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A Performance Analysis of Two Approximate
Adaptive Designs

Mark French,Member, IEEE

Abstract— The performance of function approximator based
adaptive control designs may scale badly with approximator
dimension [1]. For a simple system class, both projection based
designs and multi-resolution approximation based designshave
been shown to have good scaling properties w.r.t. to LQ costs.
Here we show that by considering a cost functional with penalties
on the control rate, the multi-resolution approximatior based de-
sign can outperform the projection based design. Generalisations
are briefly discussed.

I. I NTRODUCTION

Function approximators have been widely used in adaptive
control design since the publication of [2], [3], see for example
the recent monographs [4], [5], [6] for an overview and [7] asa
representative recent paper. The role of function approximators
is to replace function uncertainties with parametric uncer-
tainties in the system equations so that standard parametric
adaptive techniques can be utilized. Once the approximator
structure and dimension has been determined, the designs are
essentially those from robust adaptive theory, where techniques
such as dead-zones, projection,� modification are used to
handle the minimal approximation error (which is thought of
as a disturbance). The only remaining stability issue is to
ensure that the system never leaves the (typically compact)
region where the minimal function approximation error can be
small, or alternatively, that the system can be guaranteed to be
stable even if this region is left. Typically this is ensuredby
either limiting the uncertainty, increasing the system gains, or
by using robust terms or sliding mode techniques for stability
in the large.

In this paper we focus on the choice of function approx-
imator, and its consequences for closed loop performance.
Given an approximator structure, the required size (m) of
the approximator is determined as a function of the system
smoothness (�) and the required minimal approximation error
(�). Typically� represents a bound in a Sobolev space or a Lip-
schitz constraint,Wm is the parameter space whose dimension
is an increasing function ofm, and the approximation error�
is measured uniformly over some compact set (eg. inC(
),
 compact). The relationship betweenm, � and� is described
by a dimension function:� : dom(�)! N; �(�; �) = m: (1)

An example of a dimension function is given by Jackson’s
theorem for polynomial approximation inC[a; b℄, wherem
is the polynomial degree,� is a Lipschitz constraint and the
dimension function is given by� = �(b�a)3� .
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Typically, the smoothness� of the system is only known
conservatively, ie. we know�̂ >> �, consequently, we
will generally use a function approximator of overly large
dimension in the controller. The fundamental question is as
to whether this has any detrimental effect.

More precisely, suppose we have a uncertain system�(�),
whose smoothness is only known up to an upper bound�̂
of �. A controller �(�̂) is designed depending on̂�. LetP([�(�);�(�̂)℄) denote a closed loop cost (eg. a worse case
LQ cost, seeP1 in (13), (15) below). A prerequisite for a
sensible control design is the idea ofP stability, ie. that:P([�(�);�(�̂)℄) <1 8�̂ � �: (2)

A further desirable property for the controller is to establish
resolution scaleability, ie the property that for all fixed�:lim sup�̂!1 P([�(�);�(�̂)℄) <1: (3)

This is the property that for large enougĥ� (typically for any�̂ � �), there is a uniform performance bound.
On the other hand if the controller is not resolution

scaleable, ie. there is no such uniform bound, then clearly the
choice of approximator dimension is critical, and in particular,
as the knowledge of the smoothness�̂ becomes conservative,
then the performance deterioates. In fact, we will give an
example of a class ofP stable controllers with the resolution
divergence property:lim inf�̂!1 P([�(�);�(�̂)℄) =1 8� � 0: (4)

In [1] an example was constructed which showed that there
is a large class of standard function approximator designs
which are resolution divergent w.r.t. LQ costs. Hence it is
significant to find designs which are resolution scaleable.
There have been two qualitatively different proposals to ensure
resolution scaleability for function approximator designs w.r.t.
LQ costs. The first [8] uses projection modifications and high
adaption gains, the second is based on a multi-resolution
function approximator [1]. The goal of this paper is to compare
these two proposals, and in particular to show that the latter
design outperforms the former when the cost also includes
penalties on the control rate_u.

This paper also establishes resolution divergence for some
standard approximators in a much simpler setting than in the
original paper [1]. Much of the technical complexity of [1]
is avoided by changing the LQ cost to a cost incorporating a
penalty on _u.

The results are developed on a scalar system. This is a
deliberate decision of the authors for the following reasons.
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One contribution of this paper is to demonstrate the mech-
anism by which unmodified and projection modified designs
are resolution divergent when the control rate is penalised.
It is clear that a similar mechanism occurs in more general
designs for wider classes of systems, and to illustrate the
mechanism in a more general framework would add little other
than notational complications. The second main contribution
of this paper is to demonstrate that the multi-resolution designs
are resolution scaleable. Again the mechanism by which this
occurs is clear from the proof and it is apparent how the
technique should generalise (see for example [5]). To present
the resolution scaling results in a more general setting would
obscure the main idea, namely that multi-resolution designs
have inherent resolution scaling properties w.r.t. a wide range
of cost functionals. We briefly discuss the extensions of the
results in the final section of the paper. The main notation is
detailed at the end of the paper.

II. PROBLEM FORMULATION

A. Approximation Theory

To define an approximate adaptive design and to precisely
formulate the problem investigated in this paper, we first define
some approximation theoretic notions. AF smoothness class
is a nested set of subsetsfK�g��0 of a function spaceF , ie.K 0� � K� when�0 � �, and whereF = [�>0K�. Typically
a smoothness class is specified by Lipschitz constraints, or
by bounds in Sobolev spaces as is typical in approximation
theory. Amodel classis a sequence of model basesf�mgm�1,�m : R ! Wm and whereWm is a Euclidean space called
the weight space of themth model. TypicallydimWm will
be a divergent function ofm. Generic approximation theory
furnishes us with a dimension function�F : dom(�F) ! N
where dom(�F ) � R+ � R+ . For a smoothness parameter�, approximation bound� and normed function spaceF , the
dimension function satisfies:8f 2 K� 8m � �(�; �) 9� 2 Wm s:t: kf � �T�mkF < �:

(5)
If D = R+ � R+ then the model class is said to be an(F ; fK�g��0) approximate model class.

Definition 2.1: A multi-resolution model classis a model
classf�mgm�1 with the structure�m = [~�1 j ~�2 j : : : j ~�m℄; (6)

wheref~�k : R ! Wkgk�1 is a model class, called thebase
class.
Note that this definition imposes considerable structure onthe
model class, it requires that the higher resolution models are
simply basis extensions of the lower resolution models, hence
standard approximation bases such as Taylor series, Fourier
series, wavelets etc. are all of the appropriate form. Basis
functions from any(F ; fK�g��0) approximation class can be
utilized as the base class, for iff~�kgk�1 is a (F ; fK�g��0)
approximation class then so isf�mgm�1. However, note that�m is of much higher dimensional than~�m as it is the
concatenation of all the lower resolution models.

B. System

Let U , Y be function spaces representing the input and
output signal spaces. A system is denoted by�, and lies inS,
the set of all causal operatorsU ! Y . A controller is denoted
by � and lies inC, the set of all causal operatorsY ! U . We
define an interconnection[�;�℄ of a system� and controller� as [�;�℄ = (y; u) wherey; u are the closed loop signals
(ie. the solutions of�u = y; u = �y).

For notational simplicity and conceptual clarity we consider
scalar systems�y0(f) of the form:�y0(f) : _y = f(y) + u; y(0) = y0 2 R (7)

An initial condition set is defined as:Y0 = fy0 2 R j jy0j � 
0g; (8)

and define�Y0 = f�y0(ffg) j y0 2 Y0g.
We define an uncertainty set�(�) to be of the form:�(�) = K� \�(L1(
;w1); Æ1)= ff 2 K� j jf(x)!1(x)j � Æ18x 2 
g ; (9)

where fK�g��0 is a C(
;R) smoothness class,
 = [�W;W ℄ is compact and where0 � Æ1 <1.

C. Performance

The control task is to asymptotically track a given reference
trajectory to within a specified accuracy. In addition all closed
loop signals should be kept bounded. Performance will then
be judged w.r.t. to a cost functional which penalises transient
signals.

So, given a reference trajectoryyref 2 C1(R+ ;R), we
define a reference trajectory set as:Yref = fyref 2 C1(R+ ;R) j kyrefkL1(R+) � 
1;kyref(1)kL1(R+) � 
2g;(10)

where 
1; 
2 � 0 are fixed numbers, known to the control
design. Thecontrol task is to give a controller�(yref) to
achieve asymptotic
0 = [��; �℄ tracking whilst keeping all
signals bounded, in the sense of the following definition, (note
the inner supremum is taken over all (non-unique) Fillipov
solutions [9]):

Definition 2.2: A closed loop(�Y0(�(�));�(Yref )) is said
to achieve asymptotic
0 tracking if:supf2�(�) supy02Y0 supyref2Yref sup

solns(�y0 (f);�(yref ))limt!1 distf(y � yref)(t);
0g = 0:
The closed loop is said to be bounded if all closed loop signals
lie in L1.
The closed loop signals are taken to be the system and con-
troller’s state, input and output signals. So that the control task
is achievable we impose the following constraint throughout
the paper: 
0 + 
1 < W: (11)

Performance of a closed loop is measured by a functional of
the output and input signals:J : Y � U ! R+ : (12)
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Throughout we consider four specific cost functionals which
penalise the non-singular transient performance of the system
and are given by:J1[y(�); u(�)℄ = ZT
0 x2(t) + u2(t) dt;J2[y(�); u(�)℄ = ZT
0 x2(t) dt+ supt�0 ju(t)jJ3[y(�); u(�)℄ = ZT
0 x2(t) + u2(t) dt+ supt�0 j _u(t)jJ4[y(�); u(�)℄ = ZT
0 x2(t) dt+ supt�0 ju(t)j+ supt�0 j _u(t)j

(13)

wherex(�) = y(�)� yref(�); and T
0 = ft � 0 j x(t) 62 
0g:
(14)

Such a cost penalises the response of the system whilstx(t) 62 
0 = [��; �℄, hence for a closed loop whose goal
is to drivex to 
0, whilst keepingy; u bounded, these costs
are reasonable penalties on the transient signals.

Performance of a controller� will be measured in this paper
with respect to a worst case cost, ie.P : P (S) � C ! R+ ; 1

whereP (S) denotes the power set ofS, and where:Pj(�Y0(�);�)= supf2�(�) supy02Y0 supyref2Yref sup
solns(�y0 (f);�(yref ))Jj [y(�); u(�)℄1 � j � 4:2 (15)

D. Controllers

We now recall an important definition [10].
Definition 2.3: A P stable control design is a mapping�: R+ ! C such that:P([�Y0(�(�));�(�)(Yref )℄) <1; 8� � 0 (16)

We are thus concerned with the behaviour of a class of
controllersf�(�)g��0 as specified by the design function�,
which defines a (different) controller for each smoothness level�. Note that for anyP stable design it follows thatP([�Y0(�(�0));�(�)(Yref)℄) <1; 8�0 � � (17)

by the nested property offK�g��0.
In this paper, we are primarily concerned with the following

two properties ofP stable control designs:
Definition 2.4: A P stable control design�: R+ ! C is

said to be resolution scaleable if:lim sup�̂!1 P([�Y0(�(�));�(�̂)(Yref)℄) <1; 8� � 0: (18)

Definition 2.5: A P stable control design�: R+ ! C is
said to be resolution divergent if:lim inf�̂!1 P([�Y0(�(�));�(�̂)(Yref)℄) =1; 8� � 0: (19)

1We also admit the possibility that eitherJ or P may not be defined for
all their respective domains.

1) Basic Design:We define a controller as follows:�(�; �)(yref ) : u = ��̂T�(y)� x+ _yref_̂� = �D(
0; x)x�(y)�̂(0) = 0 2 Rp (20)

Given a (C(
); fK�g��0) approximate model classf�mgm�1, the control design is defined by:�Basi
(�)(�) = �(�m; �m)(�) wherem = �(�; �=2); �m = �(m); (21)

for some function� : N ! R+ (the nature of� will be
considered in Section II-D.2). The stability result for this
controller is given below, the proof is standard, but is given
for completeness.

Theorem 2.6:There exists� such that for all�̂ � �, the
closed loop

h�Y0(�(�));��Basi
(�̂)(Yref)i is bounded and
achieves asymptotic
0 tracking. Furthermore��Basi
 is P1,P2, P3 andP4 stable.

Proof: Let f 2 �(�), yref 2 Yref , y0 2 Y0. Let � 2 Wm
be such that:kf � �T�mkC(
) � �2 , whereby the existence of
such a� is guaranteed by definition of the dimension function�. Let � : N ! R+ be given by�(m) = ���(Rm) ; m 2 N (22)

whereRm is the Gram matrix:(Rm)ij = h�mi ; �mj iL2(
);
and where we will determine�� > 0 subsequently.

Now consider the Lyapunov functionV (x; �̂) = 12x2 + 12�(m) (� � �̂)T (� � �̂) (23)

and note that forx 2 
 n
0, it’s derivative is given by:_V (x; �̂) � �x2 + x(f � �T�) � �x2 + jxj�2 : (24)

If x(0) 2 
0 we claim that theV (0) level set ofV is
invariant, otherwise we claim that theV (0)� 12x20+ 12�2 level
set ofV is invariant. The proof of both claims is as follows.
Let Æ2 = 



 Æ1w1 



L2(
) ;
so kfkL2(
) � Æ2. Let t� = infft � 0 j x(t) 2 �
0g ifx0 2 
0, and t� = 0 otherwise. ThenV (t�) is bounded as
followsV (t�) � 12 maxfx20; �2g+ �T �2�(m)� 12 maxfx20; �2g+ �TR�2�(m)�(Rm)= 12 maxf
20 ; �2g+ (Æ2 + W�2 )22�� = V0 (25)

from which it follows by inequality (11) that there exists�� > 0 such that
p2V0 + 
1 < W and hence[�p2V0 � 
1;p2V0 + 
1℄ � 
Æ: (26)
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It follows thaty(t) 2 
 for all t � 0, and hence inequality (24)
holds for allt � 0, provided we can show

p2V (t) + 
1 �W
for all t � 0, since 12x2(t) � V (t) for all t � 0, andjy(t)j � jx(t)j + 
1. For a contradiction suppose there existst�� � 0 such that

p2V (t��) + 
1 = W . It follows that:0 � ZT�\[0;t�℄� _V dt = V (t�)� V (t��) � V0 � (W � 
1)22
(27)

which contradicts the inequality
p2V0 + 
1 < W . This also

shows thatV (t) � V0 for all t � t�, andV (t) � V0 for allt � 0 since fort 2 [0; t�), _̂� = 0 andx2(t) � �2.
Since V (t) � V0 for all t � 0, it follows thatx(�); �̂(�) 2 L1 and by integrating inequality (24) we obtain:ZT� x2(t) dt � ZT� � _V dt � V0 � V (1) � V0:3 (28)

Sincex, �̂ is bounded, it follows from the system equation that_x is bounded, hencex is uniformly continuous. Then equation
(28) impiesx(t) ! 
0. As f 2 �(�), yref 2 Yref , y0 2 Y0
were arbitrary, this completes the proof of boundedness and
asymptotic
0 tracking.P1, P2, P3 andP4 stability is now
established. First we obtain a bound onm(T�)4 as follows:m(T�) = ZT� 1 dt � ZT� � _Vinft2T� j _V j dt� 2�2 ZT� � _V dt � 2V (0)�2 � 2V0�2 : (29)

Then we observe that theL1 bounds onx, �̂ can be written
directly in terms ofV0. Since all terms in the cost functionalx; u; _u are functions ofx, �̂, yref , _yref , it follows that the cost
can be bounded in terms ofV0, 
1, 
2. SinceV0 is in turn is
bounded by construction in terms of
1 andW , this completes
the proof.

2) Scaling of the adaption gain:The construction used in
the proof above uses an adaption gain which scales�(m) =���(Rm) . For many approximants this is a divergent function
(eg. for B-splines or for the Guassian RBF’s of [2], see eg.
[1]). However, although this is only a sufficient condition
for stability, note that there are two reasons for scaling the
adaption gain�m: the first is to ensure stability, the second is
to ensure resolution scaleability.

For many approximators, imposing the (sufficient) condition
(26) forces�m to be an increasing function of the resolution.
For example, any approximate model class satisfying [1]:9�2 > 0; s:t: 8m � 1; supy2
 j�m(y)j � �2; 5 (30)

has the property that for some� > 0, (�1)T�m 2 �(�).
Hence, V (0) � �21T 12�(m) � �m2�(m)

3Here we use the fact that̂�(t) is constant whenx(t) 2 
0 – see eg. [1]
for details.

4Here,m(A) denotes the Lebesgue measure of the setA.
5For examples, B-splines, and Guassian RBF’s with the scaling of [2] have

this property.

which implies � is required to be s.t.�(m) � O(m). In
fact, for some classes of approximator, we can show that it
is also neccessaryfor � to be divergent forx to remain in
any bounded region. An example of this was given in [11].

Let us now consider the behaviour of
RT� x2(t) dt as m

increases, assumingx is bounded by
.

1) Again consider approximators with the property (30). In
the limiting case where
0 = f0g, (or even
0 = ;),
sufficiently rich reference signals force a persistantly
exciting regressor, and hence parameter convergence.
Now consider the Lyapunov function (52) and integrate
it’s derivative, to obtainZ 10 x2(t) dt = V (0)� V (1) = 12x20 + 12�(m)�T �

(31)
since x(1) = 0, �̂(1) = �. By again consider-
ing � = �1, this shows that uniform boundedness ofRT� x2(t) dt occurs if and only if�(m) � O(m).

2) For more limited classes of approximants, easy direct
proofs of the neccessity of divergent scaling of the
adaption gain can be given in the prescence of a dead-
zone. Here we illustrate the neccesity of such a scaling
for a simple class of popular approximants, namely
compactly supported mesh based approximants (eg. B-
splines on uniform lattices).
We consider approximants defined by:�m : R ! R2m+1 , where�m = (�m�m; �m�m+1; : : : ; �mm�1; �mm)
for m � 1 and where�mi (x) = F (mx�Wi); (32)

whereF : R ! R is continuous, positive, compactly
supported and has a maximumF (0) > 0 at 0.
It is straightforward to show that there exists con-
stants l; k � 1 such that8m � 1, 9m=k intervalsImi � [�;min(W=2; lF (0)=2)℄ with the property that
between1 and l basis functions�mi , �m � i � m,
intersectImi and furthermoresupp�j \ Imi 6 = ;;supp�k \ Imp 6 = ;;supp�j \ supp�k 6 = ;) i = p: (33)

Now defineKmi = fj 2 [�m;m℄ j supp�mj \ Ii 6= ;g,
and letJmi = [j2Kmi supp�mj , note thatImi � Jmi , andJmi \ Jmj = ; if i 6= j.
Let � > 0 be such that�2F (0)2W � Æ22 ; and�F (0) supy2
 jw1(y)j � Æ1; (34)

so if � = �1 then�T�m 2 �(�) for all m � 1. Consideryref = 0, y0 = min(W=2; �F (0)=2), andf = (�1)T�m.
Let y�mi = Wim 2 Imi , so �mi (y�mi ) = F (0). To drivey(�)! � it is necessary to cross the pointy�mi . For this
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to happen,_y � 0, ie. (� � �̂)T�m(y�mi ) � y�mi � 0.
Now 0 � y�mi � min(W=2; �F (0)=2);
and �T�m(y�mi ) � F (0)�;
which implies that it is necessary for�̂T�m(y�mi ) � F (0)�=2
to crossy�mi . This implies that

Pj2Kmi �̂j � �=2. Sincej _̂�ij � �WF (0) and _̂�i = 0 if y(t) 62 Jmi it follows that
the total time whilsty(t) 2 Ji is greater than �2�WF (0)l .
By the disjointness property of theJi’s and the fact that

the _̂�i = 0 if y(t) 62 Jmi , it follows thatm(T�) � m�2�WF (0)lk ;
and henceZT� x2(t) dt = ZT� y2(t) dt � m��22�WF (0)lk � O �m� � :

(35)
This again shows that uniform boundedness ofRT� x2(t) dt occurs if and only if�(m) � O(m).

The following result then motivates the rest of the paper:
Theorem 2.7:Suppose� is divergent. Then the closed

loop
h�Y0(�(�));��Basi
(�̂)(Yref)i is P3 andP4 resolution

divergent.
Proof: See Section II-D.4, Theorem 2.9.

A corollary of this result is the statement that for the classes of
approximators considered in above, there is no choice of� for
which resolution divergence can be avoided. The aim of the
paper is therefore to examine the relative performances of two
designs which have been shown to have resolution scaleability
properties.

It remains an open question whether it isP1 orP2 resolution
scaleable for any choice of approximator structure for this
scalar system, although it seems likely for some wide classes
of approximator that it is resolution divergent – see [1] for
related results showing a similar performance divergence for
MIMO equivalents of this controller and a discussion of this
question.

3) Projection Modification: The projection modification
is typically used to ensure boundedness of the parameter
estimator when disturbances are present. It does not guarantee
any form of convergence of the output. However, it has been
proposed as a technique to ensureP1 resolution scaleability
when used in conjunction with a dead-zone6 [8], which we
now describe.

SupposeW is a convex set inRp with a smooth boundary,
written in the form:W = f� 2 Rp : �(�) � 0g: (36)

6It is important to note that convergence of the output can be maintained
when a dead-zone is used in conjunction with projection.

The controller�Proj is the same as the basic controller (20),
except for a change to the adaptive law:�(�; �;W)(yref ) : u = ��̂T�(y)� x+ _yref_̂� = �D(
0; x)ProjW(x�(y))�̂(0) = 0 2 Rp : (37)

In this definition the projection operatorProjW : Rp ! Rp is
defined as follows:ProjW(�) = (�; if �̂ 2 �Æ or r�T � � 0�I � r�r�Tr�Tr�� � if �̂ 2 ��; r�T � > 0:

(38)

Given a (C(
); fK�g��0) approximate model classf�mgm�1, the projection modified control design is taken to
be: �Proj(�)(�) = �(�m; �m;Wm)(�) (39)

wherep = dim�m, andWm = f� 2 Rp j j�T�m(y)j � Æ1w1(y); 8y 2 Rg; 7m = �(�; �=2);�m = �(m): (40)

We also impose a uniform strength condition [1]:9�1 > 0 s:t: �1 � infy2
 j�m(y)j: (41)

This condition is satisfied by most approximants, see eg. [1].
The motivation for the introduction of the projection mod-

ification is the following result which shows that the design
also additionally guarantees resolution scaleability w.r.t. bothP1 andP2.

Theorem 2.8:There exists� such that for all �̂ � �,
the closed loop

h�Y0(�(�));��Proj(�̂)(Yref)i is bounded and
achieves asymptotic
0 tracking.��Proj is bothP1, P2, P3 andP4 stable andP1, P2 resolution scaleable.

Proof: Let f 2 �(�), yref 2 Yref , y0 2 Y0. As in
Theorem 2.6, take� 2 Wm to be such thatkf � �T�mkC(
) � �2 ; (42)

and observe that� 2 Wm by construction. The proof of
boundedness, asymptotic
0 tracking andP1, P2 stability,
follows that of Theorem 2.6, by noting that inequality (24)
can be established by the property [12]:(� � �̂)TProj(�) � (� � �̂)T �; 8 � 2 Wm; (43)

which holds with� = �x�(x) since�(0) = 0 2 Wm. The rest
of the proof is analagous. To establishP1 andP2 resolution
scaling, it suffices to establish bounds onkykL1, kukL1 andm(T�) which are independant of̂� (andm). First we establish
a bound onV0 which is independant of̂�. Taking the same
choice for� as in Theorem 2.6,�(m) = ���(Rm) , �� > 0, we
obtain the following uniform bound:V0 � 12 maxfx20; �2g+ (Æ2 + �W2 )22�(m)�(Rm)= 12 maxf
20 ; �2g+ (Æ2 + �W2 )22�� : (44)
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From the invariance of theV0 level set ofV , it follows that:jy(t)j � jx(t)j + jyref(t)j� p2V (t) + 
1 �p2V0 + 
1ju(t)j = j � �̂T�m(y)� x� _yref j� jÆ1w1(y)j+ jxj+ j _yref j� jÆ1w1(p2V0 + 
1)j+p2V0 + 
2: (45)

A bound on m(T�) is established as in Theorem 2.6:m(T�) � 2V0�2 . Since in all the above inequalities,f 2 �(�),yref 2 Yref , y0 2 Y0 were arbitrary, the result follows.
4) The Resolution Divergence Properties of the Projection

Modification: In this section we establish the poor scaling
properties of the basic and projection modified designs when
there is an additional penalty on the control rate.

Theorem 2.9:Suppose� is divergent. Then��Basi
, ��Proj
are bothP3 andP4 stable andP3 andP4 resolution divergent.

Proof: P3 andP4 stability has been established in Theo-
rem 2.6 and Theorem 2.8. To establish resolution divergence,
first consider��Proj. Chooseyref 2 Yref , y0 2 Y0 such thatyref(0) = _yref(0) = �yref(0) = 0, y0 = W��2 , so we havex(0) 62 
0. Then:_u(0) = �x0�m(y0)T�m(y0)� x0 + f(y0): (46)

since �̂(0) = 0. Since�m(y0)T�m(y0) � �1 it follows thatj _u(0)j ! 1 as� ! 1. In particular, if� is divergent, then�mProj is P3, P4 resolution divergent. The proof for�Basi
 is
similar.

5) Multi-resolution Design:Define a controller as follows:�(�;G; r; �)(yref ) : u = ��̂T�(y)� x+ _yref_̂� = �D(
0; x)xG�(y);�̂(0) = 0 2 Rp (47)

The adaptive structure matricG is taken to be positive definite
and symmetric. The multi-resolution (definition 2.1) model
class f�mgm�1 is assumed to be afK�g��0 approximate
model class and the control design is defined by:�(�)(�) = �(��; Gm; �m)(�); where m = �(�; �=2);

(48)
and wherefGm; �mgm�1 are 1-regular pairs, in the sense of
the following definition [5]:

Definition 2.10: A model classf�mgm�1 and a sequence
of adaptive structure matricesfGmgm�1 is said to be ak-
regular pair if there exists a continuous function� : R ! R+
such that for allm � 1


D�(Gm) 12�m(x)


 � �(x); 8x 2 R; 0 � � � k: (49)

HereD� denotes the differential operatorD� = ���x� . Con-
struction of suitable matricesGm is straightforward and can
be found in [1], [5]. We can then give the following result:

Theorem 2.11:There exists�� > 0 such that for all�̂ � �,
the closed loop

h�Y0(�(�));�mr(�̂)(Yref)i is bounded and
achieves asymptotic
0 tracking.�mr is bothP1, P2, P3 andP4 stable andP1, P2, P3 andP4 resolution scaleable.

Proof: Boundedness,
0 asymptotic tracking,P1, P2
stability andP1 resolution scaleability has been established

previously [11]. A complete proof ofP1,P2, P3,P4 resolution
scaleability is as follows.

Since�(�) � K�, there existsM � 1, such that for allf 2 �(�), there exists�M 2 WM such thatkf � (�M )T�MkC(
) � �2 ; (50)

hence it follows that� = [(�M )T j 0℄T has the property that:kf � (�)T�mkC(
) � �2 ; (51)

since�m is a multi-resolution model. Now letyref 2 Yref ,y0 2 Y0 and consider the previous Lyapunov function (52)V (x; �̂) = 12x2 + 12�� (� � �̂)T (� � �̂) (52)

Since j�M j is bounded independently ofm, it follows thatj�j is bounded independently ofm and hence analagously to
Theorem 2.8V0 is uniformly bounded independantly of̂�.
Analagously to Theorem 2.8, since theV0 level set is invariant,
it can also be shown thatm(T�), kxkL1 are uniformly
bounded in terms ofV0. It thus suffices to show thatu, _u
are uniformly bounded independant of�̂. First we establish
two inequalities:ju(t)j = j� �̂T�(y)�x+ _yref j � j�̂T�(y)j+ jxj+ j _yref j; (53)j _u(t)j = �����( _̂�)T�(y)� �̂T ���y _y � _x+ �yref����= ������x�(y)TG�(y)� �̂T ���y ( _x+ _yref)+x� f(y) + �̂T�(y) + �yref���� j�x�(y)TG�(y)j+ �����̂T ���y ���� �jxj+ jf(y)j+ j�̂T�(y)j+ j _yref j�+jxj+ jf(y)j+ j�̂T�(y)j + j �yref j:
Since kxk1L , kykL1, kf(y)kL1 , yref , _yref , �yref can be
bounded uniformly byV0, 
0; 
1, 
2, Æ1, it suffices to boundk�(y)TG�(y)kL1 k�̂�(y)kL1 , k�̂ ��(y)�y kL1 independantly of�̂. Clearly, j�(y)TG�(y)j � �2(y) and by lettingD denote
eitherD0 or D1, we have:����̂TD�m��� � ���(� � �̂)TD�m���+ ���TD�m��� q(� � �̂)T (Gm)�1(� � �̂) 


D(Gm) 12 �m


+q�T (Gm)�1�kD(Gm) 12�mk� q2��V (x; �̂)�(y) +p2��V (x(0); 0)�(y)� 2�(y)p2��V0: (54)

Since y is uniformly bounded as a function ofV0, this
completes the proof.
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E. Comparison between Designs

The main result in this paper shows that when the control
rate is penalised in the cost functional and when the a-
priori estimate�̂ of the smoothness� becomes conservative,
then the multi-resolution design increasingly out-performs the
projection modified design.

Theorem 2.12:Suppose� is divergent, then fori = 3; 4:Pi h�Y0(�(�));��Proj(�̂)(Yref)iPi h�Y0(�(�));�mr(�̂)(Yref)i !1 as �̂ !1: (55)

Proof: This is a simple consequence of the resolution
divergence property of��Proj (Theorem 2.9) and the resolution
scaling property of��mr (Theorem 2.11).

Corollary 12.1: For the class of systems given in Section
II-D.2, number II-D.2 we have fori = 3; 4:inf� Pi h�Y0(�(�));��Proj(�̂)(Yref)iPi h�Y0(�(�));�mr(�̂)(Yref)i !1 as �̂ !1:

(56)
Proof: For the class of systems considered, we have

shown that it is neccessary for� to be divergent to achieve
resolution scaleability of thex2 term in the cost. Hence by
Theorem 2.12, the corollary follows.

F. Extensions

For notational simplicity we have only considered the
simplest case of a scalar system with a matched nonlinearity.
However, these results can straightforwardly be extended to
the case of the integrator chain:y(n) = f(y; _y; : : : ; y(n�1)) + u (57)

by the obvious alterations to the basic control law:�(�; r; �)(yref ) :u = ��̂T�(y; _y; : : : ; y(n�1))� aTx+ _yref(n)_̂� = �D(
0; x)xT b�(y; _y; : : : ; y(n�1))�̂(0) = 0 2 Rpx = �y � yref ; _y � _yref ; : : : ; y(n�1) � yref(n�1)� ;(58)

where 
0 = fx 2 Rn j xTPx � �g
and with appropriate choices fora,b andP = P T > 0, see [5]
for details. Similar arguments establish bounded asymptotic
0 tracking and resolution divergence of�Basi
, �Proj and the
resolution scaleability of�mr, by considering the Lyapunov
function:V (x; �̂) = xTPx+ 12� (� � �̂)TG�1(� � �̂): (59)

The results can also be extended to strict feedback systems,
note that the results in [5] construct resolution scaleable
controllers of a multi-resolution type forP1, (and can be easily
extended toP2, P3, P4). Resolution divergence of projection
modified designs [13] remain to be established, but it can be
expected that resolution divergence can even be obtained w.r.t.

P2 since the controlu is directly dependant on the adaption
gain�.

Resolution scaleability of the multi-resolution design can
be established with respect to cost functionals incorporating
penalties on higher derivatives, eg. terms such as:ZT� �u(k)(t)�2 dt or supt�0 ju(k)(t)j; (60)

by demanding on the k-regularity of the pair
�Gk; �k�k�0,

and by further constraining the reference trajectory to lieinY refk , which is defined by:Y refk = fyref 2 C(R+ ;R) jkyref ikL1 � 
i+1 <1; 0 � i � kg:(61)

III. C ONCLUSIONS

We have compared the two main proposals for resolution
scaling, and showed the multi-resolution approximant ideais
superior when higher derivatives of the control are penalised.
For reasons of notational simplicity we have considered scalar
systems, but have outlined how the arguments apply to much
wider classes of systems. The multi-resolution results can
be interpreted as showing how to select appropriate function
approximators and adaption rates to avoid high gains; such
high gains do occur as the resolution of some standard
approximators are increased.
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Notation and Nomenclaturem approximator size,Wm parameter space,�m : R !Wm model base,f�m : R !Wmgm�1 model base class,f~�kgk�1 : R !Wm base class,� approximation error,� model parameter,�̂ adaptive estimate of model parameter,� dimension function,Rm Gram matrix of model�m,�1, �2 upper and lower strength bounds,f : R ! R plant nonlinearity,� function smoothness parameter,�̂ a-priori bound on the function
smoothness parameter,fK�g��0 smoothness class,�(�) uncertainty set,w1, Æ1 L1 weight and bound,� plant,� controller,[�;�℄ plant, controller interconnection,U space of input signals,Y space of output signals,Y0 set of initial conditions,
0 bound on initial condition size,Yref set of reference signals,
1; 
2 bounds on reference signal size,yref reference signal,u, y, x input, output and tracking error signal,C(
) space of continuous functions
! R,C1(
) space of continuously differentiable
functions
! R,L1(
;w1) weightedL1 space,
0 the dead-zone region[��; �℄, � > 0,T
0 time set whenx is not in dead-zone,� : N ! R+ adaptive gain scaling function,�, ��Basi
, ��Proj, �mr control design mappings,J ;J1;J2;J3;J4 cost functionals,P;P1;P2;P3;P4 worst case cost functionals.
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