
Page 1

 Accuracy/Diversity and Ensemble MLP Classifier Design

Terry Windeatt
Centre for Vision, Speech and Signal Proc (CVSSP), School of Electronics and Physical Sciences

University of Surrey, Guildford, Surrey, United Kingdom GU2 7XH
t.windeatt@surrey.ac.uk

Abstract: The difficulties of tuning parameters of MLP classifiers are well known. In this paper, a measure is

described that is capable of predicting the number of classifier training epochs for achieving optimal

performance in an ensemble of MLP classifiers. The measure is computed between pairs of patterns on the

training data, and is based on a spectral representation of a Boolean function. This representation characterises

the mapping from classifier decisions to target label, and allows accuracy and diversity to be incorporated

within a single measure. Results on many benchmark problems, including the ORL face database demonstrate

that the measure is well correlated with base classifier test error, and may be used to predict the optimal

number of training epochs. While correlation with ensemble test error is not quite as strong, it is shown in this

paper that the measure may be used to predict number of epochs for optimal ensemble performance. Although

the technique is only applicable to two-class problems, it is extended here to multi-class through Output

Coding. For the Output Coding technique, a random code matrix is shown to give better performance than

One-per-class code, even when the base classifier is well-tuned.

Keywords: Boolean, ECOC, Diversity, Multiple Classifiers, Face Identification

1 Introduction

Multi-layer perceptrons (MLP) make powerful classifiers that may provide superior performance compared

with other classifiers, but are often criticized for the number of free parameters. Most commonly, parameters are

set with the help of either a validation set or cross-validation techniques [1]. However, there is no guarantee that a

pseudo-test set is representative, and for many pattern recognition problems there is insufficient data to rely on

this approach. Cross-validation can also be time-consuming and biased [2]. For realistic problems, slow

convergence and lack of guarantee of global minima are further drawbacks of MLP training [3].

Ensemble classifiers, also called committees or Multiple Classifier Systems (MCS) offer a way of solving

some of these problems. The idea of combining multiple classifiers is based on the observation that achieving

optimal performance in combination is not necessarily consistent with obtaining the best performance for an

individual (base) classifier. The rationale is that it may be easier to optimise the design of a combination of

relatively simple classifiers than to optimise the design of a single complex classifier. An MLP with random

Page 2

starting weights is a suitable base classifier since randomisation has shown to be beneficial in the MCS context.

Random selection has been successfully applied to training sets (Bootstrapping [4]), to feature sets (random

subsets [5]) and to output labels [6]. Problems of local minima and computational slowness may be alleviated by

the MCS approach of pooling together the decisions obtained from locally optimal classifiers. However, there is

still the problem of tuning base classifiers, and the main focus of the paper concerns this issue. The architecture

envisaged is a simple MCS framework in which there are B parallel MLP base classifiers.

Although it is known that diversity among base classifiers is a necessary condition for improvement in

ensemble performance, there is no general agreement about how to quantify the notion of diversity among a set of

classifiers. The desirability of using negatively correlated base classifiers in an ensemble is generally recognised,

and in [7] the relationship between diversity and majority vote accuracy is characterized with respect to classifier

dependency. Experimental evidence in [8] casts doubt on the usefulness of diversity measures for predicting

majority vote accuracy. Diversity measures can be categorised into pair-wise and non-pair-wise, but to apply pair-

wise measures to finding overall diversity it is necessary to average over the classifier set. These pair-wise

diversity measures are normally computed between pairs of classifiers and take no account explicitly of the target

labels. A spectral measure that combines accuracy and diversity for two-class problems is described in this paper.

It is calculated between pairs of patterns, and is based on the spectral representation of a Boolean function that

was first proposed for two-class problems in [9], and later developed in the context of MCS in [10]. It was shown

for two-class problems in [11] that over-fitting could be detected by observing the spectral measure computed on

the training set as it varies with base classifier complexity.

Realistic learning problems are in general ill-posed [12], thereby violating one or more of the properties of

continuity, uniqueness and existence. The consequence of not being well-posed is that any attempt to automate

the learning task requires some assumptions. The only assumption used here is that base classifier complexity is

varied over a suitable range. The spectral measure was tested in [11] for two-class problems and shown to

correlate well with base classifier test error. However, the upper limit on number of training epochs was shown to

be quite critical. A contribution of this paper is to show that the incorporation of bootstrapping for estimating the

measures enables good correlation over a wider range of base classifier complexity. A second contribution is to

extend the method to solving multi-class problems (defined as k-class, k > 2) through Error-Correcting Output

Coding (ECOC). Although the method was first proposed in [20], here it is tested on a greater number of

benchmark datasets including a face recognition database. A third contribution is to show, in the presence of label

noise, that the one per class (OPC) code is inferior to ECOC even when the base classifiers are well-tuned.

Page 3

The spectral measure is defined in Section 2, and put in context of pair-wise diversity measures in Section 3.

The Output Coding approach to solving multi-class problems is described in Section 4, and the face recognition

database explained in Section 5. Experimental evidence in Section 6 includes test error rate plots as number of

training epochs is systematically varied, as well as tables of correlation coefficients between test error and all the

measures defined in Section 2 and Section 3.

2 Spectral Measure

Before providing a mathematical formulation of the spectral measure, a more intuitive description will be

attempted. The idea is to represent each training pattern by the binary decisions of the multiple classifiers, giving

rise to a binary-to-binary mapping with respect to binary target labels. For the (unrealistic) case that the mapping

is completely specified, a search is made for all pattern pairs that have identical classifier decisions except one.

That component is negatively or positively correlated with respect to the target class. By summing the individual

correlations, the spectral measure for a pattern is defined as the normalised difference between total positive and

negative correlations. For the (realistic) case of an incompletely specified mapping, all pattern pairs contribute to

the total correlation, not just those that are unit Hamming Distance apart.

Initially two-class supervised learning problems are considered, with the label given to each pattern Xm denoted

by ωm = f(Xm) where m = 1 … µ and ωm ∈ {0,1} or {+1,-1}. Here f is the unknown function that maps Xm to the

target label ωm. It is assumed that there are B parallel single hidden-layer MLP base classifiers and that Xm is a B-

dimension vector formed from the outputs of the B classifiers (ξmi, i = 1 …B) applied to the original patterns

which in general are real-valued and of arbitrary dimension. Therefore, we may represent the mth pattern by

),,,(21 mBmmmX ξξξ K= (1)

 where ξ ∈{x s, x, xd}, defined by

 xs ∈ [0,1] is the soft decision in the interval

 x ∈ {0,1}or {+1,-1} is the hard (binary) decision formed by hardening xs

xd ∈ {0,1} is the binary decision conventionally used for calculating diversity measures, where a

correct classification is indicated by xmi
d = 1 if and only if xmi = ωm

Page 4

In this section, f(Xm) is a binary-to-binary mapping between classifier outputs and target labels with x (rather

than xs) in (1) representing a vertex in the B-dimensional binary hypercube. In [9], a spectral transform of f(X) is

proposed for characterising this mapping. These mappings are derived from the Hadamard transform Tn defined

recursively as follows

  −
=

−−

−−

11

11

nn

nn
n TT

TT
T where  −

=
11

11
1T (2)

 The transforms derived from (2) give rise to spectral coefficients [13] so that ∑

=

=
µ

ω
1

0
m

ms , m
m

mii Xs ω
µ

∗=∑
=1

,))((
1

mmj
m

miij XXs ω
µ

∗⊕=∑
=

, ………

s0 correlation between f(X) and constant

si i=1...n correlation between f(X) and xi (3)

sij i,j = 1...n, i≠j correlation between f(X) and xi ⊕ xj

sijk i,j,k = 1..n, i≠j≠k correlation between f(X) and xi⊕ xj ⊕ xk

......... and continues for fourth order and above

where ⊕ is logic exclusive-OR.

In [9], first order coefficients si in (3) are computed by searching for pairs of binary patterns, one from each

class, that differ in only a single component. The classifier representing that component is said to be sensitive in

that a change in the classifier decision indicates a change in class label. For a completely specified Boolean

function (truth table available), the mth pattern component xmj is assigned sensitivity σmj (j=1,2,...B) as follows

1=⊕=+
njmjmj xxσ , () 1

1

=⊕∑
=

B

k
nkmk xx , nmmjx ωω ≠= (4)

1=⊕=−
njmjmj xxσ , () 1

1

=⊕∑
=

B

k
nkmk xx , mnmjx ωω ≠= ,

and ()∑
=

⊕
B

j
njmj xx

1

 is the Hamming Distance

Applying (4) involves a search in which each pattern Xm of one class, is paired with patterns of the other class

that are unit Hamming Distance apart, and setting σmj
+ = 1 if xmj = ωm and σmj

- = 1 otherwise. The search

Page 5

process is identical to the first stage of logic minimisation, a description of which can be found in any standard

textbook on combinational logic.

In [11], a technique known as spectral summation is described, in which contribution σmj associated with

pattern component xmj can be added to compute first order spectral coefficients si in (3). Spectral summation is

described in [13], and the idea of separation into positive and negative contributions was first proposed in [9]. The

existence of excitatory and inhibitory contributions ∑
=

+ >
µ

σ
1

0
m

mj and ∑
=

− >
µ

σ
1

0
m

mj for given j provides evidence

that the set of patterns is non-separable in the jth component [10]. For details of separable and non-separable

Boolean functions, see reference [13]. To clarify the computation of sensitivity and spectral summation pseudo-

code is provided in Figure 1.

 The difference between the positive and negative contributions gives the first order spectral coefficients, as

illustrated in the following example of a non-separable Boolean function

322121)(xxxxxxXf ++= (5)

The truth table in {+1,-1} rather than {0,1} coding for the function defined in (5) is given by

id 1 2 3 class
X1 1 1 1 1
X2 -1 1 1 -1
X3 1 -1 1 -1
X4 -1 -1 1 1
X5 1 1 -1 1
X6 -1 1 -1 -1
X7 1 -1 -1 -1
X8 -1 -1 -1 -1

The truth table ordering defines the spectral coefficient ordering [13], which is computed as follows for T3 in

equation (2)

 1 1 1 1 1 1 1 1 1 -2 s0
 1 -1 1 -1 1 -1 1 -1 -1 +2 s1
 1 1 -1 -1 1 1 -1 -1 -1 +2 s2
 1 -1 -1 1 1 -1 -1 1 1 = +6 s12
 1 1 1 1 -1 -1 -1 -1 1 +2 s3
 1 -1 1 -1 -1 1 -1 1 -1 -2 s13
 1 1 -1 -1 -1 -1 1 1 -1 -2 s23
 1 -1 -1 1 -1 1 1 -1 -1 +2 s123

Page 6

By comparing the truth table and the transformation matrix it may be seen that first order coefficients si, i =

1,2,3 represent the correlation between f(X) and xi. Similarly the second order coefficients represent correlation

between f(X) and xi ⊕ xj as defined in (3). Now consider the result of applying (4) to class 1 patterns (X1, X4, X5)

of function f(X) in (5). For notational convenience, binary component x has its associated sensitivity σ represented

as superscript xσ as follows

  −−−−++++++++

++++−−−−−−−−
++++++++++++

011

111

011

111

111

111

An alternative calculation of the spectral coefficients is obtained by applying spectral summation to the class 1

patterns. The three rows (X1, X4, X5) represent class 1 binary patterns and the first order coefficients are calculated

from the three columns by adding (xj
 = +1) or subtracting (xj

 = -1) when σmj = 1 (m=1,4,5), with no contribution

when σmj = 0. The contribution is doubled, since spectral summation from the class 1 patterns is identical to

spectral summation from class –1 patterns, as explained in the notes for the pseudo-code in Figure 1.To calculate

higher order coefficients, the first order contributions are added for the respective columns (in this paper we are

only using first order coefficients).

e.g. s1 = 2 * (1-1+1) = +2, using column 1.

 s12 = 2 * ((1 * 1) + (-1 * -1) + (1 * 1)) = +6 using column 1,2.

 s123 = 0 + 2 * (-1 * -1 * 1) + 0 = +2 using column 1,2,3.

Consider separating the positive and negative contributions so that ∑∑
=

−

=

+
8

1

8

1

/
m

mj
m

mj σσ (j = 1,2,3) =

[4/2,4/2,2/0]. When both positive and negative contributions are non-zero, for given j, a function violates the 1-

monotonicity constraint and is therefore non-separable. From another perspective, in order to implement the

function with a Threshold Logic Unit (TLU) the implication is that the weight on line j needs to be both positive

and negative. That is, a single TLU cannot implement the function. The function defined in (5) is therefore not 1-

monotonic in the first two components. Note that even if a function is 1-monotonic, it may still be non-separable

due to violation of higher montonicity constraints [13]. It is difficult to give an intuitive explanation of the

meaning of the spectral coefficients, since the positive and negative correlations cancel. However, by keeping the

s1 s2 s3

X1

X4

X5

Page 7

correlations separate we can determine the evidence for overall positive and negative correlation, which gives

more information than the spectral coefficients by themselves. If ∑∑
=

+

=

+ >
8

1

8

1 m
mj

m
mi σσ the evidence is that classifier

i is more positively correlated than classifier j (for example classifier 1 is more positively correlated than classifier

3).

Clearly, for a realistic learning problem the unknown binary-to-binary function f will not be completely

specified. However, the concept of spectral summation is still applicable even if the function is noisy,

incompletely specified and perhaps contradictory, as is the case for pattern recognition problems. To estimate the

coefficients, it is assumed that the pattern components, which in our framework are outputs of binary classifiers,

are independent. Therefore, each classifier provides evidence that a pattern is positively or negatively correlated

with all patterns of the other class. The mth pattern component xmj is assigned σmj (j=1,2,...B) as follows

 ∑
=

⊕=
µ

σ
1n

njmj
c

mj xx (6)

 where correlation c = + if nmmjx ωω ≠= and c = − if mnmjx ωω ≠= ,

In (6), in contrast to (4), the contribution for each pattern component comes from all patterns of the other class,

not just nearest neighbours. The pseudo-code for the computation is shown in Figure 1, in which the conditional

(marked ****) is removed. Note that any classifier that correctly classifies one pattern of a pattern pair, but

incorrectly classifies the other, does not contribute to the summation. After applying (6) the jth component xmj of a

pattern pair has associated σmj
- only if the jth base classifier mis-classifies both patterns. Therefore we expect that

a pattern with relatively large ∑
=

−
B

j
mj

1

σ is likely to come from regions where the two classes overlap. We now

define a measure for each pattern that represents the difficulty of separating that pattern from patterns of the other

class. It is based on a summation of contributions, relative to the total number of contributions. For any pattern,

say the nth pattern, σ′n (where prime (′) indicates that a measure is computed across pattern pairs of opposite class

rather than across classifiers as in Section 3), sums the difference between excitatory and inhibitory contributions,

normalised so that –1 ≤ σ′n ≤ 1

σ′n =
K
1

 x ∑ ∑∑=

=

−

−

=

+

+  −
B

j

m
mj

nj

m
mj

nj

1

11

µµ

σ

σ

σ

σ
 , ∑ ∑∑=

=

−

−

=

+

+  +=
B

j

m
mj

nj

m
mj

njK
1

11

µµ

σ

σ

σ

σ
 (7)

Page 8

In (7) σ′n may be compared with the margin for the nth pattern. The margin of a training example is defined as

the difference between the weight given to the correct class and the maximum weight given to any of the other

classes. It is defined as a number between –1 and +1, and is positive for a correct classification. Furthermore, the

absolute value of the margin represents confidence of classification. For a two-class problem, the margin Mn′ for

nth training pattern Xn is given by

 ∑∑
=

==′
b

j
j

B

j
njjn

n

xXf

M

1

1

)(

α

α
 (8)

 where αj is the weight associated with jth base classifier

Note that margin in (8) for majority vote (αj = 1/B) is identical to unnormalised s0 defined in (3), so that the

margin may be regarded as a special case of spectral summation. Cumulative Distribution graphs [14] can be

defined similar to that for margin, that is g(σ′n) versus σ′n where g (σ′n) is the fraction of patterns with value at

least σ′n. In this paper, a single measure for a set of patterns is obtained by taking the mean over positively

correlated patterns, which represents the area under the Cumulative Distribution Graph [11]

Since σ′n and M′n in (9) and (10) vary between –1 and +1, σ′ and M′ vary between 0 and 1. When σ′ is plotted

as base classifier complexity is varied (Section 6), the curves may be interpreted as (1 - mean over negatively

correlated patterns).

3 Pair-wise diversity measures

Various approaches to defining diversity, and to determining the relationship between diversity and accuracy,

have been proposed. For our study we consider pair-wise diversity measures, and follow the notation xd in (1) and

used in [7], in which the output of a classifier is defined to be 1 if and only if a pattern is correctly classified.

∑
=

′=′
µ

σ
µ

σ
1

1

n
n σ′n > 0

(9)

,
1

1
∑

=

′=′
µ

µ n
nMM 0>′nM

(10)

Page 9

Although diversity measures are conventionally calculated over base classifiers, it is also possible to compute

them over patterns [15]. If the B classifier decisions for µ patterns form a µ x B binary matrix, conventional pair-

wise diversity measures [7] are computed between pairs of rows independent of class label. In contrast, the

spectral measure in Section 2 is defined between pairs of columns, where each one of the pair represents a pattern

chosen with different class label.

Diversity over classifiers

Let the jth classifier output for the pth pattern under this labelling scheme be a µ-dimensional binary vector

given by d
pjx where p = 1,… µ.. The following counts are defined for ith and jth classifiers

d
pj

p

d
piij xxN ∧=∑

=

µ

1

00 , d
pj

p

d
piij xxN ∧=∑

=

µ

1

11 , d
pj

p

d
piij xxN ∧=∑

=

µ

1

10 , d
pj

p

d
piij xxN ∧=∑

=

µ

1

01 (11)

where ∧ is logical AND and dx is the logical complement of dx

 For example if the first two columns of a µ x 6 binary matrix is given by

′ 101101

100110
we

have 00
12N = 1, 11

12N = 2, 10
12N = 2, 01

12N = 1.

The Q statistic, Correlation coefficient (ρ), and Double Fault (F) measures defined in [7], all increase with

decreasing diversity. Here an Agreement (A) measure is defined as (1 – Disagreement) to make it also increase

with decreasing diversity so that

10010011

10010011

NNNN

NNNN
Q ji +

−= (12)

))()()((0010011100011011

10010011

NNNNNNNN

NNNN
ji

++++
−=ρ (13)

10010011

1001

1
NNNN

NN
A ji +++

+−=
(14)

10010011

00

NNNN

N
F ji +++

=
(15)

 where the ij subscripts for N in (12) to (15) have been omitted for convenience

Page 10

The mean diversity measure { }FAQ ,,, ρ∈∆ over B classifiers is given by ∑ ∑−

= +=

∆
−

=∆
1

1 1)1(

2 B

i

B

ij
ijBB

 (16)

Diversity over patterns

For comparison, analogous to the spectral measure of correlation (6), we propose to calculate diversity

measures over patterns between the two classes using counts as follows

,)(
~

1

00 ∑
=

∧=
B

j

d
nj

d
mjmn xxN ,)(

~

1

11 ∑
=

∧=
B

j

d
nj

d
mjmn xxN ,)(

~

1

10 ∑
=

∧=
B

j

d
nj

d
mjmn xxN ,)(

~

1

01 ∑
=

∧=
B

j

d
nj

d
mjmn xxN (17)

 where nm ωω ≠

The nth pattern may then be given a measure of diversity n∆′ by applying equations (12) to (15), and summing

over all patterns of the other class. Similar to (9) and (10) we produce a single measure ∆′ over all patterns as

follows

0,
1

>∆′′∆=∆′ ∑
=

µ

n
nn (18)

The measures defined in (18) are experimentally compared in Section 6.

Now σn′ defined in (7) may be formulated in the notation used for diversity measures as follows
  −=′ ∑∑

==

µµσ

1

00

00

1

11

11

~

~

~

~

~
1

m
m

n

m
m

n
n

N

N

N

N

K
,  += ∑∑

==

µµ

1

00

00

1

11

11

~

~

~

~
~

m
m

n

m
m

n

N

N

N

N
K (19)

From (19) and (9) σ′ is the probability that 0
~

~

~

~

1

00

00

1

11

11

> −∑∑
==

µµ

m
m

n

m
m

n

N

N

N

N
, and may be considered as a measure

of class separability. It provides an intuitive explanation of why we may expect that σ′ correlates well with base

classifier test error, and in particular peaks at the same number of training epochs. Consider the example of two

overlapping Gaussians representing a two-class problem, with the Bayes boundary assumed to be placed where

the probability density curves cross. Let the overlapping region be defined as the tails of the two Gaussians with

respect to the Bayes boundary. If base classifiers are capable of approximating the Bayes boundary, by definition

Page 11

an optimal base classifier will incorrectly classify all patterns in the overlapping region and correctly classify all

other patterns. Now consider the situation that the complexity of the base classifiers increases beyond optimal, so

that some patterns in the overlapping region become correctly classified and some of the remaining patterns

become incorrectly classified. The result is that there is greater variability in classification among patterns close to

the Bayes boundary, and it is more difficult to separate them. The probability represented by σ′ decreases as

complexity increases since 00~
N is more evenly distributed over all patterns, leading to a reduction in positively

correlated patterns. The effect on the Cumulative Distribution Graphs, defined in Section 3, is shown in reference

[11]. However, if the base classifier becomes too powerful, eventually all patterns are correctly classified and

00~
N → 0 and σ′ → 1, so it is expected that σ′ would start to increase as seen in Figure 12 in Section 6.

It is also possible to understand how σ′ may be used to predict test error by appealing to the notions of Bias

and Variance, which are motivated by analogous concepts in regression theory. However, there are difficulties

with the various Bias/Variance definitions for 0/1 loss function. Firstly, a comparison of Bias/Variance definitions

[16] shows that no single definition satisfies zero Bias and zero Variance for Bayes classifier, together with

additive Bias and Variance decomposition of error. Secondly, the effect of bias and variance on error rate cannot

be guaranteed, and it is easy to think of example probability distributions for which the effect is counter-intuitive

[16] [17]. Thirdly, there is the practical difficulty that the Bayes classification needs to be known or estimated.

Breiman’s definition [17] is based on defining Variance as the component of classification error that is eliminated

by aggregation. Patterns are divided into two sets, the Bias set B containing patterns for which the Bayes

classification disagrees with the ensemble classifier and the Unbias set U containing the remainder. Bias is

computed using B patterns and Variance is computed using U patterns, but both Bias and Variance are defined as

the difference between the probabilities that the Bayes and base classifier predict the correct class label. Breiman’s

definition was used in [11] to explain how σ′ can predict generalisation error. As base classifier complexity

increases beyond optimal, bias initially stays low and variance increases, and this leads to a reduction in

correlation.

In [11] it was shown that σ′ correlates well with base classifier test error, but was dependent on choosing a

suitable value for the upper limit on number of training epochs to limit classifier complexity. In this paper,

bootstrapping [18] is incorporated to improve the estimate of σ′. Bootstrapping is a popular ensemble technique

and implies that training patterns are randomly sampled with replacement, so that approximately one third of

patterns are removed and the remaining patterns occur one or more times. Experimental evidence in Section 6

Page 12

shows that bootstrapping improves the correlation of σ′ with classifier test error in the over-fit region, that is when

the number of training epochs is increased beyond optimal.

4 Output Coding and Multi-Class Problems

Error-Correcting Output Coding (ECOC) is a well-established method [19] for solving multi-class problems by

decomposition into complementary two-class problems. It is a two-stage process, coding followed by decoding,

but there is some discussion about whether the error-correcting aspect is relevant to its performance [16]. It seems

more appropriate to refer to the technique as Output Coding, in recognition of the variety of ways of producing

codes that make no explicit reference to error-correction properties. The idea of using codes was originally based

on modelling the multi-class learning task as a communication problem in which class information is transmitted

over a channel. Although errors arise from a variety of causes, including estimation errors from the measurement

process and base classifier learning algorithm, the effect is assumed to be to introduce classification errors into the

ECOC feature vector representing the pattern. The main motivation was to correct these errors in decoding.

The coding step is defined by the binary k x B code word matrix Z that has one row (code word) for each of k

classes, with each column defining one of B sub-problems that use a different labelling. Assuming each element

of Z is a binary variable z, a training pattern with target class ωl (l = 1... k) is re-labelled as class Ω1 if Zij = z and

as class Ω2 if Zij = z . The two super-classes Ω1 and Ω2 represent, for each column, a different decomposition of

the original problem. For example, if a column of Z is given by [0 1 0 0 1]T, this would naturally be interpreted as

patterns from class 2 and 5 being assigned to Ω1 with remaining patterns assigned to Ω2. This is in contrast to the

conventional One-per-class (OPC) code, which can be defined by the diagonal k x k code matrix {Zij = 1 if and

only if i = j}.

In the test phase, the jth classifier produces an estimated probability jq̂ that a test pattern comes from the

super-class defined by the jth decomposition. The pth test pattern is assigned to the class that is represented by the

closest code word, where distance of the pth pattern to the ith code word is defined as ∑
=

−=
B

j
pjijjlpi qZD

1

ˆα kl ,...1= (20)

where αjl allows for lth class and jth classifier to be assigned a different weight [20]. Hamming decoding is

denoted in (20) by {α=1, q̂ ≡ x) and L1 norm decoding by {α=1, q̂ ≡ xs) where x and xs are defined in (1).

Many types of decoding are possible, but theoretical and experimental evidence indicates that, providing a

Page 13

problem-independent code is long enough and base classifier is powerful enough, performance is not much

affected. However, it is shown in [20] that when base classifiers are sub-optimal and vary in accuracy weighted

decoding gives better performance. In this paper Hamming and L1 norm decoding are compared, and the emphasis

is on optimising base classifier complexity using these simple decoding schemes.

In addition to the Bayes error, errors due to individual classifiers and due to the combining strategy can be

distinguished. This can be further broken down into errors due to sub-optimal decomposition and errors due to the

distance-based decision rule. If it is assumed that each classifier provides exactly the probability of respective

super-class membership, with posterior probability of lth class represented by qpl (l = 1 ... k), from equation (20),

assuming αjl=1, it is shown in [21] that

 ∑ ∑
= =

−=
B

j
ijlj

k

l
plpi ZZqD

1 1

)(∑
=

−−=
B

j
ijljpi ZZq

1

)1((21)

Equation (21) tells us that Dpi is the product of (1-qpi) and Hamming Distance between code words, so that when

all pairs of code words are equidistant, minimising Dpi implies maximising posterior probability, which is

equivalent to Bayes rule. Therefore any variation in Hamming distance between pairs of code words will reduce

the effectiveness of the combining strategy. From (20) and (21) it may also be shown that variance of q̂ is

proportional to correlation between base classifiers and inversely proportional to the square of Hamming Distance

between code words [27]. In [22] it is shown that maximising the minimum Hamming Distance between code

words implies minimising upper bounds on generalisation error.

In classical coding theory, theorems on error-correcting codes guarantee a reduction in the noise in a

communication channel, but the assumption is that errors are independent. When applied to machine learning the

situation is more complex, in that error correlation depends on the data set, base classifier as well as the code

matrix Z. In the original ECOC approach [19], heuristics were employed to maximise the distance between the

columns of Z to reduce error correlation. Hadamard matrices, defined in (2), maximise distance between rows and

columns and were used in [23], in which it was shown that training error is bounded by

Θ
−
−≤Θ)2(

)1(4

2

2/

2 dd

BBdB

where Θ is an upper bound on probability of error correlation, and d is the minimum distance between
code words.

Page 14

The considerations explained above impose stringent requirements on choice of code word columns and

rows, and finding optimal code matrices satisfying these properties is a complex problem. Codes are normally

binary and problem-independent, but there has been recent interest in adaptive, problem-dependent and non-

binary codes [24] [25]. In reference [25] it is proved that an adaptive method is NP-complete. Random codes,

provided that they are long enough, have frequently been employed with almost as good performance [21]. It

would seem to be a matter of individual interpretation whether long random codes may be considered to

approximate required error-correcting properties. In this paper a random code matrix with near equal split of

classes (approximately equal number of 1’s in each column) is chosen, as proposed in [26]. An experimental

comparison using random code with no constraint on number of labels, and OPC code is provided in Section 6.

5 Face Recognition Database

Facial images are a popular source of biometric information since they are relatively easy to acquire. However,

automated face recognition systems often perform poorly due to small number of relatively high-dimensional

training patterns, which can lead to poor generalisation through over-fitting. Face recognition is an integral part of

systems designed for many applications including identity verification, security, surveillance and crime-solving.

Improving their performance is known to be a difficult task, but one approach to improving accuracy and

efficiency is provided by the method of Output Coded ensemble classifiers [27].

A typical face recognition system consists of three functional stages. In the first stage, the image of a face is

registered and normalised. Since face images differ in both shape and intensity, shape alignment (geometric

normalisation) and intensity correction (photometric normalisation) can improve performance. The second stage is

feature extraction in which discriminant features are extracted from the face region. Finally, there is the matching

stage in which a decision-making scheme needs to be designed depending on the task to be performed. In

identification, the system classifies a face from a database of known individuals, while in verification the system

should confirm or reject a claimed identity. To match a probe image to a face in a database, two methods are

generally used. In geometric feature-based matching, relative positions and other parameters of distinctive features

such as eyes, mouth and nose are extracted. The alternative is to consider the global image of the face as with

methods such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA).

Although it is possible to use grey levels directly, this is usually not computationally feasible without reducing

the size of the image. Normally, better results are obtained if features are first extracted. A popular approach is

Page 15

PCA, but by itself PCA is not adequate for the face recognition task since projection directions only maximise the

total scatter across all classes. Therefore we use LDA which requires computation of the between-class scatter

matrix, SB and the within-class scatter matrix, SW. The objective of LDA is to find the transformation matrix, Wopt,

that maximises the ratio of determinants WWSTWWBSTW . Wopt is known to be the solution of the following

eigenvalue problem.

SB - SWΛ = 0 (22)

where Λ is a diagonal matrix whose elements are the eigenvalues of matrix SW

-1SB. Since in practice SW in (22)

is nearly always singular, dimensionality reduction is first achieved by PCA before solving the eigenvalue

problem.

The database used is the ORL (Olivetti Research Laboratory http//www.cam-orl.co.uk), consisting of four

hundred images of forty individual faces with some variation in lighting, facial expression, facial hair, pose and

spectacles. The background was controlled with subjects in an upright frontal position, although small variation in

rotation and scale was allowed. The advantage of this database is that it can be used without need for a face

detection algorithm or any other pre-processing, so that there is a fairer comparison with the results obtained by

other researchers. In our experiments, images have been projected to forty-dimensions using PCA and

subsequently to a twenty-dimension feature space using LDA. It is treated as a forty-class face identification

problem with the four hundred images randomly split into training/testing patterns. A comparison of results on

this database is given in [3], using 50/50 split, but the number of experimental runs is smaller than used in our

experiments. As pointed out in [3], some researchers do not specify the split that they have used, and some only

base their results on one run, so that care is needed before making any comparison.

6 Experimental Evidence

The main purpose of these experiments is to determine how well the measures defined in Section 2 and Section

3 correlate with test error as the number of training epochs of single hidden-layer MLP base classifiers are

systematically varied. All the measures are computed on the training data and the datasets use random

training/testing split, respecting the class distribution as closely as possible. Experiments are repeated with and

without bootstrapping ten times, except for the face database which is repeated twenty times. For example, if

epochs and nodes are varied each node-epoch combination is repeated ten or twenty times, and a 50/50 split for

Page 16

the ORL face database implies five training images per class. Each repetition uses the same base classifier

parameters, which are identical for all classifiers. Variation for each classifier run arises from one or more of three

sources, (i) random initial weights, (ii) bootstrapping, and (iii) the problem decomposition defined by the

respective code matrix column. For multi-class problems, three different coding matrices have been used (i)

random code with approximately equal split of labels (REQ) (ii) random code (RAN), all ones and all zeros

removed (iii) One-per-class (OPC) code repeated B/k times.

Natural benchmark problems, selected from [28] and [29] are shown in Table 1 with numbers of patterns,

classes, continuous and discrete features. For datasets with missing values the scheme suggested in [28] is used.

Unless otherwise stated, two-class problems use one hundred classifiers (B = 100), multi-class problems use two

hundred classifiers (k x 200 coding matrix), and the face database uses five hundred classifiers (40 x 500 code

matrix). The Resilient BackPropagation training algorithm [30] with default parameters is used throughout. For

the two-class problems, similar experiments were presented in [31] but no bootstrapping was applied and the

Levenberg-Marquardt training algorithm was used. It is not the intention in this paper to perform a detailed

comparison between the two algorithms, but it may be worth noting that the only observed difference was in the

number of epochs required for optimal performance. The maximum number of epochs for Resilient

BackPropagation was chosen to achieve over-fitting similar to Levenberg-Marquardt.

For the benchmark datasets tested in this paper, none except Diabetes over-fitted for the range of base classifier

complexity values considered. To encourage over-fitting most experiments were carried out with 20/80

training/testing split and varying classification noise, in which a percentage of patterns of each class were selected

at random (without replacement), and each target label changed to a class chosen at random (from patterns of the

remaining classes). Unless otherwise stated the number of epochs is varied from 2 to 1024 using a log scale. The

tables of correlation coefficients for the measures defined in Section 2 and Section 3 are with respect to specified

test error as number of epochs is varied.

Two-class datasets

 Figure 2 (a) – (d) give base classifier and majority vote (MAJ) test and train error rates for Diabetes 50/50 +

0% classification noise with [2,4,8,16] hidden nodes and with bootstrapping applied. Minimum test error occurs

at 8-16 epochs, for which neither base classifier nor ensemble test error is much affected by number of nodes.

Figure 2 (e) (f) shows the difference in error rate between MAJ and SUM (where SUM is defined using soft

outputs xs in (1)), indicating that SUM only gives lower test error than MAJ for 2, 4 epochs. Figure 3 shows four

measures σ′, Q, M′, Q′ defined in (9) (16) (10) (18), and it is emphasised again that all measures are computed on

Page 17

the training set. It may be seen that both σ′ and Q appear to be good predictors of base classifier test error in

Figure 2 (a). However, it will be shown in Figure 5 that Q is poorly correlated on average over all two-class

datasets, unless classification noise is added.

 In Figure 4 is shown the mean test error, σ′ and Q over all 20/80 two-class datasets using 8 hidden-node

bootstrapped base classifiers for [0,20,40] % noise. It is perhaps surprising that, even though there are seven

different datasets, the mean curves show a meaningful trend as number of epochs is varied. The minimum base

classifier test error occurs on average at 8 epochs and both σ′ and Q peak at 8 epochs. Note also that minimum of

MAJ test error also occurs at 8 epochs for 0% noise but as noise is increased the minimum occurs at fewer number

of epochs. Figure 5 (with Bootstrapping) and Figure 6 (without Bootstrapping) show the mean correlation

coefficients over all seven datasets for all measures. Each measure is grouped as six vertical bars in the order

BASE (0,20% noise), MAJ (0,20% noise), SUM (0,20% noise) and demonstrate that bootstrapping makes a

significant difference to the estimation of these measures. With bootstrapping applied, spectral measure σ′ is the

only measure that is strongly (negatively) correlated with base classifier test error for both 0 and 20 % noise.

Without bootstrapping σ′ is weakly (positively) correlated with base classifier test error. Q and ρ are strongly

negatively correlated when 20% classification noise is added but poorly correlated with 0% noise. Table 3 shows

the number of datasets for Figure 5 for which there is ninety-five percent confidence that the correlation would not

be as large as the observed value by random chance. Although σ′ is less well correlated with ensemble test error, it

correlates more strongly than other measures (except 20 % noise for Q, ρ, F which are equally strongly negatively

correlated).

The effect of bootstrapping on the base classifier error rates is shown in Figure 7, indicating that bootstrapping

increases training error as number of epochs is increased. However, when averaged over all datasets, epochs and

noise levels bootstrapping makes little difference to ensemble test error rate, improving it by 0.54 percent.

The best of the mean majority vote error rates for individual two-class problems are shown in Table 2, along

with corresponding Std error and number of epochs at which ensemble error is minimised. The datasets have

20/80 train/test split with 8 hidden nodes, and bootstrapping is applied. In order to determine the effect of using

the spectral measure σ′ to predict ensemble test error, the fourth column of Table 2 shows the ratio of the error at

the number of epochs predicted by σ′ and the error at the optimal number of epochs. The final column of Table 2

shows the ratio when 20% classification noise is added. We may conclude that at 0% noise σ′ is a good predictor

of the number of epochs for optimal ensemble test error. The conclusion extends to 20% noise, with the possible

Page 18

exception of datasets cancer and heart for which the ratios are 1.17 and 1.13 respectively. Only the ratios for σ′

are provided since Figure 5 shows that σ′ is the only measure that is strongly correlated for both 0 and 20 % noise.

Multi-class datasets

All measures calculated over patterns defined in Section 3 assume a binary-to-binary mapping for two-class

problems. For a multi-class problem, k binary-to-binary mappings can be defined by replacing decoding with an

additional coding stage using k x k OPC code. The mean measure is computed over k mappings. Figure 8 shows

the mean test error rates, σ′, Q over all eleven 20/80 multi-class problems with 8 nodes and [0,20,40] % noise with

bootstrapping applied. Note that base classifier error in Figure 8 (a) is the mean over B columns of the code matrix

that define the two-class decompositions. Minima for both base classifier and Hamming Decoded test error occur

at 16-32 epochs for 20 and 40 % noise but there is no over-fitting of Hamming Decoded error at 0 % noise.

Measures σ′ and Q appear to be good predictors of base classifier test error except that at 0 % noise Q is not well

correlated, as with two-class problems. Figure 11 shows σ′ without bootstrapping, and compared with Figure 8

indicates that σ′ does not predict over-fitting unless bootstrapping is applied. The result for VEHICLE dataset in

Figure 12 shows that as number of epochs is increased, σ′ levels off before continuing to increase. This is not

unexpected, as explained in Section 3, since as classifier complexity increases far beyond optimal, all patterns will

eventually become correctly classified and σ′ → 1. When averaged over all datasets, epochs and noise levels,

bootstrapping makes little difference to the ensemble test error, improving it by just 0.40 percent. The effect of

number of classifiers (columns of the code matrix) is given in Figure 13, in which it is shown that increasing the

number beyond one hundred has little effect.

Figure 9 (with Bootstrapping) and Figure 10 (without Bootstrapping) show the mean correlation coefficients

associated with Figure 8 and Figure 11. The correlation is shown for base classifier, Hamming and L1 norm

decoding and demonstrates that σ′ is strongly negatively correlated with base classifier test error. Table 4 shows

the number of datasets for Figure 9, for which there is ninety-five percent confidence that the correlation would

not be as large as the observed value by random chance. From Table 4 and Figure 9 it may be observed that σ′ is

better correlated with base classifier test error than other measures for 0 and 20 % noise. As with two-class

datasets, σ′ is seen to be less well correlated with ensemble test error, but better than other measures (with 20 %

noise Q, ρ, F are equally strongly negatively correlated). The one dataset that is not significantly correlated is

ecoli, which is a difficult eight class problem having nearly half the patterns in one class and with three classes

having only nine patterns between them.

Page 19

Figure 14 shows the difference between random codes REQ and RAN, demonstrating that equal split of labels

has beneficial effect on ensemble test error for fewer epochs. Figure 15 shows the difference between REQ and

OPC codes, and indicates that for 0% noise OPC gives lower ensemble test error for fewer than optimal number of

epochs. This result is supported by a recent study in [32], which claims that OPC (also called OVA One-Vs-All) is

as good as any other code if base classifier is tuned. However, when classification noise is added, random code

REQ is better on average by 0.4 % over 32-1024 epochs. Also when noise is added the optimal number of epochs

for ensemble test error is 8 – 16 (Figure 8) and at this value OPC has 2-3 % higher test error. Note in Figure 14

and Figure 15 that even though base classifier train and test error for REQ and RAN is higher, the ensemble test

error is lower than it is for OPC.

Table 5 shows the same information as Table 2 for multi-class problems. The ratios in the last two columns

demonstrate that, while σ′ may be used for predicting ensemble test error, the results for datasets thyroid and

segment are far from optimal.

Orl Database

Figure 16 shows error rates, σ′, Q for 50/50 60/40 70/30 and 80/20 splits with 16 nodes and bootstrapping

applied. As with two-class and multi-class benchmark problems, σ′ appears to be strongly negatively correlated

with test error. With no bootstrapping, there is a mean improvement in ensemble error rate over all epochs and

splits of 0.11 %. The effect of noise [0 20 40] % is shown in Figure 17, again demonstrating the ability to predict

the number of epochs at which base classifier test error is minimum. The correlation of σ′ with base classifier test

error is significant and it is the only measure to be significant at three noise levels. The difference between

random and OPC codes is shown in Figure 18, showing the inferiority of OPC code.

There is interest in achieving lowest error rate for the ORL database. In reference [3] there is a comparison of

the minimum 50/50 test error rates achieved by various researchers. The authors of [3] achieve the lowest rate of

1.92 % based on 6 runs, with some basing their results on three or fewer runs, but in general the standard

deviations were not given. In an earlier study [33] the authors report 2.7 % error rate with Std 0.6% using ten runs.

In our experiments based on twenty runs, we achieved a mean 3.98 % with Std 1.89 %. It is difficult to make a fair

comparison when different numbers of runs are used to compute the error rates, as evidenced by three recent

studies that use ORL 50/50 split. In agreement with a our results [34], a mean error rate of 4% based on twenty

runs is reported. In contrast, an error rate of 2.5 % is reported in [35] based on ten runs, yet in [36] 0% error rate is

claimed but it is not clear how many runs the result is based upon. To appreciate the difficulties, note that in our

Page 20

experiments assuming that the 20 error rates are ordered, the top 6 average 6.25 % while the bottom 6 average

1.92 %. For random 80/20 split, it may be seen from Figure 16 that our best error rate is 0.9 %. Overall, the

results using our technique of tuning multiple MLP classifiers, are comparable but there is no claim of superiority

compared with other methods.

Discussion

The emphasis in this paper has been on predicting test error as number of training epochs is varied. It is shown

that bootstrapping improves the correlation between test error and the spectral measure defined in (9).

Furthermore the correlation is significant for a range of two-class and multi-class problems that include both

continuous and discrete features, in contrast to [20]. The spectral measure is shown to be well correlated with base

classifier test error, and may be used to predict optimal number of training epochs. While correlation with

ensemble test error is not quite as strong, it is shown that the measure may be used to predict number of epochs for

optimal ensemble performance.

Another way of systematically varying base classifier complexity is to change the number of hidden nodes.

When the base classifier is well-tuned, ensemble test error appears to be relatively insensitive to number of nodes

as shown in Figure 2 and reported in earlier publications [11] and [20]). In agreement with [37], it appears that a

useful design strategy is to start with a network with a large number of nodes, and to use early-stopping. Further

study is required before drawing any conclusions about the effect of increasing the number of hidden nodes above

16.

The benefit of using complex codes for Output Coding has recently been called into question, and in [32] it is

shown experimentally that OPC code is no worse than other codes if the base classifier is well-tuned. However, it

was explicitly recognised in [32] that the result was established using UCI benchmark datasets, with no

classification noise added. We have seen that it may be difficult to over-fit these problems, and with no added

noise the results in [32] are generally supported. However, when noise is added to the datasets, OPC is shown to

be inferior. A possible explanation is that the noise tends to de-correlate the two-class decompositions, and

therefore enhance the error-correcting capability. For the ORL database, random codes give better performance

than OPC even without added noise. More complex codes, which satisfy the criteria discussed in Section 4, have

not been considered in this paper, but were investigated in [21].

A preliminary study was carried out to see if σ′ may be used to perform feature selection. LDA features are

ordered, so the upper limit of number of features was varied from 5-35. Figure 19 shows the corresponding test

Page 21

error for [8 16 32] nodes at 50 training epochs. It appears to show that σ′ may be used to predict the number of

features for minimising base classifier test error, and this could be a useful direction for future study.

6. Conclusion

It is shown experimentally that, over a range of k-class datasets, k ≥ 2, a pair-wise measure computed over

training patterns is well correlated with base classifier test error when number of training epochs of MLP base

classifiers are systematically varied. Bootstrapping significantly improves the estimate of this measure, while

making little difference to the ensemble test error. It is also demonstrated that correlation of the spectral measure

with ensemble test error is not as strong. These can be thought of as two separate problems, the first being

concerned with the prediction of over-fitting of the base classifier and which is the main focus of this paper. The

second problem is to determine the relationship between ensemble and base classifier test error. The evidence in

this paper is that for k > 2 minimum ensemble test error generally occurs at a higher number of epochs, while for k

= 2 minimum ensemble test error generally occurs at fewer epochs compared with the minimum base classifier

test error. It appears that the Output Coding method, by virtue of decomposition into artificial two-class problems,

is resistant to over-fitting of the base classifier. Furthermore it has been shown experimentally that the error-

correcting capability of ECOC may lead to superior results compared with OPC code, even when the base

classifier is well-tuned.

Page 22

Assumptions

µ+ is the number of class 1 patterns
µ− is the number of class -1 patterns
B is the pattern dimension
X+ is a binary (-1,+1) matrix of class 1 patterns with µ+ rows and B columns
X− is a binary (-1,+1) matrix of class -1 patterns with µ− rows and B columns
SS+ is the sensitivity matrix for class 1 patterns with µ+ rows and B columns
SS− is the sensitivity matrix for class -1 patterns with µ− rows and B columns
S+ is the B-dimensional vector resulting from spectral summation of class 1 patterns
S− is the B-dimensional vector resulting from spectral summation of class -1 patterns

Computation of SS−−−−

 which is initialised to all zeros

for j = 1: µ+

 for i = 1: µ−

 if 1:)),(:),((
1

==⊕ −

=

+∑ iXjX
B

j

 for m = 1:B

 if),(),(miXmjX −+ ≠

 SS−(i,m) = SS−(i,m) + 1
 end
 end
 end ****
 end
end

Computation of S

−−−−
 which is initialised to all zeros

for j = 1: B

 for i = 1: µ−
S−(j) = S−(j) + (-1 * X−(i,j) * SS−(i,j))

 end
end

Notes:
 (i) The class 1 sensitivity matrix SS+ and spectral summation vector S+ may be computed similar to SS−

and S− and the result is that S+ is identical to S−. This equivalence is an example of the principle of duality in
Boolean logic. For example, the –1 in the computation of S− is due to class –1 so that for S+ becomes +1.

(ii) The conditional marked **** checks whether there exists unit hamming distance between the jth class 1
pattern and the ith class –1 pattern. Therefore sensitivity matrix SS− contains binary (0,1) values by virtue of
this conditional. For realistic problems, where the truth table is not available, this conditional is removed.
 (iii) Each element of the sensitivity matrix is the absolute value for sensitivity, defined in Section 2

 +
miσ = SS+(m,j) −

miσ = SS-(m,j)

Figure 1: Pseudo-code for determining sensitivities and spectral summation for a two-class problem,
divided into one set of class 1 and one set of class –1 patterns

Page 23

 2 4 8 16 32 64 128 256 5121024

25

30

35

40
E

rr
or

 R
at

es
 %

(a) Base Test

 2 4 8 16 32 64 128 256 5121024

20

30

40
(b) Base Train

 2
 4
 8
16

 2 4 8 16 32 64 128 256 5121024

24

26

28

30

E
rr

or
 R

at
es

 %

(c) MAJ Vote Test

 2 4 8 16 32 64 128 256 5121024

10

20

30

(d) MAJ Vote Train

 2 4 8 16 32 64 128 256 5121024

0

0.5

1

E
rr

or
 R

at
es

 %

Number of Epochs

(e) MAJ − SUM Test

 2 4 8 16 32 64 128 256 5121024

−1

0

1

Number of Epochs

(f) MAJ − SUM Train

Figure 2: (a) – (d) Train and Test Error rates for Diabetes 50/50 with [2,4,8,16] nodes and Bootstrapping

applied
(e) (f) difference in error rate between Majority Vote and Sum

 2 4 8 16 32 64 128 256 5121024

0.3

0.4

0.5

0.6

C
oe

ffi
ci

en
t

(a) σ′

 2 4 8 16 32 64 128 256 5121024
0.2

0.4

0.6

0.8

(b) Q

 2 4 8 16 32 64 128 256 5121024
0.3

0.4

0.5

0.6

0.7

Number of Epochs

C
oe

ffi
ci

en
t

(c) M′

 2
 4
 8
16

 2 4 8 16 32 64 128 256 5121024
0

0.005

0.01

Number of Epochs

(d) Q′

Figure 3: Measures for Diabetes 50/50 for [2,4,8,16] nodes and Bootstrapping applied

Page 24

 2 4 8 16 32 64 128 256 5121024

20

30

40

E
rr

or
 R

at
es

 %

(a) Base Test

 2 4 8 16 32 64 128 256 5121024

20

30

40

(b) MAJ Vote Test

 2 4 8 16 32 64 128 256 5121024

0.2

0.3

0.4

0.5

0.6

E
rr

or
 R

at
es

 %

Number of Epochs

(c) σ′

 2 4 8 16 32 64 128 256 5121024

0.2

0.4

0.6

Number of Epochs

(d) Q

 0
20
40

Figure 5: Mean correlation coefficient (x100) of test error with respect to epochs, over seven
two-class datasets with 20/80 train/test split, [0,20]% classification noise and bootstrapping
applied. Coefficient for each measure is grouped in the order BASE (0, 20), MAJ (0,20), SUM
(0,20)

-100

-80

-60

-40

-20

0

20

40

60

80

100

 Q ρρρρ A F Q′′′′ ρρρρ′′′′ A′′′′ F′ ′ ′ ′ σσσσ′′′′ M′′′′

Figure 4: mean test error, σ′, Q over seven 20/80 two-class datasets using 8
hidden-node bootstrapped base classifiers for [0,20,40] % noise

Page 25

 2 4 8 16 32 64 128 256 5121024
0

1

2

3

E
rr

or
 R

at
es

 %

Number of Epochs

(a) Base Test

 2 4 8 16 32 64 128 256 5121024

5

10

15

Number of Epochs

(b) Base Train

 0
20
40

Figure 7: Mean base classifier bootstrapped error rate minus non-bootstrapped error
rate over seven 20/80 two-class datasets using 8 hidden-nodes and [0,20,40] % noise

-100

-80

-60

-40

-20

0

20

40

60

80

100

Figure 6: Mean correlation coefficient (x100) of test error with respect to epochs, over seven
two-class datasets with 20/80 train/test split, [0,20]% classification noise and NO bootstrapping
applied. Coefficient for each measure is grouped in the order BASE (0, 20), MAJ (0,20), SUM
(0,20)

 Q ρρρρ A F Q′′′′ ρρρρ′′′′ A′′′′ F′ ′ ′ ′ σσσσ′′′′ M′′′′

Page 26

 2 4 8 16 32 64 128 256 5121024
15

20

25

30

E
rr

or
 R

at
es

 %
(a) Mean Base Test(2 class)

 2 4 8 16 32 64 128 256 5121024

20

25

30

35

(b) Hamming Decoding Test

 2 4 8 16 32 64 128 256 5121024
0.1

0.2

0.3

0.4

0.5

E
rr

or
 R

at
es

 %

Number of Epochs

(c) σ′

 2 4 8 16 32 64 128 256 5121024

0.1

0.2

0.3

Number of Epochs

(d) Q

 0
20
40

Figure 8: Mean test error rates, σ′, Q over eleven 20/80 multi-class problems
using 8 hidden-node bootstrapped base classifiers for [0,20,40] % noise

 Q ρρρρ A F Q′′′′ ρρρρ′′′′ A′′′′ F′ ′ ′ ′ σσσσ′′′′ M′′′′

-100

-80

-60

-40

-20

0

20

40

60

80

100

Figure 9: Mean correlation coefficient (x100) of base classifier, Hamming and L1 norm
decoded test error with respect to epochs, over eleven multi-class datasets with 20/80 train/test
split, [0,20]% classification noise and bootstrapping applied. Coefficient for each measure is
grouped in the order BASE (0, 20), HAMMING (0,20), L1 NORM (0,20)

Page 27

-100

-80

-60

-40

-20

0

20

40

60

80

100

 Q ρρρρ A F Q′′′′ ρρρρ′′′′ A′′′′ F′ ′ ′ ′ σσσσ′′′′ M′′′′

Figure 10: Mean correlation coefficient (x100) of base classifier, Hamming and L1 norm
decoded test error with respect to epochs, over eleven multi-class datasets with 20/80 train/test
split, [0,20]% classification noise and NO bootstrapping applied. Coefficient for each measure is
grouped in the order BASE (0, 20), HAMMING (0,20), L1 NORM (0,20)

Page 28

 2 4 8 16 32 64 128 256 5121024

0.2

0.4

0.6

0.8

Number of Epochs

C
oe

ffi
ci

en
t

(a) σ′

 0
20
40

 2 4 8 16 32 64 128 256 5121024

15

20

25

30

E
rr

or
 R

at
es

 %

Number of Epochs

(b) Mean Base Test(2 class)

 2 4 8 16 32 64 128 256 5121024

0.2

0.4

0.6

0.8

Number of Epochs

C
oe

ffi
ci

en
t

(a) σ′

 0
20
40

 2 4 8 16 32 64 128 256 5121024

20

25

30

35

40

E
rr

or
 R

at
es

 %

Number of Epochs

(b) Mean Base Test(2 class)

Figure 11: Mean test error rates, σ′ over eleven 20/80 multi-class problems
using 8 hidden-node non-bootstrapped base classifiers for [0,20,40] % noise

Figure 12: mean test error rates, σ′, Q for VEHICLE 20/80 dataset using 8
hidden-node non-bootstrapped base classifiers for [0,20,40] % noise

Page 29

 10 20 30 40 50 60 70 80 90 100

24

26

28

30

32

34

E
rr

or
 R

at
es

 %

Number of Feats(cols)

(a) Hamming Decoding Test

 10 20 30 40 50 60 70 80 90 100

20

25

30

35

Number of Feats(cols)

(b) Hamming Decoding Train

 4
 8
16
32

 2 4 8 16 32 64 128 256 5121024

3

4

5

E
rr

or
 R

at
es

 %

(a) Mean Base Test(2 class)

 2 4 8 16 32 64 128 256 5121024

2

3

4

5

(b) Mean Base Train(2 class)

 0
20
40

 2 4 8 16 32 64 128 256 5121024

−1.5

−1

−0.5

0

E
rr

or
 R

at
es

 %

Number of Epochs

(c) Hamming Decoding Test

 2 4 8 16 32 64 128 256 5121024

−0.5

0

0.5

Number of Epochs

(d) Hamming Decoding Train

Figure 13: mean ensemble error rates as number of classifiers is varied over
eleven 20/80 multi-class problems using 8 hidden-node non-bootstrapped base
classifiers for [4 8 16 32] epochs

Figure 14: Error rates for Random code with equal split of labels (REQ) minus
Random code (RAN) over eleven 20/80 multi-class problems 16 hidden-node and
[0 20 40] % noise

Page 30

 2 4 8 16 32 64 128 256 5121024

8

10

12

E
rr

or
 R

at
es

 %

(a) Mean Base Test(2 class)

 2 4 8 16 32 64 128 256 5121024

4

6

8

10

12

(b) Mean Base Train(2 class)

 0
20
40

 2 4 8 16 32 64 128 256 5121024

−5

−4

−3

−2

−1

E
rr

or
 R

at
es

 %

Number of Epochs

(c) Hamming Decoding Test

 2 4 8 16 32 64 128 256 5121024
−4

−3

−2

−1

0

Number of Epochs

(d) Hamming Decoding Train

 10 20 40 80 160 320 640 1280

8

10

12

E
rr

or
 R

at
es

 %

(a) Mean Base Test(2 class)

 10 20 40 80 160 320 640 1280
1

2

3

4

(b) Hamming Decoding Test

 10 20 40 80 160 320 640 1280
0.4

0.45

0.5

0.55

0.6

E
rr

or
 R

at
es

 %

Number of Epochs

(c) σ′

 10 20 40 80 160 320 640 1280
−0.6

−0.4

−0.2

0

Number of Epochs

(d) Q

80
70
60
50

Figure 15: Error rates for Random code with equal split of labels (REQ) minus
OPC code over eleven 20/80 multi-class problems 16 hidden-node and [0 20 40] %
noise

Figure 16: Test error, σ′, Q for ORL database using 16 hidden-node bootstrapped base
classifiers for [50/50,60/40,70/30,80/20] train/test splits

Page 31

 2 4 8 16 32 64 128 256 5121024

15

20

25

30

35

E
rr

or
 R

at
es

 %

(a) Mean Base Test(2 class)

 2 4 8 16 32 64 128 256 5121024

10

20

30

40

(b) Hamming Decoding Test

 0
20
40

 2 4 8 16 32 64 128 256 5121024
0.1

0.2

0.3

0.4

0.5

E
rr

or
 R

at
es

 %

Number of Epochs

(c) σ′

 2 4 8 16 32 64 128 256 5121024
−0.6

−0.4

−0.2

0

0.2

Number of Epochs

(d) Q

 2 4 8 16 32 64 128 256 5121024
10

15

20

25

30

E
rr

or
 R

at
es

 %

(a) Mean Base Test(2 class)

 2 4 8 16 32 64 128 256 5121024

5

10

15

20

25

(b) Mean Base Train(2 class)

 0
20
40

 2 4 8 16 32 64 128 256 5121024

−30

−20

−10

E
rr

or
 R

at
es

 %

Number of Epochs

(c) Hamming Decoding Test

 2 4 8 16 32 64 128 256 5121024

−20

−15

−10

−5

0

Number of Epochs

(d) Hamming Decoding Train

Figure 17: test error, σ′, Q for ORL 50/50 database using 16 hidden-node
bootstrapped base classifiers for [0,20,40] % noise

Figure 18: Error rates for Random code with equal split of labels (REQ) minus
OPC code for ORL 50/50 16 hidden-nodes and [0 20 40] % noise

Page 32

 5 10 15 20 25 30 35

0.3

0.4

0.5

0.6

0.7

FLD dimension

C
oe

ffi
ci

en
t

(a) σ′

 8
16
32

 5 10 15 20 25 30 35

10

15

20

E
rr

or
 R

at
es

 %

FLD dimension

(b) Mean Base Test(2 class)

DATASET #pat #class #con #dis
cancer 699 2 0 9
card 690 2 6 9
credita 690 2 3 11
dermatology 366 6 1 33
diabetes 768 2 8 0
ecoli 336 8 5 2
glass 214 6 9 0
heart 920 2 5 30
iris 150 3 4 0
ion 351 2 31 3
segment 2310 7 19 0
soybean 683 19 0 35
thyroid 7200 3 6 15
vehicle 846 4 18 0
vote 435 2 0 16
vowel 990 11 10 1
wave 5000 3 21 0
yeast 1484 10 7 1

Table 1: Benchmark Datasets showing numbers of patterns, classes, continuous and discrete features

DATASET Mean
Error

Std.
Error

Opt #
epoch

Ratio
0 %

Ratio
20 %

cancer 3.5 0.4 8 1.05 1.17
card 16.3 0.9 8 1 1.03
credita 16 1.1 16 1 1
diabetes 24.3 1.5 8 1 1.02
heart 17.7 1.3 2 1.03 1.13
ion 12.1 1.6 16 1 1
vote 5.1 1.2 128 1.03 1.06

Table 2: Mean and Std minimum majority vote error rates for two-class problems (20/80 train/test split and 8 hidden

nodes), showing optimal number of epochs and ratios with respect to error rate predicted by σ′ for 0% and 20% classification
noise

Figure 19: Test error, σ′, Q for ORL 50/50 database versus number of FLD features,
using [8,16,32] hidden-node bootstrapped base classifiers

Page 33

 BASE MAJ SUM
MEAS 0 20 0 20 0 20

Q 4 7 5 7 5 7
ρρρρ 4 7 5 7 4 7
A 6 1 3 0 3 0
F 3 5 4 7 4 7
Q′′′′ 5 6 4 3 3 3
ρρρρ′′′′ 3 1 3 4 3 4
A′′′′ 3 2 3 7 3 7
F′′′′ 4 2 4 7 3 7
σσσσ′′′′ 7 7 5 6 5 6
M′′′′ 3 6 3 7 4 7

Table 3: Number of two-class datasets out of seven for which the correlation coefficient shown in Figure 5 is significant at
the ninety-five percent confidence level

 BASE HAMMING L1 NORM
MEAS 0 20 0 20 0 20

Q 3 9 3 6 3 6
ρρρρ 4 11 2 7 2 7
A 10 4 9 4 8 3
F 8 2 10 6 8 6
Q′′′′ 5 4 6 7 5 8
ρρρρ′′′′ 7 7 8 6 7 7
A′′′′ 9 2 10 6 8 6
F′′′′ 10 5 9 4 8 5
σσσσ′′′′ 10 9 9 7 6 6
M′′′′ 7 2 9 8 7 8

Table 4: Number of multi-class datasets out of eleven for which the correlation coefficient shown in Figure 9 is significant at
the ninety-five percent confidence level

DATASET Mean

Error
Std.
Error

Opt #
epoch

Ratio
0 %

Ratio
20 %

dermatology 3.7 0.9 512 1.06 1.04
ecoli 13.9 2 16 1.1 1.27
glass 34.5 3.4 32 1.01 1.01
iris 4.8 0.8 32 1.02 1.0
segment 4.6 0.5 1024 1.33 1.15
soybean 8 1.1 16 1.02 1.09
thyroid 1.8 0.2 1024 1.28 1.6
vehicle 23.5 1.4 1024 1.14 1.07
vowel 22.9 3.2 1024 1.11 1.01
wave 14.8 0.7 16 1.01 1.01
yeast 41.7 1.1 64 1 1.03

Table 5: Mean and Std minimum Hamming Decoded error rates for multi-class problems (20/80 train/test split and 8 hidden
nodes) showing optimal number of epochs and ratios with respect to error rate predicted by σ′ for 0% and 20% classification
noise

Page 34

References

1 L.K. Hansen and P. Salamon, Neural Network Ensembles, IEEE Trans. PAMI, vol.12, 9931001, 1990.

2 T. Bylander, Estimating generalisation error on two-class datasets using out-of-bag estimates, Machine

Learning 48, 2002, 287-297.

3 M. J. Er, S. Wu and H. L. Toh, Face Recognition with RBF Neural Networks, IEEE Trans. On Neural

Networks, 13 (3), 2002, 697-710.

4 L. Breiman, Bagging Predictors, Machine Learning, 24(2), (1997) 123-40.

5 T. K. Ho, The Random Subspace Method for Constructing Decision Forests , IEEE Trans. PAMI, 1998, 832 -

844

6 L. Breiman, Randomizing Outputs to Increase Prediction Accuracy, Machine Learning 40 (3), 2000, 229-242.

7 L. I. Kuncheva and C.J. Whitaker, Measures of Diversity in Classifier Ensembles, Machine Learning 51, 2003,

181-207.

8 A. Narasimhamurthy, Evaluation of Diversity Measures for Binary Classifier Ensembles, Proc. 6th Int.

Workshop Multiple Classifier Systems, Editors: N. C. Oza, R. Polikar, F. Roli and J. Kittler, Seaside, Calif,

June, 2005, Lecture notes in computer science, Springer-Verlag, 267-277.

9 T. Windeatt and R. Tebbs, Spectral Technique for Hidden Layer Neural Network Training, Pattern Recognition

Letters, Vol.18(8), 1997, 723-731.

10 T. Windeatt, Recursive Partitioning for Combining Multiple Classifiers, Neural Processing Letters 13(3), June

2001, 221-236.

11 T. Windeatt, Vote Counting Measures for Ensemble Classifiers, Pattern Recognition 36(12), 2003, 2743-2756.

12 A. N. Tikhonov and V. A. Arsenin, Solutions of Ill-posed Problems, Winston & Sons, Washington, 1977.

13 S. L. Hurst, D. M. Miller and J. Muzio, Spectral Techniques in Digital Logic, Academic Press, 1985.

14 R. E. Schapire, Y. Freund and P. Bartlett, Boosting the Margin: A New Explanation for the Effectiveness of

Voting Methods, The Annals of Statistics 26(5), (1998) 1651-1686.

15 L. I. Kuncheva, That Elusive Diversity in Classifier Ensembles, Proc. Iberian Conf. On Pattern Recognition

and Image Analysis, Mallorca, Spain, Lecture Notes in Computer Science, Springer-Verlag, 2003, 1126-1138.

16 G. James, Variance and Bias for General Loss Functions, Machine Learning, 51 (2) 2003, 115-135.

17 L. Breiman, Arcing Classifiers, The Annals of Statistics 26(3), (1998) 801-849.

18 B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, 1993.

Page 35

19 T. G. Dietterich and G. Bakiri, Solving Multi-class Learning Problems via Error-Correcting Output Codes, J.

Artificial Intelligence Research 2, 1995, 263-286.

20 T. Windeatt, Spectral Measure for Multi-class Problems, Proc. 4th Int. Workshop Multiple Classifier Systems,

Editors: F. Roli, J. Kittler and T. Windeatt, Cagliari, Italy, June, 2004, Lecture notes in computer science,

Springer-Verlag, 184-193.

21 T. Windeatt and R. Ghaderi., Coding and Decoding Strategies for Multi-class Learning Problems, Information

Fusion, 4(1), 2003, 11-21.

22 E. L. Allwein, R. E. Schapire and Y. Singer, Reducing Multi-class to Binary: A Unifying Approach for Margin

Classifiers, J. Machine Learning Research 1, 2000, 113-141.

23 V. Guruswami and A. Sahai, Multi-class Learning, Boosting, and Error-Correcting Codes, Proc twelth Conf on

Computational Learning Theory, ACM Press, Santa Cruz, Calif, July,1999,

24 K. Crammer and Y. Singer, Improved Output Coding for Classification Using Continuous Relaxation, in

T.G.Dietterich, S. Becker, and Z. Ghahramani (eds.) Advances in Neural Information Processing Systems 14.

MIT Press, Mass., 2002.

25 K.Crammer, On the Learnability and Design of Output Codes for Multi-class Problems, Machine Learning,

47 (2), 2002, 201-233.

26 R. E. Schapire, Using Output Codes to Boost Multi-class Learning Problems, 14th Int. Conf. of Machine

Learning, Morgan Kaufman, 1997, 313--321.

27 J. Kittler, R. Ghaderi, T. Windeatt and J. Matas, Face Verification via Error Correcting Output Codes, Image

and Vision Computing, Volume 21, (13-14), 2003, 1163-1169.

28 L. Prechelt, Proben1: A Set of Neural nNtwork Benchmark Problems and Benchmarking Rules, Tech Report

21/94, Univ. Karlsruhe, Germany, 1994.

29 C.J. Merz and P. M. Murphy, UCI Repository of Machine Learning Databases, 1998,

http://www.ics.uci.edu/~mlearn/MLRepository.html

30 M. Riedmiller and H. Braun, A Direct Adaptive Method for Faster Backpropagation Learning: The {RPROP}

Algorithm, Proc. Intl. Conf. on Neural Networks,San Francisco, Calif., 1993, 586—591.

31 T. Windeatt, Diversity Measures for Multiple Classifier System Analysis and Design, Information Fusion, 6

(1), 2004, 21-36.

Page 36

32 R. Rifkin and A. Klautau, In defense of One-vs-All Classification, J. Machine Learning Research 5, 2004, 101-

141.

33 G.L. Marcialis and F. Roli, Fusion of Appearance-Based Face Recognition Algorithms, Pattern Analysis and

Applications, 7(2), 2004,151-163.

34 M. Wang and S. Chen, Enhanced FMAM Based on Empirical Kernel Map, IEEE Trans. Neural Networks,

16(3), 2005, 557-564.

35 M. E. Er, W. Chen and S. Wu, High Speed Recognition Based on Discrete Cosine Transform and RBF Neural

Networks, IEEE Trans. Neural Networks 16(3). 2005, 679-691.

36 H. Zhang, B. Zhang, W. Huang and Q. Tian, Gabor Wavelet Associative Memory for Face Recognition, IEEE

Trans. Neural Networks 16(1), 2005, 275-278.

37 R. Caruna, S. Lawrence and L. Giles, Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and

Early Stopping, Neural Information Processing Systems, Denver, Colorado, November 28-30, 2000.

