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given from at first all being positive to mixtures of positive and nega-
tive and to finally all negative. In order to compare with Stevenson’s
approach and because it requires the bias to be zero, the biases of the
six Adalines are all set to zero. In experiment, under the conditions that
the elements of AW are all identical and the bias is zero for each Ada-
line, computer simulations that simulate Adalines’ working process
and computer computations according to the algorithm are separately
run to compute the actual probability of erroneous outputs and the theo-
retical sensitivity for the six Adalines. Both the simulation results p and
the theoretical results s given in Table I show that they are completely
equal. This verifies the correctness of our approach. Further, the cor-
responding theoretical sensitivities s’ based on Stevenson’s approach
for the six Adalines are also computed and listed in the last column of
Table 1. The comparison of the data in columns p, s, and s’ demon-
strates that our approach is more accurate.

VI. CONCLUSION

In this paper, a quantified sensitivity for Adalines to weight pertur-
bation is given. The sensitivity is the basis of the study of Madalines’
sensitivity. In addition, the sensitivity is hopefully expected to be a mea-
sure for evaluating importance of each Adaline in a Madaline, and so
as to be helpful for training and pruning Madaline.
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Associative Memory Design for 256 Gray-Level Images
Using a Multilayer Neural Network

Giovanni Costantini, Daniele Casali, and Renzo Perfetti

Abstract—A design procedure is presented for neural associative memo-
ries storing gray-scale images. It is an evolution of a previous work based on
the decomposition of the image with 2% gray levels into L binary patterns,
stored in L uncoupled neural networks. In this letter, an L-layer neural
network is proposed with both intralayer and interlayer connections. The
connections between different layers introduce interactions among all the
neurons, increasing the recall performance with respect to the uncoupled
case. In particular, the proposed network can store images with the com-
monly used number of 256 gray levels instead of 16, as in the previous ap-
proach.

Index Terms—Associative memories, brain-state-in-a-box (BSB) neural
networks, gray-scale images, multilayer architectures.

I. INTRODUCTION

The design of neural associative memories storing gray-scale im-
ages is a challenging problem investigated by few authors. Consider
an image with n pixels and 2" gray levels. The first approach is based
on neural networks with multivalued stable states, a model introduced
in [1]. The activation function is a quantization nonlinearity with 2F
plateaus corresponding to the gray levels. Denoting by n the number
of pixels, the required number of neurons is n and the number of in-
terconnections is n°. Some design methods have been proposed for
networks with this type of nonlinearity, with interesting experimental
results [2].

A second approach is based on complex-valued neural networks
[3]-[6]. The neuron state can assume one of 2L complex values, equally
spaced on the unit circle. Each phase angle corresponds to a gray level.
The number of neurons is n; the number of interconnections is n2. For
complex-valued neural networks a generalized Hebb rule was proposed
in [3], [4].

In [7], we proposed a third approach where each pixel can be rep-
resented by L bits, b ...b., so the image can be decomposed into L
binary patterns with n components. Each binary pattern can be stored
into a binary associative memory. There are L uncoupled networks,
each with n? interconnections. The main advantage is that the L sub-
networks can be implemented via parallel hardware with considerable
saving in time, both for learning and recall. However, this approach
presents two drawbacks. First, the storage probability of a random set
of images is the product of the storage probabilities in the subnetworks.
Hence, the capacity is quite lower than that of each subnetwork. In the
same way, the recall probability, starting from noisy versions of the
stored images, is reduced with respect to the recall probability of each
subnetwork.

As the number of gray levels increases, both problems become
worse since the number of independent networks increases. As a
consequence, the method suggested in [7] is applicable only up to 16
gray levels. To overcome this limitation, we present an evolution of
our previous approach based on the introduction of connections be-
tween layers. Building interlayer connections introduces interactions
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among all the neurons; due to these interactions, both the capacity and
the recall performance improve with respect to the uncoupled case.
Taking into account the implementation issues, we limit the number
of connections using an interconnecting structure much like that used
in cellular neural networks (CNNs) [8], [9]. For this reason, in the
following we borrow some of the notation from the CNN literature.

II. THE MULTILAYER NEURAL NETWORK

An image with 2” gray levels can be decomposed into L binary
patterns. Each pattern corresponds to a layer of the multilayer network.
Each layer has 3 x N neurons (corresponding to the image pixels),
arranged in M rows and N columns. Let (7, j, p) denote the neuron at
the intersection of row ¢ and column j inlayerp (i = 1,...,M,j =
1,....,N,p=1,..., L).Eachneuronis connected only to the neurons
of its neighborhood defined by

Nes(isjop) = {(kqqu) k=il <rVIE—i|>M—r
[=jl<rVIE=j|>N~-r

M—MSSVM—MZL—S}

where r, s are positive integers; we assume r > s. Each neuron in
layer p is connected to (27 + 1) X (27 + 1) neurons in each of the
., p+ s. To simplify the statements and the nota-
tion, wrapamund connections have been assumed. For example, layer
1 is connected to layers 2.3, ...,s 4+ 1 and also to layers from L to
L — s, so the number of connections per neuron is constant and equal
to = (25 + 1)(2r + 1)*. The proposed architecture consists of L
layers, each with M N neurons; hence, the total number of neurons is
MNL and the total number of interconnections is 1 M N log, (2%).
The number of interconnections grows linearly with the number of
pixels and logarithmically with the number of gray levels.

The state equation governing the time evolution of the network cor-
responds to the brain-state-in-a-box (BSB) neural model

>

(k,,q)ENy s(%,5,p)

Tijp(t+ 1) = f |aijp(t) + Wijp keqgTreg(t) ] (1)

where z;;, € [—1,+1] is the state of neuron (7, j, p), w;jp, req denotes
the weight of the connection from neuron (%, {, q) to neuron (i, 7, p),
and f() is the saturated linear function

f(y):_]-& y<_1
fly) =y, -1<y<+1
fly)=+1, y > +1.

The decomposition of the image into L binary patterns was per-
formed using the reflected-binary or gray code which has the property
that, moving from a quantization level to an adjacent one, only one
bit changes. Using the gray code instead of the usual binary-weighted
code, additive zero-mean Gaussian noise on the gray-scale pattern re-
sults in a reduced Hamming distance between the stored binary pattern
and the corresponding noisy pattern. As a consequence, the recall of a
stored image is improved (see [7] for more details).

III. LEARNING ALGORITHM

To design the multilayer network, we adapt the algorithm proposed
in [7], which is summarized for the reader’s convenience.

We assume w;p,:;, = 0 for every 7, j and p. Let N (i, j,p) de-
note the neighborhood of a neuron excluding the neuron itself. The de-
sign of the associative memory is as follows. First, we decompose the
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i-th gray-coded image to be stored into L binary patterns, from which
we construct the i-th bipolar pattern ¥ € {—1,+1}M*NX" et
y“) ..y 9 be the Q bipolar patterns corresponding to the images
to be stored. Then, we find the connection weights w;, keq (1, k =
1,....,M;45,0=1,....,N;p,q=1,....,L, k,{,q # i,j,p), satis-
fying the following set of constraints:

Wijgp, quy:;) 927;) > 6> ()
(k,L,q)€EN (¢,5,p)
i=1,..., M,

j=1,....N, p=1.....L

where ¢ represents a stability margin.
To compute the weights, we use the following algorithm.
For every n > (), compute

P (AE;’;)(N))

i=1....M, j=1,...,.N, p=1,....L, m=1,....Q
where
AE;'I;)( )= Z Wijp, uq(n)y”p)y,(f}t’) -5 3
(kL,g)EN,. (i.5.p)
and
P(z) =0, forz >0
P(z) =1, forz < 0. (€]

Then, update the weights as follows:

Q
Wigpkeq(n+ 1) = wigpreg(m) +1 >y yi

m=1

x P (A“’”(n)) n >0, (kl.qg€N, (i,j.p). (5

typ

P(x) is a penalty function of the constraint violation. 7 is a learning
rate. Each term in the sum (5) can be 4+1, —1 or ). As a consequence,
starting from w;;p keq(0) = 0, the weights can be represented as
Wijp.keq = ENNijp req, Where N;j, req is a positive integer. The
required number of bits to represent the weights is [logs (Nmax)] + 1,
where Nmax is the maximum value of N;;p, r¢q and [2] is the minimum
integer greater than or equal to x. The properties of the algorithm are
discussed in [10].

IV. EXPERIMENTAL RESULTS

Two design examples are presented to show the effectiveness of the
proposed neural network. In both examples, we assume 256 gray levels,
ranging from 0 to 255 (L = 8),and = 0.1 in (5).

Example 1: In this experiment, we investigate the noise removal ca-
pability. The design objective is to recall 50 stored images with 25 x 25
pixels. The images were randomly generated by the modified random
midpoint displacement (RMD) algorithm proposed in [7], in order to
approximate the histogram of real-life images, and stored using a net-
work with 25 x 25 x 8 = 5000 neurons and » = s = 3. We used two
different values of ¢, i.e., 100 and 500; correct storage of the 50 im-
ages is accomplished in both cases. Then, we tried to recall the stored
images starting from corrupted versions. Noisy initial states were gen-
erated by adding zero mean Gaussian noise, with standard deviation o,
to each pixel of the stored images. In Fig. 1 the results are shown using
6 = 100 and 6 = 500, with a standard deviation o from 10 to 35. The
curves in Fig. 1 show the percentage of correct recall (no errors). As 6
increases we observe an improvement of error correction. We repeated
this experiment using the uncoupled neural network proposed in [7].
We stored the same images with 256 levels and we tried to recall them
using the same values of o (from 10 to 35); however, in this case the
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TABLE 1
PSNR VALUES IN DB FOR EXAMPLE 2
noisy images | recalled images with noisy images recalled images recalled images with
(c=29) network in [7] c=19) with network in [7] present network
(0=29) (c=19) (0<290rc<19)

Lenna 19.30 25.83 22.40 31.42 oo

Stefan 19.06 26.32 22.26 31.05 oo

Cups - - 22.67 27.96 oo

100%
90%
80%
- .- 5-100
T0%
—+—5=500
60%
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40% T T T T T
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Fig. 1. Recall results of Example 1. Fig. 3. Noisy version of image Lenna with ¢ = 29.

Fig. 2.Images Lenna, Stefan, and cups with 256 gray levels, used in
Example 2.

percentage of correct recall is nearly zero. This example shows the poor
performance achievable with the uncoupled solution when the number
of gray levels is greater than 16.

Example 2: This design example concerns the real-life images with
200 x 200 pixels shown in Fig. 2; it is similar to the design examples
used to test other methods [2], [6]. First, we store the images Lenna and
Stefan. To sound better the capabilities of the proposed method, while
keeping acceptable the computational cost, we partition each image
into 16 parts, each with 50 x 50 pixels. In this way, we store 32 images
using a network with 50 x 50 x 8 neurons and 11 340 000 connections
(assuming again » = 4, s = 3). Correct storage of the 32 subim-
ages was obtained using 6 = 800. Then, we recalled the 32 stored
subimages starting from noisy versions, generated by adding zero mean

Fig. 4. Recall results of the uncoupled neural network proposed in [7] storing
Lenna and Stefan.

Gaussian noise with standard deviation o. An example of noisy images
with ¢ = 29 is shown in Fig. 3. All the images were correctly recalled
without errors if ¢ < 29.

Then, we stored the three images with 200 x 200 pixels in Fig. 2
(Lenna, Stefan, cups) using the same method described above (with
r = 4, s = 3). Therefore, we partition the three images obtaining 48
images, each with 50 x 50 pixels that we stored using a network with
50 x 50 x 8 neurons and 11 340 000 connections. In this case, the three
images are recalled without errors only if ¢ < 19.

Finally, we repeated this experiment with the uncoupled neural net-
work proposed in [7], using the same images in Fig. 2. In this case, the
network dynamics always converges to spurious images starting from
noisy initial states. As an example, in Fig. 4 we show the best recall
results for the Lenna image with two stored images (Lenna and Stefan)
and ¢ = 29. Now we have considerable errors with respect to the
stored images: These errors have the appearance of stains and stripes
distributed all over the image. To evaluate the effect of noise, peak
signal-to-noise ratio (PSNR) is very common in image processing. It
is defined as

rm

PSNR = 201og,, (%)

where rms is the root mean square difference between the original
image and the noisy version. The PSNR values for this design example
are summarized in Table I. Using the multilayer neural network, we
have PSNR = oo (perfect recall), while using the method proposed in
[7] we have an improvement of at most 9 dB.
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V. COMPARISON WITH EXISTING METHODS

In neural networks with complex neurons, the angle between adja-
cent complex points on the unit circle is inversely proportional to the
number of gray levels. As a consequence, the recall performance de-
teriorates as the number of gray levels increases. For example, in [5]
and [6] the number of gray levels used in the design examples are 8
and 20, respectively. The same problem occurs using multivalued acti-
vation functions with normalized output range (e.g., between —1 and
+1 as in [2]). In the proposed method, the recall performance is satis-
factory with the commonly used number of gray levels, i.e., 256.

A second aspect is the simple implementation. The learning algo-
rithm described in Section III is completely local in the sense that
the weights of each neuron can be computed independently from the
others; so the learning algorithm is suitable to parallel computation.
Moreover, it requires only add operations and a few bits of digital pre-
cision. The same advantages are shared by the network described in
[7], which implementation is still more simple since the layers are un-
coupled. However, the absence of coupling limits the number of gray
levels, as explained previously.

The design method proposed in [5] requires complex arithmetics
with a considerable amount of multiply and divide operations. The
method proposed in [6] requires the solution of a linear programming
problem as a design step; in order to have an acceptable computational
complexity, the image must be decomposed into a large number of
small subimages stored in independent networks.

Finally, we try to evaluate the information capacity of the proposed
associative memory by comparing it to the classical Hopfield network
with Hebbian learning. To this end, we estimate the storage capacity
versus the neighborhood size, using synthetic images with 25 x 25
pixels; the images were randomly generated by the modified RMD al-
gorithm proposed in [7]. We compute the ratio p =number of equiva-
lent binary patterns stored/number of interconnections, in the case r =
s = 3. We have 360 x 8 equivalent binary patterns stored with 100%
probability; the number of connections is 343 x 5000 = 1, 715, 000.
Hence, p = 0.0017. In the Hopfield network with 25 x 25 neurons, we
have = 0.15 x 625 = 94 stored binary patterns and 625° = 390, 625
connections, i.e., p = 0.000 24. The present network gives an improve-
ment factor of 7.
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Convergence of Gradient Method With Momentum
for Two-Layer Feedforward Neural Networks

Naimin Zhang, Wei Wu, and Gaofeng Zheng

Abstract—A gradient method with momentum for two-layer feedforward
neural networks is considered. The learning rate is set to be a constant and
the momentum factor an adaptive variable. Both the weak and strong con-
vergence results are proved, as well as the convergence rates for the error
function and for the weight. Compared to the existing convergence results,
our results are more general since we do not require the error function to
be quadratic.

Index Terms—Convergence, feedforward neural network, gradient
method, momentum.

I. INTRODUCTION

Feedforward neural networks (FNN) have been widely used in ap-
plications, and the convergence of the training iteration procedure for
FNN by use of the gradient method is discussed in [3]-[5] and [10]. As
a simple example, the convergence for two-layer feedforward neural
networks is discussed in [5], [6], [10], [11]. To speed up and stabilize
the training iteration procedure, a momentum term is often added to the
increment formula for the weights [7], [8]. The convergence of the gra-
dient method with momentum is discussed in [1] and [9] under the re-
striction that the error function is quadratic. A special choice of the mo-
mentum term is proposed in [2] without proof of convergence. This mo-
mentum term is also used for the two-layer neural network in this paper.
(We remark that the learning formula in [2] is a little bit more compli-
cated than ours.) Our contribution in this paper is to prove the conver-
gence of the resulting gradient method with momentum, whereas we
do not assume the error function to be quadratic. Some techniques in
[10] for gradient methods without momentum has been exploited here
in the proof.

We expect to generalize the results in the future to the more general
and more important case, i.e., the multilayer BP neural network, which
is not straightforward but seems hopeful.

The rest of this paper is organized as follows. In Section II, we intro-
duce the gradient method with momentum. In Section III, we discuss
the convergence property of the gradient method with momentum for
a two-layer feedforward neural network. We set the learning rate n a
constant and the momentum factor 7, an adaptive variable. Both the
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