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Abstract— The performance of function approximator based Typically, the smoothnesg§ of the system is only known
adaptive control designs may scale badly with approximator conservatively, ie. we kHOV\B >> 3, consequently, we
dimension [1]. For a simple system class, both projection s®d iy generally use a function approximator of overly large

designs and multi-resolution approximation based designsave - L M
been shown to have good scaling properties w.rt. to LQ costs dimension in the controller. The fundamental question is as

Here we show that by considering a cost functional with pengles  t0 Whether this has any detrimental effect.

on the control rate, the multi-resolution approximatior based de- More precisely, suppose we have a uncertain sysiéf,

sign can outperform the projection based design. Generaligions  \whose smoothness is only known up to an upper bo,f]nd

are briefly discussed. of 8. A controller Z(3) is designed depending ofi. Let

P([Z(8),2(B)]) denote a closed loop cost (eg. a worse case

LQ cost, seeP; in (13), (15) below). A prerequisite for a
Function approximators have been widely used in adaptigensible control design is the idea Bfstability, ie. that:

control design since the publication of [2], [3], see for mxde . R

the recent monographs [4], [5], [6] for an overview and [7has P(E(B).E(B)]) <00 VB2 B @)

representative recent paper. The role of function appratons A further desirable property for the controller is to esistbl

is.to. replace function uncer_tainties with parametric unCefesolution scaleability, ie the property that for all fixgd
tainties in the system equations so that standard parametri

adaptive techniques can be utilized. Once the approximator lim sup P([Z(8), Z(B)]) < oo )
structure and dimension has been determined, the designs ar B—oo

essentially those from robust adaptive theory, where ¢S Thjs is the property that for large enough(typically for any
such as dead-zones, projectian,modification are used to 3> B), there is a uniform performance bound.

handle the minimal approximation error (which is thought of 5" the other hand if the controller is not resolution

as a disturbance). The only remaining stability issue is Qgjeaple, ie. there is no such uniform bound, then clehey t
ensure that the system never leaves the (typically compagihice of approximator dimension is critical, and in par,
region where the minimal function approximation error can b, the knowledge of the smoothnesbecomes conservative,
small, or alternatively, that the system can be guaran®®€t o the performance deterioates. In fact, we will give an

stable even if this region is left. Typically this is ensutefl oyample of a class dP stable controllers with the resolution
either limiting the uncertainty, increasing the systermgaor divergence property:

by using robust terms or sliding mode techniques for stgbili .
in the large. liminf P([E(5),Z(5)]) = oo V5 > 0. (4)

In this paper we focus on the choice of function approx- Ao
imator, and its consequences for closed loop performanceln [1] an example was constructed which showed that there
Given an approximator structure, the required siz¢) of is a large class of standard function approximator designs
the approximator is determined as a function of the systemhich are resolution divergent w.r.t. LQ costs. Hence it is
smoothnessA) and the required minimal approximation errosignificant to find designs which are resolution scaleable.
(¢). Typically 8 represents a bound in a Sobolev space or a Lifphere have been two qualitatively different proposals suea
schitz constrainfyy™ is the parameter space whose dimensicesolution scaleability for function approximator desigmr.t.
is an increasing function of,, and the approximation errer LQ costs. The first [8] uses projection modifications and high
is measured uniformly over some compact set (eg’’{f2), adaption gains, the second is based on a multi-resolution
Q compact). The relationship between 8 ande is described function approximator [1]. The goal of this paper is to comgpa

I. INTRODUCTION

by a dimension function: these two proposals, and in particular to show that therlatte
design outperforms the former when the cost also includes
p: dom(p) = N, p(B,€) =m. (1) penalties on the control rate

A le of a di ion function is ai by Jackson’ This paper also establishes resolution divergence for some
N exampie of a dimension function 1S given by JackSONg,nq5.g approximators in a much simpler setting than in the
theorem for polynomial approximation i€'[a,b], wherem

) . . . . . original paper [1]. Much of the technical complexity of [1]
'S the p_onnomlz?\I dggre_eff 'S & L'pﬁs((,fh'{f)z constraint and theis avoided by changing the LQ cost to a cost incorporating a
dimension function is given by =

ET I penalty onu.
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One contribution of this paper is to demonstrate the mecB: System

anism by which unmodified and projection modified designs | et 7/, 3 be function spaces representing the input and
are resolution divergent when the control rate is penalisgs,itput signal spaces. A system is denotedhyand lies inS,

It is clear that a similar mechanism occurs in more generle set of all causal operatds— Y. A controller is denoted
designs for wider classes of systems, and to illustrate t§¢ = and lies inC, the set of all causal operatays— /. We

mechanism in a more general framework would add little othgkfine an interconnectiof, =] of a system~ and controller
than notational complications. The second main contiuti = a5 (v =] = (y, u) Wheréy.u are the closed loop signals

of this paper is to demonstrate that the multi-resoluticsigles  (je. the solutions ofu = y, u = =y).

are resolution scaleable. Again the mechanism by which thispr notational simplicity and conceptual clarity we comesid
occurs is clear from the proof and it is apparent how thggjar systems),, (f) of the form:

technique should generalise (see for example [5]). To ptese

the resolution scaling results in a more general settinglavou () c9=f(y)+u,  y(0)=y €R (7)
obscure the main idea, namely that multi-resolution desigan initial condition set is defined as:

have inherent resolution scaling properties w.r.t. a walege

of cost functionals. We briefly discuss the extensions of the Yo = {yo € R |yol <0}, (8)
results in the final section of the paper. The main notation gg\d defineXy, = {Z,,({f}) | vo € Mo}
detailed at the end of the paper. We define an uncertainty set(4) to be of the form:
A(B) = KgNA(L®(ws),0s0)
Il. PROBLEM FORMULATION = {f€Ks||f(@)ws()| < dVz € Q}, (9)
A. Approximation Theory where {Kgzls>o is a C(Q,R) smoothness class,

To define an approximate adaptive design and to precisély= [—W, W] is compact and where < J., < co.
formulate the problem investigated in this paper, we fir§inge
some approximation theoretic notions./A smoothness class C. Performance
is a nested set of subseft&’s}5>0 of a function spaceF, ie. The control task is to asymptotically track a given refeeenc
Kj C K whenp' < 3, and whereF = U0k 5. Typically  trajectory to within a specified accuracy. In addition atisgd
a smoothness class is specified by Lipschitz constraints,|@6p signals should be kept bounded. Performance will then
by bounds in Sobolev spaces as is typical in approximatige judged w.r.t. to a cost functional which penalises tiemtsi
theory. Amodel classs a sequence of model basgs™ },,,>1, signals.
¢™: R — W™ and whereWW™ is a Euclidean space called So, given a reference trajectony.s € C'(R,,R), we
the weight space of theath model. Typicallydim W™ will  define a reference trajectory set as:
be a divergent function ofn. Generic approximation theory
furnishes us with a dimension functign-: dom(psz) — N Vret = {yret € C'(ReB) | lyrerllpe(y) < 1,
wheredom(px) C R, x R.. For a smoothness parameter [yret ™ Lo () < 72 }(10)
B, approximation bound and normed function spacg, the

; . . L where~1,v, > 0 are fixed numbers, known to the control
dimension function satisfies:

design. Thecontrol taskis to give a controller=(y.r) to

VFe KqVm> )T e W™ st ||f — 076" 5 < e achieve asymptoti€)y = [—n,n] tracking whilst keeping all
/ 5 ¥m 2 p(B,¢) st 117 "Il 6(5) signals bounded, in the sense of the following definitiontén
If D = R, x R, then the model class is said to be a e inner supremum is taken over all (non-unique) Fillipov
: lutions [9]):
(F,{Ks}s>0) approximate model class soutions _ - o
Definition 2.1: A multi-resolution model clastss a model Def”.’““"” 2.2:A cI_osed IOOP(ZJ.’O_(A(B))’“(M“)) Is said
Class{¢™ }m>1 with the structure to achieve asymptoti€, tracking if:

. . - sup  sup, ey, sup sup
P = [Qﬁl | s | ... | o™, (6) feEA(B) Yo €0 Yeet EVret SOINS(3y, (£),E (yeer))

where {¢*: R — W*};>, is a model class, called thease Jim dist{(y = grer)(t), o} = 0.

class The closed loop is said to be bounded if all closed loop sgynal
Note that this definition imposes considerable structuréhen lie in L.

model class, it requires that the higher resolution modeds &he closed loop signals are taken to be the system and con-
simply basis extensions of the lower resolution modelschentroller's state, input and output signals. So that the cdnask
standard approximation bases such as Taylor series, Foueachievable we impose the following constraint throughou
series, wavelets etc. are all of the appropriate form. Basfse paper:

functions from any(F, { K3} 3>0) approximation class can be Yo+ < W. (11)
utilized as the base class, for {i* }r>1 is a (F, {Ks}s0)
approximation class then so {$™ },,>1. However, note that
#™ is of much higher dimensional thap™ as it is the
concatenation of all the lower resolution models. J:YxU—Ry. (12)

Performance of a closed loop is measured by a functional of
the output and input signals:



Throughout we consider four specific cost functionals which 1) Basic Design:We define a controller as follows:
penalise the non-singular transient performance of theesys

and are given by: Z(, @) (grer) = u = 0" d(y) — = + yier
) ) 6 = aD(Qo,)zd(y)
A0l = [ 60) - 0eR (20)
_ Given a (C(Q),{Kg}s>0) approximate model class

Dly()u)] = /Tno @ (1) di + i‘;}? [u(®)] {¢™}m>1, the controlﬁdggiggn is defined by:
Tsly(),u()] = / 2?(t) + u’(t) dt + sup |i(t)] Phasic(8)(-) = E(@™,¢™)()  where

Tag 120 m = p(B,n/2),a™ =r(m), (21)
Taly(),u()] = /T ?(t) dt+§1>llg|u(t)\ +§1>llg\ﬂ(t)| for some functionm: N — R, (the nature ofr will be

considered in Section 1I-D.2). The stability result for hi
(13) controller is given below, the proof is standard, but is give
where for completeness.
Theorem 2.6:There existsr such that for all3 > 3, the

2() =y() = yret(-),  and To, = {t>0]z(t) ¢ W} closed loop [EyO(A(B)),F” (3)(yref)] is bounded and

Basic

) (14) achieves asymptoti€), tracking. Furthermord ;. is P,
Such a cost penalises the response of the system whﬁgt P, and P, stable.

._qc(t) ¢ _Qo = [fn,n],_hence fpr a closed loop whose goal = 5, Let f € A(B), Yror € Vrets Yo € Vo. Leth € W
is to drive z to €29, whilst keepingy, u bounded, these costspq g ,ch that}| f — 9T¢m||C(Q) < 1, whereby the existence of

are reasonable penalties on the transient signals. such af is guaranteed by definition of the dimension function
Performance of a controllé& will be measured in this Paper, | etr: N — R, be given by

with respect to a worst case cost, fe: P(S) x C — Ry,*?

where P(S) denotes the power set ¢f, and where: (m) = & m €N (22)
AMRm)’
Pi(Zy, (A),E) whereR,,, is the Gram matrix:
= sup sup sup sup Tily(-),u(")]
FEA(B) Y0EVo Yrer EVrer SOINS(By, (£),E (yrer)) (Rm)ij = ( ;”,¢;.”)L2(Q),
1<j<4? (15)  and where we will determine* > 0 subsequently.
Now consider the Lyapunov function

D. Controllers A1, 1
_ o Vi(z,0) = -z" +
We now recall an important definition [10]. 2 2m(m)

Definition 2.3: A P stable control design is a mappingand note that for: € \ Q, it's derivative is given by:
I': Ry — C such that:

(z,0) < —a2° —0T¢) < —z? @.
P(E30(AB), T(B) Drer)]) < 00, ¥B>0  (16) Vie,f) < —2" +al(f —67¢) <~ + 5 (24)
We are thus concerned with the behaviour of a class 0f|f 2(0) € Q, we claim that theV’(0) level set of V is

controllers{I'(§)}5>o as specified by the design functiéh - jnyariant, otherwise we claim that te(0) — 122 + Ln? level
which defines a (different) controller for each smoothnessll gt of v/ is invariant. The proof of both claims is as follows.

@-0)T@O-0 (23

3. Note that for anyP stable design it follows that Let
oo
P[5, (AB) LB D)) <00, V' <B (17) e sy
by the nested property dfis}5>0. S0 || fllz2) < 8o Let ¢ = inf{t > 0 | z(t) € aQ} if

In this paper, we are primarily conc_erned with the foIIowin'gﬁ0 € o, and* = 0 otherwise. TherV (¢*) is bounded as
two properties ofP stable control designs:

L X . follows
Definition 2.4: A P stable control desigh': R, — C is
; ; e, 1 676
said to be resolution scaleable if: V(") < Zmax{zZ n’} +
. -2 0’ 27 (m)
lim sup P([Xy, (A(8)), I'(8) (Veer)]) <00, VB >0. (18) 1 ) 07 RO
fsoo < cmax{zd,n’} 4+ e
Definition 2.5: A P stable control desigi’: R, — C is 2 2w (m)A(Rm)
said to be resolution divergent if: 1 5 Sy + Wi)2
? = 3 max{yg,n*} + % =V (25

lim inf P([Xy, (A(B)),T wef)]) =00, VB >0. (19 o . _ )
lgrig; (B (A8, T(B) Wrer)) = o0 4 (19) from which it follows by inequality (11) that there exists
a* > 0 such thaty/2V,, +v; < W and hence

1We also admit the possibility that eithef or 7 may not be defined for
all their respective domains. [— 2V — m,s vV 2V + ’71] C Q°. (26)



It follows thaty(t) € Q for all ¢ > 0, and hence inequality (24) which implies = is required to be s.tx(m) > O(m). In
holds for allt > 0, provided we can show/2V (t) + y1 < W fact, for some classes of approximator, we can show that it
for all ¢ > 0, since 322(t) < V(t) for all t > 0, and is also neccessarjor 7 to be divergent forz to remain in
ly(t)] < |z(t)| + v1. For a contradiction suppose there existany bounded region. An example of this was given in [11].
t** > 0 such that,/2V (¢**) + vy, = W. It follows that: Let us now consider the behaviour gﬁ)} ) dt asm

, increases, assumingis bounded by).

0< / -V dt:V(t*)fV(t**)SVOfu 1)
T,M[0,t+] 2
(27)

which contradicts the inequality2Vy + 71 < W. This also
shows thatV' () < V4 for all ¢+ > t*, and V' (t) < V; for all
t > 0 since fort € [0,4*), § = 0 andz>(t) < .

Since V(t) < Vy for all ¢ > 0, it follows that
z(+),0(-) € L* and by integrating inequality (24) we obtain:

/mQ(t)dtg/ ~Vdt<Vy— V(o) <Vp.2  (28)
T, T,

n ]

Sincez, 4 is bounded, it follows from the system equation that
% is bounded, hence is uniformly continuous. Then equation 2)
(28) impiesz(t) — Qo. As f € A(B), Yret € Vrefs Yo € Vo

were arbitrary, this completes the proof of boundedness and
asymptoticS), tracking.P;, P-, Ps and P, stability is now
established. First we obtain a bound @{7;,)* as follows:

v
m(T,) = / 1dt§/ ——dt
T T, infier, |V

n

—/ ar< VO 2N )
"7 "7

Then we observe that the™ bounds onz, § can be written
directly in terms ofl. Since all terms in the cost functional
x,u,u are functions of, 0, Yref, Yref, it fOllOws that the cost
can be bounded in terms ®f, 71, 2. SinceV} is in turn is
bounded by construction in terms gf andW, this completes
the proof. ]

2) Scaling of the adaption gainThe construction used in
the proof above uses an adaption gain which scales) =
A(R For many approximants this is a divergent function
(eg. %or B-splines or for the Guassian RBF’'s of [2], see eg.
[1]). However, although this is only a sufficient condition
for stability, note that there are two reasons for scaling th
adaption gaire™: the first is to ensure stability, the second is
to ensure resolution scaleability.

For many approximators, imposing the (sufficient) conditio
(26) forcesa™ to be an increasing function of the resolution.
For example, any approximate model class satisfying [1]:

3Ty >0, s.t. Ym > 1, sup [¢™(y)| < Ts,° (30)
yeQ

has the property that for some > 0, (e1)T¢™ € A(B).
Hence,
2171 em

VO 2 505 2 3mim)

3Here we use the fact thadl(t) is constant whem:(t) € Qo — see eg. [1]
for details.

“Here,m(A) denotes the Lebesgue measure of the/set

5For examples, B-splines, and Guassian RBF’s with the spalij2] have
this property.

Again consider approximators with the property (30). In
the limiting case wherd), = {0}, (or evenQy = ),
sufficiently rich reference signals force a persistantly
exciting regressor, and hence parameter convergence.
Now consider the Lyapunov function (52) and integrate
it's derivative, to obtain

1 1,
2 271'(77’1,)0 o

(31)
since z(c0) = 0, f(cc) = 6. By again consider-
ing 0 = el this shows that uniform boundedness of
fT ) dt occurs if and only ifr(m) > O(m).

For more limited classes of approximants, easy direct
proofs of the neccessity of divergent scaling of the
adaption gain can be given in the prescence of a dead-
zone. Here we illustrate the neccesity of such a scaling
for a simple class of popular approximants, namely
compactly supported mesh based approximants (eg. B-
splines on uniform lattices).
We consider approximants defined by:
"+ R — R2™*! where

d)m = (¢Tm= ¢Tm+1= R ¢ﬁ71= Q%)

for m > 1 and where

2
Ty +

/OOO 22(t) dt = V(0) — V(o0) =

¢j" () = F(mz — Wi, (32)

where F': R — R is continuous, positive, compactly
supported and has a maximuf(0) > 0 at 0.

It is straightforward to show that there exists con-
stantsl,k > 1 such thatVm > 1, 3m/k intervals
I C [n,min(W/2,1F(0)/2)] with the property that
betweenl and! basis functionsp!*, —m < i < m,
intersectI/™ and furthermore

suppg; NI" /= 0,
suppgp N1, / = 0,
supp ¢; Nsupp gy / = 0 =i=rp. (33)

Now defineK" = {j € [-m,m] | supp ¢]" N I; # 0},
and letJ;" = Uje iy supp ¢7', note that[m c J”, and
J{”QJ;”—wlfz;é]

Let e > 0 be such that

EF(0)*W
eF(0) sup |weo (y)]
yeQ
so if§ = el then§T ¢™ € A(p) for all m > 1. Consider
Yref = 0, Yo = min( W/2,eF(0)/2), and f = (e1)T¢™.
Let y*I"* = € I, so¢™(y*:") = F(0). To drive
y(-) = niti |s necessary to cross the powit™. For this

83, and

<
< oo (34)



to happeng < 0, ie. (8 — §)T¢™(y*") — y*™ < 0. The controller=p,,; is the same as the basic controller (20),

(3

Now except for a change to the adaptive law:
0 <y"{" < min(W/2,eF(0)/2), S, 0 W) (yret) = u = —0Td(y) — x + yier
and 0 = aD(Q,z)Projy(z¢(y))
6T o™ (y*7") > F(0)e, 6(0) = 0€RP. (37)
which implies that it is necessary for In this definition the projection operat®roj,, : R¥ — RP is
R defined as follows:
0T¢™ (y"}") > F(0)e/2 _ T, if6 € I1° or VII'T < 0
Mmoo ; . rojy(r) = _ ynvn? 17 T
to crossy*;". This implies thaf " . 6; > ¢/2. Since I = o) 7 0 €010, VII'T > 0.
6;] < aWF(0) andf; = 0 if y(t) & J™ it follows that (38)
the total time whilsty(#)  J; is greater than oy - Given a (C(Q),{Kg}s>0) approximate model class
By the disjointness property of thé’s and the fact that (4my | the projection modified control design is taken to
thed; = 0 if y(¢) ¢ J/™, it follows that be:
me Iproi(B)(-) = E(™, ¢™, W™)() (39)
m(Ty) > o
20WF(0)lk wherep = dim ¢™, and
and hence W™ = {HeR|07¢™(y)| < doowoo(y), Yy € R}, 7
2 —
9 9 men m m = p(B,n/2),
= > S E— > — .
/an (t) dt /Ty (t) dt 2 20WF(0)lk ~ 0 (a) a™ = m(m). (40)
(35) _ . . _
This again shows that uniform boundedness (yi\/e also impose a uniform strength condition [1]:
fT7 x2(t) dt occurs if and only ifr(m) > O(m). T, >0 st T < ing o™ (y)]. (41)
4 =

The following result then motivates the rest of the paper:Th_ gition i isfied b ) 1
Theorem 2.7:Supposer is divergent. Then the closed IS con |'§|on_|s satisfie oy mOSt. approxmant_s, See €g. [1]
A The motivation for the introduction of the projection mod-

loop {EyO(A(ﬁ)),F” (6)(yref)} is P53 and Py resolution seation is the following result which shows that the design

Basic
divergent. _ also additionally guarantees resolution scaleabilitytwaoth
Proof: See Section 1I-D.4, Theorem 2.9. B D oandp..

A corollary of this result is the statement that for the ctesssf Theorem 2.8:There existst such that for all3 > 3,

approximators considered in above, there is no choicefof 14 ¢losed oo Sy, (A(B)), 5 '(B)(yref) is bounded and
which resolution divergence can be avoided. The aim of ﬂé%hieves asymptot?ﬁ trackingﬂl)“J” is bothP P, P. and
paper is therefore to examine the relative performancesf t 0 ' Proj s s

. . . P, stable andP;, P, resolution scaleable.
designs which have been shown to have resolution scalgabili Proof: Let f € A(B), grer € Veers Yo € Vo. AS in

propert|e§. . . . Theorem 2.6, také € W™ to be such that
It remains an open question whether iFisor P, resolution 7
scaleable for any choice of approximator structure for this If—6"¢™ o) < 2 (42)

scalar system, although it seems likely for some wide ctasse 4 ob h m ) h ¢ of
of approximator that it is resolution divergent — see [1] fopnd observe t ap € W y construction. The proof o

related results showing a similar performance divergence Poundedness, asymptotido tracking andPy, P stability,

MIMO equivalents of this controller and a discussion of thifollows that O_f Theorem 2.6, by noting that inequality (24)
question. can be established by the property [12]:

3) Projection Modification: The projection modification @ —0)"Proj(r) > (0 —8)"r, YOeW™  (43)
is typically used to ensure boundedness of the parameter. L . _ m
estimator when disturbances are present. It does not geara %tlﬁh hOIdS} withr N aa:;zﬁ(a:)TancetG(t?lg 0 ed;\) ' ThF tr_est
any form of convergence of the output. However, it has be&fl € proot Is analagous. 1o establish and/=; resofution

proposed as a technique to ens@te resolution scaleability SCaling: it suffices to establish bounds e[, |jul|.~ and
when used in conjunction with a dead-z6i8], which we m(T,) which are independant ¢f (andm). First we establish

now describe a bound onV;, which is independant of. Taking the same

1 1 — [e3 *
SupposaV is a convex set iRP with a smooth boundary, CE?'(.:G tfr?rﬁ‘ TIS n Theo;em 26677(”;? = xR Y2 0, we
written in the form: obtain the rtollowing unirorm pounda:
1 5 (82 + V)2
— P . Vv, < = 2 2 - 27
W=1{0eR : II(f) <0} (36) o = 5 max{zg,n"} + AR
L L W2
81t is important to note that convergence of the output can bétained 1 9 9 (52 + "—)
when a dead-zone is used in conjunction with projection. = 3 max{yy,n"} + 2(1*2 . (44)



From the invariance of th&, level set ofV/, it follows that:  previously [11]. A complete proof dPy, P2, Ps, P4 resolution
scaleability is as follows.

@L< 2O+ yrer ()] Since A(B) C Kg, there existsM > 1, such that for all
<V QY(t) +71 < V2V + 7 f € A(B), there exist®™ ¢ WM such that

lu@)] = [ =6"¢"™(y) — 2 = yrer]
< Vootwo(9)] + 2] + yie] 1f = 6™) Ml < 3 (50)
< 0oewoo(vV/2Vo + 71)| + V/2V0 + 72 (45)

hence it follows that = [(#M)" | 0] has the property that:
A bound on m(T,) is established as in Theorem 2.6:

m(T,) < 2‘/0 . Since in all the above inequalitieg,e A(S), 1f = (0)" 6™l < Q} (51)
Yret € yref, yo € Vo were arbitrary, the result follows. = 2

4) The Resolution Divergence Properties of the Projecti
Modification: In this section we establish the poor scalin
properties of the basic and projection modified designs wh
there is an additional penalty on the control rate. R 1

Theorem 2.9:Supposer is divergent. Therl', ., T'E,;
are bothP3; andP, stable andP; andP, resolution divergent.

Proof: P53 and P, stability has been established in TheoSince |#"| is bounded independently of:, it follows that

rem 2.6 and Theorem 2.8. To establish resolution divergendd is bounded independently of and hence analagously to
first considerl’'s Chooseyrer € Veer, Yo € Yo such that Theorem 2.8V; is uniformly bounded independantly qﬁ

Proj
Yret(0) = yrer(0) J_ Yret(0) = 0, yo = W;n' so we have Analagously to Theorem 2.8, since thiglevel set is invariant,
z(0) & Q. Then: it can also be shown thatn(T),), ||z||z~ are uniformly
bounded in terms o#}. It thus suffices to show that, o

W(0) = azod™ (yo)" ¢™ (yo) — zo + f(yo)-  (46) are uniformly bounded independant 8f First we establish

sinced(0) = 0. Sinced™ (yo)" 6™ (yo) > Y; it follows that WO inequalities:
|i(0)] — oo asa — oo. In particular, ifr is divergent, then

Uhnce ¢™ is a multi-resolution model. Now lefer € Viet,
?16 Yy and consider the previous Lyapunov function (52)

! 0 —6)T —6) (52)

I, is Ps, Py resolution divergent. The proof fdfgagic is u(t)| = |67 d(y) — z+yiee| < 107 G(y)|+ 2]+ |yiet], (53)
similar. ]
5) Multi-resolution Design:Define a controller as follows: X 06
S, G ) ) = _éTas( p— ) = |60t~ 675+
s 0
0 = aD(Q,7)2G4(y), - ‘—amd)(y)TGd)(y) - 9T6—¢(¢ + Yref)
f(0) = 0eR? (47) Y
- AT .
The adaptive structure matrig is taken to be positive definite o= fy) + 070 W) + yrer

and symmetric..The multi-resolution (definition 2.1) model < azd(y)" Goy))

model dlats and the control design 1 defed by: #1672 (a1 +170) + 87 00)] + i
L)) =E(",G™,¢™)(-),  where  m=p(8,n/2), +Ha + [F)] + (7 $(w)]| + lyre-

and where{G™, ¢™},,>1 are 1-regular pairs, in the se(ﬁg)e obince [|2]|%°, lyllrees f(W)|lnoos Uref, Yrets Yrer Can be
the following definition [5]: bounded uniformly by, Yo, 71, 72, 0, it suffices to bound

Definition 2.10: A model class{¢™},,>1 and a sequence [|¢(y)" Go(y)|| L= 1061 ||9A8‘g—§}'")llnm independantly of
of adaptive structure matrice§G™},,>1 is said to be &- 3. Clearly, |¢(y)TGé(y)| < p2(y) and by lettingD denote
regular pair if there exists a continuous functign R — R,  either D° or D!, we have:
such that for allm > 1

) nT m T m T m
[D@mion)| sute), vrer oscsk @g 0P| < [@ 07D+ 8706

Here D¢ denotes the differential operatd? = 2. Con- \/(9 —6)T(G™)~1 (0

struction of suitable matrice&™ is straightforward and can i

be found in [1], [5]. We can then give the following result: +4/0T(G™)=16||D(G™)2¢™|]
Theorem 2.11:There existsx* > 0 such that for all3 > 3,

IN

-0)||pamton|

the closed Ioop[Eyo(A(ﬁ)),Fmr(B)(yref)] is bounded and < 207V (2, 0)pu(y) + V2V (2(0), 0)pu(y)
achieves asymptoti@, tracking.T',,,, is bothP;, P, P35 and < 22u(y)v2a V. (54)

P, stable andP,, Ps, P3; and P, resolution scaleable.
Proof: Boundedness{), asymptotic tracking;P;, P.  Since y is uniformly bounded as a function ofj, this
stability and?; resolution scaleability has been establishetbmpletes the proof. [ ]



E. Comparison between Designs P-» since the controk is directly dependant on the adaption

The main result in this paper shows that when the cont@®na. y _ _ _
rate is penalised in the cost functional and when the a-Resolution scaleability of the multi-resolution desigmca

priori estimateB of the smoothnesg becomes conservative,be established with respect to cost functionals incorpayat

then the multi-resolution design increasingly out-perferthe Penalties on higher derivatives, eg. terms such as:

projection modified design. (k) 2 (k)
Theorem 2.12:Supposer is divergent, then foi = 3, 4: /T (“ (t)) dt or sup [u ™ (#)],  (60)

t>0
P; [ZyO(A(B)),Fgmj (B)(yref)] . by demanding on the k-regularity of the pdi&*, ¢*), _
- — oo as [ —o0. (55) and by further constraining the reference trajectory toidie
P [Zyo(A(ﬁ)):Fmr(ﬁ)(yref)] Ve, which is defined by:
Proof: This is a simple consequence of the resolution e
divergence property dff,,; (Theorem 2.9) and the resolution Vi = A{yrer € C(RJHR) |
scaling property of'Z . (Theorem 2.11). ] [[yret|| Lo < Yig1 < o0, 0<i < k}.(61)
Corollary 12.1: For the class of systems given in Section
[1-D.2, number II-D.2 we have foi = 3, 4: I1l. CONCLUSIONS
inf, P, [EyO(A(ﬁ)) TFo; (3)(yref)] A We have compared the tvvc_) main proposals f_or res9|ution
- — oo as [ — oo. scaling, and showed the multi-resolution approximant idea
P; [EyO(A(ﬁ)),Fmr(ﬁ)(yref)] superior when higher derivatives of the control are peadlis

(56) For reasons of notational simplicity we have consideretasca
Proof: For the class of systems considered, we hawstems, but have outlined how the arguments apply to much
shown that it is neccessary far to be divergent to achieve wider classes of systems. The multi-resolution results can

resolution scaleability of the? term in the cost. Hence by be interpreted as showing how to select appropriate fumctio
Theorem 2.12, the corollary follows. m approximators and adaption rates to avoid high gains; such

high gains do occur as the resolution of some standard

. approximators are increased.
F. Extensions PP

For notational simplicity we have only considered the
simplest case of a scalar system with a matched nonlinearity
However, these results can straightforwardly be extended t
the case of the integrator chain:

y™ = f(y, 9,y ) +u (57)

by the obvious alterations to the basic control law:

E(O{, r, Qs) (yref) :
—0Tp(y,5,. ...y V) — aT + yrer™

U = 3
i — aD(Qo, )2 bo(y, g, ...,y V)
6(0) = 0eRP
T = (1/ — Yret, Y — Yrets -y — yref(”*l))(58)
where

Qo ={z € R" | 2" Pz < 1}

and with appropriate choices fath and P = PT > 0, see [5]
for details. Similar arguments establish bounded asyrntptot
)y tracking and resolution divergenceBfasic, I'proj and the
resolution scaleability of",,., by considering the Lyapunov
function:

V(z,0) =" Pz + %(9 —0TG 0 -6). (59)

The results can also be extended to strict feedback systems,
note that the results in [5] construct resolution scaleable
controllers of a multi-resolution type f@?,, (and can be easily
extended toP., Ps, P,4). Resolution divergence of projection
modified designs [13] remain to be established, but it can be
expected that resolution divergence can even be obtairréd w.



m

Wm

"R > W™

{@m: R—)Wm}mzl
{¢k}k21: R —» W™

W R T ™
=
V)

L () weo)

Qo

Ta,

m: N — Ry

F! Fgasic! 71'Sroj1 me
T, J1, T2, T3, Ja

P, P1, P2, P3, Pa

Notation and Nomenclature

approximator size,
parameter space,
model base,
model base class,
base class, [2]
approximation error,

model parameter,

adaptive estimate of model parameter,
dimension function,

(1]

(3]

Gram matrix of modeb™, [4]
upper and lower strength bounds,

plant nonlinearity, [5]
function smoothness parameter,

a-priori bound on the function [6]
smoothness parameter, 7]

smoothness class,
uncertainty set,
L weight and bound, [8]
plant,

controller, [0l
plant, controller interconnection,
space of input signals,

space of output signals, (10]
set of initial conditions,

bound on initial condition size, 11
set of reference signals,

bounds on reference signal size,
reference signal, [12]

input, output and tracking error signal,
space of continuous functiori$ — R,
space of continuously differentiable
functionsQ2 — R,

weighted L>° space,

the dead-zone regiojp-7,n], n > 0,
time set whene is not in dead-zone,
adaptive gain scaling function,
control design mappings,

cost functionals,

worst case cost functionals.

[13]
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