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Abstract—This paper presents a novel learning algorithm for ef-
ficient construction of the radial basis function (RBF) networks
that can deliver the same level of accuracy as the support vector
machines (SVMs) in data classification applications. The proposed
learning algorithm works by constructing one RBF subnetwork to
approximate the probability density function of each class of ob-
jects in the training data set. With respect to algorithm design, the
main distinction of the proposed learning algorithm is the novel
kernel density estimation algorithm that features an average time
complexity of O(nlogn), where n is the number of samples in
the training data set. One important advantage of the proposed
learning algorithm, in comparison with the SVM, is that the pro-
posed learning algorithm generally takes far less time to construct
a data classifier with an optimized parameter setting. This feature
is of significance for many contemporary applications, in partic-
ular, for those applications in which new objects are continuously
added into an already large database. Another desirable feature
of the proposed learning algorithm is that the RBF networks con-
structed are capable of carrying out data classification with more
than two classes of objects in one single run. In other words, unlike
with the SVM, there is no need to resort to mechanisms such as
one-against-one or one-against-all for handling datasets with more
than two classes of objects. The comparison with SVM is of par-
ticular interest, because it has been shown in a number of recent
studies that SVM generally are able to deliver higher classification
accuracy than the other existing data classification algorithms. As
the proposed learning algorithm is instance-based, the data reduc-
tion issue is also addressed in this paper. One interesting obser-
vation in this regard is that, for all three data sets used in data
reduction experiments, the number of training samples remaining
after a naive data reduction mechanism is applied is quite close
to the number of support vectors identified by the SVM software.
This paper also compares the performance of the RBF networks
constructed with the proposed learning algorithm and those con-
structed with a conventional cluster-based learning algorithm. The
most interesting observation learned is that, with respect to data
classification, the distributions of training samples near the bound-
aries between different classes of objects carry more crucial infor-
mation than the distributions of samples in the inner parts of the
clusters.
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1. INTRODUCTION

HE RADIAL basis function (RBF) network is a special

type of neural networks with several distinctive features
[18], [20], [24]. Since its first proposal, the RBF network has
attracted a high degree of interest in research communities. A
RBF network consists of three layers, namely the input layer,
the hidden layer, and the output layer. The input layer broadcasts
the coordinates of the input vector to each of the units in the
hidden layer. Each unit in the hidden layer then produces an
activation based on the associated RBF. Finally, each unit in the
output layer computes a linear combination of the activations of
the hidden units. How a RBF network reacts to a given input
stimulus is completely determined by the activation functions
associated with the hidden units and the weights associated with
the links between the hidden layer and the output layer.

RBF networks have been exploited in many applications and
quite a few learning algorithms have been proposed [2], [4],
[5], [14], [16], [24], [26], [29], [30]. The problems that RBF
networks have been applied to include function approximation,
data classification, and data clustering. Depending on the prob-
lems that the learning algorithms are designed for, different op-
timization criteria may be employed.

One of the main applications that RBF networks have been
applied to is data classification. However, latest development in
data classification research has focused more on support vector
machines (SVMs) [10] than on RBF networks, because several
recent studies have reported that SVM generally are able to de-
liver higher classification accuracy than the other existing data
classification algorithms [13], [15], [17]. Nevertheless, SVM
suffer one serious drawback. That is, the time taken to carry out
model selection could be unacceptably long for some contempo-
rary applications, in particular, for those applications in which
new objects are continuously added into an already large data-
base. Therefore, how to expedite the model selection process
has become a critical issue for SVM and has been addressed
by a number of recent works [8], [11], [12], [19]. However, the
approaches that have been proposed so far for expediting the
model selection process of SVM all lead to lower prediction ac-
curacy. Anyway, this is an issue that deserves continuous inves-
tigation. Another minor drawback of SVM is that mechanisms

1045-9227/$20.00 © 2005 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on March 18, 2009 at 23:52 from |IEEE Xplore. Restrictions apply.



226

such as one-against-one or one-against-all must be invoked to
handle datasets with more than two classes of objects.

In this paper, a novel learning algorithm is proposed for
efficient construction of the RBF networks that can deliver
the same level of accuracy as SVM in data classification ap-
plications without suffering the drawbacks of SVM addressed
above. In the RBF networks constructed with the proposed
learning algorithm, each activation function associated with the
hidden units is a spherical (or symmetrical) Gaussian function.
In some works, the specific type of RBF networks with spher-
ical Gaussian functions (SGFs) is referred to as the spherical
Gaussian RBF network [31]. For simplicity, we will use SGF
networks to refer to the RBF networks constructed with the
learning algorithm proposed in this paper. With respect to
algorithm design, the main distinction of the proposed learning
algorithm is the novel kernel density estimation algorithm de-
signed for efficient construction of the SGF networks. The main
properties of the proposed learning algorithm are summarized
as follows

1) The SGF networks constructed with the proposed learning
algorithm generally deliver the same level of classification
accuracy as the SVM.

2) The average time complexity for constructing an SGF net-
work is bounded by O(n logn), where n is total number
of training samples.

3) The average time complexity for classifying n’ incoming
objects is bounded by O(n’ logn).

4) The SGF networks are capable of carrying out data
classification with more than two classes of objects in
one single run. That is, unlike with the SVM, there is no
need to resort to mechanisms such as one-against-one or
one-against-all for handling data sets with more than two
classes of objects.

As the SGF networks constructed with the proposed learning
algorithm are instance-based, the efficiency issue shared by
almost all instance-based learning algorithms must be addressed.
Thatis, a data reduction mechanism must be employed to remove
redundant samples in the training data set in order to improve
the efficiency of the instance-based classifiers. Experimental
results reveal that the naive data reduction mechanism employed
in this paper is able to reduce the size of the training data set
substantially with a slight impact on classification accuracy.
One interesting observation is that, in the three data sets used
in experiments, the number of training samples remaining after
data reduction is applied and the number of support vectors
identified by the SVM software are in the same order. In
fact, in two out of the three cases reported in this paper, the
difference is less than 15%. Since data reduction is a crucial
issue for instance-based learning algorithms, further study on
this issue should be conducted.

This paper also compares the performance of the SGF net-
works constructed with the proposed learning algorithm and the
RBF networks constructed with a conventional cluster-based
learning algorithm [16]. The most interesting observation
learned is that, with respect to data classification, the distribu-
tions of samples near the boundaries between different classes
of objects carry more crucial information than the distributions
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of samples in the inner parts of the clusters. Since the con-
ventional cluster-based learning algorithm for RBF networks
places one RBF at the center of a cluster, the distributions
of samples near the boundaries between different classes of
objects may not be accurately modeled. As a result, the RBF
networks constructed with the conventional cluster-based
learning algorithm in general are not able to deliver the same
level of accuracy as those data classification algorithms such
as SVM and the SGF networks that exploit the distributions
of samples near the boundaries between different classes of
objects.

Section II presents a review of the related works. Section III
presents an overview of how data classification is conducted
with the proposed learning algorithm. Section IV elaborates the
novel kernel density estimation algorithm on which the pro-
posed learning algorithm is based. Section V discusses the im-
plementation issues and presents an analysis of time complexity.
Section VI reports the experiments conducted to evaluate the
performance of the proposed learning algorithm. Finally, con-
cluding remarks are presented in Section VII.

II. RELATED WORKS

As mentioned earlier, there have been quite a few learning
algorithms proposed for RBF networks. The learning algorithm
determines the number of units in the hidden layer, the activa-
tion functions associated with the hidden units, and the weights
associated with the links between the hidden and output layers.
Learning algorithms designed for different applications may
employ different optimization criteria. The general mathemat-
ical form of the output units in a RBF network is as follows:

fi(@) = Zwi,m(r)

where ]/”; is the function corresponding to the jth output unit
and is a linear combination of A RBFs 11,73, ..., 7. Basically,
there are two categories of learning algorithms proposed for
RBF networks [5], [24], [26]. The first category of learning al-
gorithms simply places one RBF at each sample [25]. On the
other hand, the second category of learning algorithms attempts
to reduce the number of hidden units in the network, or equiv-
alently the number of RBFs in the linear function above [9],
[16], [21]-[23]. One primary motivation behind the design of
the second category of algorithms is to improve the efficiency of
the learning process, as the conventional approaches employed
to figure out the optimal parameter settings for an RBF network
involve computing the inverse of a matrix with dimension equal
to the number of hidden units in the network.

As mentioned earlier, one of the main applications of RBF
networks is data classification. Most learning algorithms pro-
posed for constructing RBF network-based classifiers conduct
a clustering analysis on the training data set and allocate one
hidden unit for each cluster [5], [14], [16], [22]. Algorithms
differ by the clustering algorithm employed and how the param-
eters of the RBF network are set. The cluster-based approaches
effectively improve the efficiency of the learning algorithm and
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reduce the complexity of the RBF network constructed. How-
ever, because the cluster-based approaches typically place one
RBF at the center of each cluster, the distributions of training
samples near the boundaries between different classes of objects
may not be accurately modeled. As the experimental results pre-
sented in Section VI of this paper reveals, with respect to data
classification, the distributions of samples near the boundaries
between different classes of objects carry more crucial infor-
mation than the distributions of samples in the inner parts of
the clusters. As a result, the RBF networks constructed with a
conventional cluster-based learning algorithm generally are not
able to deliver the same level of accuracy as those data clas-
sification algorithms such as SVM and the SGF networks that
exploit the distributions of samples near the boundaries between
different classes of objects.

In this paper, a novel learning algorithm for constructing SGF
networks is presented. The mathematical treatment presented in
this paper for the derivation of the learning algorithm is different
from our previous work [27]. Nevertheless, both treatments ex-
ploit essentially the same idea and result in the same equations.

III. OVERVIEW OF DATA CLASSIFICATION WITH THE PROPOSED
LEARNING ALGORITHM

This section presents an overview of how data classification
is conducted with the SGF networks constructed with the pro-
posed learning algorithm. The details of the learning algorithms
will be elaborated in the next section.

Assume that the objects of concern are distributed in an m-di-
mensional vector space and let f; denote the probability density
function that corresponds to the distribution of class-; objects
in the m-dimensional vector space. The proposed learning
algorithm constructs one SGF subnetwork for approximating
the probability density function of one class of objects in the
training data set. In the construction of the SGF network, the
learning algorithm places one SGF at each training sample.
The general form of the SGF network-based function approx-
imators is as follows:

. sl
fj(’U) = Z w; exp <_%> )

8;€S;
where
fj the SGF network-based function approximator
for class-j training samples;
v a vector in the m-dimensional vector space;
S, the set of class-j training samples;
lv — s the distance between vectors v and 8;;
w; and o; parameters to be set by the learning algorithm.

With the SGF network-based function approximators, a new
object located at v with an unknown class is predicted to be-
long to the class that gives the maximum value of the likelihood
functions defined in the following:

15il ¢
L.
)= g )
where S; is the set of class-j training samples and S is the set
of training samples of all classes.

The essential issue of the learning algorithm is to construct
the SGF network-based function approximators. In the next sec-
tion, the novel kernel density estimation algorithm designed for
efficient construction of the SGF network will be presented. For
the time being, let us address how to estimate the value of the
probability density function at a training sample. Assume that
the sampling density is sufficiently high. Then, by the law of
large numbers in statistics [28], we can estimate the value of
the probability density function f;(-) at a class-j sample 8; as
follows:

-1

(k1 +1) | R(s;)"r?
£i(8:) = : & )
T EA r(Z+1)
where
R(s;) the maximum distance between 8; and its

k1 nearest training samples of the same
class;

(R(s;)™x™/?)/ the volume of a hypersphere with radius

(T'((m/2) + 1)) R(8;) in an m-dimensional vector space;

INO)! the Gamma function [1];

kq a parameter to be set either through cross

validation or by the user.

In (2), R(8;) is determined by one single training sample and
therefore could be unreliable, if the data set is noisy. In our im-
plementation, we use (s;) defined in the following to replace
R(s;) in (2)

— 1 1
R(s;) = 202 Z l3n — ]

where 81, 82, . . ., 8k, are the k1 nearest training samples of the
same class as 8;. The basis of employing R(8;) is elaborated in
Appendix A.

IV. PROPOSED KERNEL DENSITY ESTIMATION ALGORITHM

This section elaborates the efficient kernel density estimation
algorithm for construction of the SGF network-based function
approximators. In fact, the proposed kernel density estimation
algorithm is derived with some ideal assumptions. Therefore,
some sort of adaptations must be employed, if the target data
set does not conform to these assumptions. In this section, we
will first focus on the derivation of the kernel density estimation
algorithm, provided that these ideal assumptions are valid. The
adaptations employed in this paper will be addressed later.

Assume that we now want to derive an approximate proba-
bility density function with the set of class-j training samples.
The proposed kernel density estimation algorithm places one
SGF at each sample as shown in (1). The challenge now is how
to figure out the optimal w; and o; values of each Gaussian
function. For a training sample s;, the kernel density estima-
tion algorithm first conducts a mathematical analysis on a syn-
thesized data set. The synthesized data set is derived from two
ideal assumptions and serves as an analogy of the distribution
of class-j training samples in the proximity of 8;. The first as-
sumption is that the sampling density in the proximity of 8; is
sufficiently high and, as a result, the variation of the probability
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density function f;(-) at 8; and the neighboring class-j sam-
ples approaches 0. The second assumption is that 8; and the
neighboring class-j samples are evenly spaced by a distance de-
termined by the value of the probability density function at s;.
Fig. 1 shows an example of the synthesized data set for a training
sample in a two-dimensional (2-D) vector space. The details of
the model are elaborated in the following.

1) Sample 8; is located at the origin and the neighboring
class-j samples are located at (h16;, hodi, ..., hind;),
where hy, ho, ..., h,, are integers and §; is the average
distance between two adjacent class-j training samples
in the proximity of 8;. How §; is determined will be
addressed later on.

2) The values of the probability density function f;(-) at all
the samples in the synthesized data set, including s;, are
all equal to f;(s;). The value of f;(s;) is estimated based
on (2) in Section III.

The proposed kernel density estimation algorithm begins with
an analysis on the synthesized data set to figure out the values
of w; and o; that make function g;(-) defined in the following
virtually a constant function equal to f;(s;):

gz(x)zwil Z Z
hi=—o0c0 h,,=—oc0
— (h16s,. .. b))
exp <_Ilm (s o ) )]
= f;(8i). 3

In other words, the objective is to make g;() a good approxi-
mator of f;(z) in the proximity of s;.

Let
R (y — hé;)?
a(y) = h:z_:oo exp <—T 4)
where y is a real number. Then, we have
w; {Mlmmum [q(y)]} <gi(z)<w; - {Maximum [9(v)]
yER YyER
®)

since

eXp( ||:c—(h1527h26 ..... i Z)||2)

202
oo
= [ Z exp

o)
[E oz
5 o mgleory]

Ry =—00

h15
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Fig. 1. Example of the synthesized data set for a training sample in a 2-D
vector space.

TABLE 1
BOUNDS OF FUNCTION ¢(y) DEFINED IN (4) WITH ALTERNATIVE 7; /§; RATIOS

B=0/d Bounds of g(y)
0.5 1253314144 + 1.80 x 1072
1.0 2506628275 + 134 x 10°°
1.5 3.759942412 £2.94 x 107

where £ = (21, %2,...,2m). It is shown in Appendix B that,
if o; = 6;, then ¢(y) is bound by 2.506 628 2745 + 1.34 X
10~8. Therefore, with o; = &;, g;(x) defined in (3) is virtually
a constant function. In fact, we can apply basically the same
procedure presented in Appendix B to find the upper bounds and
lower bounds of ¢(y) with alternative o;/6; ratios. As Table I
reveals, the bounds of ¢(y) become tighter, if 3 = 7;/6; is set
to a larger value. However, the tightness of the bounds of ¢(y)
is not the only concern with respect to choosing the appropriate
[ value. We will discuss another effect to consider later.

As it has been shown that, with an appropriate o;/; ratio,
gi(z) defined in (3) is virtually a constant function, the next
thing to do is to figure out the appropriate value of w; that makes
(3) satisfied. We have

9i(8:) = gi(0,...,0)

ISV o)

hi=—00 hg=—o00 o

( (h3 + 13 + ---+h,2n)6§)>
S B2 m

h=—o0

(6)

where § = o0;/6;. Therefore, we need to set w; as follows,
in order to make g;(z) a good approximator of f;(z) in the
proximity of 8;:

%) h2 m
w; <}_Z €xp (_W)> = fj(8i).
If we employ (2) to estimate the value of f;(s;), then we have

(k1 +1)-T (% +1)
P |SJ| -E(Si)m -3

A= Z exp <_W> .

h=—oc0

where

P =

(N
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So far, we have figured out that if we employ an appropriate
ratio of 8 = 0;/6; and set w; according to (7), we can make
gi(x) a good approximator of f;(x) in the proximity of s;.
The only remaining issue is to derive a closed form of o;.
In this paper, §; is set to the average distance between two
adjacent class-j training samples in the proximity of sample
8;. In an m-dimensional vector space, the number of uniformly
distributed samples, IV, in a hypercube with volume V' can be
computed by N = (V/a™), where « is the spacing between
two adjacent samples. Accordingly, we set

R(s:)y'm
/4 DT (3 + 1)
where R(s;) = (m+1/m)((1/k1) S5,

in Section III.

Finally, with (7) and (8) incorporated into (1), we have the
following approximate probability density function for class-j
training samples:

o) = ¥ e (-1 310)

b; = ®)

||8n — 8:||) as defined

8;€S;
(i +1)-T (% +1) < IIv—sin)
=D sl Taam E P
Sz V18] Risa)mowt 207
1 g \" lv — s>
=— - 9
|51 2 (A'Ua') eXp( 207 ®
8;ES; g
where
v
a vector in the m-dimensional vector space;
Sj
the set of class- 7 training samples
oi = B6; = B(R(8:)y/7/ 3/(k1 + 1)I'((n/2) + 1))

A=>0 exp( h?/23?).

In our study, we have observed that, as long as § > 0.5,
then we have A = 277 exp(—h?2/20%) = /21 - (. If this
approximation is adopted, then we can further simplify (9) and

obtain
( Y ) m / ( ” i”2 )
Z V21 - oy 201'2

IS e
(10)

V. IMPLEMENTATION ISSUES AND ANALYSIS OF

TIME COMPLEXITY

This section discusses the issues concerning implementation
of the novel kernel density estimation algorithm proposed in the
previous section and presents an analysis of time complexity.
Fig. 2 summarizes the discussion so far by showing the detailed
steps taken to create an SGF network-based data classifier and
how the SGF network works. In procedure make_classifier pre-
sented in Fig. 2, it is assumed that the optimal values of the three
parameters listed in Table II have been determined through cross
validation. In the later part of this section, we will examine the
cross validation issue.

With respect to the pseudocodes presented in Fig. 2, there are
several practical issues to address. The first issue concerns the

two ideal assumptions on which the derivation of (9) and (10) is
based, i.e., the assumptions from which Fig. 1 is derived. If the
target data set does not conform to these assumptions, then some
sort of adaptations must be employed. The practice employed in
this paper is to incorporate parameter 7.2 in Table IL. In (2), (9),
and (10), parameter m is supposed to be set to the number of
attributes of the objects in the data set. However, because the
local distributions of the training samples may not spread in
all dimensions and some attributes may even be correlated, we
replace m in these equations by 7, which is to be set through
cross validation. In fact, the process conducted to figure out the
optimal value of 7 also serves to tune w; and o;, as we also
replace m in (7) and (8) by m.

Another parameter in Table II and Fig. 2 that needs to ad-
dress is ko. Since the influence of a Gaussian function decreases
exponentially as the distance increases, when computing the
values of the approximate probability density functions at a
given vector v according to (9) or (10), we only need to include
a limited number of nearest training samples of v. The number
of nearest training samples to be included can be determined
through cross validation and is denoted by ks.

There is one more practical issue to address. In earlier dis-
cussion, we mentioned that there is another aspect to consider
in selecting the 8 = o¢;/4; ratio, in addition to the tightness of
the bounds of function ¢(y) defined in (4). If we examine (9)
and (10), we will find that the value of the approximation func-
tion at a sample 8;, i.e., f;(8;), is actually a weighted average
of the estimated sample densities at 8; and at its nearby samples
of the same class. Therefore, a smoothing effect will result. A
larger 8 = o, /6; ratio implies that the smoothing effect will be
more significant. Therefore, it is of interest to investigate the ef-
fect of 3. Our experience suggests that, as long as J is set to a
value within [0.6, 2], the value of  has no significant effect on
classification accuracy. Therefore, (3 is not included in Table II.

As far as the time complexities of the algorithms presented
in Fig. 2 are concerned, there are two separate issues. The first
issue concerns the time taken to create an SGF network with 7
training samples and the second issue concerns the time taken
to classify n’ objects with the SGF network. In both issues, we
need to identify the nearest neighbors of a sample. In our im-
plementation, the kd-tree structure is employed [3], which is a
data structure widely used to search for the nearest neighbors.
With this practice, the average time complexity for constructing
a kd-tree with n training samples is O(n logn). In procedure
make_classifier presented in Fig. 2, we need to construct c
kd-trees, if the training data set contains ¢ classes of samples.
Therefore, the average time complexity of this task is bounded
by O(cnlogn). Then, we need to identify the k1 nearest neigh-
bors for each of the n training samples and the average time
complexity of this task is bounded by O(k1n logn). As the two
tasks addressed above dominate the time complexity of proce-
dure make_classifier, the overall time complexity for the pro-
cedure is O(cnlogn + kinlogn), or O(nlogn), if both ¢ and
k1 are regarded as constants.

In procedure predict presented in Fig. 2, the time com-
plexity for classifying an incoming object is dominated by the
work to identify ko nearest training samples of the incoming
object. Therefore, the average time complexity for classifying
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Procedure make_classifier
Input: a set of training samples S = {s1, 82, ..., Sa};
parameter values of k; and m listed in Table 2; parameter value of S.
Output: an SGF network.
Begin
for each class of training samples {
let S; be the set of class-j training samples and construct a kd-tree for Sj;
for each s; € S {

let §,,8,,...,5, be the & nearest training samples of the same class as s;;
1552 K i

Znsh—s ||]

RsWr
ik +DrE+1)

compute R(s )= m+l(

compute o; =

}

hZ
compute the approximate value of A = ex|
p pp ;,Z‘o p( 7 ]

construct an SGF sub-network with the following output function:
2y L B\ oo M=sill
y)=—o —— | exp| ———1|;
5,0 |Sj|§[ﬂ-o-,J p{ 207

end

Procedure predict

Input: an SGF network constructed with Procedure make_classifier; parameter value of k,
isted in Table 2; and an input object with coordinate v;

Output: a prediction of the class of the input object;

Begin

let §;,8,, . §kz be the k, nearest samples of v in the training data set;

max = 0;
for each SGF sub-network corresponding to one class of training samples {
let T be the subset of {5, 5,,..., 5, } that consists of class-/ training samples;

181+
S|

P l|v— S||
dh |S|Z[“]m{ 207 J

si€l;
if (L(v) > max) then {
class =j
max = L(v);

compute the approximate value of L (v) =-—=f,(») with

}

return (class);
end

Fig. 2. Pseudocodes of the proposed learning algorithm and the SGF network-based classifier.
TABLE 1I

PARAMETERS TO BE SET THROUGH CROSS VALIDATION FOR
THE SGF NETWORK

then for each possible combination of parameter values we need
to construct one SGF network-based on a subset of training
samples. Then, we need to invoke procedure predict to figure
out how good this particular combination of parameter values
is. Based on the analysis of time complexity presented above,
it is apparent that the average time complexity of the cross
validation process is bounded by O(nlogn), if the number
of possible combinations of parameter values is regarded as a
constant.

ki |The parameter in equation (2).

The number of nearest training samples included in evaluating the values
of the approximate probability density functions at an input vector
according to equation (9) or (10).

m |The parameter that substitutes for m in equations (2) and (7)-(10).

k

N)

one object is bounded by O(kslogn) and the overall time
complexity for classifying n’ incoming objects is bounded by

O(kan'logn) or O(n'logn), if ks is treated as a constant.

In the discussion above, it is assumed that the optimal values
for the parameters listed in Table II have been determined
through cross validation, before procedure make_classifier is
invoked. If a k-fold cross validation process is conducted [32],

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

The experiments reported in this section have been con-
ducted to evaluate the performance of the SGF networks con-
structed with the learning algorithm proposed in this paper,
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TABLE III
BENCHMARK DATA SETS USED IN THE EXPERIMENTS. (A) THE THREE LARGER
DATA SETS. (B) THE S1X SMALLER DATA SETS

Data set #of trainil(;;).samp]es # of testing samples
satimage 4435 2000
letter 15000 5000
shuttle 43500 14500
(B).

Dataset |# of samples

Iris1 150

Wine 178

Vowel 528

Segment 2310

Glass 214

Vehicle 846

in comparison with the alternative data classification algo-
rithms. The experiments focus on the following three issues:
classification accuracy, execution efficiency, and the effect of
data reduction. The alternative data classification algorithms
involved in the comparison include SVM, K nearest neighbor
(KNN) [32], and the conventional cluster-based learning al-
gorithm proposed in [16] for RBF networks. The learning
algorithm proposed in [16] conducts clustering analysis on the
training data set and allocates one hidden unit for each cluster
of training samples. For simplicity, in the following discussion,
we will use the conventional RBF network to refer to the data
classifier constructed with the learning algorithm proposed in
[16] and the SGF network to refer to the data classifier con-
structed with the learning algorithm proposed in this paper.
In these experiments, the SVM software used is LIBSVM [7]
with the radial basis kernel and the one-against-one practice
has been adopted for the SVM, if the data set contains more
than two classes of objects.

Table III lists main characteristics of the nine benchmark
data sets used in the experiments. All these data sets are
from the UCI repository [6]. The collection of benchmark
data sets is the same as that used in [15], except that DNA
is not included. DNA is not included, because it contains
categorical data and an extension of the proposed learning
algorithm is yet to be developed for handling categorical data
sets. Among the nine data sets, three of them are considered
as the larger ones, as each contains more than 5000 samples
with separate training and testing subsets. The remaining six
data sets are considered as the smaller ones and there are
no separate training and testing subsets in these six smaller
data sets. Accordingly, different evaluation practices have been
employed for the smaller data sets and for the larger data sets.
For the three larger data sets, tenfold cross validation has
been conducted on the training set to determine the optimal
parameter values to be used in the testing phase. On the other
hand, for the six smaller data sets, the evaluation practice
employed in [15] has been adopted. With this practice, tenfold
cross validation has been conducted on the entire data set and
the best result is reported. Therefore, the results reported with

this practice just reveal the maximum accuracy that can be
achieved, provided that a perfect cross validation mechanism
is available to identify the optimal parameter values.

In these experiments, (3 in (9) has been set to 0.7. Our obser-
vation in this regard is that, as long as  is set to a value within
[0.6, 2], then the value of 3 has no significant effect on clas-
sification accuracy. On the other hand, parameters « and (3 in
the conventional RBF network proposed in [16] have been set
to the heuristic values suggested by the authors, i.e., 1.05 and 5,
respectively.

Table IV compares the accuracy delivered by alternative clas-
sification algorithms with the three larger benchmark data sets.
As Table IV shows, the SGF network and the SVM basically de-
liver the same level of accuracy, which the KNN and the conven-
tional RBF network are generally not able to match. Table V lists
the experimental results with the six smaller data sets. Table V
shows that the SGF network and the SVM basically deliver the
same level of accuracy for four out of these six data sets. The
two exceptions are glass and vehicle. The results with these two
data sets suggest that both the SGF network and the SVM have
some blind spots and, therefore, may not be able to perform as
well as the other in some cases. The experimental results pre-
sented in Table V also show that the SGF network and the SVM
generally deliver a higher level of accuracy than the KNN and
the conventional RBF network.

In the experiments that have been reported so far, no data re-
duction is performed in the construction of the SGF network. As
the learning algorithm proposed in this paper places one SGF
at each training sample, removal of redundant training sam-
ples means that the SGF network constructed will contain fewer
hidden units and will operate more efficiently. Table VI presents
the effect of applying a naive data reduction algorithm to the
three larger data sets. The naive data reduction algorithm exam-
ines the training samples one by one in an arbitrary order. If the
training sample being examined and all of its ten nearest neigh-
bors in the remaining training data set belong to the same class,
then the training sample being examined is considered as redun-
dant and will be deleted. With this practice, training samples lo-
cated near the boundaries between different classes of objects
will be retained, while training samples located far away from
the boundaries will be deleted. As shown in Table VI, the naive
data reduction algorithm is able to reduce the number of training
samples in the shuttle data set substantially, with less than 2%
of training samples left. On the other hand, the reduction rates
for satimage and letter are not as substantial. It is apparent that
the reduction rate is determined by the characteristics of the data
set. Table VI also reveals that applying the naive data reduction
mechanism will lead to slightly lower classification accuracy.
Since the data reduction mechanism employed in this paper is a
naive one, there is room for improvement with respect to both
reduction rate and impact on classification accuracy. This is a
subject under investigation.

Table VII compares the number of training samples re-
maining after data reduction is applied, the number of clusters
identified by the conventional RBF network algorithm, and
the number of support vectors identified by the SVM in the
benchmark data sets. There are several interesting observations.
First, for satimage and letter, the number of training samples
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TABLE 1V
COMPARISON OF CLASSIFICATION ACCURACY WITH THE THREE LARGER DATA SETS

Data sets Data classification algorithms
SGF network SVM  [KNN with k= 1| KNN with £ =3 | Conventional RBF network
1. satimage 92.30
(k= 6. ko =26, 1 = 1) 91.30 88.80 90.65 90.25
2. letter 97.12
(ky =28, ky =28, 11 =2) 97.98 95.68 95.16 91.16
3. shuttle 99.94
=18, ky= 1, 11 =3) 99.92 99.94 99.91 97.34
Avg. 1-3 96.45 96.40 94.81 95.24 92.92
TABLE V
COMPARISON OF CLASSIFICATION ACCURACY WITH THE SIX SMALLER DATA SETS
Data sets Data classification algorithms
SGF network SVM KNN with k=1 | KNN with k=3 |Conventional RBF network
. 97.33
1. iris (k=24 kp= 14, 11 = 5) 97.33 96.00 95.33 95.33
. 99.44
2. wine =3 k=16, 71 =1 99.44 95.52 96.07 98.89
99.62
3. vowel =15 k=1 71 =1) 99.05 99.62 97.35 93.37
97.27
4. segment (=25, k=1, 71 =1) 97.40 9727 96.14 94.98
Avg. 1-4 98.42 98.31 97.10 96.22 95.64
75.74
S. glass =9 k=3 71 =2) 71.50 72.01 72.01 69.16
6. vehicl 73.33 86.64 69.73 71.39 78.25
. vehicle k=13, k=8, 71 =2) . . . .
Avg. 1-6 90.49 91.89 88.36 88.05 88.33
TABLE VI
EFFECTS OF APPLYING A NAIVE DATA REDUCTION MECHANISM
Satimage letter shuttle
# of training samples in the original data set 4435 15000 43500
# of training samples after data reduction is applied 1815 7794 627
% of training samples remaining 40.92% 51.96% 1.44%
aC;:ljis;glcatlon accuracy with the SGF network after data reduction is 92.15% 96.18% 9932%
Degradation of accuracy due to data reduction —0.15% —0.94% | —0.62%

TABLE VII
COMPARISON OF THE NUMBER OF TRAINING SAMPLES REMAINING AFTER DATA REDUCTION IS APPLIED, THE NUMBER OF SUPPORT VECTORS IDENTIFIED BY THE
SVM SOFTWARE, AND THE NUMBER OF CLUSTERS IDENTIFIED BY THE CONVENTIONAL RBF NETWORK ALGORITHM

# of training samples after data # of support vectors # of clusters identified by the
reduction is applied identified by LIBSVM  [conventional RBF network algorithm
satimage 1815 1689 322
letter 7794 8931 462
shuttle 627 287 45

remaining after data reduction is applied and the number of
support vectors identified by the SVM are almost equal. For
shuttle, though the difference is larger, the two numbers are
still in the same order. On the other hand, the number of
clusters identified by the conventional RBF network algorithm
is consistently much smaller than the number of training samples
remaining after data reduction is applied and the number of
support vectors identified by the SVM. Our interpretation of
these observations is that both the SVM and the naive date
reduction mechanism employed here attempt to identify the
training samples that are located near the boundaries between
different classes of objects. Therefore, the numbers with these

two algorithms presented in Table VII are almost equal or
at least in the same order. On the other hand, since multiple
samples are needed to precisely describe the boundary of
a cluster, the number of training samples remaining after
data reduction is applied and the number of support vectors
identified by the SVM are in general much larger than the
number of clusters identified by the conventional RBF network
algorithm. The results reported in Table VII along with the
results presented in Table IV and Table V also suggest that,
with respect to data classification, the distributions of samples
near the boundaries between different classes of objects carry
more crucial information than the distributions of samples in
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TABLE VIII
COMPARISON OF EXECUTION TIMES IN SECONDS

SGF network without data

SGF network with data Conventional RBF

reduction reduction SVM network

make satimage 676 303 64644 136
classifier letter 2842 1990 387096 712
shuttle 98540 773 467955 2595

satimage 21.30 7.40 11.53 0.63

predict |letter 128.60 51.74 9491 2.15
shuttle 996.10 5.85 2.13 0.48

the inner part of the clusters. Since the conventional RBF
network incorporates one RBF located at the geometric center
of a cluster to model the distribution of the training samples
inside the cluster, the accuracy delivered by the conventional
RBF network is generally lower than that delivered by the
SGF network and the SVM.

Table VIII compares the execution times of the SGF network,
the SVM, and the conventional RBF network with the three
larger data sets presented in Table III. In Table VIII, the total
times taken to construct classifiers based on the given training
data sets are listed in the rows marked by make_classifier. On
the other hand, the times taken by alternative classifiers to pre-
dict the classes of the testing samples are listed in the rows
marked by predict.

As Table VIII reveals, the time taken to construct an SVM
classifier with the model-selection process employed in [7] is
substantially higher than the time taken to construct an SGF
network or a conventional RBF network. A detailed analysis re-
veals that it is the model-selection process that dominates the
time taken to construct an SVM classifier. These results imply
that the time taken to construct an SVM classifier with opti-
mized parameter setting could be unacceptably long for some
contemporary applications, in particular, for those applications
in which new objects are continuously added into an already
large database.

The results in Table VIII also imply that, in dealing with
those data sets such as satimage and letter that do not contain
a high percentage of redundant training samples, the SGF
networks are favorable over the SVM. In such cases, the SGF
networks enjoy substantially higher efficiency than the SVM
in the make_classifier phase and are able to deliver the same
level performance as the SVM in terms of both classification
accuracy and the execution time in the predict phase. On
the other hand, if the data set contains a high percentage of
redundant training samples such as shuttle, then data reduction
must be applied for the SGF network or its efficiency in the
predict phase would suffer. With data reduction employed, the
execution time of the SGF network in the predict phase then
is comparable with that of the SVM. As the incorporation of
the naive data reduction mechanism may lead to slightly lower
classification accuracy, it is of interest to develop advanced
data reduction mechanisms.

Table VIII also shows that the conventional RBF networks
generally enjoy higher efficiency in comparison with the SGF
networks with data reduction and the SVM in the predict phase.
This phenomenon is due to the fact shown in Table VII that the
number of clusters identified by the conventional RBF network
algorithm for a data set is generally smaller than the number of

training samples employed to construct the SGF network after
data reduction and the number of support vectors identified
by the SVM algorithm. Nevertheless, as mentioned earlier,
because the conventional cluster-based learning algorithm for
RBF networks places one RBF at the center of each cluster,
the distributions of the objects in the data set may not be
accurately modeled. As a result, the conventional RBF networks
in general are not able to deliver the same level of accuracy as the
SVM and the SGF networks, which exploit the distributions of
training samples near the boundaries between different classes
of objects.

VII. CONCLUSION

In this paper, a novel learning algorithm for constructing SGF
network-based data classifiers is proposed. With respect to algo-
rithm design, the main distinction of the proposed learning algo-
rithm is the novel kernel density estimation algorithm designed
for efficient construction of the SGF networks. The experiments
presented in this paper reveal that the SGF networks constructed
with the proposed learning algorithm generally achieve the same
level of classification accuracy as SVM. One important advan-
tage of the proposed learning algorithm, in comparison with the
SVM, is that the time taken to construct an SGF network with
optimized parameter setting is normally much less that time
taken to construct an SVM classifier. Another desirable feature
of the SGF networks is that they can carry out data classifica-
tion with more than two classes of objects in one single run.
In other words, it does not need to resort to mechanisms such
as one-against-one or one-against-all for handling datasets with
more than two classes of objects. The other main properties of
the proposed learning algorithm are:

1) the average time complexity for constructing an SGF net-
work is bounded by O(nlogn), where n is total number
of training samples;

2) the average time complexity for classifying n’ incoming
objects is bounded by O(n'logn).

As the SGF networks constructed with the proposed learning
algorithm are instance-based, this paper also addresses the effi-
ciency issue shared by almost all instance-based learning algo-
rithms. Experimental results reveal that the naive data reduction
mechanism employed in this paper is able to reduce the size of
the training data set substantially with a slight impact on clas-
sification accuracy. One interesting observation in this regard is
that, for all three data sets used in data reduction experiments,
the numbers of training samples remaining after data reduction
is applied are quite close to the numbers of support vectors iden-
tified by the SVM software.
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In summary, the SGF network constructed with the proposed
learning algorithm is favorable over the SVM in dealing with
a data set that does not contain a high percentage of redundant
training samples. In such case, the SGF network is able to
deliver the same level of performance as the SVM in terms of
both accuracy and the time taken in the prediction phase, while
requiring substantially less time to construct the classifier. On
the other hand, if the data set contains a high percentage of
redundant training samples, then data reduction must be applied,
or the execution time of the SGF network would suffer. As the
incorporation of the naive data reduction mechanism may lead to
slightly lower classification accuracy, it is of interest to develop
advanced data reduction mechanisms. This paper also compares
the performance of the SGF networks constructed with the
proposed learning algorithm and the RBF networks constructed
with a conventional cluster-based learning algorithm. The most
interesting observation learned is that, with respect to data
classification, the distributions of training samples near the
boundaries between different classes of objects carry more
crucial information than the distributions of samples inside the
clusters. As a result, the conventional RBF networks generally
are not able to deliver the same level of accuracy as those
learning algorithms such as SVM and the SGF networks that
exploit the distributions of training samples near the boundaries
between different classes of objects.

Based on the study presented in this paper, there are several
issues that deserve further studies, in addition to the develop-
ment of advanced data reduction mechanisms mentioned above.
One issue is the extension of the proposed learning algorithm for
handling categorical data sets. Another issue concerns why the
SGF network fails to deliver comparable accuracy in the vehicle
test case, what the blind spot is, and how improvements can be
made. Finally, it is of interest to develop incremental version of
the proposed learning algorithm to cope with the ever-growing
contemporary databases.

APPENDIX A

Assume that 81, 82, ..., 8, are the kp nearest training sam-
ples of s; that belongs to the same class as 8;. If k1 is sufficiently
large and the distribution of these k1 samples in the vector space
is uniform then we have

pR(Bi)mW%

k1~
T ()

where p is the local density of samples 81,82, ..., 8%
proximity of 8;. Furthermore, we have

1

R(s:) 2 m—1__2 2R m+1, 2

2 . 2
Z ||3h S'H ~ / ' mﬂ' TdT: P (31.) 7;7;['
: I (3 (m+1)T (%)

where (2™~ 17™/2) /(T'(m,/2)) is the surface area of a hyper-
sphere with radius 7 in an m-dimensional vector space. There-
fore, we have

k1
m+1 1
R(si) = —— ZIISh—szII

m k
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The right-hand side of the equation above is then employed in
this paper to estimate R(8;).

APPENDIX B

Let q(y) = Y 5o exp(—(y — h6)?/20?), where 6 € R
and o € R are two coefficients and y € R. We have

(=(-%) 3 e (-U5H0).
h=—o00

Since ¢(y) is a symmetric and periodical function, if we want to
find the global maximum and minimum values of ¢(y), we only
need to analyze ¢(y) within interval [0, §/2]. Let yo € [0, (6/2))
and yo = (6/2) - (j/n) + e, wheren > land 0 < j <n-—1
are integers, and 0 < & < (6/2n). We have

q(yo) = ¢ (%) +

Let us consider the special case with ¢ = §. Then, we have

oo 1 _j 2
q(yo) = h;oo [eXp (—5 <% - h) )
s (t = ho)’
1 t—ho
Let r(h) = o?) [t — hs)exp(—(t —
hé)?/20%)dt. Since ( 1/0 )(t — hé)exp(—(t — hd)*/202)
is a decreasing function for ¢t € [(h — 1)6, (h + 1)¢] and is an
increasing function for ¢ & [(h — 1)6, (h 4 1)6], we have
1y
-1\ (jé 38\
< _- I - (L=
() ()0 |3 ()
e (T (L e | (Y
- o 2n P 2n ’
2)

3) forh # 0and h # 1,
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r(h) <
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Therefore If we set n = 100000, then we have, with ¢ = §,

oo 1 ] 2 2.506 628 261 < q(y) < 2.506 628 288, for y € [0, (5/2)]

Yo) = exp|—==—-nh r(h
alw) = Y |exp|—5 <2n +r(h)
h=—o00
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