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Large Margin Nearest Neighbor Classifiers

Carlotta Domeniconi, Dimitrios Gunopulos, and Jing Peng, Member, IEEE

Abstract—The nearest neighbor technique is a simple and ap-
pealing approach to addressing classification problems. It relies on
the assumption of locally constant class conditional probabilities.
This assumption becomes invalid in high dimensions with a finite
number of examples due to the curse of dimensionality. Severe bias
can be introduced under these conditions when using the nearest
neighbor rule. The employment of a locally adaptive metric be-
comes crucial in order to keep class conditional probabilities close
to uniform, thereby minimizing the bias of estimates. We propose a
technique that computes a locally flexible metric by means of sup-
port vector machines (SVMs). The decision function constructed
by SVMs is used to determine the most discriminant direction in a
neighborhood around the query. Such a direction provides a local
feature weighting scheme. We formally show that our method in-
creases the margin in the weighted space where classification takes
place. Moreover, our method has the important advantage of on-
line computational efficiency over competing locally adaptive tech-
niques for nearest neighbor classification. We demonstrate the ef-
ficacy of our method using both real and simulated data.

Index Terms—Feature relevance, margin, nearest neighbor clas-
sification, support vector machines (SVMs).

1. INTRODUCTION

N A classification problem, we are given .J classes and [

training observations. The training observations consist of n
feature measurements x = (x1,...,2,)7 € R" and the known
class labels y = 1,...,J. The goal is to predict the class label
of a given query q.

The K -nearest neighbor (K -NN) classification method [7],
[15], [18], [19], [24], [26] is a simple and appealing approach to
this problem: it finds the K -NNs of q in the training set, and then
predicts the class label of q as the most frequent one occurring in
the K neighbors. Such a method produces continuous and over-
lapping, rather than fixed, neighborhoods and uses a different
neighborhood for each individual query so that all points in the
neighborhood are close to the query, to the extent possible. In ad-
dition, it has been shown [8], [11] that the one nearest neighbor
rule has asymptotic error rate that is at most twice the Bayes
error rate, independent of the distance metric used.
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Fig. 1. Feature relevance varies with query locations.

The nearest neighbor rule becomes less appealing with finite
training samples, however. This is due to the curse of dimension-
ality [5]. Severe bias can be introduced in the nearest neighbor
rule in a high-dimensional input feature space with finite sam-
ples. As such, the choice of a distance measure becomes crucial
in determining the outcome of nearest neighbor classification.
The commonly used Euclidean distance measure, while simple
computationally, implies that the input space is isotropic or ho-
mogeneous. However, the assumption for isotropy is often in-
valid and generally undesirable in many practical applications.
Fig. 1 illustrates a case in point, where class boundaries are par-
allel to the coordinate axes. For query a, dimension X is more
relevant, because a slight move along the X axis may change
the class label, while for query b, dimension Y is more rele-
vant. For query c, however, both dimensions are equally rele-
vant. This implies that distance computation does not vary with
equal strength or in the same proportion in all directions in the
feature space emanating from the input query. Capturing such
information, therefore, is of great importance to any classifica-
tion procedure in high-dimensional settings.

Several techniques [10], [12], [14], [21] have been proposed
to try to minimize bias in high dimensions by using locally
adaptive mechanisms. The “lazy learning” approach [1] used by
these methods, while appealing in many ways, requires a con-
siderable amount of online computation, which makes it diffi-
cult for such techniques to scale up to large data sets. The fea-
ture weighting schemes they introduce, in fact, are query based
and applied online when the test point is presented to the “lazy
learner.”

In this paper we propose a locally adaptive metric classifica-
tion method that, while still resting on a query based weighting
mechanism, computes offline the information relevant to
defining local weights. Specifically, our technique uses support
vector machines (SVMs) to guide the process for estimating a
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local flexible metric. SVMs have been successfully used as a
classification tool in a variety of areas [6], [16], [20], and the
maximum margin boundary they provide has been proved to be
optimal in a structural risk minimization sense. The solid the-
oretical foundations that have inspired SVMs convey desirable
computational and learning theoretic properties to the SVMs
learning algorithm, and therefore SVMs are a natural choice
for seeking local discriminant directions between classes.

While the solution provided by SVMs is theoretically sound,
SVMs maximize the margin in feature space. However, the fea-
ture space does not always capture the structure of the input
space. As noted in [2], the large margin in the feature space does
not necessarily translate into a large margin in the input space. In
fact, it is argued that sometimes SVMs give a very small margin
in the input space, because the metric of the feature space is usu-
ally quite different from that of the input space [2]. Such a sit-
uation is undesirable. In this paper, we show that our approach
overcomes this limitation. In fact, we formally prove that our
weighting scheme increases the margin, and therefore the sepa-
rability of classes, in the transformed space where classification
takes place.

The solution provided by SVMs guides the extraction of local
information in a neighborhood around the query. This process
produces highly stretched neighborhoods along boundary direc-
tions when the query is close to the boundary. As a result, the
class conditional probabilities tend to be constant in the mod-
ified neighborhood, whereby better classification performance
can be achieved. The amount of elongation-constriction decays
as the query moves farther from the vicinity of the decision
boundary. This phenomenon is exemplified in Fig. 1 by queries
a, a’ and a”. In this paper, we present both theoretical and ex-
perimental evidence of the accuracy achieved by means of this
local weighting scheme.

We avoid cross validation by using a principled technique
for setting the procedural parameters of our method. Our
approach to automatic parameter selection leverages the
sparse solution provided by SVMs. As a result, our technique
avoids expensive cross validation and has only one adjustable
tuning parameter, namely the number K of neighbors in
the final nearest neighbor rule. This parameter is common
to all nearest neighbor techniques. On the other hand, the
competing techniques have multiple parameters whose values
must be determined through cross validation. (adaptive metric
nearest neighbor (ADAMENN) [10] has six parameters; Ma-
chete/Scythe [12] each has four parameters; discriminant
adaptive nearest neighbor (DANN) [14] has two parameters.)

Furthermore, the technique proposed here speeds up the
online computation process since it computes offline local
weighting information and applies the nearest neighbor rule
only once. In contrast, ADAMENN, for example, applies it to
each point within a region centered on the query. Indeed, our
technique is capable of estimating local feature relevance using
a global decision scheme such as SVMs. As such, the bulk
of computation is done offline, leaving only local refinements
online. This results in a method that is much more efficient
computationally than current locally adaptive techniques for
nearest neighbor classification [10], [12], [14], [21] that perform
feature relevance estimates on the fly. We provide complexity
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analysis for each of the adaptive nearest neighbor methods in
Section VIII. The analysis shows that our technique is indeed
more efficient than the competing nearest neighbor methods.

The rest of the paper is organized as follows. In Section II,
we briefly discuss the objectives that motivate adaptive metric
nearest neighbor techniques. In Section III, we introduce the
main concepts of SVMs. In Section IV, we present our approach
to measuring local feature relevance based on SVMs. Section V
describes how to estimate the quantities involved in our local
feature relevance measure, and formally presents our algorithm.
In Section VI, we show that our weighting scheme increases
the margin in the transformed space. Section VII presents the
methods we consider for comparison in our experiments. Sec-
tion VII-A compares the methods through simulated examples
while Section VII-B uses real data examples. In Section VIII,
we provide complexity analysis of online computation for each
of the competing locally adaptive methods. Section IX is a dis-
cussion of related work and a concluding summary is given in
Section X.

II. ADAPTIVE METRIC NEAREST NEIGHBOR CLASSIFICATION

In a classification problem we are given [ observations x €
"™, each coupled with the corresponding class label y, with y =
1,...,J. Itis assumed that there exists an unknown probability
distribution P(x,) from which data are drawn. To predict the
class label of a given query q, we need to estimate the class
posterior probabilities { P (j|q)}7_;.

K nearest neighbor methods are based on the assumption
of smoothness of the target functions, which translates to
locally constant class posterior probabilities P(j|q). That is:
P(jl(qa + 6q)) =~ P(jla), for ||6q|| small enough. Then,
P(jla) = (Ceentq PUX)/IN(@I), where N(q) is a
neighborhood of q that contains points x that are “close” to
q, and |N(q)| denotes the number of points in N(q). This
motivates the estimate

Y6 e N(@)i( =)
Pila) = E—
S 1(x: € N(q)

i=1

where 1() is an indicator function such that it returns 1 when its
argument is true, and 0 otherwise.

The assumption of smoothness, however, becomes invalid for
any fixed distance metric when the input observation approaches
class boundaries. The objective of locally adaptive metric tech-
niques for nearest neighbor classification is then to produce a
modified local neighborhood in which the posterior probabili-
ties are approximately constant.

The techniques proposed in [10], [12], and [14] are based
on different principles and assumptions for the purpose of es-
timating feature relevance locally at query points, and there-
fore weighting accordingly distances in input space. The idea
common to these techniques is that the weight assigned to a fea-
ture, locally at query q, reflects its estimated relevance to predict
the class label of q: larger weights correspond to larger capabili-
ties in predicting class posterior probabilities. As a result, neigh-
borhoods get constricted along the most relevant dimensions
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and elongated along the less important ones. The class condi-
tional probabilities tend to be constant in the resulting neigh-
borhoods, whereby better classification performance can be ob-
tained.

III. SVMs

In this section, we introduce the main concepts and properties
of SVMs. Again, we are given {x;,y;}._,, where class label
y; € {—1,41}. The task is to learn a set of parameters « in
f(x, @) so that f realizes the mapping x; — ;. A particular
choice of « defines the corresponding trained machine f(x, a).

The expectation of the test error for a trained machine is

R(a) = / Sl = Fx 0ldP(x, ).

The quantity R(«) is called the expected risk, or just the risk. It
gives a nice way of writing the true mean error, but unless we
have an estimate of what P(x,y) is, it is not very useful. The
empirical risk Repp() is then defined as the mean error rate
measured over the training set

L
Remp(a) = 2 Z lyi — f(xi, @)
i=1

The following bound holds (with high probability over the
random draw of the training sample) [27]:

R(a) < Remp(a) + Conf(h)

where h is the Vapnik Chervonenkis (VC) dimension that mea-
sures the ability of the machine to learn any training set without
error. The term Conf(h) is called the VC confidence. Given
a family of functions f(x,a), it is desirable to choose a ma-
chine that gives the lowest upper bound on the risk. The first
term, Remp (), represents the accuracy attained on a particular
training set, whereas the second term Conf(h) represents the
ability of the machine to learn any training set without error.
Repp () and Conf(h) drive the bias and variance of the gen-
eralization error, respectively. The best generalization error is
achieved when the right balance between these two terms is at-
tained. This gives a principled method for choosing a learning
machine for a specific task, and is the essential idea of structural
risk minimization.

Unlike traditional methods that minimize the empirical risk,
SVMs aim at minimizing an upper bound of the generalization
error. The previous bound does not directly apply to SVMs,
since the VC dimension depends on the location of the ex-
amples. The bounds in [25] account for this data dependency.
SVMs achieve this goal by learning the as in f(x, @) so that the
resulting trained machine satifies the maximum margin prop-
erty, i.e., the decision boundary it represents has the maximum
minimum distance from the closest training point.

Another appealing property of SVMs is the sparseness repre-
sentation of the decision function they compute. The location
of the separating hyperplane in feature space is specified via
real-valued weights on the training examples. In general, those
training examples that lie far away from the hyperplane do not
participate in its specification and therefore receive zero weight.
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Training examples that lie close to the decision boundary re-
ceive nonzero weights. These training examples are called sup-
port vectors, since their removal would change the location of
the separating hyperplane. The design of SVMs, in general, al-
lows the number of the support vectors to be small compared
to the total number of training examples. This property allows
SVMs to classify new examples efficiently, since the majority
of the training examples will be safely ignored.

A. Learning With SVMs

In the simple case of two linearly separable classes, a SVM
selects, among the infinite number of linear classifiers that sep-
arate the data, the classifier that minimizes an upper bound on
the generalization error. The SVM achieves this goal by com-
puting the hyperplane w - x — b = 0 that has the maximum
minimum distance from the closest training point, i.e., the max-
imum margin property [9], [28].

If the two classes are nonseparable, the SVM looks for the hy-
perplane that maximizes the margin and that, at the same time,
minimizes an upper bound of the error. The tradeoff between
margin and upper bound of the misclassification error is driven
by a positive constant C' that has to be chosen beforehand. The
corresponding decision function is then obtained by considering
the sign(f(x)), where f(x) = >, ciyix! x — b, and the a;s,
defined over the hypercube [0, C]!, are the Lagrange coefficients
that maximize Lp = >, o; — (1/2) 32, ; iy, - x;. The
parameter b is also computed from the data. In general, the so-
lution will have a number of coefficients a; equal to zero, and
since there is a coefficient «y; associated to each data point, only
the data points corresponding to nonzero «; will influence the
solution. These points are the support vectors. Intuitively, the
support vectors are the data points that lie at the border between
the two classes, and a small number of support vectors indicates
that the two classes can be well separated.

This technique can be extended to allow for nonlinear de-
cision surfaces. This is done by mapping the input vectors
into a higher dimensional feature space: ¢ : R" — RV,
and by formulating the linear classification problem in
the feature space. Therefore, f(x) can be expressed as
f(x) = 32; aiyid® (xi)d(x) — b.

If one were given a function K(x,y) = ¢ (x)¢(y), one
could learn and use the maximum margin hyperplane in fea-
ture space without having to compute explicitly the image of
points in RN . It has been proved (Mercer’s Theorem) [9] that
for each continuous positive definite function K (x,y) there ex-
ists a mapping ¢ such that K (x,y) = ¢* (x)é(y),Vx,y € R™.
By making use of such function K (kernel function), the equa-
tion for f(x) can be rewritten as

fx) = Z oy K (xi,x) — b. ey

IV. FEATURE WEIGHTING

The maximum margin decision boundary found by SVMs
is used here to determine local discriminant directions in the
neighborhood around the query. The normal direction to local
decision boundaries identifies the orientation along which data
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points between classes are well separated. The gradient vector
computed at points on the boundary allows us to capture such
information, and to use it for measuring local feature relevance
and weighting features accordingly. The resulting weighting
scheme improves upon the solution computed by SVMs by
increasing the margin in the space transformed by the weights.
Here are the major thrusts of our proposed method.

SVMs classify patterns according to the sign(f(x)). Clearly,
in the case of a nonlinear feature mapping ¢, the SVM classi-
fier gives a nonlinear boundary f(x) = 0 in the input space.
The gradient vector ng = Vg4 f, computed at any point d on the
level curve f(x) = 0, points to the direction perpendicular to
the decision boundary in the input space at d. As such, the vector
nq identifies the orientation in the input space along which the
projected training data are well separated in the neighborhood
around d. Therefore, the orientation given by nq, and any ori-
entation close to it, carries highly discriminant information for
classification. As a result this information can be used to define
a local measure of feature relevance.

Let q be a query point whose class label we want to predict.
Suppose q is close to the boundary, which is where class con-
ditional probabilities become locally nonuniform, and therefore
estimating local feature relevance becomes crucial. Let d be the
closest point to q on the boundary f(x) = 0

d = argmin||q — p||, subjecttof(p)=0. (2)
P

Then we know that the gradient ng identifies a discriminant
direction.

As a consequence, the subspace spanned by the orientation
ng intersects the decision boundary and contains changes in
class labels. Therefore, when applying the nearest neighbor rule
to q, we desire to stay close to q along the nq direction, because
that is where it is likely to find points similar to q in terms of the
class conditional probabilities. Distances should be increased
(due to larger weight) along ng and directions close to it, thus,
excluding points along ng that are away from q. The farther we
move from the ng direction, the less discriminant the correspon-
dending orientation. This means that class labels are unlikely
to change along those orientations, and distances should be re-
duced (due to smaller weight), thus, including points which are
likely to be similar to q in terms of the class conditional proba-
bilities.

This principle is in direct analogy to linear discriminant anal-
ysis. In fact, the orientation of the gradient vector identifies
the direction, locally at the query point, along which the pro-
jected training data are well separated. This property guides the
process of creating modified neighborhoods that tend to have
homogeneous class conditional probabilities.

Formally, we can measure how close a direction t is to ng by
considering the dot product n’{t. In particular, denoting e; the
canonical unit vector along input feature j, for j = 1,...,n,
we can define a measure of relevance for feature j, locally at q
(and therefore at d), as

Ri(q) = |e] na| = |na ;| 3)

where ng = (nd,1,---,ndn)" -
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The measure of relative feature relevance, as a weighting
scheme, can then be given by

Ri(q))!
wj(q) = 7,5 i(9) )
;(Ri(q))t
where ¢ is a positive integer, giving rise to polynomial weight-
ings. We propose the following exponential weighting scheme:

exp(AR;(q))

" (5)
> exp(AR;(q))

wj(q) =

K2

where A is a parameter that can be chosen to maximize (mini-
mize) the influence of R; on w;. When A = 0 we have w; =
1/n, thereby ignoring any difference between the R;’s. On the
other hand, when A is large a change in I7; will be exponen-
tially reflected in w;. The exponential weighting is more sen-
sitive to changes in local feature relevance (3), and in general
gives rise to better performance improvement. In fact, the ex-
ponential weighting scheme conveys stability to the method by
preventing neighborhoods from extending infinitely in any di-
rection. This is achieved by avoiding zero weights, which is in-
stead allowed by the polynomial weightings.

Thus, (5) can be used as weights associated with features for
weighted distance computation

D(x,y) = Zwi(%‘ —yi)2. (6)
=1

These weights enable the neighborhood to elongate less impor-
tant feature dimensions, and, at the same time, to constrict the
most influential ones. Note that the technique is query-based be-
cause weightings depend on the query [1], [4].

One may be tempted to use the weights w,;(q) directly in the
SVM classification, by applying the weighted distance measure
(6) in (1). By doing so, we would compute the weighted dis-
tances of the query point q from all support vectors, and there-
fore we would employ the weights w;(q) for global distance
computation over the whole input space. On the other hand, our
weighting schemes w;(q) (4) and (5) are based on the local (to
q) orientation of the decision boundary, and therefore mean-
ingful for local distance computation.

The weights w;(q), in fact, carry information regarding how
the shape of a neighborhood should be constricted or enlongated
locally at q: we desire to contract the neighborhood along direc-
tions aligned with the gradient direction, and dilate it along di-
mensions that are orthogonal to the gradient direction. Accord-
ingly, a locally adaptive nearest neighbor technique allows us to
take into consideration only the closest neighbors (according to
the learned weighted metric) in the classification process.

V. LARGE MARGIN NEAREST NEIGHBOR CLASSIFICATION

We desire that the parameter A in the exponential weighting
scheme (5) increases as the distance of q from the boundary de-
creases. By using the knowledge that support vectors are mostly
located around the boundary surface, we can estimate how close
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Input: Decision boundary f(x) = 0 produced by an SVM; query point q and
parameter K.

1. Compute the closest point d to q on the boundary (2);

no

. Compute the gradient vector ng = Vqf;

. Set feature relevance values R;(q) = |ng | for j =1,...,n;

= W

. Estimate the distance of q from the boundary as: Bq = ming, ||q — s;||;

ot

. Set A = D — Bg, where D is defined as in equation (9);

6. Set w according to (4) or (5);

-~

. Use the resulting w for K-nearest neighbor classification at the query point
q.

Fig. 2.  LAMANNA algorithm.
a query point q is to the boundary by computing its distance
from the closest nonbounded support vector

By :n;in”q—si” 7

where the minimum is taken over the nonbounded (0 < «; <
(') support vectors s;. Following the same principle described
in [3] the spatial resolution around the boundary is increased by
enlarging volume elements locally in neighborhoods of support
vectors.

Then, we can achieve our goal by setting

A=D - By ®)

where D is a constant (“meta”) parameter input to the algorithm.
In our experiments we set D equal to the approximated average
distance between the training points x; and the boundary

1 .
D= jg{lrgnﬂxk—siﬂ}. )

By doing so the value of A nicely adapts to each query point
according to its location with respect to the boundary. The closer
q is to the decision boundary, the greater impact I2; will have
on distance computation.

We observe that this principled technique for setting the pa-
rameters of our method takes advantage of the sparse represen-
tation of the solution provided by SVMs. In fact, for each query
point q, in order to compute By we only need to consider the
support vectors, whose number is typically small compared to
the total number of training examples. Furthermore, D can be
computed offline and used in subsequent online classification.

The resulting locally flexible metric nearest classification al-
gorithm based on SVMs is summarized in Fig. 2. We call our al-
gorithm large margin nearest neighbor algorithm (LAMANNA)
to highlight the fact that the algorithm operates in a space with
enlarged margin, as we shall see in Section VI. The algorithm
has only one adjustable tuning parameter, namely the number K
of neighbors in the final nearest neighbor rule. This parameter
is common to all nearest neighbor classification techniques.

VI. WEIGHTING FEATURES INCREASES THE MARGIN

We define the input space margin as the minimal distance
from the training points to the classification boundary in the
input space [2]. More specifically, let s € ™ be a sample point,
and d (defined in (2)) the (nearest) foot of the perpendicular on
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f(x)=0

Fig. 3. Perpendicular distance and gradient vector.

the separating surface f(x) = 0 from s (see Fig. 3). We define
the input space margin as

M = min D(s,d) = min

where s is in the training set, and equal weights are assigned
to the feature dimensions. In the following, we show formally
that our weighting schemes increase the margin in the space
transformed by the weights.

Consider the gradient vector ng = Vaf =
((0/0x1) fa,...,(0/0xy)fa) computed with  respect
to x at point d. Our local measure of relevance for feature j is
then given by

Rj(S) = |e?nd| = |nd7]’|

and w;(s) is defined as in (4) or (5), with 377, w;(s) = 1.
Let

n

Dy (s,d) = Y wils)(si — di)?

=1

(11)

be the squared weighted Euclidean distance between s and d.
We first prove the following main result.

Theorem 1: Let s € R™ be a sample point and d € R"
the nearest foot of the perpendicular on the separating surface
f(x) = 0. Define D*(s,d) = (1/n)> ¢, (s; — d;)* and
D% (s,d) = YI  wi(s)(si — d;)?, where w;(q) are the
weights computed according to (4) or (5). Then

D2(s,d) < D2 (s, d).

Proof: Lets = (s1,82,...,8,)7,d = (dy,da,...,d,)7T,
and w(s) = (wi,wa,...,w,)T, where we drop the depen-
dency of the w;s on s for clarity.

Since (s — d) is along the gradient direction ng, or opposite
of it, we have (s — d) = (ngq, for some scalar 3. It follows
(|s; — d;|/R;) = |B| ¥ 4, and therefore:

[s1=da| _ls2—da| _  _ |sn—dnl
Rl RQ Rn
If w; = (R}/35_, RY), for t positive integer (polynomial
weighting)
Rt—l —d ; Rt—l —d
|si —d;| = =2 51 d 15_1 = LI r ! R;,
w1 RL ’U)lz Rj
j
Vi=1,....n (12)
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where, without loss of generality, we assume that wy # 0, since
apositive w; must exist, given that E:l qw; = landw; > 0V4.
If w; = ( AR 51 =1 (exponential weighting)

6AR1|81 — d1| R;
w
Riw; eAR; !
BARl |81 — d1|
lelz eAR;
J

|si —di| =

where A > 0, and again without loss of generality we assume
Ry # 0, since a positive R; must exist by definition (3).
For polynomial weighting, by (12), we obtain

1 n
d)=- R? 14
OB (14)
D (s,d) =a) Rjw; (15)
i=1
t—1 2
where a = ((R1 Is1 — du])/ (1Y, R;.))
For exponential weighting, by (13), we obtain
d) = lb Zn: R? (16)
[ '
D} (s,d) =bY  Riw (17)
i=1

2
where b = (47151 = da)/(Riwn 32, 4) )

In both cases, to show that D?(s,d) < D2 (s,d), we need to
show

S ORI <nd Rl (18)
i=1 i=1
Consider Chebychev’s inequality [13]. If 1 > --- 2, > 0 and

Y1 > -y, > 0 then

14+ Tn Y1+ + Yn <a:1y1—|—-~-—|—a:nyn
n n N n

19)

with equality if and only if all z; or all y; are equal.
Let z; = R? and y; = w;, YV i. Suppose, without loss of
generality, that the R;s are in nondecreasing order: R; > R2
-> R, > 0. Then R? > >R2>OandeAR‘> ->
eAF» > (0. Therefore, w; 2 - > w, > 0 for all welghtmg
schemes. Chebychev’s inequahty gives

(20)

1 & 1 <
=Y RI< =) Rl
=1

Multiplying both sides of (20) by n2, we obtain (18). This con-
cludes the proof. ]

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 4, JULY 2005

Now we can show that our weighting schemes increase the
margin in the transformed space. Let

s* = argmin D(s,d).

Then

M = %is—d*

=1

We have the following result.
Corollary 2: M < Dy (s*,d*)
Proof: By Theorem 1, D?(s,d) < D2 (s,d). Hence

D*(s*,d*) < D2 (s*,d")

and therefore

M = D(s*,d") < Dy(s*,d").
|
Theorem 1 shows that D?(s,d) < D2 (s,d). Now we show
that the equality holds only when w; = (1/n) V 4. This result
guarantees an effective increase of the margin in the transformed
space whenever differential weights are credited to features (ac-
cording to our weighting schemes), as stated in Corollary 3.
Corollary 3: D?*(s,d) = D2(s,d) if and only if w; =
(1/n) VY i.
Proof: If w; = (1/n) V i, then the equality D?(s,d) =
D2 (s, d) is trivially satisfied.
Suppose now

D?(s,d) = D2 (s,d). 1)
Theorem 1 shows that, when equality (21) holds, then

S R =n) Rlw;. (22)

i=1 i=1

This means that the equality in (19) is satisfied, with z; = R?

and y; = w;, Y ¢. Then, for the equality conditions of (19) [13],

all R;s or all w;s are equal. In either case, w; = (1/n)Vi. m
And finally we have

Corollary 4: M = Dy(s*,d*) if and only if w; =

(1/n) VY 1.
Proof: This is a direct consequence of Corollary 1 and
Corollary 2. ]

VII. EXPERIMENTAL RESULTS

In the following we compare several classification methods
using both simulated and real data. All problems considered
here involve two classes, because SVMs are well suited for
such cases. Multiclass classification problems can also be solved
using binary classifiers. A good discussion on the subject can
be found in [23]. We compare the following classification ap-
proaches.
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« LAMANNA algorithm described in Fig. 2. SVM!8h* [17]
with radial basis kernels is used to build the SVM classifier.

¢ Radial basis function (RBF)-SVM classifier with radial
basis kernels. We used SVM'&eht [17], and set the value
of v in K (x;,x) = e~ 7I%=xI" equal to the optimal one
determined via cross validation. Also the value of C' for
the soft-margin classifier is optimized via cross validation.
The output of this classifier is the input of LAMANNA.

ADAMENN-adaptive metric nearest neighbor technique
[10]. It uses the Chi-squared distance in order to estimate
to which extent each dimension can be relied on to predict
class posterior probabilities.

e Machete [12]. It is a recursive partitioning procedure, in
which the input variable used for splitting at each step is the
one that maximizes the estimated local relevance. Suchrel-
evance is measured in terms of the improvement in squared
prediction error each feature is capable to provide.

* Scythe [12]. It is a generalization of the Machete algo-
rithm, in which the input variables influence each split in
proportion to their estimated local relevance, rather than
applying the winner-take-all strategy of the Machete.

*  DANN-discriminant adaptive nearest neighbor classifica-
tion [14]. It is an adaptive nearest neighbor classification
method based on linear discriminant analysis. It computes
a distance metric as a product of properly weighted within
and between sum of squares matrices.

* Simple K-NN method using the Euclidean distance
measure.

e (4.5 decision tree method [22].

In all the experiments, the features are first normalized over
the training data to have zero mean and unit variance, and the test
data features are normalized using the corresponding training
mean and variance. Procedural parameters (including K) for
each method were determined empirically through cross vali-
dation over training data.

To avoid solving the nonlinear program d = arg miny, ||q —
p||, subject to the constraint f(p) = 0, in the implementation of
the LAMANNA algorithm we can estimate the closest point to
the query on the boundary as follows. We move from the query
point along the input axes (in both directions) at distances pro-
portional to a given small step (whose initial value can be arbi-
trarily small, and doubled at each iteration till the boundary is
crossed). We stop as soon as the boundary is crossed along one
of the input axes, say axis ¢, i.e., when a point p; is reached that
satisfies the condition sign(f(q)) x sign(f(p;)) = —1. Given
Pi, we can get arbitrarily close to the boundary by moving at
(arbitrarily) small steps along the segment that joins p; to q.
Let us denote with d; the intercepted point on the boundary
along direction 7. We then approximate ngq with the gradient
vector ng, = Vg, f, computed at d;,. We have experimented
with both the exact solution of the nonlinear program and the
approximated one. We have observed no significant difference
in performance. Results reported here are based on the approx-
imated gradient computation.

A. Experiments on Simulated Data

For all simulated data, 10 independent training samples of
size 200 were generated. For each of these, an additional inde-
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TABLE 1
AVERAGE CLASSIFICATION ERROR RATES FOR SIMULATED DATA

MultiGauss | NoisyGauss
LaMaNNa 3.3 +0.17 | 3.4 £0.18
RBF-SVM | 3.3 £0.01 | 5.3 +£0.01
ADAMENN | 3.4 4+ 0.01 4.1 £0.02
Machete 3.4 £0.01 4.3 +£0.01
Scythe 3.4 £0.01 4.8 £0.01
DANN 3.7 £0.01 4.7 £0.01
K-NN 3.3 £0.01 7.0 £0.01
C4.5 5.0 £1.50 5.1 £1.60

pendent test sample consisting of 200 observations was gener-
ated. These test data were classified by each competing method
using the respective training data set. Error rates computed over
all 2,000 such classifications are reported in Table I.

1) Problems: Multi-Gaussians. The data set consists of
n = 2 input features, [ = 200 training data, and J = 2 classes.
Each class contains two spherical bivariate normal subclasses,
having standard deviation 1. The mean vectors for one class are
(—3/4, —3) and (3/4,3); whereas for the other class are (3, —3)
and (—3, 3). For each class, data are evenly drawn from each of
the two normal subclasses. The first column of Table I shows
the results for this problem.

Noisy-Gaussians. The data set consists of n» = 6 input fea-
tures, [ = 200 training data, and .J = 2 classes. The data
for this problem are generated as in the previous example, but
augmented with four predictors having independent standard
Gaussian distributions. They serve as noise. For each class, data
are evenly drawn from each of the two normal subclasses. Re-
sults are shown in the second column of Table 1.

Mixture and Multiplicative Noise. The data are distributed
as in multi-Gaussians, with additional noisy predictors. For the
mixture case, the noisy variables are distributed according to
a mixture of Gaussians: the sum of a standard normal and a
Gaussian with mean and standard deviation randomly chosen
in the intervals [—7,7] and [1, 5], respectively. For the multi-
plicative noise, the noisy variables are the product of two Gaus-
sians, with the same settings for means and standard deviations
as for the mixture case. These data were generated to compare
RBF-SVM and LAMANNA in presence of noisy features with
more complex distributions.

2) Results: Table I shows that all methods have similar per-
formances for the multi-Gaussians problem, with C4.5 being
the worst performer. When the noisy predictors are added to the
problem (noisy Gaussians), we observe different levels of dete-
rioration in performance among the eight methods. LAMANNA
shows the most robust behavior in presence of noise. K-NN is
instead the worst performer. We also observe that C4.5 has sim-
ilar error rates in both cases; we noticed, in fact, that for the
majority of the 10 independent trials we run it uses only the
first two input features to build the decision tree. In Fig. 4, we
plot the performances of LAMANNA and RBF-SVM as a func-
tion of an increasing number of noisy features (for the same
multi-Gaussians problem with Gaussian, mixture, and multi-
plicative noisy features). The standard deviations for RBF-SVM
(in order of increasing number of noisy features) are as follows.



906

LaMaNNa ——
RBF-SVM ---x---

X

Average Error rates (%)

TN TN T TN T TN TN TN T T N SO B

@
LI L S S R S S B S S N N B B

Number of Noisy Variables
32 T T T T T T T

Lal\/'laNNa —
RBF-SVM ---x---

X

Average Error rates (%)
>

N TR TN T TN N Y S S TR TR T U B

Sy
N
IS
=y
®
>
N
IS
>
®
8
N

Number of Noisy Variables
32 T T T T T T T

LalV'IaNNa T
RBF-SVM ---x---

’,X

Average Error rates (%)
>

TN T T T T T N S SO TN B B B

L U L L R L

0 2 4 6 8 10 12 14 16 18 20 22
Number of Noisy Variables

Fig. 4. Average error rates of LAMANNA and RBF-SVM as a function of
the number of noisy predictors. The noisy predictors have: standard Gaussian
distributions (top); mixture of Gaussians distributions (middle); multiplicative
Gaussian distributions (bottom).

Gaussian noise: 0.01, 0.03, 0.03, 0.03 and 0.03. Mixture noise:
0.02,0.03, 0.04, 0.04, and 0.02. Multiplicative noise: 0.02, 0.03,
0.02, 0.03, and 0.03. The standard deviations for LAMANNA
are as follows. Guassian noise: 0.18, 0.2, 0.3, 0.3, and 0.3. Mix-
ture noise: 0.2, 0.2, 0.3, 0.2, and 0.3. Multiplicative noise: 0.2,
0.2, 0.2, 0.2, and 0.2. In all three cases, the LAMANNA tech-
nique shows a considerable improvement over RBF-SVM as the
amount of noise increases. The rather flat performance curve of
LAMANNA demonstrates that our technique successfully fil-
ters out the noisy features.

We have also computed the normalized eigenvalues of the
principal components for the three 22-dimensional (20 noisy
features + two actual features) data sets we have considered.
The eigenvalues are shown in Fig. 5. The plot shows that, in the
presence of Gaussian noise, the eigenvalues drop drastically, and
most information is captured by the first two principal compo-
nents. In the other two cases, however, such a separation is not
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Fig. 5. Normalized eigenvalues of the principal components for the three
22-dimensional data sets augmented with different kind of noisy features.

evident. The eigenvalues decrease gradually. The elimination of
the noisy features in these cases is not a trivial task.

B. Experiments on Real Data

While simulated data are informative for comparison studies,
it is highly likely that artificially constructed examples will not
correspond to situations that are likely to occur in practice. Thus,
in this section, we examine the performance of the competing
classification methods using real world data. One of the advan-
tages of real data is that they are generated without any knowl-
edge of the classification procedures that it will be used to test.

In our experiments we used eight different real data sets.
They are all taken from the UCI Machine Learning Repos-
itory. For the Iris, Sonar, Liver, and Vote data we perform
leave-one-out cross validation to measure performance, since
the number of available data is limited for these data sets. For
the Breast, OQ-letter and Pima data we randomly generated
five independent training sets of size 200. For each of these,
an additional independent test sample consisting of 200 obser-
vations was generated. For the noisy-Pima data we performed
10 two-fold cross validation, with 60% of the data for training
and 40% for testing. Table II shows the cross-validated error
rates for the eight methods under consideration on the eight
real data.

1) Problems:

1) Iris data. This data set consists of n = 4 measurements
made on each of [ = 100 iris plants of J = 2 species.
The two species are iris versicolor and iris virginica. The
problem is to classify each test point to its correct species
based on the four measurements. The results on this data
set are shown in the first column of Table II.

2) Sonar data. This data set consists of n = 60 frequency
measurements made on each of [ = 208 data of J = 2
classes (“mines” and “rocks”). The problem is to classify
each test point in the 60-dimensional feature space to its
correct class. The results on this data set are shown in the
second column of Table II.

3) Liver data. This example has n = 6 attribute values re-
garding blood test results and drinking habits. There are
J = 2 classes, establishing the liver disorder condition,
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TABLE 1I
AVERAGE CLASSIFICATION ERROR RATES FOR REAL DATA
Iris | Sonar | Liver | Vote | Breast | OQ | Pima | Noisy-Pima
LaMaNNa 4.0 | 11.0 | 28.1 | 2.6 3.0 3.5 | 19.3 24.7
RBF-SVM | 4.0 | 12.0 | 26.1 | 3.0 3.1 |34 213 25.1
ADAMENN [ 3.0| 9.1 30.7 | 3.0 3.2 3.1 | 204 31.5
Machete 5.0 | 21.2 | 275 | 34 3.5 74 | 20.4 28.2
Scythe 4.0 163 | 275 | 34 2.7 5.0 | 20.0 29.4
DANN 60| 7.7 | 301 | 3.0 | 22 |40/ 222 28.1
K-NN 6.0 | 125 | 325 | 7.8 2.7 5.4 | 24.2 30.9
C4.5 8.0 | 231 | 383 | 34 4.1 9.2 | 23.8 32.3
and | = 345 samples. The results on this data set are

shown in the third column of Table II.

4) Vote data. This data set includes votes for each of the
U.S. House of Representatives Congressmen on the 16
key votes identified by the Congressional Quarterly Al-
manac. The data set consists of [ = 232 instances after
removing missing values, and J = 2 classes (democrat
and republican). The instances are represented by n = 16
boolean valued features. The average leave-one-out cross
validation error rates are shown in the fourth column of
Table II.

5) Wisconsin breast cancer data. The data set consists of
n = 9 medical input features that are used to make a
binary decision on the medical condition: determining
whether the cancer is malignant or benign. The data set
contains 683 examples after removing missing values. Av-
erage error rates for this problem are shown in the fifth
column of Table II. The standard deviations are: 0.2, 0.2,
0.2,0.2,0.2,0.9, 0.9, and 0.9, respectively.

6) OQ data. This data set consists of n = 16 numerical at-
tributes and J = 2 classes. The objective is to identify
black-and-white rectangular pixel displays as one of the
two capital letters “O” and “Q” in the English alphabet.
There are [ = 1536 instances in this data set. The char-
acter images were based on 20 different fonts, and each
letter within these 20 fonts was randomly distorted to pro-
duce a file of 20 000 unique stimuli. Each stimulus was
converted into 16 primitive numerical attributes (statis-
tical moments and edge counts) which were then scaled
to fit into a range of integer values from 0 through 15. The
average error rates over five independent runs are shown
in the sixth column of Table II. The standard deviations
are: 0.2,0.2,0.2,0.3,0.2, 1.1, 1.5, and 2.1, respectively.

7) Pima Indians Diabete data. This data set consists of n =
8 numerical medical attributes and .J = 2 classes (tested
positive or negative for diabetes). There are [ = 768 in-
stances. Average error rates over five independent runs are
shown in the seventh column of Table II. The standard
deviations are: 0.4, 0.4, 0.4,0.4,0.4,2.4,2.1, and 0.7, re-
spectively.

8) Noisy Pima Indians Diabete data. This data set consists
of n = 60 numerical attributes and J = 2 classes. It was
obtained by adding 52 independent mixture of Gaussians
to the original eight dimensions of the Pima data. These
additional 52 dimensions serve as noise. Mean and stan-
dard deviations of the Gaussians are set as in the mixture
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noise for simulated data. Average error rates over 10 inde-
pendent runs are shown in the last column of Table II. The
standard deviations are: 0.4,0.4,0.5,2.1,2.7,2.4,3.1, and
1.6, respectively.

2) Results: Table II shows that LAMANNA achieves the
best performance in 3/7 of the real data sets; in one case it shows
the second best performance, and in the remaining four its error
rate is still quite close to the best one.

It seems natural to quantify this notion of robustness; that is,
how well a particular method m performs on average across the
problems taken into consideration. Following [12], we capture
robustness by computing the ratio b, of the error rate e,, of
method m and the smallest error rate over all methods being
compared in a particular example:

by = —
min e
1<k<8

Thus, the best method m* for that example has b,,- = 1, and
all other methods have larger values b,,, > 1, for m # m™. The
larger the value of b,,, the worse the performance of the mth
method is in relation to the best one for that example, among
the methods being compared. The distribution of the b,,, values
for each method m over all the examples, therefore, seems to
be a good indicator concerning its robustness. For example, if
a particular method has an error rate close to the best in every
problem, its b,,, values should be densely distributed around the
value 1. Any method whose b value distribution deviates from
this ideal distribution reflect its lack of robustness.

Fig. 6 plots the distribution of b,, for each method over
the eight real data sets. The dark area represents the lower
and upper quartiles of the distribution that are separated by
the median. The outer vertical lines show the entire range of
values for the distribution. One of the outer vertical lines for the
LAMANNA method is not visible because it coincides with the
limit of the lower quartile. The spread of the error distribution
for LAMANNA is narrow and close to one. The spread for
ADAMENN has a similar behavior, with the outer bar reaching
a slightly higher value. The results clearly demonstrate that
LAMANNA (and ADAMENN) obtained the most robust
performance over the data sets.

The poor performance of the Machete and C4.5 methods
might be due to the greedy strategy they employ. Such recursive
peeling strategy removes at each step a subset of data points
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permanently from further consideration. As a result, changes
in an early split, due to any variability in parameter estimates,
can have a significant impact on later splits, thereby producing
different terminal regions. This makes predictions highly sen-
sitive to the sampling fluctuations associated with the random
nature of the process that produces the traning data, thus,
leading to high-variance predictions. The Scythe algorithm, by
relaxing the winner-take-all splitting strategy of the Machete
algorithm, mitigates the greedy nature of the approach, and
thereby achieves better performance.

In [14], the authors show that the metric employed by the
DANN algorithm approximates the weighted Chi-squared dis-
tance, given that class densities are Gaussian and have the same
covariance matrix. As a consequence, we may expect a degrada-
tion in performance when the data do not follow Gaussian dis-
tributions and are corrupted by noise, which is likely the case in
real scenarios like the ones tested here.

We observe that LAMANNA avoids expensive cross valida-
tion by using a principled technique for setting the procedural
parameters. Our approach to efficient and automatic settings of
parameters leverages the sparse solution provided by SVMs. As
aresult, our algorithm has only one adjudtable tuning parameter,
the number K of neighbors in the final nearest neighbor rule.
This parameter is common to all nearest neighbor techniques.
On the other hand, the competing techniques have multiple pa-
rameters whose values must be determined through cross val-
idation: ADAMENN has six parameters; Machete/Scythe each
has four parameters; DANN has two parameters. Furthermore,
LAMANNA speeds up the online computation since it applies
the nearest neighbor rule only once, whereas ADAMENN, for
example, applies it to each point within a region centered on the
query. In Section VIII, we provide a complexity analysis of on-
line computation for each of the locally adaptive methods used
in our experiments. The analysis shows that our algorithm has
the lowest online computational complexity. We also observe
that the construction of SVMs for LAMANNA is carried out
offline only once. Also, there exist algorithmic and computa-
tional results that show SVM learning can be made practical for
large-scale problems [17].

The LAMANNA technique offers improvement in accuracy
over the RBF-SVM algorithm alone, for both the (noisy) simu-
lated and real data sets. The reason for such performance gain
has to do with the increase in margin in the transformed space
by our local weighting scheme, as shown in Section VI.

Assigning large weights, locally in the neighborhoods of the
support vectors, to input features close to the gradient direction
corresponds to increasing the spatial resolution along those di-
rections, thereby improving the separability of classes.

VIII. COMPLEXITY ANALYSIS

Here we provide the complexity analysis of online compu-
tation for each of the locally adaptive competing methods. In
this analysis, we assume that the procedural parameters for each
method has been determined.

For a test point, DANN must first compute [ /5 nearest neigh-
bors that are used to estimate the DANN metric, which requires
O(llog!) operations. For n dimensions, the metric requires
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O((1/5)n?) operations. Therefore, the overall complexity of
DANN is O(llogl + In?).

Given a test point, ADAMENN first computes [/5 nearest
neighbors to estimate feature relevance, which requires
O(llogl) operations. Each of the [/5 nearest neighbors is then
used to estimate conditional predictions along each dimensions,
which requires O((I/5)l1log! + n(l/5)) operations. Thus, the
computational complexity of ADAMENN is bounded by
O(nl?logl + nl).

Machete and Scythe, on the other hand, involve a
“peeling” process. Each peel removes (1 — «)l points
from further consideration, where 0 < « < 1. The total
number of peels is logy,,(I/K). At each peel ¢, feature
relevance along each dimension is estimated, which re-
quires O(na'lloga'l). This is performed for logy,,(I/K)
times. Thus, the complexity of both Machete and Scythe is
0O ((10g1/a(l/K)) (n (QIOgl/c\(l/K)l) log ('8« (/E)) ) ),

which is bounded by O ((I/K) (n(a/5)])log(a/E)]))).
Since the peeling process demands “patience,” o =~ 1. There-
fore, Machete and Scythe have a time bound O(n(I?/K)log]1).

Given a test point, our algorithm, LAMANNA, computes a
gradient vector, which requires O(lsn) operations, where [ is
the number of support vectors computed by SVMs (in general
ls < ). Then, it performs O(llogl) operations for nearest
neighbor computation. Thus, the total number of operations is
bounded by O(llog! + lsn)

The previous analysis shows that LAMANNA has the lowest
online computational complexity. In addition, our algorithm is
prone to further computational online speed-up if required by
a specific application. In fact, one can compute offline a map
of the gradients and, thus, of the weight vectors in different re-
gions of the input space. When a query is given, the closest gra-
dient vector can be identified and, thus, the corresponding local
weight vector will be readily available.

IX. RELATED WORK

In [3], Amari and Wu improve SVM classifiers by modifying
kernel functions. A primary kernel is first used to obtain support
vectors. The kernel is then modified in a data dependent way
by using the information of the support vectors: the factor that
drives the transformation has larger values at positions close to
support vectors. The modified kernel enlarges the spatial reso-
lution around the boundary so that the separability of classes is
increased.

The resulting transformation depends on the distance of data
points from the support vectors, and it is therefore a local trans-
formation, but is independent of the boundary’s orientation in
input space. Likewise, our transformation metric depends on the
distance of the query point from the support vectors; this de-
pendence is driven by the A factor in the exponential weighting
scheme (5), which is defined in (8). Moreover, since we weigh
features, our metric is directional, and depends on the orien-
tation of local boundaries in input space. This dependence is
driven by the measure of feature relevance (3), which has the
effect of increasing the spatial resolution along discriminant di-
rections around the boundary.
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X. CONCLUSION AND FUTURE WORK

We have described a large margin nearest neighbor classi-
fication method and demonstrated its efficacy through exper-
imental results. The proposed technique offers accuracy im-
provements over the SVM alone, supported by the theoretical
result of margin increase. In addition, our technique has the po-
tential of scaling up to large data sets. It speeds up, in fact, the
online classification process by computing offline the informa-
tion relevant to define local weights. It also avoids expensive
cross validation by using a principled technique for setting pro-
cedural parameters.

A considerable amount of work has been done for efficient
discovery of nearest neighbors. Unfortunately, all methods
suffer from the curse of dimensionality, and therefore they
become less effective in high dimensions. Our scheme could
also be used to improve the effectiveness of nearest neighbor
search in high dimensions by virtue of the local dimensionality
reduction resulting from the feature weights. We intend to
further explore this direction of research in our future work.
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