKII set behavior.
The main purpose is to find the desired regions in the param-
eter space of the coupling coefficients and so that
the RKII set is totally controllable, that is, it displays the de-
sired behavior of collapsing to a fixed point with no input and
oscillating when driven by a positive input. In the first case,
the product of the two coupling coefficients determines whether
the stability conditions are satisfied. In the second case, there is
no analytical solution for the conditions on the coupling coeffi-
cients. However, we provided a systematic way to easily locate
the appropriate values of and . The effect of the am-
plitude of time-invariant input on the dynamics of the system
is also discussed. Results show that the input should be limited
to a bounded region for robust control of the RKII set. Fig. 11. Scanned parameter space of jK � K j.
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The analysis contained in this paper already leads us to se-
lect appropriate parameters in the design of analog VLSI com-
ponents to implement the olfactory cortex dynamics. Here the
problem is that the designed parameters suffer variations due
to fabrication, so the goal is to select them at values that have
the largest tolerance. This analysis is also helpful to continue
the goal of understanding higher lever structures (KII and KIII
networks) that form the computational model of the olfactory
system. The specified system properties can also help us deter-
mine where and how to utilize the system for various real time
applications.
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