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Abstract: The difficulties of tuning parameters of MLP classifiare well known. In this paper, a measure is
described that is capable of predicting the number of clasgifiéming epochs for achieving optimal
performance in an ensemble of MLP classifiers. The measwa@mputed between pairs of patterns on the
training data, and is based on a spectral representatioroofeaB function. This representation characterises
the mapping from classifier decisions to target label, diosv& accuracy and diversity to be incorporated
within a single measure. Results on many benchmark problemsglimgithe ORL face database demonstrate
that the measure is well correlated with base clasd#gr error, and may be used to predict the optimal
number of training epochs. While correlation with ensembleetest is not quite as strong, it is shown in this
paper that the measure may be used to predict number of epoohtirf@l ensemble performance. Although
the technique is only applicable to two-class problems, é@xtended here to multi-class through Output
Coding. For the Output Coding technique, a random code matrix wensoogive better performance than

One-per-class code, even when the base classifier isumelkt
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1 Introduction

Multi-layer perceptrons (MLP) make powerful classifiehatt may provide superior performance compared
with other classifiers, but are often criticized fbe number of free parameters. Most commonly, paramate
set with the help of either a validation set or cnaidation techniques [1]. However, there is no guaeatiiat a
pseudo-test set is representative, and for many patteogmition problems there is insufficient data to iy
this approach. Cross-validation can also be time-comgurand biased [2]. For realistic problems, slow
convergence and lack of guarantee of global minima atleciudrawbacks of MLP training [3].

Ensemble classifiers, also called committees or MeltClassifier Systems (MCS) offer a way of solving
some of these problems. The idea of combining multilgssiiers is based on the observation that achgevin
optimal performance in combination is not necessamlysistent with obtaining the best performance for a
individual (base) classifier. The rationale is thatmiay be easier to optimise the design of a combinaifon

relatively simple classifiers than to optimise theiglesof a single complex classifier. An MLP with random
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starting weights is a suitable base classifier siaoglomisation has shown to be beneficial in the MQ8ext.
Random selection has been successfully applied to taisets (Bootstrapping [4]), to feature sets (random
subsets [5]) and to output labels [6]. Problems of lodaima and computational slowness may be alleviated by
the MCS approach of pooling together the decisions alfafirom locally optimal classifiers. However, these i
still the problem of tuning base classifiers, and ttaénnfocus of the paper concerns this issue. The acttite
envisaged is a simple MCS framework in which thereBgparallel MLP base classifiers.

Although it is known that diversity among base classfiss a necessary condition for improvement in
ensemble performance, there is no general agreemauttadov to quantify the notion of diversity among aaet
classifiers. The desirability of using negatively ctated base classifiers in an ensemble is generalbgresed,
and in [7] the relationship between diversity and mgjardte accuracy is characterized with respect tciflas
dependency. Experimental evidence in [8] casts doubt omugéfiness of diversity measures for predicting
majority vote accuracy. Diversity measures can begoaised into pair-wise and non-pair-wise, but to apply pair
wise measures to finding overall diversity it is neaegdo average over the classifier set. These paie-wi
diversity measures are normally computed between padlassifiers and take no account explicitly of the target
labels. A spectral measure that combines accuracy aacsity for two-class problems is described in this pape
It is calculated between pairs of patterns, and is basdtie spectral representation of a Boolean functian t
was first proposed for two-class problems in [9], anérldeveloped in the context of MCS in [10]. It was shown
for two-class problems in [11] that over-fitting could detected by observing the spectral measure computed on
the training set as it varies with base classif@npglexity.

Realistic learning problems are in general ill-posed [ff#yeby violating one or more of the properties of
continuity, uniqueness and existence. The consequenat béimg well-posed is that any attempt to automate
the learning task requires some assumptions. The onlynasion used here is that base classifier complexity is
varied over a suitable range. The spectral measure eséexdtin [11] for two-class problems and shown to
correlate well with base classifier test error. ldwer, the upper limit on number of training epochs wasvatto
be quite critical. A contribution of this paper is tashthat the incorporation of bootstrapping for estingthe
measures enables good correlation over a wider ranigasef classifier complexity. A second contribution is to
extend the method to solving multi-class problems (defasdclass k > 2) through Error-Correcting Output
Coding (ECOC). Although the method was first proposed i, [B6re it is tested on a greater number of
benchmark datasets including a face recognition databdbed contribution is to show, in the presence bEla

noise, that the one per class (OPC) code is infegi&COC even when the base classifiers are welldtune
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The spectral measure is defined in Section 2, and putitexdoof pair-wise diversity measures in Section 3.
The Output Coding approach to solving multi-class problendgssribed in Section 4, and the face recognition
database explained in Section 5. Experimental eviden8edtion 6 includes test error rate plots as number of
training epochs is systematically varied, as welladtets of correlation coefficients between testrearad all the

measures defined in Section 2 and Section 3.

2 Spectral Measure

Before providing a mathematical formulation of the sp@aneasure, a more intuitive description will be
attempted. The idea is to represent each training pdiyethe binary decisions of the multiple classifigising
rise to a binary-to-binary mapping with respect to byrtarget labels. For the (unrealistic) case thatntlhapping
is completely specified, a search is made for all patpairs that have identical classifier decisions exoapt
That component is negatively or positively correlatéth wespect to the target class. By summing the individual
correlations, the spectral measure for a pattern isetehs the normalised difference between total pesithd
negative correlations. For the (realistic) casenofr@ompletely specified mapping, all pattern pairs conteitbo

the total correlation, not just those that are umitrithing Distance apart.

Initially two-class supervised learning problems aresiered, with the label given to each pattégdenoted
by an =f(X) wherem =1 ... andw, 7 {0,1}or {+1,-1}. Heref is the unknown function that majs to the
target labeky,. It is assumed that there @&arallel single hidden-layer MLP base classifiers &adX, is aB-
dimension vector formed from the outputs of Belassifiers &, i=1 ...B) applied to the original patterns

which in general are real-valued and of arbitrary diroensrherefore, we may represent thth pattern by

Xin = (s Smare 1 Sme) ¢
where& {x5, x, ¥}, defined by
x* [0 [0,1] is the soft decision in the interval
x 0{0,1}or {+1,-1} is the hard (binary) decision formed bgfening X
x% 0 {0,1} is the binary decision conventionally used folcodating diversity measures, where a

correct classification is indicated byni‘k: 1if and only if % = an,
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In this sectionf(Xy) is a binary-to-binary mapping between classifier outpuats target labels witk (rather
thanx®) in (1) representing a vertex in tBedimensional binary hypercube. In [9], a spectral tremsfof f(X) is

proposed for characterising this mapping. These mappingtesred from the Hadamard transform defined

recursively as follows
T, T4 11
T, = whereT, = 2
T, —-T.4 1 -1

The transforms derived from (2) give rise to spectafficients [13] so that

U U u
=W, §=> XyOw,, =D (Xu0X,)0w,), ........

m=1 m=1 m=1
S correlation betweeiX) and constant
s i=1l...n correlation betweeffX) and x 3)
§ij=1..ni4 correlation betweeffX) and x O x;
si L,k =1..n i42k correlation betweeffX) and xO x; O Xk

......... and continues for fourth order and above

wherel is logic exclusive-OR.

In [9], first order coefficients in (3) are computed by searching for pairs of binaryepast one from each
class, that differ in only a single component. Thesifeer representing that component is said to be them i
that a change in the classifier decision indicatebange in class laheFor a completely specified Boolean

function (truth table available), theth pattern componen,, is assigned sensitivitgr,; (j=1,2,...B) as follows

(ka U Xnk) = 1' ij = wm 7 wn (4)

[Me 1]

(ka D Xnk)zl' ij :wn ¢a)m'

=
1
ik

B
andZ(ij H an) is the Hamming Distance
=
Applying (4) involves a search in which each pattégof one class, is paired with patterns of the othesscla

that are unit Hamming Distance apart, and settng = 1 if X, = @ anddn = 1 otherwise. The search
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process is identical to the first stage of logic mirsiaion, a description of which can be found in anyddach
textbook on combinational logic.

In [11], a technique known as spectral summation is destrilm which contributiongr, associated with
pattern componentxcan be added to compute first order spectral coefficgnts(3). Spectral summation is

described in [13], and the idea of separation into positienegative contributions was first proposed in [9]. The

Z Z
existence of excitatory and inhibitory contributioE O'mj+ >0and Z O'mj_ > Ofor givenj provides evidence
m=1 m=1

that the set of patterns is non-separable injttheomponent [10]. For details of separable and non-dglpara
Boolean functions, see reference [13]. To clarify ¢bmputation of sensitivity and spectral summation pseudo-

code is provided in Figure 1.

The difference between the positive and negative ibaions gives the first order spectral coefficients, a

illustrated in the following example of a non-separalgel&an function

f(X) =%X;, + XX, + X, X, ®

The truth table in {+1,-1} rather than {0,1} coding fdret function defined in (5) is given by

id 1 2 3 class
X1 1 1 1 1
X5 -1 1 1 -1
X3 1 -1 1 -1
Xa -1 -1 1 1
Xs 1 1 -1 1
Xe -1 1 -1 -1
X7 1 -1 -1 -1
Xg -1 -1 -1 -1

The truth table ordering defines the spectral coefftodedering [13], which is computed as follows fyin

equation (2)

7 1 1 1 1 1 1 T —1 ] T so
1-1 1-1 1-1 1-1 1 2 | s,
1 1-1-1 1 1-1-1 1 2 | s,
1-1-1 1 1-1-1 1 1] = 6 | s
11 1 1-1-1-1-1 1 2 | ss
1-1 1-1-1 1-1 1 1 2 | s
1 1-1-1-1-1 1 1 1 2 | sz
1 -1-1 1-1 1 1-Z L1 | 2 ] sis
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By comparing the truth table and the transformationrisn#tmay be seen that first order coefficients is=

1,2,3 represent the correlation betwégf) andx;. Similarly the second order coefficients representetation
betweenf(X) and x O x; as defined in (3). Now consider the result of applyingd4)ass 1 pattern®y, X4, Xs)
of functionf(X) in (5). For notational convenience, binary compomxdms its associated sensitivityepresented

as superscriptas follows

(S

+1' +1' +1° X
-1 -1 +1 X4
+1" +1" -=-171° Xs

An alternative calculation of the spectral coeffitgeis obtained by applying spectral summation to thesdas
patterns. The three rowX;, X4, Xs) represent class 1 binary patterns and the first omddficdents are calculated
from the three columns by adding $x+1) or subtracting {(x -1) whendy,; = 1 (m=1,4,5),with no contribution
when g = 0. The contribution is doubled, since spectral summatiom fthe class 1 patterns is identical to
spectral summation from class —1 patterns, as explairtbe imotes for the pseudo-code in Figure 1.To calculate
higher order coefficients, the first order contribua@are added for the respective columns (in this paperave a

only using first order coefficients).

e.g. § =2*(1-1+1) = +2, using column 1.
sp=2*((1*1)+(-1*-1)+ (1*1)) =+6 using column 1,2.

S23=0+ 2*(-1*-1*1)+ 0=+2using column 1,2,3.

8 8
Consider separating the positive and negative contritzm:izunthatz:0’,;j /ZO’,;J- G=123 =

m=1 m=1

[4/2,4/2,2/0]. When both positive and negative contributemesnon-zero, for givej) a function violates the 1-
monotonicity constraint and is therefore non-separalbfom another perspective, in order to implement the
function with a Threshold Logic Unit (TLU) the implidan is that the weight on lineneeds to be both positive
and negative. That is, a single TLU cannot implemeafuhction. The function defined in (5) is therefore hot
monotonic in the first two components. Note thateifex function is 1-monotonic, it may still be neaparable
due to violation of higher montonicity constraints [18].is difficult to give an intuitive explanation of the
meaning of the spectral coefficients, since the pasand negative correlations cancel. However, by keetia
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correlations separate we can determine the evidemaavéwall positive and negative correlation, which give

8 8
more information than the spectral coefficientshimsmselves. Ifz g > ZO’,;J- the evidence is that classifier
m=1 m=1

i is more positively correlated than classifi¢for example classifier 1 is more positively correietiean classifier
3).

Clearly, for a realistic learning problem the unknownaby-to-binary functionf will not be completely
specified. However, the concept of spectral summatiorstils applicable even if the function is noisy,
incompletely specified and perhaps contradictory, asigalse for pattern recognition problems. To estintege t
coefficients, it is assumed that the pattern componerhiich in our framework are outputs of binary classsfie
are independent. Therefore, each classifier provideeree that a pattern is positively or negatively cateel

with all patterns of the other class. Tinéh pattern componemnt, is assignediy, (j=1,2,...B) as follows

Y%
c _
O’ =D Xy O X (6)
=1
where correlation ¢ =+ K, =&, # W, and ¢ =if X; =W, # W,,

In (6), in contrast to (4), the contribution for eg@httern component comes from all patterns of the atlass,
not just nearest neighbours. The pseudo-code for the caiopuashown in Figure 1, in which the conditional
(marked ****) is removed. Note that any classifier thatreatly classifies one pattern of a pattern pair, but
incorrectly classifies the other, does not contritbatéhe summation. After applying (6) tfile componenky,; of a

pattern pair has associates},; only if thejth base classifier mis-classifies both patterns. Thezeve expect that

B
a pattern with relatively Iarg§: O'mj_ is likely to come from regions where the two classesxlap. We now
=1
define a measure for each pattern that representsfficaltyi of separating that pattern from patterns of dtteer
class. It is based on a summation of contributioriafive to the total number of contributions. For gaytern,
say thenth pattern,oy, (where prime { indicates that a measure is computed across patteaopajpposite class

rather than across classifiers as in Section 3), shendifference between excitatory and inhibitory dbotions,

normalised so that 4 0/, <1

+ - + -

1 Bl O, o. B| o .
nj nj — nj nj
A — - = +
T =X JZ; e ; ot T (7)
20w D 0n O 0w
m=1 m=1 m=1 m=1
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In (7) o, may be compared with the margin for tith pattern. The margin of a training example is defined as
the difference between the weight given to the cortleds and the maximum weight given to any of the other
classes. It is defined as a number between —1 and +1s andifive for a correct classification. Furthermaohe,
absolute value of the margin represents confidenceséification. For a two-class problem, the margih fist

nthtraining patterrX, is given by

B
f (Xn)zajxnj
M/ = = t:

b
ZM‘
=1

whereg; is the weight associated wiin base classifier
Note that margin in (8) for majority vote;(= 1/B) is identical to unnormalised, defined in (3), so that the
margin may be regarded as a special case of spectral sismn@umulative Distribution graphs [14] can be
defined similar to that for margin, thatdéo,) versuso, whereg (o7) is the fraction of patterns with value at
least o. In this paper, a single measure for a set of pattsriobtained by taking the mean over positively

correlated patterns, which represents the area und@utinelative Distribution Graph [11]

! 1 ﬂ !
TR ©
1 H
’:_ I I >
M= DML M >0 )

Sinceor, and M; in (9) and (10) vary between —1 and #1and M vary betweer® and 1. \Wen ¢’is plotted
as base classifier complexity is varied (Section &),dhrves may be interpreted as (1 - mean over negativel

correlated patterns).

3 Pair-wise diversity measures
Various approaches to defining diversity, and to deterrgittie relationship between diversity and accuracy,

have been proposed. For our study we consider pair-wisesitjvaeasures, and follow the notatidhi (1) and

used in [7], in which the output of a classifier is define be 1 if and only if a pattern is correctly classif
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Although diversity measures are conventionally calcdlateer base classifiers, it is also possible to compute
them over patterns [15]. If the B classifier decisiforqu patterns form @ x B binary matrix, conventional pair-
wise diversity measures [7] are computed between pairswed independent of class label. In contrast, the
spectral measure in Section 2 is defined between paixdiwohns, where each one of the pair represents ampatte

chosen with different class label.

Diversity over classifiers
Let thejth classifier output for theth pattern under this labelling scheme bp-dimensional binary vector

given by ij where p = 1,..4.. The following counts are defined fibh andjth classifiers

P’ I

U U U U
00 _ —d <d 11 _ d d 10 d —d 01 _ —d d
N =2 %5 OXg, Nyt =20xg Oxg Ni° =2 x5 0%, NP =3 X Ox, (11)
e} e} e} =}

where L is logical AND andX? is the logical complement ot

011001}
e

For example if the first two columns o 6 binary matrix is given b Wi
P hex 6 binary ’ {1 01101

have NX=1, NJ=2, N2=2, N> =1.

The Q statistic, Correlation coefficienp)( and Double Fault (F) measures defined in [7], all iaseewith
decreasing diversity. Here an Agreement (A) measurefisedeas (1 — Disagreement) to make it also increase

with decreasing diversity so that

NllN 00 _ N01N10

Qij = N11N00+ NOlNlO (12)
NllNOO_ N01N10
f, = 13
\/(N11+Nlo)(N01+NOO)(N11+N01)(N10+N00)
_ N+ N (14)
Aj_l_ N11+N00+N01+N10
NOO (15)

Fij = N11+N00+ N01+N10

where thej subscripts for N in (12) to (15) have been omitted dmvenience
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The mean diversity measuﬁeD{Q, P, A F} over B classifiers is given by
A=

2 B-1 B
_ A
BB & 2 (9

Diversity over patterns

For comparison, analogous to the spectral measure oflaion (6), we propose to calculate diversity

measures over patterns between the two classes usintg &s follows
N 00 C d dy N C d d N 10 C d dy NO C d d
—_ v v 11 10 — 12 1 — v
Nmn - Z(ij DXnj )’ Nmn - Z(ij DXnj )’ Nmn - Z(ij DXnj )’ Nmn - Z(ij DXnj )’ (17)
= j=1 j=1 =1
wherew,, # W,

Thenth pattern may then be given a measure of diveanII;yby applying equations (12) to (15), and summing

over all patterns of the other class. Similar tog@) (10) we produce a single meastieover all patterns as
follows
H [
A=>A,,A,>0 (18
n=1
The measures defined in (18) are experimentally compar@edition 6.

Now g,’defined in (7) may be formulated in the notation usediifegrsity measures as follows

1 N 1 N_% _ N 1 N ©
Un:? #i _ﬂi 'K:/Ii +ﬂi (19
Z lel Z NmOO Z lel Z NmOO
m=1 m=1 m=1 m=1
N 1 N %
From (19) and (9~ is the probability tha 7 ; ~ ; >0, and may be considered as a measure
Z N‘ 11 Z N‘ 00
m m
m=1 m=1

of class separability. It provides an intuitive explaomatdf why we may expect that’ correlates well with base
classifier test error, and in particular peaks at tihneesaumber of training epochs. Consider the example of two
overlapping Gaussians representing a two-class probleim tiné Bayes boundary assumed to be placed where
the probability density curves cross. Let the overlappegion be defined as the tails of the two Gaussiatis wi

respect to the Bayes boundary. If base classifiersagable of approximating the Bayes boundary, by definition
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an optimal base classifier will incorrectly classifly patterns in the overlapping region and correctlgsifa all
other patterns. Now consider the situation that timepdexity of the base classifiers increases beyond aeptiso
that some patterns in the overlapping region becomeattyrclassified and some of the remaining patterns
become incorrectly classified. The result is thatehe greater variability in classification among pats close to

the Bayes boundary, and it is more difficult to sepatiaéen. The probability represented bydecreases as

complexity increases sinchl %5 more evenly distributed over all patterns, leading teduction in positively
correlated patterns. The effect on the Cumulative Didfion Graphs, defined in Section 3, is shown in refeee

[11]. However, if the base classifier becomes tooguy; eventually all patterns are correctly clasdifend

N® _ 0ando’ - 1, soitis expected that'would start to increase as seen in Figure 12 in Section 6.

It is also possible to understand how may be used to predict test error by appealing to thiensoof Bias
and Variance, which are motivated by analogous conéeptgression theory. However, there are difficulties
with the various Bias/Variance definitions for 0/1 l@ssction. Firstly, a comparison of Bias/Variance digfons
[16] shows that no single definition satisfies zerosBid zero Variance for Bayes classifier, togethén wi
additive Bias and Variance decomposition of error. Sdlgothe effect of bias and variance on error ratenca
be guaranteed, and it is easy to think of example protyatisitributions for which the effect is counter-intwét
[16] [17]. Thirdly, there is the practical difficulty th#tte Bayes classification needs to be known or estighat
Breiman’s definition [17] is based on defining Variansdtee component of classification error that is glated
by aggregation. Patterns are divided into two sets, flhe Bet B containing patterns for which the Bayes
classification disagrees with the ensemble class#i®d the Unbias set U containing the remainder. Bias i
computed using B patterns and Variance is computed using Unsatbeit both Bias and Variance are defined as
the difference between the probabilities that theeBand base classifier predict the correct class Bbgiman’s
definition was used in [11] to explain how can predict generalisation error. As base classifienplexity
increases beyond optimal, bias initially stays lowd arariance increases, and this leads to a reduction in
correlation.

In [11] it was shown that” correlates well with base classifier test errart Wwas dependent on choosing a
suitable value for the upper limit on number of trainippahs to limit classifier complexity. In this paper,
bootstrapping [18] is incorporated to improve the estir&ig. Bootstrapping is a popular ensemble technique
and implies that training patterns are randomly sampléd replacement, so that approximately one third of

patterns are removed and the remaining patterns occusramere times. Experimental evidence in Section 6
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shows that bootstrapping improves the correlatioor’efith classifier test error in the over-fit regighat is when

the number of training epochs is increased beyond optimal

4 Output Coding and M ulti-Class Problems

Error-Correcting Output Coding (ECOC) is a well-estalgisimethod [19] for solving multi-class problems by
decomposition into complementary two-class problemis # two-stage process, coding followed by decoding,
but there is some discussion about whether the erroeatimg aspect is relevant to its performance [1&8e#ms
more appropriate to refer to the technique as Output Coulirgcognition of the variety of ways of producing
codes that make no explicit reference to error-comeqgtroperties. The idea of using codes was originallycbase
on modelling the multi-class learning task as a commtinit@roblem in which class information is transett
over a channel. Although errors arise from a vamégauses, including estimation errors from the measeméem
process and base classifier learning algorithm, tieetdf assumed to be to introduce classification emtoghe
ECOC feature vector representing the pattern. The mativation was to correct these errors in decoding.

The coding step is defined by the bin&ry Bcode word matrix Z that has one row (code word) foh ed&
classes, with each column defining one of B sub-probtbmisuse a different labelling. Assuming each element
of Z is a binary variable z, a training pattern wahget classy (I = 1... k)is re-labelled as clas¥, if Z; =z and
as clas®), if Zj = z . The two super-class€s andQ, represent, for each column, a different decomposition o
the original problem. For example, if a column of Z igegi by [0 1 0 0 T} this would naturally be interpreted as
patterns from class 2 and 5 being assigné®; twith remaining patterns assignedlg This is in contrast to the
conventional One-per-class (OPC) code, which can fieedieby the diagonat x kcode matrix Z; = 1 if and
onlyifi=j}

In the test phase, thjth classifier produces an estimated probabiﬁ{y that a test pattern comes from the

super-class defined by tjte decomposition. Thpthtest pattern is assigned to the class that is refisesbpthe

closest code word, where distance ofpittepattern to théh code word is defined as

B
D, =>a,[Z; -G, 1=1.k (20)
i=1
where gy allows for Ith class andth classifier to be assigned a different weight [20]. Hamgmilecoding is
denoted in (20) bya=1, § =x)and L* norm decoding bya=1, § =x) wherex andx® are defined in (1).

Many types of decoding are possible, but theoretical aqpergnental evidence indicates that, providing a

Page 12



problem-independent code is long enough and base classifigwerful enough, performance is not much
affected. However, it is shown in [20] that when belsssifiers are sub-optimal and vary in accuracy wetfjhte
decoding gives better performance. In this paper Hammidd ‘amorm decoding are compared, and the emphasis
is on optimising base classifier complexity using thésple decoding schemes.

In addition to the Bayes error, errors due to individuassifiers and due to the combining strategy can be
distinguished. This can be further broken down into emoesto sub-optimal decomposition and errors due to the
distance-based decision rule. If it is assumed that elassifier provides exactly the probability of respeztiv
super-class membership, with posterior probabilitigtotlass represented by (I =1 ... K), from equation (20),

assumingx=1, it is shown in [21] that

B

D, =2

=

K B
(Z quZIj )~ Zij ‘ =@1- qpi)Z‘Zu - Zij ‘ (21)
I=1 =1

Equation (21) tells us thd,,; is the product ofl-q,) and Hamming Distance between code words, so that when
all pairs of code words are equidistant, minimisidg implies maximising posterior probability, which is

equivalent to Bayes rule. Therefore any variation amirhing distance between pairs of code words will reduce
the effectiveness of the combining strategy. From @) (21) it may also be shown that variance(d$

proportional to correlation between base classifieid inversely proportional to the square of Hamming Dista
between code words [27]. In [22] it is shown that maxingsihe minimum Hamming Distance between code
words implies minimising upper bounds on generalisatiorn .erro

In classical coding theory, theorems on error-coimgctodes guarantee a reduction in the noise in a
communication channel, but the assumption is thatem@ independent. When applied to machine learning the
situation is more complex, in that error correlatiopetels on the data set, base classifier as well asottee
matrix Z. In the original ECOC approach [19], heuristiesavemployed to maximise the distance between the
columns of Z to reduce error correlation. Hadamard ieegridefined in (2), maximise distance between rows and

columns and were used in [23], in which it was shown tif@éning error is bounded by

(Bj/{d /Zjes 4B(B-1) o
2 2 d(d-2)

where © is an upper bound on probability of error correlatamgd is the minimum distance between
code words.
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The considerations explained above impose stringent reggiirts on choice of code word columns and
rows, and finding optimal code matrices satisfying theperties is a complex problem. Codes are normally
binary and problem-independent, but there has been redenést in adaptive, problem-dependent and non-
binary codes [24] [25]. In reference [25] it is proved thatadaptive method is NP-complete. Random codes,
provided that they are long enough, have frequently begioged with almost as good performance [21]. It
would seem to be a matter of individual interpretatioretiwhr long random codes may be considered to
approximate required error-correcting properties. In this pap@ndom code matrix with near equal split of
classes (approximately equal number of 1's in each colusnoflosen, as proposed in [26]. An experimental

comparison using random code with no constraint on nupfbabels, and OPC code is provided in Section 6.

5 Face Recognition Database

Facial images are a popular source of biometric infdonatince they are relatively easy to acquire. Howeve
automated face recognition systems often perform patuéyto small number of relatively high-dimensional
training patterns, which can lead to poor generalisatiovugh over-fitting. Face recognition is an integrat p&
systems designed for many applications including identitificagtion, security, surveillance and crime-solving.
Improving their performance is known to be a difficulskabut one approach to improving accuracy and
efficiency is provided by the method of Output Coded ensewribksifiers [27].

A typical face recognition system consists of thnaecfional stages. In the first stage, the image ota i&
registered and normalised. Since face images differ th dloape and intensitghape alignmen{geometric
normalisation) anéhtensity correctior{photometric normalisation) can improve performarite second stage is
feature extraction in which discriminant features ateagted from the face region. Finally, there is treching
stage in which a decision-making scheme needs to be ddsigpending on the task to be performed. In
identification, the system classifies a face fromfagabase of known individuals, while in verification gystem
should confirm or reject a claimed identity. To matchrabe image to a face in a database, two methods are
generally used. In geometric feature-based matchingiveefadsitions and other parameters of distinctive festur
such as eyes, mouth and nose are extracted. The dlterisato consider the global image of the face ak wit
methods such as Principal Component Analysis (PCA) ameht Discriminant Analysis (LDA).

Although it is possible to use grey levels directly, fBigsually not computationally feasible without reducing

the size of the image. Normally, better results dtained if features are first extracted. A popular appréach
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PCA, but by itself PCA is not adequate for the facegedtion task since projection directions only maxinties
total scatter across all classes. Therefore we 08 \Which requires computation of the between-classtescat

matrix, S and the within-class scatter matr8y. The objective of LDA is to find the transformatioratrix, Wop,

that maximises the ratio of determina||w§st|/|wTsz|. W, is known to be the solution of the following

eigenvalue problem.
S$-w1=0 (22)

whereA is a diagonal matrix whose elements are the eigenvafuratrix Sy 'Ss. Since in practic&, in (22)
is nearly always singular, dimensionality reduction iistfachieved by PCA before solving the eigenvalue
problem.

The database used is the ORL (Olivetti Research Ledgrattp//www.cam-orl.co.uk), consisting of four
hundred images of forty individual faces with some vasiain lighting, facial expression, facial hair, pose and
spectacles. The background was controlled with subjeets upright frontal position, although small variation in
rotation and scale was allowed. The advantage of thabdse is that it can be used without need for a face
detection algorithm or any other pre-processing, sottteat is a fairer comparison with the results olatziby
other researchers. In our experiments, images have pegected to forty-dimensions using PCA and
subsequently to a twenty-dimension feature space using WDA.treated as a forty-class face identification
problem with the four hundred images randomly split indining/testing patterns. A comparison of results on
this database is given in [3], using 50/50 split, but the numbexperimental runs is smaller than used in our
experiments. As pointed out in [3], some researchers tepeaify the split that they have used, and some only

base their results on one run, so that care is neefi@a: making any comparison.

6 Experimental Evidence

The main purpose of these experiments is to determinevetithe measures defined in Section 2 and Section
3 correlate with test error as the number of traindpgchs of single hidden-layer MLP base classifiers are
systematically varied. All the measures are computedhentraining data and the datasets use random
training/testing split, respecting the class distribuisnclosely as possible. Experiments are repeated with an
without bootstrapping ten times, except for the face datalwhich is repeated twenty times. For example, if

epochs and nodes are varied each node-epoch combiratigpeated ten or twenty times, and a 50/50 split for
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the ORL face database implies five training images fassc Each repetition uses the same base classifier
parameters, which are identical for all classifidariation for each classifier run arises from onenare of three
sources, (i) random initial weights, (i) bootstrappiragnd (iii) the problem decomposition defined by the
respective code matrix column. For multi-class probletmse different coding matrices have been used (i)
random code with approximately equal split of labels (RED)andom code (RAN), all ones and all zeros
removed (iii) One-per-class (OPC) code repeated B/k times

Natural benchmark problems, selected from [28] and [29]shosvn in Tablel with numbers of patterns,
classes, continuous and discrete features. For datéetsissing values the scheme suggested in [28] is used.
Unless otherwise stated, two-class problems use ordrédiclassifiers (B = 100), multi-class problems use two
hundred classifiers (k x 200 coding matrix), and the face ds¢abses five hundred classifiers (40 x 500 code
matrix). The Resilient BackPropagation training algoritfd®] with default parameters is used throughout. For
the two-class problems, similar experiments were ptedeim [31] but no bootstrapping was applied and the
Levenberg-Marquardt training algorithm was used. It isthetintention in this paper to perform a detailed
comparison between the two algorithms, but it may behanoting that the only observed difference wasn t
number of epochs required for optimal performance. The mawri number of epochs for Resilient
BackPropagation was chosen to achieve over-fittinglaino Levenberg-Marquardt.

For the benchmark datasets tested in this paper, noeptBiabetesover-fitted for the range of base classifier
complexity values considered. To encourage over-fitting t nesperiments were carried out with 20/80
training/testing split and varying classification noisewhich a percentage of patterns of each class sedeeted
at random (without replacement), and each target l&aglged to a class chosen at random (from patterns of th
remaining classes). Unless otherwise stated the nuofilegochs is varied from 2 to 1024 using a log scale. The
tables of correlation coefficients for the measwefined in Section 2 and Section 3 are with respect wfigue

test error as number of epochs is varied.

Two-class datasets

Figure 2 (a) — (d) give base classifier and majority {®taJ) test and train error rates Diabetes50/50 +
0% classification noise with [2,4,8,16] hidden nodes and béthistrapping applied. Minimum test error occurs
at 8-16 epochs, for which neither base classifier ngemble test error is much affected by number of nodes.
Figure 2 (e) (f) shows the difference in error ratevbeh MAJ and SUM (where SUM is defined using soft
outputsx® in (1)), indicating that SUM only gives lower testarthan MAJ for 2, 4 epochs. Figure 3 shows four

measures’, Q, M, Q’defined in (9) (16) (10) (18), and it is emphasised agairathateasures are computed on
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the training set. It may be seen that botrand Q appear to be good predictors of base classifieertes in
Figure 2 (a). However, it will be shown in Figure 5 tliais poorly correlated on average over all two-class
datasets, unless classification noise is added.

In Figure 4 is shown the mean test eri@rand Q over all 20/80 two-class datasets using 8 hidden-node
bootstrapped base classifiers for [0,20,40] % noise. peikaps surprising that, even though there are seven
different datasets, the mean curves show a meaningfull 8is number of epochs is varied. The minimum base
classifier test error occurs on average at 8 epochbahd’ and Q peak at 8 epochs. Note also that minimum of
MAJ test error also occurs at 8 epochs for 0% noisadubise is increased the minimum occurs at fewer numbe
of epochs. Figure 5 (with Bootstrapping) and Figure 6 (wittBottstrapping) show the mean correlation
coefficients over all seven datasets for all measiash measure is grouped as six vertical bars in the orde
BASE (0,20% noise), MAJ (0,20% noise), SUM (0,20% noise) @emonstrate that bootstrapping makes a
significant difference to the estimation of these sueas. With bootstrapping applied, spectral meastigethe
only measure that is strongly (negatively) correlatéth wase classifier test error for both 0 and 20 %enois
Without bootstrapping’ is weakly (positively) correlated with base classifiest error. Q ang are strongly
negatively correlated when 20% classification noissdided but poorly correlated with 0% noise. Table 3 shows
the number of datasets for Figure 5 for which therénstg-five percent confidence that the correlatiomulgdaot
be as large as the observed value by random chanbeugtic’ is less well correlated with ensemble test ertor, i
correlates more strongly than other measures (exceptriish for Qp, F which are equally strongly negatively
correlated).

The effect of bootstrapping on the base classifiereates is shown in Figure 7, indicating that bootstragppi
increases training error as number of epochs is isededlowever, when averaged over all datasets, epodhs an
noise levels bootstrapping makes little difference wemble test error rate, improving it by 0.54 percent.

The best of the mean majority vote error ratesrfdividual two-class problems are shown in Table 2, glon
with corresponding Std error and number of epochs at wéidemble error is minimised. The datasets have
20/80 train/test split with 8 hidden nodes, and bootstrappiagped. In order to determine the effect of using
the spectral measure to predict ensemble test error, the fourth columnatfi@ 2 shows the ratio of the error at
the number of epochs predictedddyand the error at the optimal number of epochs. Tha éolumn of Table 2
shows the ratio when 20% classification noise is add&dmay conclude that at 0% noises a good predictor

of the number of epochs for optimal ensemble test.efitte conclusion extends to 20% noise, with the possible
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exception of datasetsancerandheart for which the ratios are 1.17 and 1.13 respectively. @rdyratios foro’

are provided since Figure 5 shows tbiais the only measure that is strongly correlated éoh 9 and 20 % noise.

Multi-class datasets

All measures calculated over patterns defined in Se@iassume a binary-to-binary mapping for two-class
problems. For a multi-class problekbinary-to-binary mappings can be defined by replacingdiegawith an
additional coding stage usirkgx KOPC code. The mean measure is computedloreppings. Figure 8 shows
the mean test error rates, Q over all eleven 20/80 multi-class problems with 8 naeaek[0,20,40] % noise with
bootstrapping applied. Note that base classifier errbigare 8 (a) is the mean ov@rcolumns of the code matrix
that define the two-class decompositions. Minima fithtbase classifier and Hamming Decoded test error occur
at 16-32 epochs for 20 and 40 % noise but there is no otregfitf Hamming Decoded error at 0 % noise.
Measuress’ and Q appear to be good predictors of base classiftezrtes except that at 0 % noise Q is not well
correlated, as with two-class problems. Figure 11 shadwsithout bootstrapping, and compared with Figure 8
indicates that’ does not predict over-fitting unless bootstrapping is agplide result for VEHICLE dataset in
Figure 12 shows that as number of epochs is increaséslels off before continuintp increase. This is not
unexpected, as explained in Section 3, since as classifigslexity increases far beyond optimal, all patterris wi
eventually become correctly classified anid- 1. When averaged over all datasets, epochs and nodds, lev
bootstrapping makes little difference to the ensemlgieeror, improving it by just 0.40 percent. The effect of
number of classifiers (columns of the code matrix) vegiin Figure 13, in which it is shown that increasimng t
number beyond one hundred has little effect.

Figure 9 (with Bootstrapping) and Figure 10 (without Bootstrag)psthow the mean correlation coefficients
associated with Figure 8 and Figure 11. The correlatiomadsws for base classifier, Hamming aht norm
decoding and demonstrates tisats strongly negatively correlated with base classifést error. Tabld shows
the number of datasets for Figure 9, for which therdristy-five percent confidence that the correlatiauld
not be as large as the observed value by random chamoee. Table4 and Figure 9 it may be observed thats
better correlated with base classifier test errantiother measures for 0 and 20 % noise. As with twa-clas
datasetsg’ is seen to be less well correlated with ensemkleeteor, but better than other measures (with 20 %
noise Q,p, F are equally strongly negatively correlated). The dataset that is not significantly correlated is
ecoli, which is a difficult eight class problem having nedrif the patterns in one class and with three ctasse

having only nine patterns between them.
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Figure 14 shows the difference between random codes RERAIN, demonstrating that equal split of labels
has beneficial effect on ensemble test error farefeepochs. Figure 15 shows the difference between REQ an
OPC codes, and indicates that for 0% noise OPC gives kemsemble test error for fewer than optimal nurober
epochs. This result is supported by a recent study in [32¢fvelaims that OPC (also called OVA One-Vs-All) is
as good as any other code if base classifier is tunedev¢r, when classification noise is added, random code
REQ is better on average by 0.4 % over 32-1024 epochswhio noise is added the optimal number of epochs
for ensemble test error is 8 — 16 (Figure 8) and at thiev@PC has 2-3 % higher test error. Note in Figure 14
and Figure 15 that even though base classifier train ahérner for REQ and RAN is higher, the ensemble test
error is lower than it is for OPC.

Table5 shows the same information as Tablr multi-class problems. The ratios in the last tetumns
demonstrate that, while’ may be used for predicting ensemble test error, thétsefor datasetthyroid and

segmenare far from optimal.

Orl Database

Figure 16 shows error rates, Q for 50/50 60/40 70/30 and 80/20 splits with 16 nodes and bootstrapping
applied. As with two-class and multi-class benchmark problc’ appears to be strongly negatively correlated
with test error. With no bootstrapping, there is a migaprovement in ensemble error rate over all epactts
splits of 0.11 %. The effect of noise [0 20 40] % is shawRigure 17, again demonstrating the ability to predict
the number of epochs at which base classifier test er minimum. The correlation of with base classifier test
error is significant and it is the only measure toskgnificant at three noise levels. The differencevben
random and OPC codes is shown in Figure 18, showing tledrify of OPC code.

There is interest in achieving lowest error ratetfer ORL database. In reference [3] there is a compaof
the minimum 50/50 test error rates achieved by variogsaresers. The authors of [3] achieve the lowestafate
1.92 % based on 6 runs, with some basing their resulthiree br fewer runs, but in general the standard
deviations were not given. In an earlier study [33] thibars report 2.7 % error rate with Std 0.6% using ten runs.
In our experiments based on twenty runs, we achieveda 8188 % with Std 1.89 %. It is difficult to make a fair
comparison when different numbers of runs are used tpuinthe error rates, as evidenced by three recent
studies that use ORL 50/50 split. In agreement with a oultsd84], a mean error rate of 4% based on twenty
runs is reported. In contrast, an error rate of 2.5 eégerted in [35] based on ten runs, yet in [36] 0% ertterisa

claimed but it is not clear how many runs the resuliagised upon. To appreciate the difficulties, note thatim
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experiments assuming that the 20 error rates are ordaeethp 6 average 6.25 % while the bottom 6 average
1.92 %. For random 80/20 split, it may be seen from Figurénd6adur best error rate is 0.9 %. Overall, the
results using our technique of tuning multiple MLP classifiare comparable but there is no claim of superiority

compared with other methods.

Discussion

The emphasis in this paper has been on predicting testaarnumber of training epochs is varied. It is shown
that bootstrapping improves the correlation betweemn éeor and the spectral measure defined in (9).
Furthermore the correlation is significant for a ram§éwo-class and multi-class problems that include both
continuous and discrete features, in contrast to [20]spketral measure is shown to be well correlated betie
classifier test error, and may be used to predict optmouahber of training epochs. While correlation with
ensemble test error is not quite as strong, it is aitbat the measure may be used to predict number of efoochs
optimal ensemble performance.

Another way of systematically varying base classiiemplexity is to change the number of hidden nodes.
When the base classifier is well-tuned, ensemblestest appears to be relatively insensitive to nunabeiodes
as shown in Figure 2 and reported in earlier publicatibhpdnd [20]). In agreement with [37], it appears that a
useful design strategy is to start with a network witarge number of nodes, and to use early-stopping. Further
study is required before drawing any conclusions aboutffiaet ef increasing the number of hidden nodes above
16.

The benefit of using complex codes for Output Coding hasitlgdaeen called into question, and in [32] it is
shown experimentally that OPC code is no worse thiaer aodes if the base classifier is well-tuned. Howete
was explicitly recognised in [32] that the result was dsthed using UCI benchmark datasets, with no
classification noise added. We have seen that it reagificult to over-fit these problems, and with no added
noise the results in [32] are generally supported. Howeseen noise is added to the datasets, OPC is shown to
be inferior. A possible explanation is that the ndiseds to de-correlate the two-class decompositions, and
therefore enhance the error-correcting capability.tRe ORL database, random codes give better performance
than OPC even without added noise. More complex codeshwhtisfy the criteria discussed in Section 4, have
not been considered in this paper, but were investigatgt].

A preliminary study was carried out to seesfifmay be used to perform feature selection. LDA featares

ordered, so the upper limit of number of features wasddrom 5-35. Figure 19 shows the corresponding test
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error for [8 16 32] nodes at 50 training epochs. It appeaskdw that’ may be used to predict the number of

features for minimising base classifier test errag this could be a useful direction for future study.

6. Conclusion

It is shown experimentally that, over a range of ksldatasets, k 2, a pair-wise measure computed over
training patterns is well correlated with base clésstiest error when number of training epochs of MlaBeb
classifiers are systematically varied. Bootstrappimgnificantly improves the estimate of this measure,levhi
making little difference to the ensemble test errbis &lso demonstrated that correlation of the splecteasure
with ensemble test error is not as strong. Thesebeathought of as two separate problems, the firstgbein
concerned with the prediction of over-fitting of thesbalassifier and which is the main focus of this papee
second problem is to determine the relationship betwasemble and base classifier test error. The evédenc
this paper is that for k > 2 minimum ensemble test ayeoerally occurs at a higher number of epochs, whille fo
= 2 minimum ensemble test error generally occurs agrf@pochs compared with the minimum base classifier
test error. It appears that the Output Coding method rtwevof decomposition into artificial two-class probkem
is resistant to over-fitting of the base classifieurthermore it has been shown experimentally thatether-
correcting capability of ECOC may lead to superior resatimpared with OPC code, even when the base

classifier is well-tuned.
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Assumptions
4" is the number of class 1 patterns
L is the number of class -1 patterns
B is the pattern dimension
X" is a binary (-1,+1) matrix of class 1 patterns witrrows and B columns
X"is a binary (-1,+1) matrix of class -1 patterns wattrows and B columns
SS is the sensitivity matrix for class 1 patterns wiflrows and B columns
SS is the sensitivity matrix for class -1 patterns wifbrows and B columns
S’ is the B-dimensional vector resulting from spectral mation of class 1 patterns
S is the B-dimensional vector resulting from spectral mation of class -1 patterns

Computation of SS”which isinitialised to all zeros

forj=1: 4
fori=1:
B
if Z(X+(11)D X_(i,:)):: * %Kk *
i=1
form=1:B
it X*(j,m)z X" (i,m)
SS(i,m) = SS(i,m) + 1
end
end
end * % % %
end
end

Computation of S™which isinitialised to all zeros

forj=1:B
fori=1:
S()=S() + (-1 * X)) * SS(i.j)
end
end
Notes:

(i) The class 1 sensitivity matrix $8nd spectral summation vectof rBay be computed similar to SS
and S and the result is that $ identical to S This equivalence is an example of the principle of dyadit
Boolean logic. For example, the —1 in the computation @ 8ue to class —1 so that for i&comes +1.

(ii) The conditional marketi*** checks whether there exists unit hamming distance betiegth class 1

pattern and the ith class —1 pattern. Therefore sehsithatrix SS contains binary (0,1) values by virtue of
this conditional. For realistic problems, where thatt table is not available, this conditional is reeuh
(iif) Each element of the sensitivity matrixtiee absolute value for sensitivity, defined in Secfion

o, =SS(m,j) O = SS(Mm,j)

Figurel: Pseud-code for determining sensitiviti and spectral summation for a i-class problen
divided into one set of class 1 and one set of class tdripsit
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(a) Mean Base Test(2 class) (b) Hamming Decoding Test
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Figure 9: Mean correlation coefficient (x100) of base classifilgmming and L1 nor
decoded test error with respect to epochs, over elewgti-ctass datasets with 20/80 train/
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Figure 10: Mean correlation coefficient (x100) of base classifidgmming and L1 nor
decoded test error with respect to epochs, over elewgti-ctass datasets with 20/80 train/
split, [0,20]% classification noise and NO bootstrappippliad. Coefficient for each measur:
grouped in the order BASE (0, 20), HAMMING (0,20), L1 NORM (0,20)
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Figure 11: Mean test error rates, over eleven 20/80 multilass problen
using 8 hidden-nod@on-bootstrapped base classifiers for [0,20,40] % noise

(a0 (b) Mean Base Test(2 class)

0.8} < 4
o) $ 35
5 067 5
= - @ 30
S 0.4} —*—0 5
o -6 -20 u’:_, 25

0.2t —_—t 40 ) 20 .

2 4 8 16 32 64 128 256 5121024 2 4 8 16 32 64 128 256 5121024
Number of Epochs Number of Epochs
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(a) Mean Base Test(2 class) (b) Hamming Decoding Test
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Figure 17: test errorg’, Q for ORL 50/50 database using 16 hiddek
bootstrapped base classifiers for [0,20,40] % 1
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(b) Mean Base Test(2 class)
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Figure 19: Test errom’, Q for ORL 50/50 database versus number of FLD fea
using [8,16,32] hidden-node bootstrapped base classifiers

DATASET #pat | #class | #con | #dis
cancer 699 2 0 9
card 690 2 6 9
credita 690 2 3 11
dermatology 366 6 1 33
diabetes 768 2 8 0
ecoli 336 8 5 2
glass 214 6 9 0
heart 920 2 5 30
iris 150 3 4 0
ion 351 2 31 3
segment 2310 7 19 0
soybean 683 19 0 35
thyroid 7200 3 6 15
vehicle 846 4 18 0
vote 435 2 0 16
vowel 990 11 10 1
wave 5000 3 21 0
yeast 1484 10 7 1

Table 1: Benchmark Datasets showing numbers of patterns,s;lasainuous and discrete features

DATASET | Mean Std. Opt# | Ratio Ratio
Error Error | epoch | 0% 20 %
cancer 35 0.4 8 1.05 1.1]
card 16.3 0.9 8 1 1.03
credita 16 1.1 16 1 1
diabetes 24.3 1.5 8 1 1.02
heart 17.7 1.3 2 1.03 1.13
ion 12.1 1.6 16 1 1
vote 5.1 1.2 128 1.03 1.04

Table 2: Mean and Std minimum majority vote error ratestiarclass problems (20/80 train/test split and 8 hidden
nodes), showing optimal number of epochs and ratios with respegor rate predicted ly for 0% and 20% classification
noise
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BASE MAJ SUM

MEAS| 0 20| 0 20| 0 20
Q 4 7| 5 7| 5 7
p 4 7| 5 7| 4 7
A 6 1| 3 of 3 o0
F 3 5| 4 7| 4 7
Q' 5 6| 4 3| 3 3
o 3 1| 3 4| 3 4
A’ 3 2| 3 7| 3 7
F 4 2| 4 7| 3 7
o 7 7| 5 6| 5 6
M 3 6| 3 7| 4 7

Table 3: Number of two-class datasets out of seven fathwthie correlation coefficient shown in Figérds significant at
the ninety-five percent confidence level

BASE | HAMMING | L* NORM
MEAS 0 20 0 201 O 20
Q 3 9 3 6 3 6
P 4 11| 2 7 2 7
A 10 4 9 4 8 3
F 8 2 10 6 8 6
Q' 5 4 6 7 5 8
' 7 7 8 6 7 7
A’ 9 2 10 6 8 6
=] 10 5 9 4 8 5
g 10 9 9 7 6 6
M 7 2 9 8 7 8

Table 4: Number of multi-class datasets out of elevewlfiich the correlation coefficient shown in Fig@es significant at
the ninety-five percent confidence level

DATASET | Mean | Std. | Opt# | Ratio | Ratio
Error | Error | epoch | 0 % 20 %
dermatology 3.7 0.9 512 1.06 1.04
ecoli 13.9 2 16 11 1.2y
glass 34.5 34 32 1.01 1.01
iris 4.8 0.8] 32 1.02 1.0
segment 4.6 0.5 1024 1.33 1.15
soybean 8 1.1 16 1.02 1.09
thyroid 1.8 0.2 1024 1.28 1.6
vehicle 23.5 14 1024 1.14 1.07
vowel 22.9 3.2 1024 111 1.01
wave 14.8 0.7 16 1.01 1.01
yeast 41.7 1.1 64 1 1.03

Table 5: Mean and Std minimum Hamming Decoded error ratesuidrclass problems (20/80 train/test split and 8 hidden
nodes) showing optimal number of epochs and ratios with regpentar rate predicted ly for 0% and 20% classification
noise
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