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Incremental Training of Support Vector Machines
A. Shilton, M. Palaniswami, Senior Member, IEEE, D. Ralph, and A.C. Tsoi. Senior Member, IEEE,

Abstract— We propose a new algorithm for the incremental
training of Support Vector Machines (SVMs) that is suitable
for problems of sequentially arriving data and fast constraint
parameter variation. Our method involves using a “warm-start”
algorithm for the training of Support Vector Machines (SVMs),
which allows us to take advantage of the natural incremental
properties of the standard active set approach to linearly con-
strained optimisation problems. Incremental training involves
quickly re-training a support vector machine after adding a small
number of additional training vectors to the training set of an
existing (trained) support vector machine. Similarly, the problem
of fast constraint parameter variation involves quickly re-training
an existing support vector machine using the same training set
but different constraint parameters. In both cases we demonstrate
the computational superiority of incremental training over the
usual batch re-training method.

Index Terms— Support Vector Machines, Incremental Train-
ing, Warm Start Algorithm, Active Set Method, Quadratic
Programming.

I. INTRODUCTION

B INARY pattern recognition involves constructing a deci-
sion rule to classify vectors into one of two classes based

on a training set of vectors whose classification is known a-
priori. Support vector machines (SVMs - Vapnik et al [1]) do
this by implicitly mapping the training data into a higher-
dimensional feature space. A hyperplane (decision surface)
is then constructed in this feature space that bisects the two
categories and maximises the margin of separation between
itself and those points lying nearest to it (called the support
vectors). This decision surface can then be used as a basis for
classifying vectors of unknown classification.

The main advantages of the SVM approach are:
� SVMs implement a form of structural risk minimisation

[1] - They attempt to find a compromise between the
minimisation of empirical risk and the prevention of
overfitting.

� The problem is a convex quadratic programming problem.
So there are no non-global minima, and the problem is
readily solvable using quadratic programming techniques.

� The resulting classifier can be specified completely in
terms of its support vectors and kernel function type.

Usually, support vector machines are trained using a batch
model. Under this model, all training data is given a priori and
training is performed in one batch. If more training data is later

A. Shilton and M. Palaniswami are with the Centre of Expertise on
Networked Decision and Sensor Systems, Department of Electrical and
Electronic Engineering, The University of Melbourne, Victoria 3010, Australia
(
�
apsh,swami�@ee.mu.oz.au).
D. Ralph is with the Judge Institute of Management Studies, Uni-

versity of Cambridge, Trumpington street, Cambridge CB2 1AG, UK
(danny.ralph@jims.cam.ac.uk).

A.C. Tsoi is with the University of Wollongong, Wollongong NSW 2522,
Australia (act@uow.edu.au).

obtained, or we wish to test different constraint parameters, the
SVM must be re-trained from scratch. But if we are adding a
small amount of data to a large training set, assuming that the
problem is well posed, then it will likely have only a minimal
effect on the decision surface. Re-solving the problem from
scratch seems computationally wasteful.

An alternative is to “warm-start” the solution process by
using the old solution as a starting point to find a new solution.
This approach is at the heart of active set optimization methods
[2], [3] and, in fact, incremental learning is a natural extension
of these methods. While many papers have been published on
SVM training, relatively few have considered the problem of
incremental training. In our previous papers [4], [5] and [6], we
outlined our approach to these problems, and also gave some
preliminary results. Since the publication of our preliminary
results, we have refined our algorithm substantially. In this
paper we will present these refinements, and the algorithm as
a whole, in some detail.

The SVM optimisation problem is a linearly constrained
quadratic programming problem [2]. Therefore we are able
to take advantage of the natural incremental properties of
this method. One can draw parallels between the algorithm
presented here and that of [7], [5]. However, we have entirely
separated the issues of the underlying optimisation algorithm
and the Hessian matrix factorisation used to realise it. As
an adjunct to this, we have considered the issue of the
choice of factorisation technique in some detail. We have also
given some consideration to the problem of the occurrence
of singular Hessian matrices, and how best to deal with this
situation when selecting a factorisation for the Hessian matrix.
Finally, we demonstrate the natural extension of our algorithm
to the problem of constraint parameter variation and kernel
selection.

Our investigation is broadly about applying the accumulated
knowledge of optimization, e.g. [2], [3], to the computational
problem presented by SVMs. Since our earlier work in [4]
there have been several parallel contributions by other re-
searchers [7], [8], [9]. The paper [8] is an active set approach
to incremental SVMs that relates to the implementation we
describe in Subsection IV-C though the former appears to be
applied to the standard dual QP [1] rather than to the dual
problem that we formulate, (4), as discussed in Section II. A
fast interior-point approach to SVMs, though not incremental,
appears in [9].

Our paper has been arranged as follows. In section II
we give some necessary background material and present
a number of fundamental results concerning support vector
machines. In section III we present our method for solving the
dual optimisation problem that arises from the support vector
machine formulation given in section II. As is shown in this
section, an important element of our method is the selection
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of an appropriate factorisation method for the Hessian matrix��(defined later) to facilitate the fast calculation of �where� is known and
��� ��. Therefore in section IV we

consider the relevant issues pursuant to this selection and
study two possible factorisations in detail. We conclude this
section by studying the comparative theoretical merits of these
factorisations.

In sections V and VI we show how the active set opti-
misation method given section III may be naturally applied
to the problems of incremental learning and fast constraint
parameter variation. Finally, in section VII, we give some
experimental results obtained using the proposed incremental
training and fast constraint parameter variation techniques, and
compare these results with those obtained using standard non-
incremental techniques.

II. SUPPORT VECTOR MACHINE BASICS

We consider briefly how the SVM binary pattern recognition
problem is formulated [10]. Firstly, we define the training set
as: �����	
�	�
��
��
��� 
���
����������������
���

We also (implicitly, as will be seen later) define a mapping
from input space to a (usually higher dimensional) feature
space, denoted �� ��� ����

. Assuming that the two
training classes are linearly separable when mapped to feature
space, we can define a linear discriminant function ���� in
feature space such that:������������ ���!"#�������$���
����� (1)

Any such discriminant function defines a linear decision
surface in feature space that bisects the two training classes
and is characterised by �����%

. However, there may be
infinitely many such surfaces. To select the surface best suited
to the task, the SVM maximises the distance between the
decision surface and those training points lying closest to it
(the support vectors). It is easy to show (see [11] for example)
that maximising this distance is equivalent to solving:&'#()* 	���

such that
��+�������� ,-�$���
����� (2)

If the training classes are not linearly separable in feature
space, we must relax the inequalities in (2) using slack
variables and modify the cost function to penalise any failure
to meet the original (strict) inequalities. The problem becomes
[11]: &'#()*). 	����/0�.

s.t.
��+�������� ,-��1�$���
�����.-2 (3)

where
0

is a column vector with all elements equal to
�
.

The constraint parameter
/

controls the trade-off between
the dual objectives of maximising the margin of separation
and minimising the misclassification error. We will now move

to the dual form of the problem. This is done for two main
reasons [10]:

� The constraints in the dual form of the problem are
significantly simpler than those in the primal form.

� In the dual form the training data will appear only in
the form of dot products. As will be shown shortly,
this allows us to deal with very high (or even infinite)
dimensional feature spaces in a trivial manner.

Let 3be the vector of Lagrange Multipliers associated with
the first inequality in (3). After forming the Lagrangian (or
Wolfe) dual problem and eliminating the primal vector �, we
are left with a quadratic program that still involves minimizing
over the primal variable

 
as well as maximising over the dual

variable 3. Converting this to a minimization (maximization)
with respect to 3(

 
) gives the following (partially-)dual form

of (3):&45* &'#673789:�3
 �:�;
 ��	< 3=��< 3=�< 3=�<%0= (4)

where
:�3
 �is the objective function and:

��<% >�> ?=
?���@�A�)B����BC���
�B�C���
�B�����������B�

Note that the matrix
?

is positive semi-definite and the
constraints are linear. Hence the optimisation problem is con-
vex (there are no non-global minima), which greatly simplifies
the process of finding a solution. It is also worth noting that
there is exactly one variable ;� associated with each training
pair

���
���. Furthermore, only those ;�’s corresponding to
support vectors will have non-zero values. Hence:

� The discriminant function can be fully specified using
only the support vectors.

� If the SVM is re-trained using only the support vectors
then the result will be the same as that obtained by
training it with the complete training set.

Having obtained the optimal
 

and 3, the discriminant
function is easily defined, c.f. (1):

��D�� EFGH)�HIJK;���C���
D�� 
The function

C����L�����
is called the kernel

function. By identifying this kernel function, we may hide the
dimensionality of feature space, enabling us to work with very
high (or even infinite) values of

�M. Furthermore, so long as
the kernel function satisfies Mercer’s condition [10], we need
never explicitly know what the feature mapping actually is.

The stationary or KKT (Karush-Kuhn-Tucker) conditions
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for the program (4), see [2], are as follows:3-23�/0��%
�����

-%
if ;��%�% if
%�;��/�%

if ;��/
(5)

where: <��=��< 3=�<%0= (6)

At this point it is appropriate to distinguish between the
standard dual QP formulation of SVMs, as seen in [1] for
example; and the formulation (5). The standard dual formu-
lation is “fully dual” in the sense that the primal variable 

is also eliminated by the inclusion of a single equality
constraint

��%
, i.e. the constraints become exactly the first

three lines of (5). This has the advantage of reducing (4) to
a minimisation problem (rather than a max-min problem). It
has the disadvantage of changing the feasible set from simple
bounds

2�3�/0
to simple bounds plus an equality

constraint. The key to the implementations proposed in this
paper is to avoid the equality constraint, because its presence
significantly complicates the description and implementation
of the active set approach. The advantages of (4) have also
been independently discovered in [7].

To give some hints about why a single equality constraint
complicates notation and implementation, we mention our pre-
vious work [4], [5] and [6] in which an active set was applied
to the standard dual QP, a minimization over 3with the
additional constraint

��%
. Our implementation eliminated

the equality constraint at each iteration by selecting a kind
of “basis” variable whose value could be determined from
this equation (this is an alternative to the textbook active set
approach [2] which would perform a linear-algebraic reduction
of the Hessian

�
by one dimension by working on the kernel

or nullspace of the constraint
��%

. For another active set
implementation see [8]). However, updating the choice of the
basic variable to facilitate this elimination, and the associated
bookkeeping needed to distinguish this variable from other
variables, can be avoided when using the (partially-)dual QP
(4) in which

 
is still considered to be a variable.

III. METHOD OF SOLUTION OF DUAL PROBLEM

As noted previously in Section II, only those ;�’s associated
with support vectors will have non-zero values. An attractive
feature of SVMs is that support vectors usually make up only
a small fraction of the total training set (the ratio of support
vectors to training set size may increase if the training set is
noisy, but even in this case the ratio will tend to remain rela-
tively small). Of all the methods of solving linearly constrained
quadratic programming problems, active set methods [2] seem
best suited to take advantage of this feature of SVMs. This is
because, by using an active set method, they are able to reduce
the effective dimensionality of the problem from the number
of training points, which may be very large, to the number

of support vectors (or some interim guess of the number of
support vectors), which is typically small.

In an active set method, constraints are divided into two
sets, namely the set of active constraints (the active set) and
the set of inactive constraints. The algorithm then iteratively
steps towards the solution, adjusting the active set after each
step, until the optimal active set (and hence optimal solution)
is arrived at. For any given iteration, the step is calculated
by treating the active constraints as equality constraints, tem-
porarily discarding the inactive constraints, and solving the
resultant unconstrained optimisation problem (for a detailed
introduction to active set methods, see for example [2]).

A. Notation

Before proceeding, it is necessary to introduce some no-
tations. Given that only one of the upper or lower bound
constraints may be active for any given ;�, the active set may
be defined as follows:

3�	
3�3�3
��
 >�	
>�>�>

��
 ����
?�	
?� ?��� ?��?�� ?� ?��?� ?� ?

��
���< % >��>� ?� =���������

(7)

where:
�3����� are Free variables (not actively constrained).
�3�����are actively constrained at Upper bound

/
.

�3����are actively constrained at Lower bound
%
.

We need the following technical result:
Theorem 1: If ����

then
�� is non-singular.

Proof: Given that
�����for all �, it follows from the

definition of
�� that if ����

, ����������. Therefore�� is non-singular.
If
��is singular and����then it follows from theorem

1 that we may partition the free variables (without re-ordering)
as follows:

3��	
3��;��3��
��
 ����

?��	
?�� ���� ?��������� ��� �����?��� ���� ?��
��

where:
�����< % >���>�� ?��=

is non-singular.

������	
 % >��� ���>�� ?�� ������� ����� ���
��is singular.

�3�������
(
����������

) are those free
variables corresponding to the Non-singular sub-Hessian���.

�;����may be thought of as lying on the Boundary
of the non-singular sub-Hessian

���.
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�3�����������	.
If ���%we define

���to be an empty matrix. We also
define: ������ if

�� is non-singular.���otherwise.

as a shorthand for the relevant part of the Hessian.
?�����@��

,
>�����

etc. are defined analogously, where����� if
�� is non-singular, ������otherwise.

For (nearly) every iteration of our algorithm, it will be
necessary to solve

����� for �, where
��and � are

provided. However, actually calculating the inverse of
��is

too computationally expensive to be feasible. To overcome this
problem, we have chosen to calculate (and maintain through-
out the algorithm) a factorisation, �, of

��. In principle any
number of factorisations could be used, the only criterion being
the ability to quickly solve

����� for � using �and
also that the factorisation itself may be quickly modified to
reflect changes in

��. In the present paper we have looked
at two such factorisations, namely the inverse and Cholesky
factorisations.

A superscript
���

will be used when necessary to indicate
which iteration is being referred to, and a �prefix to indicate
a change in the value of a variable between iterations. So, for
example, ��F�I��F��	I��F�I is the change in �between
iterations

�
and

���
. A superscript 	will be used to indicate

the optimal solution to (4) if the active constraints are treated
as equality constraints and the inactive constraints are ignored.
Formally,

�3
�
 
�is the solution of the equality-constrained
quadratic program (15), to appear in subsection III-D of this
section.

We define the following proceedures for use when modify-
ing the active set:��#!��4'#��
���� �F��	I� ��F�I� �����
������F��	I� ��F�I������
�����������
���� �F��	I� ��F�I� �����
������F��	I� ��F�I������
�����
where

���
��. In either case, 3,
?

, �etc. must be
modified accordingly. Specifically, whenever data is added
to any of

��,

��,

� it is placed at the end of the
vectors/matrices in question (the ordering of points already
in the vector/matrix does not change). When removing data
from a set, the ordering on either side of the data point in
question remains unchanged.

Finally, it will be necessary at times to modify the or-
dering of the components in 3,

?
, �etc. without modify-

ing our active constraint set. Hence we define the function!�4���
�
��� to mean to operation of swapping compo-
nents � and

�
in 3,

?
etc., where

���
��� ��� and��B
�B����.

B. Overall Structure of the Active Set Algorithm

The basic structure of our algorithm is shown in figure 1. In
future, the algorithm in figure 1 will be referred to simply as
the algorithm. Structurally, the algorithm is typical of active
set methods. A Newton step (or some other step if

�� is
singular) for the free variables is calculated. This step is then

scaled (�F�I is the scale factor), and the scaled step is taken.
If the KKT conditions are not met after this, the active set is
modified in a minimal fashion (a single constraint is activated
or deactivated) and the process is repeated. Otherwise, the
algorithm terminates, the optimal solution being:

< 
3
=�< F��	I3F��	I =
Notes on the algorithm:
� The relevant section number for each block is given

beside that block.
� The default active set upon entering the algorithm (if none

has already been defined) is for all training points to be
constrained at lower bound

%
.

� ���F�I� 
��F�I�is always calculated using the formula:���F�I���F�I ��<>� ?��> ?� =<� F�I�3F�I� =
(8)

� The largest possible scaling factor �F�I (which we use)
satisfying

2�3F�I� ��F�I�3F�I� �/0is:

�F�I�&'#��
 &'#���� !"H #$�;F�I��;F�I� 
 &'#���� !"H %$/�;F�I��;F�I� & (9)

� As will be shown in section III-E, it is sufficient, when
checking the KKT conditions (5), to check:�F��	I� �'0�F��	I ��'0�'��F��	I�' (10)

where the constant
%�'(�

is necessary to prevent
cycling due to cumulative numerical errors. Typically, we
found ')�%�*was sufficient for the purpose.

C. Modifying the Active Set

In the algorithm, modification of the active set always takes
the form of activating or deactivating a single constraint. For
simplicity, we have chosen to follow the heuristic of [2],
namely:

1: If the most recent step was scaled (ie. �F�I��
) then��#!��4'#++F�I
��,, where:+F�I�4�"&'#� �&'#���� !"H #$�;F�I��;F�I� 
 &'#���� !"H %$/�;F�I��;F�I� & (11)

and
��

if �;F�I� �%, ��
if �;F�I� �%. Thus

we constrain whichever element ;F�I� has “run into” a
boundary.

2: Otherwise (if �F�I��
), find the element �F��	I, !" of �F��	I

corresponding to an actively constrained ;F��	I, !" that most
violates the simplified KKT conditions (10) (according to
the criteria detailed below) and

����+-F�I
��,.
In case 2, if�F�I� �%we select -F�Iby finding the element�F��	I, !" that violates the KKT condition associated with it and
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Initialise active set.
(If not already done)

Set
���

.

III-B.

�
�
�

Calculate
�3
�
 
�by

solving (15). Then:<� F�I�3F�I� =�< 
3
� =�< F�I3F�I� =
III-D.

�
Using �3F�I� and � F�I, calculate��F�I and ��F�I.III-B,

III-D.

�

���
���

�

�������

���
���

�

�������

Is 3
�-2and3
��/0?
Y

N
��F�I��
�

�
Calculate max

%��F�I��s.t.:2�3F�I� ��F�I�3F�I� �/0
III-B.

�
Adjust the current solution:< F��	I3F��	I�
=�< F�I3F�I� =��F�I<� F�I�3F�I� =

<�F��	I�F��	I =�<�F�I�F�I =��F�I<��F�I��F�I =
�

���
���

�

�������

���
���

�

�������

�F�I��
and KKT

cond. (10) met?

III-B.
Y

N
�

Stop.

�
Modify the active set.������III-C.

�

Fig. 1. Outline of active set algorithm.

is largest in magnitude. This is equivalent to using the simple
rule:-F�I�4�"&'#� � &'#��FGH)�HIJK !"���F��	I� 
 &'#��FGH)�HIJK !"� �F��	I� &

(12)

where
���
��� ��F�I�. It is not necessary to check that�F��	I, !" -' if

��, !"
�, !"� ��F�I� and �F��	I, !" ��' if��, !"
�, !"� ��F�I , because, as will be shown later, if�F�I� �%
and �F�I ��

, it follows that
�F��	I �%

, and
hence either �F��	I� ��'0or �F��	I ���'0, which, by
virtue of the minima used in (12), is sufficient to ensure that�F��	I, !" -' if

��, !"
�, !"� ��F�I� and �F��	I, !" ��' if��, !"
�, !"���F�I .
Continuing case 2, if �F�I� �%

then there is no guarantee
that
�F��	I�%. Because of this, care must be taken to ensure

that the algorithm does not enter an endless loop. To see why
this may occur, consider the explicit form of the next step
(indexed by the positions of elements during the present step),
from equation (16):�� F��	I�;F��	I, !" ���A, !"), !"�F��	I��, !"�F��	I, !"��, !"�F��	I � (13)

If ;F��	I, !" �%
and

�, !"�F��	I�%
(or ;F��	I, !" �/

and�, !"�F��	I �%
) then the magnitude of

�F��	I
will not

decrease in the next iteration (as �F��	I�%), ;F��	I, !" will be
immediately re-constrained, and an infinite loop will result. To
avoid this problem, we use the following (slightly modified)
definition of -F�I if �F�I� �%:
-F�I�4�"&'#�

�
��� &'#��FGH)�HIJK !"��H	 !
�"�$ ��F��	I� 
 &'#��FGH)�HIJK !"��H	 !
�"7$ �F��	I�


���

(14)

where the additional constraint on !"#+���F��	I, ensures
that a loop condition cannot occur. Note that equations (12)
and (14) are equivalent if

�F��	I �%
. When proving the

convergence of the algorithm (section III-E), we will need the
following technical results:

Theorem 2: If �F�I� �%then the solution to equation (14)

is well defined.
Proof: First, suppose that

�F��	I�%
. In this case, the

solution to equation (14) must be well defined as

�F�I ��F�I� ��F�I ���.
Otherwise, suppose that the theorem is not correct - ie. the

solution to (14) is not well defined. Then
>�F�I�%

and>��F�I �%
. As

�F��	I ��%
, we know that �F�I� �%

.
But this implies that !"#+�F��	I, ��!"#+�F��	I, (as!"#+�F��	I,�!"#+/>��0,), which is a not possible unless�F��	I�%. This is a contradiction. Hence the theorem must
be true.
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Theorem 3: In the algorithm, if �F�I� � %
then���F��I��F�I���&'#+���F�I��
/,and

���F��I������F�I��.
Proof: First, suppose

�F�I�%. As ��F�I�>��3F�I,
it follows that ��F�I �%

,
�F��	I�%

, and, from equation
(13),

�F��I�%
. Hence

���F��I��F�I���&'#+���F�I��
/,
and

���F��I������F�I��, as required.
Now suppose

�F�I ��%
. Following the same reasoning as

for the previous case, ��F�I �%
. We see from (13) that�3F��	I� ��>��F�I, which implies that ��F��	I���F�I.

We know that
%��F��	I��, so

���F��I������F�I��. Also, as2�3�/0and ;F��	I, !" ��%
/�, it follows from (9) that���F��I��F�I���&'#+���F�I��
/,.
Considering the additional constraint on !"#+���F��	I,

required in (14) to prevent a potential infinite loop, it is
reasonable to ask whether a similar constraint should be
included in (12) in order to avoid the occurrence of a similar
infinite loop condition. A full explanation of why such a
constraint is unnecessary has been delayed until section III-E
but, roughly speaking it follows from theorem 4, which implies
that equation (12) will never be required unless

�F��	I�%
,

rendering any such constraint irrelevant.

D. Calculating the Step

Treating the active constraints as equality constraints, and
ignoring the inactive constraints, the optimisation problem (4)
reduces to the following unconstrained quadratic programming
problem:&45* &'#3�:��3�
 �:��3�
 ���:��3�
 � '� �F�I� �% � '� �F�I� �%:��3�
 ��	<  3� =���<  3� =�<  3� =�< />��0/?��0�0=

(15)

The solution to (15) (assuming that it is well defined) is
denoted

�3
�
 
�. We aim, if possible, to calculate the step��3F�I� 
� F�I���3
�
 
���3F�I� 
 F�I�. If
�� is non-

singular (which implies �F�I� �%), then:

<� F�I�3F�I� =����	� <�F�I�F�I� =
(16)

where the matrix inversion is avoided by using our factorisa-
tion �, as described in section IV. It follows that:

<��F�I��F�I� =��<�F�I�F�I� =
(17)

If the Hessian is singular then either�F�I� �%or�F�I� -�
(it follows from theorem 1 that�F�I� ���

here). In either case,
it is clear that either the current active set is not optimal or
there exists an alternative optimal active set with fewer free
variables than the present active set. If �F�I� �%, noting that
the quadratic programming problem (15) is an unconstrained

linear programming problem, we have chosen not to take a
step, so: � F�I�%��F�I�%

If the Hessian is singular and�F�I� -�
, we want the step to

be in a direction of linear non-ascent with respect to 3�and
linear non-descent with respect to

 
. We also want the step to

be large enough to lead to the activation of a constraint (ie.�F�I��), thereby preventing termination of the algorithm in
a non-optimal state. Consider the step:

<� F�I�3F�I��=�����	��< �������=�����F�I*�F�I3 ���;F�I���3F�I����<�2= (18)

where we once again avoid the matrix inversion by utilizing
our factorisation �.

Consequently:

<��F�I��F�I��=�<%2=���F�I����F�I����< %>��� F�I�?����3F�I����F�I����;F�I��=
(19)

It is easy to see that this step is in a direction of linear
descent/ascent with respect to both 3�and

 
. When selecting�

, we want to ensure that the magnitude of the step is
sufficiently large to ensure that the �F�I��, and furthermore
that the direction is one of linear non-ascent with respect to 3�
and linear non-descent with respect to

 
. Unfortunately, it is

not in general possible to satisfy both of the constraints on the
direction of the step. Because of this, we choose to ignore the
requirement of linear non-descent with respect to

 
if
�F�I ��%

(if
�F�I�%then this requirement will be met regardless of our

choice of
�
). This makes implementing the algorithm simpler

and, as will be shown in section III-E, does not affect the
convergence of the algorithm (whereas choosing to ignore the
requirement of non-ascent with respect to 3�would lead to
problems of cycling when

�F�I�%and subsequent failure of
the algorithm to convergence).

It is not difficult to see that the following simple definition
of
�

will satisfy the requirement of linear non-ascent with
respect to 3�:

���������/ if �F�I��-�F�I3��F�I�������/ if �F�I����F�I3��F�I�� (20)

In this equation, '����is a small positive constant.

E. Properties of the Algorithm

In this section we prove that the algorithm converges. The
proof is split into two parts. First we prove that after a finite
number of iterations of the algorithm certain conditions must
be met. Having arrived at a point where these conditions are
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satisfied, we are then able to directly apply a well-known
convergence result, thus preventing unnecessary repetition
of results readily available in the literature. In particular,
reference will be made to proofs contained in [2] and [3].

Before proceeding to the major result for this section, we
need the following preliminary theorem:

Theorem 4: If
�F	I ��%then after some ������F	I� �

�
iterations of the algorithm,

�F�I�%
. Furthermore, for all

subsequent iterations ���, �
-%

,
�F���I�%.

Proof: First, assume that �F	I� �%. For each subsequent
iteration

�
with �F�I� �%either a constraint will be activated

(�F��	I� ��F�I� ); or �F�I��
, implying that the most recent

step was calculated using (16) and hence that
�F��	I�%. As�� is bounded and decreasing, after at most �F	I� iterations

either
�F��	I�%or �F��	I� �%, but not both.

Consider the latter possibility. By theorem 3,���F��I��F�I���&'#+���F�I��
/, and
���F��I������F�I��.

Given that 3�/0, (6) implies that
���/. So, starting

from the first iteration where ���%
,
�

will become zero
after at most -���iterations. So, if

�F	I ��%
, after some

������F	I� ��
iterations of the algorithm,

�F�I�%. This
proves the first part of the theorem.

Consider all possible methods of calculating subsequent
steps, namely (16) and (18). In either case,

�F�I�%
implies��F�I�%, proving the second part of the theorem.

Theorem 5: Given any starting point 3
 satisfying2�3�/0, the algorithm is guaranteed to find an optimal

solution to (4) in a finite time, where an optimal solution is

one satisfying (5).
Proof: There are two main steps to this proof:

1. Show that the algorithm will not terminate until an
optimal solution has been found.

2. Show that an optimal solution will be found in a finite
time.

Consider item 1. From (10) it is clear that the algorithm
will not terminate unless

�F��	I �%
, �F��	I� �2

and�F��	I -2
(to within precision '). Furthermore,

2�3�/0
throughout the algorithm. All that remains to be shown is
that the algorithm will not terminate unless �F��	I� �2

(or�F�I� �%).
If �F�I� �%then the final step of the algorithm must be

calculated using (16) and, furthermore, it must be the case that�F�I��
. Therefore from (17) it follows that if�F�I� �%then

on termination of the algorithm �F��	I� �2. So the algorithm
cannot terminate unless the solution is optimal (ie. the KKT
conditions (5) are met).

Now consider item 2. Clearly, each iteration of the algorithm
will take a finite time to complete. Hence proving that the
algorithm will terminate after a finite time is equivalent to
proving that it will terminate after a finite number of iterations.

Firstly, suppose that
�F	I ��%

. We know from theorem 4
that after some finite number of iterations, �,

�F�I �%
, and

that for all subsequent iterations, ���, �
-%

,
�F���I�%.

The usual form of the SVM optimisation problem (see, for
example, [10]) is:

&'#3 	3�?3�3�0
such that:

>�3�%2�3�/0
So if

��%
we can identify (16) with Equations (10.2.2)

and (10.3.1) in [2]. If we assume that
?

is positive definite
then the proof of convergence given in [2] can be directly
applied to our algorithm. For the more general case where?

is positive semidefinite our method may be identified as
a more general form of that given in [3]. By analogy with
the proof given in [3] it is straightforward to prove that the
algorithm will terminate after a finite number of iterations.

So, in general, we know that after some finite number of
iterations, �, �F�I �%

. Furthermore, we know that for all
subsequent iterations of the algorithm,

�F�I �%
, and that

given this condition the algorithm will terminate after a finite
number of iterations (after the first iteration where

�F�I�%).
Hence, given any starting point 3
 satisfying2�3�/0, the algorithm is guaranteed to find an

optimal solution to (4) in a finite time.

IV. FACTORING THE HESSIAN

As defined previously, � is the inverse or some other
factorisation of

��defined in such a way as to facilitate
the fast calculation of �when �is known and

�����. In
this section we will consider two such factorisations in detail,
viz., the inverse and the Cholesky factorisation respectively.
For both cases, we will consider the following issues:

� How to initially calculate �upon entering the algorithm
(unless �is already known).

� How to quickly find �when �is known and
�����

using �(fast matrix inversion).
� How to re-invert or re-factorise �quickly when con-

straints are activated and de-activated, using a rank-1
updating procedure.

This section is organized as follows. In subsection IV-A we
give some fundamental results related to the Hessian

��, and
in particular how the form of

��may (or may not) change
when the active set is modified.

In subsections IV-B and IV-C we introduce the two fac-
torisation methods and give any necessary background in-
formation and notation required in subsequent sections. In
subsections IV-D, IV-E, IV-F and IV-G we consider in some
detail how the factorisation is setup, modified and used.
Finally, in subsection IV-H we show how the algorithm is
optimised, and in IV-I compare the merits of the inverse and
Cholesky factorisations.
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A. Properties of the Hessian Matrix

For the purposes of this subsection alone, it is useful, if����to, to partition
?�,

>�, etc. as follows:>��<>����* =
 ����?��<?�� ���*����* ��* =
It should also be noted that the ordering of the free variables

in the partition (7) is arbitrary and may be changed as is
convenient for the problem at hand. Hence when we speak of
re-ordering variables, we mean re-ordering the free variables
in (7).

If ���%
then

����%�
is singular by definition. If����

then, as we have shown in theorem 1,
�� is non-

singular. Suppose ����. By definition,
��is non-singular.

If ����
then the form of

?�is restricted only by the
requirement of positive semi-definiteness. Otherwise:

Theorem 6: If ����then either
?�is non-singular or,

after re-ordering,
?�is singular,

?��is non-singular (��*�����*?�	�����*) and
��* ������*?�	��>��.

Proof: See appendix I.
There are three basic forms which

��may take, namely:

1) ���%and
��is empty.

2) ����
and/or

?�is positive definite.
3) �� � �

,
?� is singular and, after appropri-

ate re-ordering,
?�� is non-singular and

��* ������*?�	��>��.
It is important to consider the effect on the singular nature of

the Hessian matrix of activating and de-activating constraints.

Theorem 7: For all iterations
� -�

followed by the

operation
����+-F�I
��,, �F��	I� -�F�I� .

Proof: See appendix I.

Theorem 8: For all iterations
� -�

followed by the

operation ��#!��4'#++F�I
��,, �F��	I� -�F�I� ��.
Proof: See appendix I.

On a practical note, we must allow for the finite numerical
precision of the computer. One implication of this is that
theorem 8 may not, in practice, be seen to be correct. However,
the results do provide a useful guide as to what may be
expected from an implementation.

B. The Inverse Update Method

The obvious method of factorising the Hessian matrix
��

is by direct inversion. This makes the solution of the fast
matrix inversion problem trivial (ie. use matrix multiplication),
and, as will be shown in subsequent sections, updating the
factorisation may be done efficiently using a rank-1 updating
technique.

During the preparation of this paper, we found an inde-
pendent work by Cauwenberghs and Poggio [7]. This paper
describes a similar (although notationally different) algorithm

to our own. However, [7] appear to not have considered the
case where the Hessian matrix becomes singular. Furthermore,
we have separated the issues of the general structure of the
algorithm, and the selection of an appropriate method of
inverting or factorising the Hessian matrix. By doing this, we
are able to consider the relative merits of two such approaches,
namely the inverse and Cholesky factorisations (more details
on the latter may be found in section IV-C), in section IV-I. In
each case, a rank-1 updating technique allows very efficient
implementation.

We have the following definition:

Definition 9: For the inverse update method �����
,

where
����	� (the inverse of an empty matrix is defined

to be an empty matrix).
By default,

�
is assumed to be empty and ���%.

C. Cholesky Update Method

It is well known [12] that, for any positive definite and
symmetric matrix �, there exists a lower triangular matrix�

with positive diagonal entries such that �����. The
matrix

�
is known as the Cholesky factorisation of�, denoted�������, and has some nice numerical properties [13].

We know that, so long as it exists,
?�is positive semidef-

inite and symmetric. When dealing with a Cholesky factori-
sation, if ��-�we will use the following notation:>��<���>�* =
 ����?��<��� ���*���*� ?�* =

Assuming that ��� ��%(for numerical purposes, ���-')
and using theorem 6, it is not difficult to show that we can
define

�
such that:

	
��� ��� ���*���� % >��*��*� >�* ?�*
������� (21)

where
�

is a lower triangular matrix with positive diagonal
elements, and:

��	
� % 2�% �� 2�2 2 	

��
(21) is analogous to the standard Cholesky factorisation,

except that the matrix that is being factorised not positive
definite (although it is non-singular), and 
) ���. If����'then we cannot define

�
to satisfy (21). In this case

we can differentiate two distinct cases, namely:
1) ����

or
A)�'. In this case ����

, but there is
no way to factorise

����@using a Cholesky type
factorisation. Fortunately, however, the inversion of

��
is trivial in this case.

2) ����
and

A)-'. In this case, after performing
the operation !�4���
�
����it is possible to find lower
triangular

�
with positive diagonal elements satisfying

(21).
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We define a binary variable ������ ��
TRUE
FALSE

�
to indicate whether

�
may (NoChol �FALSE, default) or

may not (NoChol �TRUE, case 1) be formed to satisfy
equation (21). So, if at any point ����', we may either!�4���
�
����if ����and

A)-', or set NoChol ��
TRUE.

Formally, we define the Cholesky factorisation as follows:

Definition 10: For the Cholesky update method, � ���
NoChol
�
. So long as ���%and NoChol �FALSE:

	���

��	 ��	 �����	 % >���� >� ?��

�
���������

If ���%
or NoChol �TRUE then for completeness

�
is

defined to be an empty matrix.
By default,

�
is assumed to be empty, NoChol �FALSE

and ���%.
1) Basic Operations with Cholesky Factorisations: In this

section we will give some basic results and algorithms which
will be required later. Firstly, suppose that we are given the
column vector �and wish to find �such that either

����or�����. We can do these problems using forward elimination
and back substitution, respectively, as described in algorithms
4.1-1 and 4.1-2 of [12]. As both algorithms are quadratic time
algorithms, this allows us to perform fast matrix inversions.

Another algorithm that we will need for this section is a
rank-1 update algorithm. Suppose that we are given some
matrix ����

�
�
��

, �
������+��,, and we want to find���������such that �����, where ��������

.
An algorithm that calculates

�
from �

�
and
�

is called a rank-
1 update algorithm. Appropriate algorithms may be found in
the standard texts [12], [14].

D. Setup algorithm

In this section, we detail how the factorisation �is cal-
culated, if necessary, upon entering the algorithm. As the
methods used are essentially standard algorithms with minor
modifications, details have been deferred to appendix II. Al-
gorithm 1 is used if an inverse factorisation method is chosen,
and algorithm 2 is a Cholesky factorisation is chosen (see [12],
for example). Both algorithms share two important features,
namely:

1) If, as a result of a constraint being either activated or
deactivated,

��is improperly defined in such a way
that

����is non-singular, the setup algorithm may be
called to extend

��to its correct size.
2) If as a result of running the algorithm it is found that�� ����then

��*
�3�in (18) will already be, at least
partially, calculated. Hence most of the computational
cost involved in calculating a step using equation (18)
is avoided.

Indeed, based on point 1 above, the setup algorithm may be
thought of as a means maximising ��. Any prior knowledge

(in the form of a partial factorisation) is used to “kick-start”
the algorithm, minimising computational cost. As the default
active set definition upon entering the algorithm in a “cold-
start” situation is for all variables ;� to be actively constrained
at a lower bound (ie. ���%), the setup algorithm will rarely
be required to increase��significantly, and hence contributes
little to the computational cost of the algorithm.

Consider algorithm 1. If this algorithm terminates with�� ����then, as noted previously, the variable
��*
�3�

calculated most recently in algorithm 1 may be used directly
during the subsequent iteration of the main algorithm when
calculating the step using equation (18).

The analogous situation when using a Cholesky update
method is not quite so simple. However, if algorithm 2
terminates with �� ����a significant computational cost
saving may still be had when calculating

��*
�3�by solving:

��	
�3��*�3*
���	

where 	is as calculated during the final iteration of algorithm
2, and:

�3�<�3��3* =
is the vectorial part of

��*
�3�to be used directly in equation
(18).

E. Fast Matrix Inversion

We now consider how the factorisation �of the relevant part
of the Hessian matrix

��may be used to quickly calculate
the vector �, where �is known,

�����and, by assumption,��is non-singular and ���%.
If we are using an inverse factorisation method, then this

calculation is trivial, as � ���. If we use a Cholesky
factorisation and NoChol �FALSE then, apart from some
minor housekeeping, the calculation is not too difficult. In
detail:
� Swap elements

�
and

�
in �.

� Using forward elimination, find 
, where
�

��.

� Negate element
�

of 
.
� Using back substitution, find �, where

����
.
� Swap elements

�
and

�
in �.

If we use a Cholesky factorisation and NoChol �TRUE
then may simply calculate the solution explicitly, ie.:<�	� =�<�A	)	�	��	��	�	 =
F. Activating a Constraint

When a constraint is activated by the function��#!��4'#++F�I
��,, � must be updated to reflect the
modification to the active set. We consider the following
possibilities:

1) +F�I��F�I� ��
.

2) +F�I��F�I� ��
.
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3) +F�I��F�I� ��F�I� ��
.

4) +F�I��F�I� ��
and �F�I� ��.

5) +F�I��F�I� and �F�I� ��.
Where the Hessian

��must be singular in cases 1, 2 and
4, and may be singular in case 5. For the first �cases, the
modification to �is as follows:

1: As neither
���nor

����are affected, �F��	I��F�I.
2: While

��� is not affected,
���� is, and so it may

be possible to increase ��if �F�I� ���F�I� ��. Hence
if �F�I� ���F�I� ��then, after making the appropriate
changes to

��, algorithm 1 (or 2, depending on the
update method used) is called to update �and maximise��.

3: After this operation, �will revert to its default form.
Hence all matrices in �F��	Iwill be empty, �F��	I� �%
and NoChol �FALSE if a Cholesky update method is
used.

4: �must be re-built from scratch after the appropriate
changes have been made to

��.

For case 5, the modification is dependent on the factorisation
used, as will now be described.

1) Inverse update method: The inverse of
��at iteration�

,
�F�I

, may be partitioned as follows:

�F�I�	
�� �� ��*��� �� ��	
�* �	 ��

��
where

������ !"�	�@�� !"�	�.
If
��was non-singular prior the activation of the constraint

(ie. �F�I� ��F�I� ) then:

�F��	I�<�� ��*
�* ��

=���� <���	 =<���	 =� (22)

Otherwise, we may still use equation (22) to calculate an
interim form of �F��	I, and then call algorithm 1 to increase
(to a maximum) �F��	I� .

According to theorem 8, equation (22) must be well defined,
and, in particular, �� ��%

. Unfortunately, due to cumulative
numerical errors, we may find that this is not true. Even if�� ��%

, if �����' it would be inadvisable to use equation
(22), as the likely result would be large numerical errors in�

.
Our strategy for dealing with this problem is to attempt to

reduce �F�I� by some minimal amount to ensure that
�F��	I

is non-singular to working precision (ie. ����-'when we
attempt to use equation (22)).

Let us assume +F�I��F�I� (if this is not true then, noting
that

�
may be re-ordered in the same way as

��, we may
perform the operation !�4��+F�I
�F�I� 
����to make it so).

Hence
�� has zero size. If �F�I� -�then our strategy is to

partition
�

as follows:

�F�I�<�� ���
�� ��

=

where
�����	@�	. We aim to find the smallest value of�� in the range

�����
� !"� �such that ���������'.

If we succeed in finding such an �� then:

�F��	I���������	���
where

��	� may be calculated using a simple variant of
algorithm 1. Note that it is not computationally worthwhile
to increase �� past the limit set above, as the computational
cost of calculating

��	� would then exceed the computational
cost of re-calculating

�F��	I
from scratch using algorithm

1. If this method fails we set ����%
,
�

empty and use
algorithm 1 to calculate

�F��	I
from scratch.

From a computational perspective, this method is far from
optimal if��becomes large. However, in our experience cases
where ����are extremely rare, and in any case indicate
that a significant cumulative numerical error has occurred that
is best rectified by re-calculating

�
from scratch.

2) Cholesky update method: Firstly, let us suppose that+F�I ���
. Hence

�F�I
may be partitioned as follows:

�F�I�	
�� 2 2��� �� 2�
�* �	 ��

��
where

�� ���� !"�	�@�� !"�	�
. Assuming that �F��	I� ��F�I� ��:

�F��	I ��<�� 2
�* �

��
=

where:

�
��������������	��	

If �F�I� ���F�I� then algorithm 2 is called subsequently to
maximise ��.

If, however, +F�I ��
, then our only recourse is make

�

empty, ���%
and NoChol �FALSE, make the necessary

changes to
��etc., and then use algorithm 2 to make

�F��	I
from scratch. In extreme cases, we may find (as a result of
numerical errors) that �F��	I� ��F�I� ��. However, unlike
the similar problem when dealing with an inverse update, this
may occur only if +F�I��

, and even then is, in our experience,
quite rare.

G. De-activating a Constraint

When a constraint is de-activated by the function����+-F�I
��,, �must be updated to reflect the modifica-
tion to the active set. Clearly, if

�� is singular and �F�I� ��
then adding a row and column to the end of this matrix will not
effect

��. Hence if �F�I� ���F�I� and �F�I� ��, �F��	I��F�I. Otherwise, the re-entrant properties of algorithms 1 and
2 may be used to advantage by simply updating

�� etc.
appropriately and calling the relevant factorisation algorithm,
1 or 2.
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H. Optimisations

1) Computational cost optimisation: In theorem 4 it was
shown if

�F	I ��%then there exists some �such that
�F���I�%

for all �
-%

. Furthermore, for most of these iterations, if�F���I� �%then �F���I� will have the form:�F���I� �< 2�F���I���
=

where �F���I��� ��� �
�"��� . Indeed, in most cases (all if theorem
8 holds true in spite of numerical errors), �F���I��� ��

. Using
this fact, it is possible to significantly accelerate the calculation
of equation (16) using �.

First, suppose we are using an inverse factorisation. In this
case, if

�F�I�%and �F�I�����F�I� , (16) reduces to:<� F�I�3F�I� =������F�I���
where

�����F� !"� �	I@� !"��� and:
����� ��� �

If we are using a Cholesky factorisation then, if
�F�I�%

,
NoChol �FALSE, �F�I� ��and �F�I�����F�I� , (16) may be
solved as follows:
� Using forward elimination, find 
, where

���
��F�I���.
� Using back substitution, find �, where

����<2



=
.

� Swap elements
�

and
�

in �.
� <� F�I�3F�I� =���

where
������ !"���@� !"��� and:

��< �� 2
���� ���

=
Another area where some computational cost savings may

be made is the calculation of ���F�I� 
��F�I�when
�� is

singular. As was shown in equation (18), �3F�I���2
in this

case. Extending our notation in the obvious manner, we see
that equation (8) may be simplified to:���F�I���F�I ��<>� ?��� ����> ?�� ���=	�
� F�I�3F�I���;F�I��

�
��

2) Memory usage optimisation: As our algorithm stores����@�
in full and also any matrices associated with

the factorisation �, it will naturally use significant amounts
of memory if our training set size �is excessively large.
Hence, the algorithm we have described is intended mainly
for problems where the amount of training data is small to
moderate. Because of this, it is important to consider issues
of memory use, and how it may be minimised.

It will be noted that all matrices used in our algorithm are
either lower triangular (

�
, as used in the Cholesky update

method) or symmetric (the large matrix
�

, and also
�

, as
used in the inverse update method). We take advantage of this
symmetry by storing all of these matrices in lower triangular
form, thus reducing matrix memory usage from ������
(assuming ��(�) to

	������.

I. Comparative Merits

In this section, we have introduced two related rank-1
updating algorithms for the re-inversion or re-factorisation of
the Hessian matrix, viz., the inverse update method, and the
Cholesky update method respectively. In this subsection, we
will compare their relative merits and de-merits.

1) Inverse update method: The advantages and disadvan-
tages of the inverse update method are:
� Advantages:

1) Speed - updating the inverse Hessian is significantly
faster than calculating it from scratch.

2) Simplicity - the algorithms to form and update the
factorisation are simpler than their Cholesky update
counterparts.

� Disadvantages:

1) Numerical stability - as was seen in section IV-
F.1, numerical errors can easily lead to significant
inaccuracies in our inverse factorisation

�
and,

consequently, our optimal solution.

2) Cholesky update method: The advantages and disadvan-
tages of the Cholesky update method are:
� Advantages:

1) Speed - calculating the step is significantly faster
than calculating from scratch.

2) Numerical stability - while it is still possible that,
due to numerical errors, we may have problems
with previously known non-singular matrices “ap-
pearing” non-singular as a result of the de-activation
of a constraint, the likelihood of such an event is
much lower when using a Cholesky update method
than when using an inverse update method.

� Disadvantages:

1) Complexity - the Cholesky update method is sig-
nificantly more complex than the inverse update
method.

3) Computational complexity comparisons: Another way
in which we can compare the two proposed algorithms is to
consider their respective computational complexities.

Consider the computational cost of an iteration. This may
be split into factorisation dependent and factorisation inde-
pendent components, where “factorisation” refers to either the
inverse or Cholesky approach. The factorisation independent
component of each iteration is the cost of calculating ��F�I�
and ��F�I , as well as performing the update. This operation
takes in the order of

����������������flops (a flop
is defined here as a floating point multiplication, addition or
square root). The factorisation dependent cost of each iteration
is the cost of calculating �3F�I� and � F�I and also the cost
of updating the factorisation whenever a constraint is activated
or de-activated.

We now consider the factorisation dependent cost in more
detail. For simplicity, we will assume that ������

(as is
most often the case), and also that the Hessian is always non-
singular. With the exception of the final step, each such step
calculation will be followed by a constraint activation or de-
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activation. Hence it makes sense to look at the combined step
plus constraint activation/de-activation cost.

For a step followed by a constraint activation, the compu-
tational cost of the inverse update method is approximately����+��+F�I,flops, compared to ����+��+F�I,
flops for the Cholesky method. Clearly, the inverse update
method is significantly faster here. For a step followed by
a constraint de-activation, however, the computational cost of
the inverse update method is approximately

���flops, which
makes it significantly slower than the Cholesky method, which
takes approximately ��flops.

From this, we observe that neither algorithm has a signifi-
cant computational advantage over the other. For our dataset,
we found the Cholesky method to be marginally faster than
the inverse update method. However, it is known that usually��(�, so the factorisation dependent cost tends to be
swamped by the factorisation independent cost. Therefore,
in most cases, the computational cost issues of the two
factorisation methods are likely to be less important than the
complexity versus numerical stability trade-off.

V. INCREMENTAL LEARNING AND FORGETTING

The application of our algorithm to the problem of
incremental learning is straightforward. Suppose that we
have found an optimal solution to (4) for a given train-
ing set

�����	
�	�
��
��
��� 
���
���� to which
we wish to add the additional training points

�� �����	
��	�
���
���
��� 
�����
������. Define:
�3�2����?3��> �0�A�)B�����BC����
�B���A�)B������BC����
��B� (23)

We then add the new training points to our existing solution,
actively constraining all elements of

�3to
%
, as follows:3��<3�3=

, etc.?���? �?��? ��?�
If
��-2then the KKT conditions (5) will be satisfied and

our solution is optimal. Otherwise, we re-enter the optimisa-
tion algorithm (starting with our current solution) to find the
optimal solution. Note that we do not re-calculate our inverse
or factorisation �F	I, as we can use the old factorisation from
the last time we ran the algorithm.

Forgetting may be implemented in a similar manner. We
simply remove the ;�’s corresponding to the training points
that we want to remove, re-calculate

�
and �according to (6),

and re-enter our optimisation algorithm if the KKT conditions
(5) are not satisfied. Note that this will only happen if we
remove support vectors.

During forgetting, the inverse or factorisation �F	Imay be
altered due to the removal of free variables. The effect of the
factorisation is the same as for the activation of a constraint
on that variable, and so we can update our factorisation in the
same manner as we would for a constraint activation.

VI. CONSTRAINT PARAMETER VARIATION

When designing and training an SVM, we need to select the
kernel function and the constraint parameter

/
. Traditionally,

this has been done by trial-and-error for kernel selection and
(near) exhaustive search for

/
. More recently, [15] has given

an algorithm for automatically selecting the kernel parameters
in order to minimise an upper bound on the generalisation
error. In either case, we must optimise the SVM for a large
number of different choices of parameter. Using a batch re-
solve method tends to make the process extremely slow.

Suppose that we have optimised our SVM for a given set
of parameters, and want to repeat the process for a slightly
different set of parameters. It is reasonable to expect that,
assuming the difference between the parameters is sufficiently
small, the solution for the new parameters will be close to
the solution for the old parameter set. We will now show how
the warm-start concept may be used to take advantage of this
concept.

A.
/

Variation

Suppose that we vary
/

by �/, where
/��/�%

.
Assuming for the moment that 3��0�/��/�, we modify
our present solution as follows:3���3���/0

<��=��<��=��/	��

>��?���?�?�

�
���0 (24)

If ���%
then the KKT conditions (5) will be satisfied

and our solution will be optimal. Otherwise, we re-enter the
optimisation algorithm (starting with our current solution) to
find the optimal solution. Once again, we need not re-calculate�F	I from scratch.

If 3� ��0�/��/�then we can complete our variation as
a number of small steps. For each step, we take the largest step
possible satisfying the previous condition, and then activate
the relevant upper bound constraint (updating the factorisation
as described previously). The process is then repeated until
the required change in

/
has been achieved. Specifically, we

calculate: �/�� &'#FGH)�HIJK��/�;���� 4�"&'#��FGH)�HIJK��/�;��
We then vary

/
by

�/
using (24) as described above.

After completing this operation, we activate an upper bound
constraint on ;B as described previously. We then repeat the
process using �/���/��/. As �� is finite, after a
finite number of repetitions we will find that either 3� �0�/��/�or ���%. In either case, we will have affected
the required adjustment to

/
.

B. Kernel Variation

If the kernel function is modified, the matrix
?

will change,
and hence the Hessian will need to be re-factorised. We can
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then re-calculate
��
��accordingly using (6), and re-enter our

optimisation algorithm if necessary. Unfortunately, the cost of
re-factorising the Hessian is likely to be significant in this case.
Nevertheless, it is theoretically possible to use this method for
modifying the kernel function.

VII. EXPERIMENTAL RESULTS

A. Implementation Details

We implemented both our algorithm and Platt’s SMO al-
gorithm [16] in C++1. Two computers were used during the
experiment. Smaller tests were carried out on a 1GHz Pentium
III with 512MB running Windows 2000, using DJGPP for code
compilation. Larger tests were carried out on a 128 processor
Compaq Alphaserver SC, with 64 GByte of memory and 1.4
TByte of disk running UNIX2, using cc for code compilation.

To ensure the comparison was based on algorithmic effi-
ciency rather than the efficiency of the implementation, ability
of the compiler to optimise the code and the speed of the com-
puter on which the experiment was done, computational cost
has been measured explicitly in terms of flops, where one flop
is defined here as one floating point addition, multiplication
or square root (we are assuming here that an fpu is present).

For the SMO algorithm, an accuracy of '��%� was
chosen. All training data was normalised (to give a zero mean
and unity variance) and randomly ordered prior to use. The
kernel function used for all experiments was the quadratic

kernel
C��
D�����	����D�.

B. Experimental Methodology

Our aim here is to investigate the advantages and disadvan-
tages of using an incremental training algorithm instead of a
batch training algorithm in those situations where a partial
solution (either in the form of an SVM trained on some
subset of the complete training set, or an SVM trained using
different parameters) is available. As such, the accuracy of
the resultant SVM (which is essentially independent of the
training algorithm in any case) is of secondary importance,
with the computational cost of updating (or re-training) the
SVM being our primary concern.

When we speak of the computational cost of updating
an SVM, either through incremental learning or incremental
parameter variation, it is assumed that we are given the “old”
solution a-priori. So the computational cost of updating this
SVM will include only the cost of modifying this old solution
in an appropriate manner. Specifically, when investigating in-
cremental training we are concerned with the cost of updating
an SVM with a base training set of�training pairs, to which
we add �additional training pairs.

For our first experiment, we consider incremental learning
where the problem at hand is relatively simple, and a high
degree of accuracy may be achieved using only a small fraction
of the complete training set (UCI mushroom toxicity dataset

1code available at http://www.ee.mu.oz.au/staff/swami/svm/
2http://www.vpac.org
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[17]). In this case, an error rate of less than �
�

(tested using�%%
vectors not contained in the training set) was achieved

using a training set of less than
�%%

vectors out of a possible�%%%
. This allows us investigate the “steady state” compu-

tational cost where the decision surface is essentially static,
suffering only occasional perturbations when new training data
is added to the training set. The accuracy of the SVM for
different training set sizes is shown in figure 2.

For our second experiment, we consider an incremental
training problem of significantly greater difficulty (the adult
dataset from the delve repository3). In this case we were
unable to achieve an error rate less than approximately

�%�
, as

shown by figure 3 (measured using
��%vectors not contained

in the training set). This allows us to investigate the properties
of the algorithm when the solution changes significantly with
each increment.

For our third and final experiment, we consider the compu-
tational cost of incrementally varying the constraint parameter/

, as may be required to find the optimal value for this
constraint parameter. For speed of calculation, we have chosen

3see http://www.cs.toronto.edu/�delve/data/datasets.html
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Fig. 4. Flop count vs. training set size (adult dataset) - SMO algorithm

(dashed line batch, solid line incremental (���)).

to use the smaller adult dataset for this component of the
experiment.

C. Experimental results

1) Incremental Training: Figure 4 is typical of the com-
putational cost for the SMO algorithm (adult dataset). The
dashed line in this figure shows the computational cost of batch
optimising the SVM using an SMO algorithm for different
training set sizes, and the solid line the computational cost
of incrementally adding ���

training points to an existing
SVM (optimised for an existing training set size) using the
SMO algorithm4.

As can be seen from this graph, there is no advantage
to be had using incremental SMO methods. Figure 5 shows
the same result for the mushroom toxicity dataset using the
same increment size (���

). For both datasets, we found
our algorithm was significantly faster than SMO (compare,
for example, figures 4 and 6). However, it must be born in
mind that the datasets considered in the present paper are
relatively small, and the SMO algorithm is optimised for much
larger datasets where it becomes impractical to store the entire
Hessian in memory. On average, we found that the number of
flops our algorithm took to train the SVM (batch method) was
usually around

	$�� of the number of flops required by the
SMO to complete the same problem.

Figure 6 shows a comparison between batch and incremental
cost using the active set algorithm (adult dataset) for an
increment size of ���

. In this figure, the base cost is
the cost of incrementally extending the matrix

?
and also

calculating the gradient
��, and thus represents the minimum

possible incremental update cost for an increment of size
���

given an existing training set of the size indicated

4Incremental SMO learning may be achieved by simply keeping the old �
value, setting ����, and starting at this value. This method is not applicable

to decremental learning or constraint parameter variation, as in general we

must start the SMO algorithm with ��	.
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Fig. 5. Flop count vs. training set size (mushroom dataset) - SMO algorithm

(dashed line batch, solid line incremental (���)).
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Fig. 6. Flop count vs. training set size (adult dataset) - active set

algorithm (Cholesky factorisation) (in order of increasing magnitude: base

cost, incremental cost (���) and batch cost).

on the x-axis. As shown by the graph, the computational cost
for a significant proportion (���) of updates is exactly equal
to the base cost, which indicates that the optimal SVM has
not been changed when the new training data was added.
Even when the incremental cost exceeds this base cost, the
incremental computational cost is almost always significantly
less (and always, for our datasets, at least slightly less) than
the comparable batch optimisation cost. On average, we found
that the incremental update method was

��%
times faster than

the comparable batch method for this example. If only those
increments which modified the SVM in a non-trivial manner
were considered, this dropped to

��
times faster on average,

which is still a significant improvement.
For larger increment sizes (for example, ���%%

for the
adult dataset is shown in figure 7, ���%%%

for mushroom
toxicity dataset in figure 8), the incremental cost is more
likely to exceed the base cost. However, we still found the
incremental method to be faster than the batch method in all
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Fig. 8. Flop count vs. training set size (mushroom dataset) - active set

algorithm (Cholesky factorisation) (in order of increasing magnitude: base

cost, incremental cost (���			) and batch cost).

cases (for the datasets in question).
For this first part of the experiment, we found no significant

differences between the performance of the two proposed
factorisation methods (inverse and Cholesky), either in com-
putational cost or the optimal SVM found. However, as will
be seen in the following section, this does not indicate that
there are no differences in general.

2) Incremental Constraint Parameter Variation: Table I
gives the computational cost of incrementally changing

/
from some initial value (given at the top of the column) to
new value (given at the left of the row), as well as the batch
computational cost of batch-optimising for the

/
value in

question along the diagonal, for the adult dataset.
It will be noted that, so long as we are increasing

/
, the

computational cost of the incrementally modifying an SVM
is usually smaller than the computational cost associated with
batch re-training for the new value of

/
. Indeed, for most cases

TABLE I

COMPUTATIONAL COST MATRIX (MFLOPS) - C VARIATION (ACTIVE SET

METHOD - CHOLESKY FACTORISATION). INITIAL �VALUES ARE SHOWN IN THE

TOP ROW, TARGET �VALUES IN THE LEFT COLUMN. DIAGONAL ENTRIES SHOW

BATCH COSTS.

batch 0.01 0.1 1 10 100 1000 10000

0.01 35.3 82.3 133 159 178 185 184

0.1 8.79 38.7 123 156 180 188 187

1 21.6 18.6 73 156 192 200 200

10 69.7 64.8 50.6 177 181 215 227

100 143 160 148 81 424 214 274

1000 320 335 299 180 87.3 1020 326

10000 426 451 468 257 167 107 1810

shown in table I it is computationally cheaper to batch train an
SVM for a small value of

/
(
/�����) and then incrementally

modify
/

to some larger value (
/�����) than it is to batch train

the SVM using
/�����.

When decreasing
/

, however, we found that in many cases
(especially when either the change in

/
was large or the target/

was small) it was computationally cheaper to batch re-
train the SVM using the new value of

/
rather than using an

incremental approach. This is not too surprising, as when
/

is decreased we are more likely to have to modify the Hessian
factorisation �than when

/
is increased, resulting in a higher

computational cost for the former.

We were unable to complete the table using an inverse
factorisation method, as we found that the numerical errors re-
sulting from the inverse update factorisation procedure quickly
became unacceptably high, leading to convergence problems.
This result, combined with the similarity of computational
cost between the two factorisation methods, would appear to
indicate that, in general, the Cholesky factorisation method
is superior to the inverse factorisation method, in spite of the
additional algorithmic complications involved in its implemen-
tation.

VIII. CONCLUSIONS

We have investigated the use of incremental active set
methods in the training of support vector machines. We have
presented a simple warm-start active set algorithm applicable
to the SVM problem, and demonstrated the computational
advantages which incremental methods have over batch meth-
ods. We have also introduced a technique for fast constraint
parameter variation using the same warm-start active set
concept. All of these methods have been demonstrated on a
practical, non-trivial problem, and the computational benefits
have been shown to be significant.
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APPENDIX I

PROOFS OF PROPERTIES OF THE HESSIAN MATRIX

The following proofs refer to theorems in section IV-A.
Theorem 6: If ����then either

?�is non-singular or,
after re-ordering,

?�is singular,
?��is non-singular (��*�����*?�	�����*) and

��* ������*?�	��>��.
Proof: Suppose

?� is non-singular. Given that
>�

is non-zero and
?� is positive definite, it follows that>��?�	�>� ��%

. Therefore
��is non-singular as required

as we can form its inverse:��	� �	
� 	
��������� �������

���������
������
��������� ?�	� �����������������������

��
Now suppose that

?�is singular. First, consider the case
where

?��2
. As ����it follows that

��is singular,
which contradicts the known non-singularity of

��. So
?� ��2

. Hence it must be possible (after some re-ordering) to write?�in the form:?��<?�� ?��?��� ?���?�	��?�� =
>��<>��>�� =

where
?�� is positive definite. As

��is non-singular its
inverse must be:��	� �<?�	�������	������	���	� ��	 =
where:

��< 2 >���?���?�	��>��>����>���?�	��?�� �>���?�	��>�� =
��<?���>���=?�	��
So, D is singular iff

�� is singular. The two necessary
conditions for D to be non-singular are as stated in the
theorem.

Theorem 7: For all iterations
� -�

followed by the
operation

����+-F�I
��,, �F��	I� -�F�I� .
Proof: If�F�I� �%then the theorem is trivial. Otherwise,

note that the operation
����+-F�I
��,will result in a new

row and column being added to the end of
��, but otherwise��will not be modified, so ��cannot decrease.

Theorem 8: For all iterations
� -�

followed by the
operation ��#!��4'#++F�I
��,, �F��	I� -�F�I� ��.

Proof: Clearly, if we are performing the operation��#!��4'#++F�I
��,, �F�I� -�
and hence, from theorem

1, �F�I� -�
likewise.

If �F�I� ��
then, as �F�I� -�

by definition, it follows that�F��	I� -�F�I� ��.
If �F�I� ��then �F��	I� -�

, and hence by theorem 1,�F�I� -�
, so �F��	I� -�F�I� ��.

The case �F�I� -�
is not so simple. First off, suppose

that +F�I��F�I� . As
�F�I� is unaffected by the operation, it

follows that its non-singular nature will not change and hence�F��	I� -�F�I� ��.

Now consider the case where
��+F�I��F�I� . Firstly, we

note that for the positive semidefinite matrix
?�if

A�)��%,
due to the condition of positive semidefiniticity,

A�)B�AB)��%
for all

�
. So, at most

�
element on the diagonal of

?�may
be zero. To see why this is so, suppose �diagonals of

?�
are zero. Then re-order things so that all of the zero diagonals
of
?�lie at the bottom right-hand of the matrix, thus:?��<?�� ?��?��� ?��=

where
?���2���@�and

?���2
. But by theorem 6,

this is not possible, so we conclude that at most one element
on the diagonal of

?�may be zero. We assume that
A	)	 ��%

(if this is not true, then it may be made so by appropriate re-
ordering, so there is no loss of generality involved in making
such an assumption), and also assume that +F�I��F�I� (again,
if this is not true, it may be made so by appropriate re-
ordering).

Borrowing the notation of section IV-C, let us define:

�
���	
��� ��� ���*���� % >��*��*� >�* ?�*

��
It is not difficult to show that under these circumstances we

may always calculate a lower triangular matrix �
�

with positive
diagonals such that:

�
�����	
� % 2�% �� 2�2 2 	

�����
Partition �

��and �
�

as follows:

�
���<���� �����

��
���� �

��� =
�
��<��� 2

�
���� ���

=
But this implies that we can write:

�
�������	
� % 2�% �� 2�2 2 	

������
where �

��is a lower triangular matrix with positive diagonals,
and so �

���must be non-singular. Hence we may conclude
that if

��+F�I��F�I� then �F��	I� -�F�I� ��.
So, in general, for all iterations

�-�
followed by the

operation ��#!��4'#++F�I
��,, �F��	I� -�F�I� ��.
APPENDIX II

SETUP ALGORITHMS

Algorithms 1 and 2 are used to calculate �during the
initialisation phase of the optimisation algorithm, and also
to update �when the active set is modified. The algorithms
themselves are very slight variants of standard algorithms from
the literature (for example, [12]), and are therefore presented
without commentary.
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Algorithm 1: Calculate
�

.
INVFACT(

��)

(1) if ���%
(2) ����%
(3)

�
:= empty.

(4) return

(5) if ���%
(6) �����
(7)

���	
�A	)	 �	�	 %
��

(8) while �����
(9) 	
�*�3

�����	
���
����

��
(10)

�����	
�������
��

(11) �����������	
�*�3
��

(12) if ����'then return

(13) ���	���

�*
�3�
�
����

(14)
���	
� 22� %

���	
���

�
(15) ��������
(16) return
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