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Abstract—In mobile ad hoc networks, nodes act both as termi-
nals and information relays, and they participate in a common
routing protocol, such as dynamic source routing (DSR). The net-
work is vulnerable to routing misbehavior, due to faulty or mali-
cious nodes. Misbehavior detection systems aim at removing this
vulnerability. In this paper, we investigate the use of an artificial
immune system (AIS) to detect node misbehavior in a mobile ad
hoc network using DSR. The system is inspired by the natural im-
mune system (IS) of vertebrates. Our goal is to build a system that,
like its natural counterpart, automatically learns, and detects new
misbehavior. We describe our solution for the classification task of
the AIS; it employs negative selection and clonal selection, the al-
gorithms for learning and adaptation used by the natural IS. We
define how we map the natural IS concepts such as self, antigen,
and antibody to a mobile ad hoc network and give the resulting al-
gorithm for classifying nodes as misbehaving. We implemented the
system in the network simulator Glomosim; we present detection
results and discuss how the system parameters affect the perfor-
mance of primary and secondary response. Further steps will ex-
tend the design by using an analogy to the innate system, danger
signal, and memory cells.

Index Terms—Mobile, ad hoc, misbehavior, detection, artificial,
immune, clonal selection, learning, adaptive.

I. INTRODUCTION
A. Problem Statement: Detecting Misbehaving Nodes in DSR

OBILE ad hoc networks are self organized networks

without any infrastructure other than end-user terminals
equipped with radios. Communication beyond the transmission
range is made possible by having all nodes act both as terminals
and information relays. This in turn requires that all nodes par-
ticipate in a common routing protocol, such as dynamic source
routing (DSR) [18]. A problem is that DSR works well only
if all nodes execute the protocol correctly, which is difficult to
guarantee in an open ad hoc environment.

A possible reason for node misbehavior is faulty software or
hardware. In classical (non ad hoc) networks run by operators,
equipment malfunction is known to be an important source of
unavailability [19]. In an ad hoc network, where routing is per-
formed by user provided equipment, we expect the problem to
be exacerbated. Another reason for misbehavior stems from the
desire to save battery power: some nodes may run a modified
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code that pretends to participate in DSR but, for example, does
not forward packets. Finally, some nodes may also be truly ma-
licious and attempt to bring the network down, as do Internet
viruses and worms. An extensive list of such misbehavior is
given in [3]. The main operation of DSR is described in Sec-
tion II-A. In our simulation, we implement faulty nodes that,
from time to time, do not forward data or route requests, or do
not respond to route requests from their own cache.

We consider the problem of detecting nodes that do not cor-
rectly execute the DSR protocol. The actions taken after de-
tecting that a node misbehaves range from forbidding to use the
node as a relay [1] to excluding the node entirely from any par-
ticipation in the network [3]. In this paper, we focus on the de-
tection of misbehavior and do not discuss the details of actions
taken after detection.

However, the actions do affect the detection function through
the need for a secondary response. Indeed, after a node is dis-
connected (boycotted) because it was classified as misbehaving,
it becomes nonobservable. Since the protection system is likely
to be adaptive, the ‘punishment” fades out and redemption is al-
lowed [2]. As aresult, a misbehaving node is likely to misbehave
again, unless it is fixed, for example by a software upgrade. We
call primary [respectively, secondary] response the classifica-
tion of a node that misbehaves for the first [respectively second
or more] time. Thus, we need to provide a secondary response
that is much faster than primary response.

We chose DSR as a concrete example, because it is one of
the protocols being considered for standardization for mobile
ad hoc networks. There are other routing protocols, and there
are parts of mobile ad hoc networks other than routing that need
misbehavior detection, for example medium access control pro-
tocols. We believe the main elements of our method would also
apply there, but a detailed analysis is for further work.

B. Traditional Misbehavior Detection Approaches

Traditional approaches to misbehavior detection [1], [3] use
the knowledge of anticipated misbehavior patterns and detect
them by looking for specific sequences of events. This is very
efficient when the targeted misbehavior is known in advance (at
system design) and powerful statistical algorithms can be used
[4].

To detect misbehavior in DSR, Buchegger and Le Boudec use
a reputation system [3]. Every node calculates the reputation of
every other node using its own first-hand observations and the
second-hand information obtained from others. The reputation
of a node is used to determine whether countermeasures against

1045-9227/$20.00 © 2005 IEEE



SARAFIJANOVIC AND LE BOUDEC: ARTIFICIAL IMMUNE SYSTEM APPROACH

the node are to be undertaken or not. A key aspect of the repu-
tation system is how second-hand information is used, in order
to avoid false accusations [3].

The countermeasures against a misbehaving node are aimed
at isolating it, i.e., packets will not be sent over the node and
packets sent from the node will be ignored. In this way, nodes
are stimulated to cooperate in order to get service and maximize
their utility, and the network also benefits from the cooperation.

Even if not presented by its authors as an artificial immune
system (AIS), the reputation system in [3] and [4] is an example
of a (nonbio inspired) immune system (IS). It contains interac-
tions between its healthy elements (well-behaving nodes) and
detection and exclusion reactions against nonhealthy elements
(misbehaving nodes). We can compare it to the natural innate
IS (Section II-B), in the sense that it is hardwired in the nodes
and changes only with new versions of the protocol.

Traditional approaches miss the ability to learn about and
adapt to new misbehavior. Every targeted misbehavior has to be
imagined in advanced and explicitly addressed in the detection
system. This is our motivation for using an AIS approach.

C. AIS Approaches

An AIS uses an analogy with the natural IS of vertebrates. As
a first approximation, the IS can be described with the “self-non-
self” model, as follows (we give more details in Section II-B).

The IS is thought to be able to classify cells that are present
in the body as self and nonself cells. The IS is made of two
distinct sets of components: the innate IS, and the adaptive IS.
The innate IS is hard-wired to detect (and destroy) nonself cells
that contain, or do not contain, specific patterns on their surface.

The adaptive IS is more complex. It produces a large number
of randomly created detectors. A “negative selection” mecha-
nism eliminates detectors that match any cell present in a pro-
tected environment (bone marrow and the thymus) where only
self cells are assumed to be present. Noneliminated detectors
become “naive” detectors; they die after some time, unless they
match something (assumed to be a pathogen), in which case
they become memory cells. Further, detectors that do match
a pathogen are quickly multiplied (“clonal selection”); this is
used to accelerate the response to further attacks. Also, since the
clones are not exact replicates (they are mutated and the muta-
tion rate is an increasing function of affinity between detectors
and the pathogen) this provides a more focused response to the
pathogen (“affinity maturation”). This also provides adaptation
to a changing nonself environment.

The self-nonself model is only a very crude approximation of
the adaptive IS. Another important aspect is the “danger signal”
model [13], [14]. With this model, matching by the innate or
adaptive mechanism is not sufficient to cause detection; an ad-
ditional danger signal is required. The danger signal is, for ex-
ample, generated by a cell that dies before being old. The danger
signal model better explains how the IS adapts not only to a
changing nonself, but also to some changes in self. There are
many more aspects to the IS, some of which are not yet fully
understood (see Section II-B).

D. AIS—Related Work

Hofmeyer and Forrest use an AIS for intrusion detection in
wired local area networks [7], [8]. Their work is based on the
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negative selection part of the self-nonself model and some form
of danger signal. In their system, transmission control protocol
(TCP) connections play the role of self and nonself cells. TCP
is a computer networking protocol that provides reliable data
packets exchange between the two computers that communicate
over a multihop computer network. One connection is repre-
sented by a triplet encoding the sender’s destination address, the
receiver’s destination address, and the receiver’s port number. A
detector is a bit sequence of the same length as the triplet. A de-
tector matches a triplet if both have M contiguous equal bits,
where M is a fixed system parameter. Candidate detectors are
generated randomly; in a learning phase, detectors that match
any correct (i.e., self) triplets are eliminated. This is done offline,
by presenting only correct TCP connections. Noneliminated de-
tectors have a finite lifetime and die unless they match a nonself
triplet, as in the IS. The danger signal is also used: it is sent by
humans as confirmation in case of potential detection. This is
a drawback, since human intervention is required to eliminate
false positives, but it allows the system to learn changes in the
self. With the terminology of statistical pattern classification,
this use of the danger signal can be viewed as some form of su-
pervised training. Similarly, Dasgupta and Gonzélez [22] use an
AIS approach to intrusion detection, based on negative selection
and genetic algorithms.

A major difficulty in building an AIS in our framework is
the mapping from biological concepts to computer network ele-
ments. Kim and Bentley [9] show that straightforward mappings
have computational problems and lead to poor performance, and
they introduce a more efficient representation of self and nonself
than in [7]. They show the computational weakness of negative
selection and add clonal selection to address this problem [9].
In their subsequent papers, they examine clonal selection with
negative selection as an operator [10], and dynamical clonal se-
lection [11], showing how different parameters affect detection
results. For an overview of AIS, see [20] and [21].

In our previous work on building an AIS for misbehavior de-
tection in mobile ad hoc networks [5] we implemented negative
selection. Negative selection is used for learning about the pro-
tected system, but it does not provide adaptation to misbehavior.
In this paper, we also implement adaptation, using clonal se-
lection inspired by [10]. Clonal selection provides a faster sec-
ondary response to repeated misbehavior, as discussed in Sec-
tion I-A.

E. Contribution of This Paper and Organization

Our long-term goal is to understand whether our previous
work, based on the traditional approach [2], can benefit from
an AIS approach that introduces learning and adapting mecha-
nisms. In the DSR example, this means adding IS code to every
node, so that it becomes resistant to other nodes’ misbehavior.

The first problem to solve is mapping the natural IS concepts
to our framework. This is a key issue that strongly influences the
detection capabilities. We describe our solution in Section III-B.
For the representation of self-nonself and for the matching func-
tions, we start from the general structure proposed by Kim and
Bentley [9], which we adapt to our case. Then we define the re-
sulting algorithm, which is based on negative selection, clonal
selection, and an ad hoc classification rule. Although negative
selection is done like Hofmeyer and Forrest in [7] and [8], and
clonal selection like Kim and Bentley in [9], the detection rule
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is our original component aimed at decreasing false positives.
Our other contributions are: 1) the definition of a mapping and
construction of an AIS adapted to our concrete application, and
2) the AIS implementation in the Glomosim simulator [17] and
its performance analysis. We examine and show a positive im-
pact of clonal selection on the secondary response time. The
response time is a new AIS performance dimension introduced
by the detection rule we use. It is not present in the previously
mentioned related works, though it is an important feature of the
human IS response.

The paper is organized as follows. Section II gives back-
ground and terminology on DSR and the natural IS. Section III
gives the mapping from the IS to the detection system for DSR
misbehavior detection, and the detailed definition of the de-
tection system. Section IV gives simulation specific assump-
tions and constraints, simulation results and discussion of the re-
sults. Section V draws conclusions and describes what we have
learned and how we will exploit it in future steps.

II. BACKGROUND

A. DSR: Basic Operations

DSR is one of the candidate standards for routing in mobile ad
hoc networks [18]. A “source route” is a list of nodes that can be
used as intermediate relays to reach a destination. It is written in
the data packet header at the source. Intermediate relays simply
look it up to determine the next hop.

DSR specifies how sources discover, maintain, and use source
routes. To discover a source route, a node broadcasts a route re-
quest packet. Nodes that receive a route request add their own
address in the source route collecting field of the packet and then
broadcast the packet, except in two cases. The first case is if
the same route request was already received by a node; then the
node discards the packet. Two received route requests are con-
sidered to be the same if they belong to the same route discovery,
which is identified by the same value of source, destination, and
sequence number fields in the request packets. The second case
is if the receiving node is destination of the route discovery,
or if it already has a route to the destination in its cache; then
the node sends a route reply message that contains a completed
source route. If links in the network are bidirectional, the route
replies are sent over the reversed collected routes. If links are
not bidirectional, the route replies are sent to the initiator of the
route discovery as included in a new route request generated by
answering nodes. The new route requests will have the desti-
nation be the source of the initial route request. The node that
initiates an original route request receives usually more route
replies, each containing a different route. The replies that arrive
earlier than others are expected to indicate better routes, because
for a node to send a route reply, it is required to wait first for a
time proportional to the number of hops in the route it has as the
answer. If a node hears that some neighbor node answers during
this waiting time, it supposes that the route it has is worse then
the neighbor’s one, and it does not answer. This avoids route
reply storms and unnecessary overhead.

After the initiator of route discovery receives a first route
reply, it sends data over the obtained route. While packets are
sent over the route, the route is maintained, in such a way that
every node on the route is responsible for the link over which it
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sends packets. If a link in the route breaks, the node that detects
that it cannot send over that link should send error messages to
the source. Additionally it should salvage the packets destined
to the broken link, i.e., reroute them over alternate partial routes
to the destination.

The mechanisms described previously are the basic operation
of DSR. There are also some additional mechanisms, such as
gratuitous route replies, caching routes from forwarded or over-
heard packets and DSR flow state extension [18].

B. Natural IS

The main function of the IS is to protect the body against
different types of pathogens, such as viruses, bacteria, and par-
asites and to clear it from debris. It consists of a large number
of different innate and acquired immune cells, which interact in
order to provide detection and elimination of the attackers [15].
We present a short overview based on the self-nonself and the
danger models [14], [15].

1) Functional Architecture of the 1S: The first line of de-
fense of the body consists of physical barriers: skin and mucous
membranes of the digestive, respiratory, and reproductive tracts.
It prevents the body from being entered easily by pathogens.

The innate IS is the second line of defense. It protects the body
against common bacteria, worms, and some viruses, and clears
it from debris. It also interacts with the adaptive IS, signaling
the presence of damage in self cells and activating the adaptive
IS.

The adaptive IS learns about invaders and tunes its detection
mechanisms to better match previously unknown pathogens. It
provides an effective protection against viruses even after they
enter the body cells. It adapts to newly encountered viruses and
memorizes them for more efficient and fast detection in the fu-
ture.

2) Innate IS: Consists of macrophage cells, complement
proteins, and natural killer cells. Macrophages are large cells
that are attracted by bacteria to engulf the bacteria in the process
called “phagocytosis”. Complement proteins can also destroy
some common bacteria. Both macrophages and complement
proteins send signals to other immune cells when there is an
attack.

3) Adaptive IS: Consists of two main types of lymphocyte
cells. These are B cells and T cells. Both B and T cells are cov-
ered with antibodies. Antibodies are proteins capable of chem-
ically binding to nonself antigens. Antigens are proteins that
cover the surface of self and nonself cells. Whether chemical
binding takes place between an antibody and an antigen depends
on the complementarity of their three-dimensional (3-D) chem-
ical structures. If it does, the antigen and the antibody are said to
be “cognate.” Because this complementarity does not have to be
exact, an antibody may have several different cognate antigens.
What happens after binding depends on additional control sig-
nals exchanged between different IS cells, as we explain next.

One B cell is covered by only one type of antibody, but two
B cells may have very different antibodies. As there are many
B cells (about 1 billion fresh cells are created daily by a healthy
human), there are also a large number of different antibodies at
the same time. How is this diversity of antibodies created and
why do antibodies not match self antigens? The answer is in the
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process of creating B cells. B cells are created from stem cells
in the bone marrow by rearrangement of genes in immature B
cells. Stem cells are generic cells from which all immune cells
derive. Rearrangement of genes provides diversity of B cells.
Before leaving bone marrow, B cells have to survive negative
selection: if the antibodies of a B cell match any self antigen
present in the bone marrow during this phase, the cell dies. The
cells that survive are likely to be self tolerant.

B cells are not fully self tolerant, because not all self anti-
gens are presented in bone marrow. Self tolerance is provided
by T cells that are created in the same way as B cells, but in
the thymus, the organ behind the breastbone. T cells are self
tolerant because almost all self antigens are presented to these
cells during negative selection in the thymus.

After some antibodies of a B cell match antigens of a
pathogen or self cell (we call this event “signal 1b”) that
antigens are processed and presented on the surface of the
B cell. For this, major-histocompatibility-complex (MHC)
molecules are used and their only function. If antibodies of
some T cell bind to these antigens and if the T cell is activated
(by some additional control signal) the detection is verified and
a confirmation signal sent from T cell to B cell (we call this
event “signal 2b”). Signal 2b starts the process of producing
new B cells, that will be able to match the pathogen better.
This process is called clonal selection. If signal 2b is absent, it
means that the detected antigens are probably self antigens for
which the T cells are tolerant. In this last case, the B cell will
die, together with its self reactive antibodies.

B cells can begin clonal selection without confirmation by
signal 2b, but only in the case when matching between B cell
antibodies and antigens is very strong. This occurs with a high
probability only for memory B cells, the cells that were verified
in the past to match nonself antigens.

In the clonal selection phase, a B cell divides into a number
of clones with similar but not strictly identical antibodies. Sta-
tistically, some clones will match the pathogen that triggered
the clonal selection better than the original B cells and some
will match it worse. If the pathogens whose antigens triggered
clonal selection are still present, they will continue to trigger
cloning new B cells that match the pathogen well. The process
continues reproducing B cells more and more specific to present
pathogens. B cells that are specific enough become memory B
cells and do not need co-stimulation by signal 2b. This is a
process with positive feedback and it produces a large number
of B cells specific to the presented pathogen. Additionally, B
cells secrete chemicals that neutralize pathogens. The process
stops when pathogens are cleared from the body. Debris pro-
duced by the process are cleared by the innate IS. Memory B
cells live long and they are ready to react promptly to the same
cognate pathogen in the future. Whereas first time encountered
pathogens require a few weeks to be learned and cleared by the
IS, the secondary reaction by memory B cells takes usually only
a few days.

4) Clustering: Recognition of a pathogen by a B cell re-
quires that the antibodies (receptors) of the B cell bind to not
only one but more antigens that belong to the pathogen. This
is called clustering. It provides some robustness to false anti-
body-antigen binding.
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5) Danger Signal: Is an additional control used for acti-
vating T cells. After T cell antibodies bind to antigens presented
by MHC of a B cell (signal 1t), the T cell is activated and sends
signal 2b to a B cell only if it receives a confirmation signal
(signal 2t) from an antigen presenting cell (APC). The APC
will give signal 2t to a T cell only if it engulfed the same nonself
antigens, which happens only when the APC receive a danger
signal from self cells or from the innate IS. The danger signal
is generated when there is some damage to self cells, which is
usually due to pathogens. As an example, the danger signal is
generated when a cell dies before being old; the cell debris are
different when a cell dies of old age or when it is killed by a
pathogen.

There are many other subtle mechanisms in the IS, and not
all of them are fully understood. In particular, time constants of
the regulation system (lifetime of B and T cells, probability of
reproduction) seem to play an important role in the performance
of the IS [16]. We expect that we have to tune similar parameters
carefully in an AIS.

III. DESIGN OF OUR DETECTION SYSTEM
A. Overview of Detection System

Every DSR node implements an instance of the detection
system, and runs it in two phases. In an initial phase, the detec-
tion system learns about the normal behavior of the nodes with
respect to the DSR protocol. During this phase, the node is sup-
posed to be in a protected environment in which all nodes behave
well. From received or overheard packets, the node observes the
behavior of its neighbors and represents it by the antigens (Sec-
tion III-C). At the end of this learning phase, the node runs the
negative selection process and creates its antibodies, which we
call detectors (Section III-C). In general terms, the first phase
implements a special form of supervised learning, where only
positive cases are used for training.

After the learning is done, the node may leave the protected
environment and enter the second phase where detection and
classification are done. In this phase, the node may be exposed
to misbehaving nodes. Detectors are used for checking if newly
collected antigens represent the behavior of good or bad nodes.
If an antigen, created for some neighbor during some time in-
terval, is detected by any of the detectors, the neighbor is consid-
ered to be suspicious in that time interval. If there are relatively
many suspicious intervals for a neighbor, that neighbor is clas-
sified as misbehaving (Section III-D). This triggers the clonal
selection process (Section III-E) in the node that made the clas-
sification. In this process, the node adapts its detectors to better
detect experienced misbehavior. This results in a better response
if the same or similar misbehavior is encountered again. In gen-
eral terms, the second phase implements a form of reenforce-
ment learning.

The detailed algorithm is given in the Appendix.

B. Mapping of Natural IS Elements to Our Detection System
The elements of the natural IS used in our detection system
are mapped as follows.

* Body: the entire mobile ad hoc network.
e Self Cells: well behaving nodes.



1080

e Nonself Cells: misbehaving nodes.

* Antigen: sequence of observed DSR protocol events
recognized in sequence of packet headers. Examples of
events are “data packet sent,” “data packet received,”
“data packet received followed by data packet sent,”’
“route request packet received followed by route reply
sent.” The sequence is mapped to a compact representa-
tion as explained in Section III-C.

e Antibody: a pattern with the same format as the compact
representation of antigen (Section II1.C).

e Chemical Binding: binding of antibody to antigen is
mapped to a “matching function,” as explained in Sec-
tion III-C.

* Bone Marrow: Antibodies are created during an offline
learning phase. The bone marrow (protected environment)
is mapped to a network with only certified nodes. In a
deployed system, this would be a testbed with nodes de-
ployed by an operator; in our simulation environment, this
is a preliminary simulation phase.

C. Antigen, Antibody, and Negative Selection

1) Antigens: Antigens could be represented as traces of ob-
served protocol events. However, even in low bit-rate networks,
this rapidly generates sequences that are very long (for a 100-s
observation interval, a single sequence may be up to 1-Gb long),
thus, causing generation a large number of patterns prohibitive.
This was recognized and analyzed by Kim and Bentley in [9]
and we follow the conclusions, which we adapt to our case, as
we describe now.

A node in our system monitors its neighbors and collects one
protocol trace per monitored neighbor. A protocol trace consists
of a series of data sets, collected on nonoverlapping intervals
during the activity time of a monitored neighbor. One data set
consists of events recorded during one time interval of duration
At (At = 10 s by default), with an additional constraint to
maximum N, events per a data set (Ns = 4 0 by default).

Data sets are then transformed as follows. First, protocol
events are mapped to a finite set of primitives, identified with
labels. In the simulation, we use the following list:

A=RREQ sent

B = RREP sent

C = RERR sent

D = DATA sent and IP source address is not of moni-
tored node

E = RREQ received

F = RREP received

G = RERR received

H = DATA received and IP destination address is not
of the monitored node

A data set is then represented as a sequence of labels from the
alphabet defined previously, for example s

I, = (EAFBHHEDEBHDHDHHDHD, . . .).

Second, a number of “genes” are defined. A gene is an atomic
pattern used for matching. We use the following list:

Genel = #E in sequence

Gene2 = #(E x (A or B)) in sequence

Gene3 = #H in sequence

Gene4 = #(H % D) in sequence
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where #(“‘subpattern”) is the number of the subpatterns “subpat-
tern” in a sequence, with * representing one arbitrary label or no
label at all. For example, #[Ex(A or B)] is the number of sub-
patterns that are two or three labels long, and that begin with E
and end with A or B.

The genes are defined in such a way to extract only impor-
tant features of the routing protocol to be included into the final
antigen representation. For example, Gene2 gives some indica-
tion on how the observed node handles route requests. The genes
are used to convert the very large space of all possible observa-
tion sequences (like /1) into a space of the antigens’ represen-
tations (like /5, see the following) of a computationally feasible
size. For example, /; is mapped to an antigen that consists of the
following four genes:

Lb=3B 2 7 6)

Moreover, the value of Gene2 is positively correlated with
the value of Genel, for the nodes that handle route requests
correctly. Such dependencies between the genes are important
part of the representation choice, as they enable differentiation
between the normal and abnormal observed behavior cases.

We select and define the genes manually, but the process can
be automated, as discussed in Section V.

Finally, a gene value is encoded on 10 b as follows. A range
of the values of a gene, that are below some threshold value, is
uniformly divided on 10 intervals. The position of the interval
to whom the gene value belongs gives the position of the bit that
is set to 1 for the gene in the final representation. The threshold
is expected to be reached or exceeded rarely. The values above
the threshold are encoded as if they belong to the last interval.
Other bits are set to 0. For example, if the threshold value for all
the four defined genes is equal to 20, l» is mapped to the final
antigen format:

l3=(0000000010 0000000010 0000001 000 0000001 000).

With such encoding, misbehavior of a node will change the
positions of 1 s in the genes that participate in the representation
of the corresponding behavior feature (handling route requests,
for example). The positions will change more if the node mis-
behaves more, and similar behavior will have antigens with 1
s at similar positions. This is important for the implementation
of the clonal selection: some of random mutations in the anti-
bodies should refine them to better cover the misbehavior areas
of the all-possible-antigens space.

There is one antigen such as I3 every At seconds, for every
monitored node, during the activity time of the monitored node.
Every bit in this representation is called a “nucleotide.”

2) Antibody and Matching Function: Antibodies have the
same format as antigens (such as [3), except that they may have
any number of nucleotides equal to 1 (whereas an antigen has
exactly one per gene). An antibody matches an antigen (i.e., they
are cognate) if the antibody has a 1 in every position where the
antigen has a 1. This is the same as in [10] and is advocated
there as a method that allows a detection system to have good
coverage of a large set of possible nonself antigens with a rela-
tively small number of antibodies.

The genes are defined with the intention to translate raw pro-
tocol sequences into more meaningful descriptions.

3) Negative Selection: Antibodies are created randomly,
uniformly over the set of possible antibodies. During the offline
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learning phase, antibodies that match any self antigen are
discarded (negative selection).

D. Node Detection and Classification

Matching an antigen is not enough to decide that the mon-
itored node misbehaves, since we expect, as in any AIS, that
false positives occur. Therefore, we make a distinction between
detection and classification. We say that a monitored node is de-
tected (or “suspicious”) in one data set (i.e., in one interval of
duration At) if the corresponding antigen is matching any anti-
body. Detection is done per interval of duration At (=10 s by
default). A monitored node is classified as ‘“misbehaving” if
the probability that the node is suspicious, estimated over a suf-
ficiently large number of data sets, is above a threshold. This is
similar to the clustering of antigens matched by the antibodies
of a B cell (Section II-B). The threshold is computed as follows.

Assume we have processed n data sets for this monitored
node. Let M,, be the number of data sets (among n) for which
this node is detected (i.e., is suspicious). Let #,,,x be a bound
on the probability of false positive detection (detection of well
behaving nodes, as if they are misbehaving) that we are willing
to accept, i.e., we consider that a node that is detected with a
probability < 6. is a correct node (we take by default 6,,,,x =
0.06). Let o (=0.0001 by default) be the classification error that
we we target. We classify the monitored node as misbehaving if

M, > K(n) (1)

min{k : 30, 1 Bugn.. (k) < a} if mnax <5

K =
() { 10 max (1 + % 1?&) otherwise

@

B, 6.,... 18 binomial distribution with parameters n and 0max,
and £(«) is the (1 — «)-quantile of the normal distribution (for
example, £(0.0001) = 3.72). As long as (1) is not true, the
node is classified as well behaving. For the default parameter
values, nfnax < 5 corresponds to n < 83. For n < 83, K(n)
is precalculated and used from a table (the table for the default
value of « is given in the Appendix). For n > 83, the (1) and (2)
are equivalent to (M,, /n) > 0.06 + (0.88/+/n). The derivation

of (2) is given in the Appendix.

E. Clonal Selection

As explained in Section II-B, the antibodies in the IS that are
activated by both signal 1b and signal 2b are selected to undergo
clonal selection. We define signals 1b and 2b in our setting as
follows.

Signal 1b) When a node classifies a neighbor as misbe-
having (Section III-D), signal 1b is received by
a fraction W (by default 15%) of the the best
scored detectors of that node. The scores are cal-
culated as follows. Every At the observed anti-
gens are exposed to the detectors of the node.
Whenever a detector is matching an antigen, its
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score is increased by one. After the detectors that
receive the signal 1b are selected, the scores of
all the detectors are reset to zero.

We do not implement an exact analog to signal
2b. This is because we do not model helper
T-cells (these cells generate signal 2b in the
IS) and their activation (Section II-B). Instead,
we use a negative selection method, as in [10],
defined later in this section, to control the clonal
selection process once it starts. Passing the
negative selection test by a mutated antibody
may be seen as the equivalent of receiving some
type of signal 2b, as it ensures self-tolerance.
Indeed, one important function of helper T-cells
is providing self-tolerance.

The clonal selection mechanism with negative selection as an
operator works as follows. A fraction W of the best scored de-
tectors of the node receive signal 1b and enter the clonal selec-
tion process, in which each of them will produce one new addi-
tional detector. Every detector that enters the process is cloned;
the clone is mutated, and if it matches some of the self-anti-
gens in the node’s collection, it is eliminated (negative selec-
tion test). This is repeated until one mutated clone is generated
that survives the negative selection test. Mutation is defined as
random flipping bits of the detector, which occurs per bit with
some small probability p (by default 0.1). The newly generated
detectors are substituted to the same number of this node’s de-
tectors; the detectors that had the worse scores are eliminated.

For example, let d be a node’s detector that is selected to
undergo clonal selection. A possible clonal selection process
scenario is as follows:

Signal 2b)

d=(1100010110 1110110010 0010 100000 1 000001 101).

From the set (S) of self antigens that the node has collected
during the learning phase, let a; and a5 are two examples

a; =(0000000010 0000000010 0000001 000 0000000 100)
az = (0000000010 0000000010 0000001 000 0000 001 000).

We see that d does not match a4 or as (the matching rule is given
in Section III-C.2); it does not match any of the antigens from
S, by the rule how it is generated. Let d; be the first mutated
clone of d, which happens to differ from d in 3 b

d1=(1100010110 1110110011 0010 101 000 1 000 001 001).

Because d; matches as, d; is deleted and another mutated clone
ds is created, which happens to differ from d in 4 b

d>=(1100010110 1100110010 0011 100000 0000011 101).

We see that dy does not match a; or as, and assuming that it
does not match any other antigen from the set S, d2 becomes a
valid detector, and will substitute a badly scored one from the
set S.

Because the length of the detectors is 40 b and the mutation
probability per bit is 0.1, mutated clones will differ from the
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TABLE 1
DETECTION SYSTEM PARAMETERS
Parameters Default values

maximal number of self antigens collected for learning 450
maximal time for collecting self antigens for learning 200 s

number of detectors 80

number of genes in an antigen 4

number of nucleotides per gene 10

max. number of protocol events recorded in a data set 40
maximal time for collecting a data set (an antigen) 10 s
accepted misbehavior threshold @max 0.06
targeted classification error ratio o 0.0001
percentage of detectors selected for clonal selection 0.15

probability of mutation per bit 0.1

original detectors from which they are created by 4 b on av-
erage (before negative selection). When detectors are created in
the learning phase, they differ on average by 20 b before neg-
ative selection. This means that clonal selection increases the
percentage of the detectors that are similar but slightly different
to good scored ones. It is intuitively clear from these facts, and
confirmed by the experiments, that the clonal selection improves
the detection results.

F. System Parameters

In this implementation, the default values of parameters
(Table I) are chosen from extensive pilot simulation runs, as
a compromise between good detection results and a small
memory and computation usage by the detection system.

IV. SIMULATION RESULTS
A. Description of Simulation

1) Experimental Setup: We have implemented our detection
system in Glomosim [17], a simulation environment for mobile
ad hoc networks. We use the simulator’s DSR code and modify
it only to allow nodes’ misbehavior. The detection system code
that we add can be run in two versions: with or without the clonal
selection mechanism.

We simulate a network of 40 nodes. The simulation area is a
rectangle with the dimensions of 800 m x 600 m. The nodes are
initially deployed on a grid with the distance between neighbors
equal to 100 m. The mobility model is a random way-point. The
speed of nodes is a parameter, and we set it to be constant for
one simulation run. The radio range is 380 m. Traffic is gen-
erated as constant bit-rate, with packets of length 512 B sent
every 0.2-1 s.

We run two series of experiments.

* (Without clonal selection:) In the first set of experiments,
clonal selection is disabled. The initial set of detectors
generated during the learning phase is used unchanged
during the detection and classification phase.

¢ (With clonal selection:) Then we run a second set of ex-
periments, now with clonal selection. Every experiment
consists of four consecutive phases, in order to obtain pri-
mary and secondary responses. The first phase is learning
an initial set of detectors (as in the first experiment). The
second phase is detection and classification, but now the
detectors start to change and adapt to misbehavior during
the phase. This allows us to measure the primary response
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metrics. In the third phase, nodes do not misbehave, and
the system forgets about previous detections, but the set
of detectors obtained at the end of the second phase is
kept unchanged. The fourth phase is again a detection and
classification phase, with the same misbehavior as in the
second phase, but the initial set of detectors is now dif-
ferent (it is the set that is achieved at the end of the second
phase). This gives the secondary response metrics. The
conditions are otherwise the same as in the first set of ex-
periments.

We performed 20 independent replications of all experiments,
in order to obtain good 90% confidence intervals.

For all the simulations, the parameters have default values
(Table I), unless otherwise mentioned.

2) Misbehavior: Isimplemented by modifying the DSR im-
plementation in Glomosim. We implemented two types of mis-
behavior: 1) nonforwarding route requests and nonanswering
from its route cache, and 2) nonforwarding data packets. A mis-
behaving node does not misbehave for every packet. In contrast,
it does so with fixed probabilities, which are also simulation
parameters (default values are 0.6). In our implementation, a
node is able to misbehave with different probabilities for the
two types of misbehavior. In the simulation, we always set both
misbehavior probabilities to the same value (what is not nec-
essary). The number of misbehaving nodes is also a simulation
parameter (default value is 5).

3) Performance Metrics: We show simulation results with
the following metrics:

Average Time until Correct Classification is the time until a
given node, that is running the detection algorithm, classifies a
given misbehaving node as misbehaving for the first time [after
a sufficiently large number of positive detections occurred, see
(1)], averaged over all pairs ( node ¢ that is running the detection
algorithm, node j that is classified as misbehaving by node ).
When we talk about “response time” of the detection system,
we refer to this metric.

True Positive Classification Ratio is the percentage of misbe-
having nodes that are classified as misbehaving.

False Positive Classification Ratio is the percentage of well
behaving nodes that are mistakenly classified as misbehaving.

B. Simulation Results

1) Classification Capabilities: For all simulation runs, all
misbehaving nodes are detected and classified as misbehaving
by all their neighbors in the static case and by all nodes in
the cases with mobility. The main effect on other classification
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metrics is by the parameter «, the classification error tolerance
(Fig. 2). By decreasing the value of «, the false positive classi-
fication ratio decreases quickly to very small values, below the
value 0.002 [Fig. 2(a)], causing a relatively small increase in the
time needed for true positive classification [Fig. 2(b)]. This in-
dicates that it is possible to choose « in the order of 0.0001 and
obtain both a very small value of false classification ratio and a
small time until classification.

One can notice from the Fig. 3(b) that the detection system
has the largest time until classification when misbehavior prob-
ability is equal to 1. This comes from the fact that such a mis-
behaving node is visible as a neighbor only in the observation
intervals in which it has its own traffic to send.

2) Impact of Clonal Selection: Clonal selection has a signif-
icant effect on the secondary response time, which is decreased
by a factor 3—4 [Fig. 2(b)]. The false positive classification ratio
is also slightly decreased [Fig. 2(b)]. Another positive effect of
clonal selection is a slight decrease in primary response time
(Figs. 2(b), 3). This slight decrease is more pronounced when
the number of misbehaving nodes is large. This is because it is
likely that a node that sees a specific misbehaving node for the
first time was already exposed to other misbehaving nodes be-
fore. If there is only one misbehaving node, this effect does not
occur [Fig. 3(a)].

3) Effect of Other Parameters: Fig.3 shows that parameters
other than « have a limited effect on the time until classification.
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The effect of these parameters on the false positive classification
ratio is even smaller. The values of obtained false positive clas-
sification ratios vary in the very small range between 0.001 and
0.003 (as mainly determined by the value of the parameter «
(o = 0.0001)) and this is the reason we do not show them on
the graphs.

V. CONCLUSION

1) Results Obtained So Far: We have designed a method to
apply an AIS approach for misbehavior detection in a mobile ad
hoc network. Our simulations show good detection capabilities
and the effectiveness of clonal selection at providing an accel-
erated secondary response. As explained in Section I-D, a quick
secondary response is of special importance in the case of our
protected system.

2) Lessons Learned and Future Work: In this early phase,
it is premature to draw general purpose conclusions about the
performance of the AIS approach. We need more experiments to
extend our initial work to more misbehavior and traffic patterns.
Instead, we would like to focus now on what the experience of
designing this first phase tells us for the future.

3) Mapping IS to AIS: The most difficult problem we
encountered was the mapping from the IS to the concrete
problem of DSR misbehavior detection. We have followed the
approaches in [7] and [10], but a large number of fundamental
issues remain unclear. At the highest level, we still wonder
what is the best choice for a target unit to be detected: the node,
or sequence of messages, or a message itself. This choice could
have an impact on the design challenges and possible use of the
detection system. Even if we stay with the mapping we have
designed here, questions remain vastly open.

The very definition of genes is one of them. We have defined
them in an ad hoc way, trying to guess the definitions that would
have the best detection capabilities. We made sure to have at
least two correlated genes per misbehavior, in order to capture
it efficiently. Indeed, we propose to use the correlation between
genes as an important criterion in selecting the genes defined in
the antigen structure. In a next phase, we are planning to auto-
mate the process of selecting genes. Correlation between genes
from an offered set of genes can be computed from experimental
data in a normal operation of the network without misbehaving
nodes. Good pairs, triples or k-tuples of genes, which score high
cross correlation, can be selected automatically. The final selec-
tion of candidate genes would still require to be screened by a
human expert intervention, but this would be considerably sim-
pler than designing genes from scratch, as we did. One can ob-
serve that such a gene selection process is not part of the natural
IS, but one can view it as an accelerated selection process.

Though we targeted only the two mentioned types of misbe-
havior while selecting the genes for the antigen representation,
the system should be able to detect more misbehavior types.
For example, it should detect the denial of the service attack
composed of too many route requests packets. We expect that a
larger number of (automatically generated) genes would result
in an antigen representation that enables for the detection of a
larger number of different types of misbehavior.
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An alternative is to define genes as arbitrary low-level bit pat-
terns, and let negative and clonal selection do the job of keeping
only the relevant antibodies. This would be more in line with the
original motivation for using an AIS. A problem with this ap-
proach is that it would require many genes, and the processing
effort needed to generate good detectors increases exponentially
with the number of genes. A possible angle of attack is based
on the observation that the IS is also a resource management
system. Indeed, the IS has mechanisms to multiply IS cells and
send them to the parts of the body under attack, thus, mobilizing
resources where and when needed. An analogy here would be to
use randomization: in a steady state, only a small, random subset
of protocol event sequences is used to create antigens. When an
attack is on (signalled by a danger signal, see the following),
more events are analyzed in the regions that are in danger. In
another direction, the response against a specific attack can de-
pend on the intensity of the detection [23].

4) Innate System and Danger Signal: The model we im-
plemented in this first step could be fortified with the addi-
tional mechanisms of the danger signals [14], i.e., the signal
that controls activation of helper T-cells [the danger signal (Sec-
tion II-B)]. Danger signals could be defined as network per-
formance indicators (packet loss, delay). In the natural IS, the
danger signal is intimately linked to the innate system. Here,
the innate system could be mapped to the traditional approach,
i.e., a set of predefined detection mechanisms as we developed
in [4]. It is likely that many new attacks will be accompanied
with symptoms that are not new. Thus, the innate system could
be used as a source of the danger signal as well. This would free
resources to focus the adaptive IS on the detection of truly new,
unexpected misbehavior.

5) Virtual Protected Environment: The protected environ-
ment that we assume during the initial learning phase in our sim-
ulation might be impossible to provide in a real network. Also,
there may be a need for some nodes to join the network later,
when misbehavior is not surely absent. These nodes should still
be able to learn normal behavior examples needed for negative
selection. We propose and test a solution for this problem in our
related paper [6]. The main idea is that the absence of a related
danger signal is a good indicator that the antigen does not cause
damage to the protected system. Such antigens are collected to
form a virtual protected environment and represent the current
self of the protected system.

6) Memory: We test the secondary response of our system
by repeating the experiment (and misbehavior) but using the de-
tectors created in clonal selection during the primary response.
A way to reuse the good detectors created by clonal selection
in a continually operating AIS is to promote some of them into
memory detectors [6], [12]. Memory detectors are long lived
and provide a secondary response to the misbehavior that is re-
peated after a long period of time.

7) Regulation: The translation of nonself antigen matching
to misbehavior detection is done in a classical, statistical way.
This should be compared to the regulation of B-cell and T-cell
clonal division [16], which is algorithmically very different.
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8) Parameter Tuning: Even if an appropriate mapping of IS
to AIS is found, it remains that the performance is very sensitive
to some parameters; the parameters have to be carefully tuned. It
is unclear today whether this dependency exists in the IS, and if
natural selection takes care of choosing good values, or whether
there are inherently stable control mechanisms in the IS that
make accurate tuning less important. Understanding this is key
to designing not only an AIS as we do here, but also a large class
of controlled systems.

APPENDIX [
DERIVATION OF (2)

‘We model the outcome of the behavior of a node as a random
generator, such that with unknown but fixed probability # a data
set is interpreted as suspicious. We assume the outcome of this
fictitious generator is iid. We use a classical hypothesis frame-
work. The null hypothesis is § < 6%, i.€., the node behaves
well. The maximum likelihood ratio test has a rejection region
of the form {M,, > K (n)} for some function K (n). The func-
tion K (n) is found by the type-I error probability condition:
P{M, > K(n)}|0) < a, forall § < 6,,.x, thus, the best
K (n) is obtained by solving the equation

P({M, > K(n)} |0 = max) = «.

The distribution of M,, is binomial, with parameters n and 6,
which gives the first part of the (2). For nf > 5, the distribution
of M,, is well approximated by a normal distribution with mean
1 = nf and variance nf(1 — 6). After some algebra this gives

K(n) = /né\/Omax(l — Omax) + nmax.

APPENDIX II
LoOKUP-TABLE EXAMPLE

TABLE 1II
LookupP TABLE FOR «« = 0.0001

n K(n) n K(n) n K(n) n K(n)
1 1 22 7 43 10 64 12
2 2 23 7 44 10 65 13
3 3 24 7 45 10 66 13
4 3 25 7 46 10 67 13
5 3 26 7 47 10 68 13
6 4 27 8 48 11 69 13
7 4 28 8 49 11 70 13
8 4 29 8 50 11 71 13
9 4 30 8 51 11 72 13
10 5 31 8 52 11 73 13
11 5 32 8 53 11 74 14
12 5 33 9 54 11 75 14
13 5 34 9 55 11 76 14
14 5 35 9 56 12 77 14
15 6 36 9 57 12 78 14
16 6 37 9 58 12 79 14
17 6 38 9 59 12 80 14
18 6 39 9 60 12 81 14
19 6 40 9 61 12 82 15
20 7 41 10 62 12 83 15
21 7 42 10 63 12 - -
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APPENDIX III
DETAILED ALGORITHM

Here is the detailed detection and classification algorithm that
is executed in a node

//clonal selection may be enabled or disabled
//detecting may be used only if learning phase is already
done
isClonalSelEnabled=readIsCSEnabled() ;
phase=readPhase();// (by default LEARNING)
switch (phase){
case LEARNING{
phaseTimer=maximalLearningTime;
numberOfCollectedDataSets=0;
collectingDataSetsTimer=0;
SetOfDetectors=
CreateAnEmptyOrEmptyItIfExistsSetOfDetectors () ;
numberOfDetectors=0;
while (phase==LEARNING) {
if(aPacketSentReceivedOrOverheared){
createOrUpdateNeighborsList () ;
if (collectingDataSetsTimer==0 &&
numberOfCollectedDataSets<maxNumOfCSD) {
openNewCollectingDataSets () ;

collectingDataSetsTimer==deltaT;

}//end if
UpdateCurrentDataSetsIfTheyAreOpen() ;
}//end if
if (collectingDataSetsTimer==0) {

closeCurrentCollectingDataSets () ;
}//end if
if (phase! =LEARNING) break;
if (phaseTimer==0) {
//create detectors by negative selection
setOfSelfAntigens=
createSelfAntigensFromCollectedDataSets () ;
while(numberOfDetectors<TargetedNumDet){
generateANewDetectorByRandom() ;
if (isNewDetMatchingAnySelfAntigen()){
deleteNewDetector () ;
}//end if
elsef{
addNewDetectorToSetOfDetectors () ;
numberOfDetectors—++;
}//end if else
}//end while
phase=DETECTINGandCLASSIFYING;
}//end if
}//end while
break;
}//end case
case DETECTINGandCLASSIFYING{
//with clonal selection as option
if (1isSetOfDetectorsExists()){
phase=WRONGuUSE
break;

}//end if
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//previous line prevents entering this phase
//in case that learning is never done
deleteScoresOfDetectorsIfTheyExist () ;
deleteDetectionDataForObservedNodesIfTheyExists () ;
while(phase===DETECTINGandCLASSIFYING){
if (isPacketSentReceivedOrOverheared()){
createOrUpdateNeighborsList () ;
if (collectingDataSetsTimer==0 &&
numberOfCollectedDataSets<maxNumOfCSD){
openNewCollectingDataSets () ;
collectingDataSetsTimer==deltaT;
}//end if
UpdateCurrentDataSetsIfTheyAreOpen () ;
}//end if
if (phase! =DETECTINGandCLASSIFYING) break;
if(collectingDataSetsTimer:::){
//do detection and classification
createAntigensFromCurrentDataSets () ;
deleteCurrentDataSets () ;
checkAntigensFromLastDeltaTByDetectors() ;
updateListOfDetectedNodes () ;
updateDetectionResultsForObservedNodes () ;
updateDetectionScoresForDetectors () ;
deleteAntigensFromLastDeltaT () ;
checkDetectionResultsForClassification() ;
if(areNewNodesClassifiedAsMisbehaving()){
if (isClonalSelEnabled) {
//do clonal selection
MisbNodes=
setOfNodesClassifedAsMisbInLastDeltaT () ;
N=enumerateElementsOf (MisbNodes) ;
for(i=1;i<=N;i++){
misbNode=takeElement#i (MisbNodes, i) ;
GoodScored=
findGoodScoredForNode (misbNode) ;
BedScored=
findBedScoredForNode (misbNode) ;
M=enumerateElementsOf (GoodScored) ;
for (3=1;3<=M;j++){
tmpDet=takeElement#j (GoodScored, j) ;
oldDet=takeElement#j (BadScored, j) ;
success=FALSE;
while (success=FALSE) {
clone=makeClone (tmpDet) ;
mutateClone (clone) ;
isAnyMatching=
isMatching (clone, SetOfSelfAntigens) ;
if (isMatching)deleteNewClone () ;
else{
replaceOldByClone (oldDet, clone) ;
success=TRUE;
}//end if else
}//end while
}//end for
}//end for
}//end if
}//end if
}//end if
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}//end while

break;

}//end CASE

case WRONGUSE{

notifyWrongUse() ;

}//end case

}//end switch
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