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ABSTRACT 

A decentralized adaptive output feedback control design 
is proposed for large-scale interconnected systems. It is 
assumed that all the controllers share prior information 
about the system reference models. A linearly parameterized 
neural network is introduced for each subsystem to partially 
cancel the effect of the interconnections on tracking per- 
formapce. Boundedness of error signals is shown through 
Lyapunov's direct method. 

I. INTRODUCTION 

With the advent of complex engineering systems, inter- 
est in design of decentralized controllers has especially 
increased. The problem can be briefly formulated as a 
control design for a system composed of several dynam- 
ica//y interconnected subsystems, such that the output of 
each subsystem has to track a prescpecified reference tra- 
jectory, while no communication is allowed between the 
controllers. The problem was first introduced in [ I ]  for 
weakly interconnected subsystems having regulated outputs 
with relative degree 1 or 2. In [2] a framework for model 
reference adaptive control has been developed under re- 
shictive assumptions, like positive definiteness of an M- 
matrix involving unknown constants, relative degrees of 
outputs being one or two, and matched uncertainties. These 
conditions were further relaxed in [3]-[IO]. A detailed 
review of the cited literature one can find in [ 1 I]. 

Here we formulate and solve the problem of decen- 
tralized adaptive output feedback control for a class of 
nonlinear subsystems with known relative degrees, subject 
to unknown interconnections with known upper bound. 
We depart from attempting to obtain global results, and 
restrict the synthesis approach to a domain over which the 
interconnections and nonlinearities can be approximated by 
a linearly parameterized neural network. Similar attempts 

Research ofthe first author is supported in part by AFOSR under Grant 
F49620-03-1-0443, and MURl subeontract F49620-03-1-0401. Research 
of third and fourth authors is sponsored in pan by AFOSR under Grant 
F4960-01-1-0024. 

Naira Hovakimyan is an Associate Professor of Aerospace & Ocean 
Engineering, Virginia Polytechnic Institute & Sfate University, Blacksburg, 
VA 24061-0203. e-mail: nhovakim@vt.edu, Senior Member IEEE, Corrs- 
sponding author 

Eugene Levreeky is an Associate Technical Fellow of The Boeing 
Company. Phantom Works, Huntington Beach, CA 92647-2099, Associate 
Fellow, AIAA 

Bong-Jun Yang is a postdoctoral fellow of the School of Aerospace 
Engineering, Georgia Tech, Atlanta, GA 30332-0150 

Anthony Cake  is a Professor of h e  School of Aerospace Engineering, 
Georgia Tech, Atlanta, GA 30332-0150 

of incorporating neural networks into decenaalized adaptive 
control have have been reported in [12], [I31 for design of 
state feedback controllers. Following [14]-[16], we assume 
that the desired trajectories are known to all the controllers, 
i.e. the controllers share prior information about their goals, 
and we develop an adaptive output feedback synthesis 
approach that achieves ultimate boundedness of tracking 
errors. As in [14], [15], we will say that the controllers 
are engaged in implicit cooperation. While most of the 
existing results in decentralized control literature rely on 
the definition of a robust controller for dominating the in- 
terconnections, we show through Lyapunov's direct method 
that a linearly parameterized, neural network, operating over 
reference model states, can partial/y cancel the intercon- 
nection effects. Ultimate boundedness of error signals is 
shown using Lyapunov's direct method. This paper should 
be viewed as the extension of adaptive output feedback 
control approach developed in [17] for centralized control 
to a decentralized setup, using the viewpoint of [141, [I61 
for definition of implicit cooperation. 

The paper is organized as follows. In Section I1 we 
state the problem formulation and assumptions about the 
subsystem dynamics. In Section 111 we present the approach 
and defme the error dynamics. In Section IV, we define the 
adaptive controller for each subsystem and derive associated 
bounds. Section V has a proof on ultimate boundedness 
of error signals of the large-scale system. In Section 
VI, we illustrate the theoretical results on non-minimum 
phase system like three inverted pendulums. Throughout the 
manuscript bold symbols are used for column vectors, small 
letters for scalars, capital letters for matrices, 1 I . I I denotes 
2-norm unless otherwise noted. 

11. SYSTEM DESCRIPTION AND PROBLEM 
FORMULATION 

Let the large-scale system be composed of m stabilizable 
nonlinear single-input single-output (SISO) subsystems, 
represented in the following normal form: 

x i  = Aiz;+B;z;+b;[u;+f;(zi ,zi ,  ..., z,,~,)] 
i; = c;z; + D;z; + g;(z1,z1,. . . ,I,, zm)  (1) 
y, = c T z . i = l ,  I I )  . . . ,  m, 

where [zT %TIT E Rr'f+(n'-rt) is the state vector of the re- 
alization of the ith subsystem in normal form, ri represent- 
ing the relative degree, U ;  E R and yi E R are the control 
and measurement of the ifh subsystem, fi : R"'+..'+"- + 

R , g, : R"l+...+"- -+ R"'-" are sufficiently smooth 
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unknown functions, representing the modeling errors and 
interconnection effects, while Ai, Bi, bi,  ci are matrices and 
vectors corresponding to the normal realization: 

Ai = 

Bi = 

and bi = [ 0 . . .  bi IT, ci = [ 1 ... 0 IT. 

are bounded for all i = 1,. . . , m: 
Assumption 2.1; The functions g i ( q ,  % I , .  . . ,z,, z,,,) 

3=1  
The objective is to synthesize decentralized adaptive output 
feedback control laws ui, such that yj(t) tracks a smooth 
bounded reference trajectory yli ( t )  with bounded errors 
for all i = 1 , .  . . , m, under the assumption that the iih 
controller knows the desired states of all the subsystems j = 
1, . . . , m, while having access only to its own measurement 

As in [14]-1161, we introduce the following assumption. 
Assumption 2.2: The signals yi,(t) are assumed to be 

generated by the following stable linear closed-loop ref- 
erence models 

Yi(t). 

€ i t  = &€ti + briYc,, Y[, = (3) 

consisting of an open loop system 

jCii = Aixii + Bizti + biuli 
i i i  = Cizii + Di2ii 
Yl< = c ix i i ,  i = l . . .  , I  m (4) 

T 

and a stabilizing dynamic compensator: 

x,< = A c i z e i  + bci (yci - Y(,) 
ut, = c:zci + dCi (y, - yr.) , i = 1,. . , , m , ( 5 )  

where 

Ai - bid,,.' Bj bjcz 
Ai - = [ c; Di 0 ] (6) 

-bCi cT 0 Am 

. .  . ~. 
is a bounded"input of interest to track. The matrices 
A;,B, ,  bi,c;  are assumed to correspond to the normal 
realization, as defined in (2), so that dimxi; = dimz;, 
and d i m q  = dimz;. Notice that this choice of the open 
loop system in (4) implies that the relative degree of 
the iih open-loop reference model equals that of the i t h  

open-loop subsystem. The following bounds are assumed 
to be known 

I I [  z:: %:: ]Til < A ,  i =  1 , " '  , m  (7) 
Remark 2.1: In [14], this problem formulation has been 

addressed for linear subsystems, and, by a proper choice of 
robustifying signal, it has been shown that global asymptotic 
tracking can be achieved if the robustifymg gain satisfies 
a lower bound, depending upon the number of subsystems 
and the apriori known bound on the interconnection effects. 
In [15], these results have been extended to nonlinear 
interconnections, modeled by known nonlinear functions. 
Moreover, output feedback has been formulated and solved 
for the case of subsystems having regulated outputs with 
relative degree 1. Our approach is different in two perspec- 
tives: i) we formulate the problem in output feedback for 
arbitrary relative degree by extending the results of [I71 
for centralized control, ii) we use an adaptive signal for 
overcoming the effect of interconnections on the tracking 
performance. On the other hand it should be understood 
that, due to results in [IS], one cannot expect global results 
while using dynamic output feedback compensators with 
the class of nonlinear systems presented here. 

111. CONTROLLER DESIGN, ERROR DYNAMICS 
The control design for each of the subsystems will be 

based on the logic of combining a linear controller, that 
stabilizes the nominal linear model in the absence of inter- 
connections, with a neural network 0 that approximately 
cancels the interconnection effects in the controllable range. 
Towards this end, introduce the following control signal 
U ,  = uCi - U&,, where uCi is the output of the following 
dynamic compensator 

ilci = &qci + bc, (yci - Y;) 
T 

= ~ . , q ~ , + d ~ ~ ( y ~ , - y i ) ,  i = L . . . , m ,  (8) 

where q,, E R"ci, A,,, bCi, cc i ,  dc, are introduced in (5 ) ,  
and the adaptive signal 'zL.di will be defined later. This 
results in the following closed-loop subsystem dynamics: 

k;  = Ai€, + b,y,, - bi(Uad; - f;) + B i  (9) 
- 

yi = E T € ; ,  < = I  , ... , ,  m (10) 
where C i  = [zT zT of]', 6i = [bT 0 0IT, 8, = 
[0 gT OIT. Following [15], define the error vector Ei = 

- t i ,  and write the tracking error dynamics for the i th 
subsystem: 

hi = &E; + 6 i ( U a d i  - f;) - e;, vi = (?iEi, (11) 

where 
feedback. 

= [ ET I 1' separates the signals available for 

IV. NEURAL NETWORK APPROXIMATION OF 
NONLINEARITIES AND ADAPTIVE CONTROL 

Following [19], given arbitrary E* > 0 and a continuous 
function f(z) : W" + W", defined on a compact set 
x E 'D c R", there exists a set of bounded constant 
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weights W ,  and a set of basis functions @(E), such that 
the following representation holds Vz E D: f(z) = 
WT@(z)  + E(.), ~ ~ ~ ( z ) ~ ~  < E * ,  Thus, one can model the 
interconnections 

f;(zl,.I>..' , z m . z m )  = WT@i(Y)+EdY) (12)  
- using the following input vector Y - 

[zT zT ... zf zf lT E 2, c W"""'+"m and 
a vector of the radial hasis functions &(Y) = 
[@i,(Y) . . '  @;JY)IT, where N; is the number 
of basis functions to he used by the ith subsystem, 
@i,(Y) = e-lly-u.,* 1I2/2Oi, , Y;ck is the vector of 
centers of the basis functions used by the i th subsystem, 
having the same dimension as Y ,  u ; ~  specifies the 
width of the kth basis function in the i th subsystem, 
and lei1 < E:, IIW;/l _< W:. Since our interest is in 
decentralized design, the states of other subsystems are 
not available to individual controllers, therefore the input 
vector Y cannot be used in designing adaptive elements. 
Based on the assumption that the controllers share prior 
information about their reference models, the adaptive 
control signal for the ith subsystem can be designed 
following the same logic as in [15] ,  

T 
?Lad< = W ;  $;(yl) (13) 

where the vector Y I  is defined as Y I  = 
[zf zf . . . zT, ZL]' having the states of all the 
subsystems replaced by their corresponding reference states 
when compared to Y . Notice that due to boundedness of 
reference model states there exists a set D1 in the extended 
space such that Y I  E D1. The adaptive laws for W ;  are 
similar to those in [20]: 

W ;  = -F;[2$;(Yl)E;P;b< + k;W;] (14) 

in which P, is the solution of the Lyapunov equation 
ATP; + P;A; = -&; for some Q; > 0, and F;, kj > 0 
are adaptation gains, while E; propagates according to the 
following dynamics: 

- "  - "  

E; = A;E; + K; (Si - e ; ) ,  = C;E; ,  (15) 

where K; is a gain matrix, and should be chosen such that 
Ai - K;C; is asymptotically stable, while i = 1,.  . , , m. 
Let .Ai = A; - i = 1,. . . ,m. 
Then 

E; = A,E, + bi(uad, - f,) - @<, i = 1 , . . . ,m (16) 

We immediately note that for arbitrary positive definite 
&i >-O there exists a unique solution p; = py  > 0 such 
that ATFi + A A ,  = -0;. The error dynamics in (1 1) can 
be expressed as: 

6; = E; - E<, 

- _  

Through several algebraic manipulations and, using the 
mean value theorem, one can obtain 

T 
u.di - f; = W i  @;(Yo + WT@:(Y*)Y - (18 )  

where Y = [Zy 2: . . .  5; .5ZIT is comprised of the 
tracking errors of all the subsystems (Z; = zli - z;, 2; = 
zli - z;), @l(Y') is the bounded derivative of the basis 
function in an intermediate point Y' = Y1 + (1 - A)Y, 
0 < X < 1, and W, e W ;  - W ;  is the parameter error 
vector. From the definition of Ej and Y it follows that 

3-1 

V. STABILITY ANALYSIS 
In this section we show through Lyapunov's 

direct method that the error signals E;,&,  W;, 
i = 1,. . '  ,m, are ultimately hounded. To 
this end, introduce the composite error vector 
C = [E: . . .  ... Em W ,  , . .  W:] E 
W2(n'+.-.+n-) x R"+"'+", and consider the following 
positive definite function V(C) = CTT<, where 
T = blockdiag[Pi . , . P,,, 4 .. , P,,, iFcl , , , ;F;']. 
Further, notice that the RBF network approximation 
can be defined over arbitrarily large compact set 'D. 
Based on the definition of the compact set 'DI, and the 
boundedness of zCi and qc,, in the subspace of the 
error variables consider the following compact set nE of 
possible initial errors: 1 1 ~  = { [ ET . . . E; 1' E 

In the expanded space of the error variable 
C E R2("'+"'+*-) x RN1+".+", consider the largest 
level set of 

- T  - T  T A 

A 

Hpnl+...+", : Y E ~ , Y l E D I ,  z c E 2 , ~ D , , , v , E D , e } .  

V(C) = CTTC (20) 
corresponding to [ ET . . . E,,, T T  1 E RE and introduce 
the largest hall that lies inside this level set: 

BR = {C 1 llcll 5 R) (21) 

Let cy be the minimum value of V(C) = CTTC on the 
boundaty of  BR: 

(22) 
IICII=R 

where X,,,in(T) is introduced for the minimum eigenvalue 
of T.  Introduce the set ' {C E E R  1 v(<) 5 a} (23) 

a a min V ( C )  = R*A,~,(T) 

, 
Assumption 5.1: Let 

R > ~JA,~~(T)/A,~,(T) (24) 

Ei = A I E ,  tb; [W;$;(Yl) - Wy@;(Y)  - ti] - gi where A,,(T) is introduced for the maximum eigenvalue 
- of T9 while Y = max (J5, JZ, JZ) I 0; = C;E;. (17) 
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Now introduce the following Lyapunov function for the 
whole system: 

m 

v = ci: (26) 
i=l 

Then, using the notations from Assumption 5.1, the upper 
bound reduces to: 

v=cz,q< 

- ( ~ p t  + l ) ~ ~ p i ~ i ~ ~ ) ~ ~ ~ i ~ ~ z  - ~ ; I I E ~ I I ~  

[ - p m i " ( Q i )  - 2md,,,(Pi) 

-x i l lw i l l~  + c;r;" [(211PibiIl + Pi)f#( 
+ai (Lax(Pi) +~m~(~i))]l lEjIl ' ]  + U  

Regrouping, this can be written: 
m 

v = Z k 5  
i=l 

Following an argument similar to that in [12], 
define the vectors E = [ IIElII . . .  IIEmll I T ,  

[ IlW111 ... llWmll ] . Then the expression in 
(27) can he put into the following form: 

A 

A - E A [ llEIII " .  llEmll I T ,  w - 
T 

- T  - - v 5 -ETDE - E D E  - W T ~ W + U  

The following upper bound 

V 5 - A m i n ( D ) l l E l l z  - x m i n ( O ) l l E I I '  

- k n ( A ) I I * I I z  +U 

implies that either of the following conditions 

will render V < 0 outside the compact set 

a, = IC I IlCIl 5 7 )  (28) 

Let r be the maximum value of the function V(C) on the 
boundary of L?,: 

Assumption 5.1 ensures 



Thus, if the initial error CO = C(0) belongs to n,, then 
there exists a time instant tc(Co),  such that C(t) will enter 
the set Q, at tc and remain inside it for all t > tC. This 
implies ultimate boundedness of C, completing the proof. 

Remark 5.1: The results obtained above can be ex- 
tended to the case where the modeling errors also de- 
pend upon the control signal, i.e. in (1) one can have 
f ; (u ; , q , z1 , .  . . ,z,,,,z,,,), subject to af;/au; # 0. Notice 
then that the adaptive signal will be introduced to cancel a 
function f;(u;(uadi(.), .) of itself. To avoid this algebraic 
loop, one way of implementing this is to use a one step 
delayed value of the control signal u,(t - d) ,  where d > 0 
is sufficiently small. 

Remark 5.2: Assumption 5.1 may be interpreted as plac- 
ing both upper and lower bounds on the adaptation gains. 
Let 7 = max(X,,(Fi)), - y = min(Amin(F")), X = 

m.x(X,,(P,), X,~(F,)) ,  x = min(X,i,(Pi), ~ , i ~ ( & ) ,  
i = 1,. . . , m. Then an upper bound for the adaptation gains 
results when 2x7 > 1 and Z& > 1, for which the relation 
in (24) reducesto 7 < R2/(2y2X).  A lower bound for 
the adaptation gains results when 2x7 < 1 and 2A7 < 1, 
for which the relation in (24) reducesto y > y2/(2R2A).  
Notice that the upper bound for the adaptation gain has 
R in the numerator, while the lower bound has R in the 
denominator. Therefore, R can be selected sufficiently large 
to ensure that y < 7. 

VI. SIMULATIONS 
We consider three inverted pendulums mounted on carts, 

as depicted in Figure 1. The carts are connected by springs 

A A A 

A 

- 

Fig. 1 .  Three inverted pendulums on three carts 

and dampers. In each subsystem, we assume that the posi- 
tion of the cart(%;) and the angle of the pendulum(&) are 
measured and the cart is regulated by input forces(u;). The 
equations of motion for the system are described as follows: 

( M  + 4 x 1  + ml,B1 covel - ml,@, sinsl = U ,  + s1 

= o 

' 2  . 

ml, cos e,?, + ( I  + m$)& - mgl, sin e, 

(M + m)xz + ml,B2 cos 02 - m1,@ sing2 = u2 - s1 + s2 

ml, COS @2?2 + ( I  + ml;)& - mgl, sin O, = o 

( M  t m ) i 3  + m1,& cos83 - ml,d: sin fI3 = u3 - s2 

= 0 ml, cos 83x3 + (I + ml;)& - mgl, sin 63 

where U I , U ~ ,  u3 are input forces to the carts@), M is the 
mass of the cart (kg), m is the mass of the rod(kg), 1, 
is the distance from the pivot on the cart to the center 
of gravity of the rod(half of full length)(m), I(= id;) 
is the moment of inertia of the rod with respect to its 
center of mass ( k g d ) ,  g is the gravitational acceleration 
(kgdsec'), k is the spring constant @/m), c i s  the damping 
constant (N.sec/m), s1 = k(s2 - zl)  + c(S2 - il), s2 = 
k(x3 - zz) + c(& - j . 2 )  are interconnection forces due 
to springs and dampers. The parameter values are: M = 
0.9,m=O.18,1,=0.305,g=9.8,k= l , ~ = Z x l O - ~ .  
Our control objective is to regulate the displacements of 
the carts ii while balancing the inverted rods on the carts 
without velocity measurements. The open loop subsystem 
in (4) is derived after the dynamics are first linearized with 
respect to equilibrium position xi = 0, = 0, and then put 
into a normal form by the transformation: XI<, = xi,zliz = 

% i r q i ,  = hi, = k + si. The linear subsystems, for 
i = 1,2,3,  is described by the following system matrices: 

0 1  0 
A i = [ O  O ] > B i = [  -+$ ; ] , b i = [  ;] 

The constants M = 0.815,m = 0.21 represent parameter 
estimates for M , m  respectively. Further, in this linear 
model, the inverted rod is treated as a lumped mass located 
on its center of mass, i.e., I = 0. Putting each subsys- 
tem into normal form leads to the following modelling 
errors and interconnection effects defined in (1): f; = 

M+m(l-3 /4cos8 , (~;  a + ml,@sinBi - 2mgsinB;cosB; + 

imply that the spring and the damper are not considered in 
the open loop model. The term U, means that the modelling 
error also depends on the control signal as in Remark 5.1. 
Note that the interconnections between the two carts and 
the modelling errors contain velocity terms which are not 
measured. This implies that the existing adaptive output 
feedback approaches in the decentralized control literature, 
such as the ones developed in [8], [21] and many others, 
although establishing global results, cannot be applied. 
Moreover, regulation of x, using U. to the carts renders 
the control problem nonminimum phase -linearization of 
each subsystem about vertical-up position leads to unstable 
zero e. These issues make the control problem even 
more challenging. The dynamic compensator in (8) for each 
subsystem is designed as a LQG controller based on the 
open loop model in (31), in which two measured outputs 
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