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Letters

Support Vector Machines for Nonlinear Kernel ARMA
System Identification

Manel Martínez-Ramón, José Luis Rojo-Álvarez,
Gustavo Camps-Valls, Jordi Muñoz-Marí, Ángel Navia-Vázquez,

Emilio Soria-Olivas, and Aníbal R. Figueiras-Vidal

Abstract—Nonlinear system identification based on support vector
machines (SVM) has been usually addressed by means of the standard
SVM regression (SVR), which can be seen as an implicit nonlinear autore-
gressive and moving average (ARMA) model in some reproducing kernel
Hilbert space (RKHS). The proposal of this letter is twofold. First, the
explicit consideration of an ARMA model in an RKHS (SVM-ARMA )
is proposed. We show that stating the ARMA equations in an RKHS
leads to solving the regularized normal equations in that RKHS, in
terms of the autocorrelation and cross correlation of the (nonlinearly)
transformed input and output discrete time processes. Second, a general
class of SVM-based system identification nonlinear models is presented,
based on the use of composite Mercer’s kernels. This general class can
improve model flexibility by emphasizing the input–output cross infor-
mation (SVM-ARMA ), which leads to straightforward and natural
combinations of implicit and explicit ARMA models (SVR-ARMA
and SVR-ARMA ). Capabilities of these different SVM-based system
identification schemes are illustrated with two benchmark problems.

I. INTRODUCTION

A common problem in digital signal processing is to model a
functional relationship between two simultaneously recorded dis-
crete-time processes (DTP) [1]. When this relationship is linear and
time-invariant, it is usually addressed with autoregressive and moving
average (ARMA) modeling, but if linearity cannot be assumed, non-
linear system identification techniques are required. General nonlinear
models, such as artificial neural networks, wavelet, and fuzzy models,
are common and effective choices [1], [2], but the temporal structure of
these nonlinear models cannot be easily analyzed, because it remains
inside a black-box model.

Support vector machines (SVM) were originally conceived for pat-
tern recognition and classification tasks [3], and support vector regres-
sion (SVR) was subsequently proposed as the SVM implementation
for regression and function approximation [4]. SVMs have been suc-
cessfully used in a huge variety of problems in signal processing, bio-
engineering or image processing [5], among others. Main advantage
of SVM current algorithms is their capability for giving nonlinear al-
gorithms by the statement of a well-known linear data model (clas-
sification or regression) in a nonlinearly transformed domain, known
as reproducing kernel Hilbert space (RKHS). In [6]–[10], SVR algo-
rithm was used for nonlinear system identification, but the time-series
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structure of the data was not scrutinized. In [11], SVM was explicitly
formulated for modeling linear time-invariant ARMA systems (linear
SVM-ARMA), and this kind of formulation has been recently extended
to a general framework for linear signal processing problems [12].

This paper introduces an explicit formulation of the ARMA data
structure in an RKHS by using the well-known kernel trick. The
so-called SVM-ARMA2K allows us to study the time-series structure
on a straightforward and natural way. Additionally, we introduce a
general and still simple class of SVM-based system identification algo-
rithms, by using composite kernels. In this context, a second algorithm
is presented to take into account the input–output cross information
(SVM-ARMA4K ). A full family of natural combinations of implicit
and explicit ARMA models (SVR-ARMA2K and SVR-ARMA4K

algorithms) is finally proposed.
The scheme of this work is as follows. Section II summarizes the

SVR algorithm for nonlinear system identification. Section III presents
the novel formulation of an explicit ARMA models in the RKHS. Sec-
tion IV introduces the use of composite kernels for further model flex-
ibility. Section V shows the advantages of the proposed methods in
some benchmark examples. Section VI gives conclusions and outlines
future work. Appendices I and II show the relationships between SVM
system identification and the classical system identification families de-
scribed in [1]: prediction error models (PEM) and correlation models
(CM).

II. IMPLICIT ARMA SYSTEM IDENTIFICATION WITH SVR

Previous SVM-based approaches to nonlinear system identification
have taken advantage of both the kernel trick and the well-developed
SVR algorithmic implementations [6]–[10]. The nonlinear SVR-based
system identification is briefly presented in this section, with the aims
of reviewing the kernel trick, highlighting the implicit ARMA nature
of this problem statement, and introducing the "-Huber cost function
in this setting.

A. Mercer’s Kernels and Nonlinearity

Let us consider two DTPs, fung and fyng, which are the input
and the output, respectively, of a nonlinear system. Let yyyn�1 =
[yn�1; yn�2; . . . ; yn�P ]T and uuun = [un; un�1; . . . ; un�Q+1]

T

denote the states of input and output DTP at time instant n, so that
zzzn = [yyyTn�1; uuu

T
n ]
T

is just the vector concatenation of input and output
states at that instant. We assume that P and Q are large enough so
that the predictable part of the process is completely captured. The
SVR-based system identification uses a nonlinear transformation
���z(zzzn) : P � Q ! Hz , which maps the concatenation vector to
an RKHS Hz , or feature space. For a properly chosen transformation
���z , a linear regression model can be built in Hz , and it is given by

yn = hvvv; ���z(zzzn)i+ en (1)

where vvv 2 Hz , h�; �i denotes the dot product, and feng is a DTP
standing for the effect of measurement errors.

In general, the RKHS dimension (Hz) will be greater than the input
space dimension (P + Q), and for some choices of the transforma-
tion it can be even infinite. However, the SVM methodology allows
to still work in that high-dimensional RKHS by using Mercer’s ker-
nels [13]. If a bivariate functionKz(zzzi; zzzj) fulfills Mercer’s condition,
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i.e., Kz(zzzi; zzzj)f(zzzi)f(zzzj) � 0 for any square integrable functions
f(zzz), then there exist a Hilbert space Hz and a mapping ���z such that
Kz(zzzi; zzzj) = h���z(zzzi); ���z(zzzj)i. Therefore, the kernel trick in SVM
consists of stating the problem at hand (such as classification, regres-
sion, and many others) in terms of dot products in the RKHS, and then
substituting these products by Mercer’s kernels. The kernel expression
is actually used in a given SVM algorithm, but neither the mapping
function ���z , nor the RKHS, need to be explicitly known.

The widely used Gaussian Mercer’s kernel is given byKz(zzzi; zzzj) =
exp(�(kzzzi�zzzjk

2=2�2)), where � is the kernel width and can be seen
as a parameter that controls the distortion in the input space to provide
with an RKHS in which linear regression (1) is an appropriate model.
For the Gaussian kernel, the explicit expression of nonlinear transfor-
mation ���z(zzz) is unknown, and the corresponding RKHS dimension is
infinite [13].

B. The "-Huber Residual Cost

SVM algorithms minimize a cost function of the residuals (CFR) that
is regularized with the L2 norm of the model coefficients in an RKHS.
Two CFRs have been used in previous SVM-based system identifica-
tion research: 1) the "-insensitive CFR [6], [7], which yields sparse so-
lutions, is essentially a L1 cost, and hence appropriate for dealing with
outliers, and 2) the quadratic CFR used in least-squares (LS) SVM ap-
proaches [8]–[10], which is optimal when Gaussian noise is present,
but it is sensitive to outliers, and more, it does not produce sparse solu-
tions. The "-Huber cost [11] contains the preceding ones as particular
cases, and it is expressed as

`P (en) =

0; jenj � "
1
2


(jenj � ")2 ; " < jenj � eC
C (jenj � ")� 1

2

C2; jenj > eC

(2)

where ec = "+ 
C . Parameter 
 controls the width of the L2 interval
between " and ec, so that the function is continuous and derivable, and
the L1 interval has slope C . The "-insensitivity zone provides with
sparse solutions in SVM formulation, which is a very desirable char-
acteristic in nonlinear formulations. The quadratic cost is optimal, in a
maximum likelihood (ML) sense, when the noise is Gaussian, whereas
the linear cost is optimal for exponential noise. Here, we propose to use
the "-Huber CFR because it has the ability to deal simultaneously with
different kinds of noise [11]. The use of "-insensitive CFR is not appro-
priate when Gaussian noise is present in the data, whereas a quadratic
CFR (according to LS-SVM) does not produce sparse solutions.

C. Algorithm Statement for SVR System Identification

The algorithm for SVR system identification using the proposed
"-Huber cost reduces to the minimization of

LSVRP vj ; �
(�)
n =

1

2

H

j=1

v2j +
1

2

n2I

�2n + ��2n

+C
n2I

(�n + ��n)�
n2I


C2

2
(3)

where �n, ��n, are the slack variables or losses, I1 is the set of samples
for which " � �

(�)
n � ec, I2 is the set of samples for which �(�)n > ec,

and constrained to

yn � vvvT���z(zzzn) � "+ �n 8n = n0; . . . ; N (4)

�yn + vvvT���(zzzn) � "+ ��n 8n = n0; . . . ; N (5)

where �(�)n � 0, n0 is given by the required initial conditions (without
loss of generality, n0 = 1 and null initial conditions), N is the number
of available samples, and �(�)n denotes both �n and ��n.

The Lagrangian for this problem is obtained by introducing a coef-
ficient (Lagrange multiplier) for each constraint [14]. In particular, �n
and��n are the (nonnegative) Lagrange multipliers corresponding to (4)
and (5), respectively. By making zero the gradient of the Lagrangian
with respect to vj and �(�)n , we obtain

vvv =

N

n=1

(�n � ��n)���z(zzzn) =

N

n=1

�n���z(zzzn) (6)

and 0 � �
(�)
n � C , where �n = �n � ��n. After introducing these

conditions into the Lagrangian, the primal variables are removed, and
a term-grouping can be done by writing down the Gram matrix of dot
products in the RKHS, or kernel matrix

GGGij = h���z(zzzi); ���z(zzzj)i = Kz(zzzi; zzzj): (7)

The dual problem consists in maximizing with constraints

LSVRD �(�)n = �
1

2
(���� ����)T [GGG+ 
III](���� ����)

+(��� � ����)Tyyy � "1T (���+ ����) (8)

where���(�) = [�
(�)
1 ; . . . ; �

(�)
N ]

T
and yyy = [y1; . . . ; yN ]T . This is a con-

strained quadratic programming (QP) problem that has a single min-
imum. It can be shown that the predicted output for a new observed
sample yr , given zzzr , is

ŷr =

N

n=1

�nKz(zzzn; zzzr): (9)

This solution is expressed in terms of the observation vectors, and
hence, if sparsity is allowed in the "-Huber CFR by making " > 0,
only some of the Lagrange multipliers are nonzero. Those samples with
a nonzero coefficient are called support vectors, and they contain all the
information that is relevant for building the model.

Property 1: The following nonlinear relationship between the resid-
uals and the model coefficients holds:

�n = gnl(en) =

sign(en)C; jenj � ec
sign(e )



(jenj � ") ; " � jenj � ec

0; jenj < ":

(10)

Proof: When using the "-Huber CFR in SVM regression-like
problems, a straightforward relationship between the residuals and the
Lagrange multipliers can be derived from the Karush–Khun–Tucker
(KKT) conditions [11], [12]. We have that �n = C for en � ec, that
�n = (1=
)(en � ") for " � en � ec, and that �n = 0 for en < ".
Also, we have that ��n = C for en � �ec, that ��n = (1=
)(�en�")
for �" � en � �ec, and that ��n = 0 for en > �". Given that
�n = �n � ��n, then (10) holds.

According to (9), nonlinear relationship (10) can be conveniently
used to control the impact of an outlier on the final solution by choosing
appropriate values of the cost function parameters [12], i.e., an outlier
will have, at most, a weight j�nj = C . However, �n for " < jenj < eC
can be more flexibly valuated than in "-insensitive CFR. Free param-
eters of both the CFR and Mercer’s kernel are usually determined in
SVM algorithms by using cross-validation search.
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III. EXPLICIT ARMA MODELS IN RKHS

The formulation presented in Section II uses a time-series model
given by a nonlinear regression in an RKHS, whose input space is given
by the concatenated vector zzzn. Therefore, that model can be consid-
ered as an ARMA model only in a wide and implicit sense, given that
both the AR and the MA component of the observed DTP are stacked
and jointly transformed into that RKHS. Although this can be a valid
and powerful approach, no useful insight about the temporal statistical
properties of the data can be gained. This is a similar situation to the
neural network (NN)-based analysis of time series, where the temporal
structure remains inside a black-box equation [2]. Alternatively, we
propose here to build an explicit ARMA model in some given RKHS,
by taking advantage of Mercer’s kernels, which will allow us to study
the time-series structure of the data, even it being a nonlinear model.

Assume that both the input and the output DTP state vectors can
be separately mapped to Hu and Hy , by using two possibly different
nonlinear mappings ���u(uuun) : Q ! Hu and ���y(yyyn) : P ! Hy ,
respectively. A linear MA (AR) model component can be built in Hu

(Hy), and now, the ARMA difference equation is

yn = aaa
T
���y(yyyn�1) + bbb

T
���u(uuun) + en (11)

where bbb = [b1; . . . ; bH ]T and aaa = [a1; . . . ; aH ]T are vectors deter-
mining the MA and the AR coefficients of the system, respectively, in
the RKHS; and Hu and Hy are the RKHS dimensions.

The primal problem can be here formulated as the minimization of

L
2k
P ai; bj ; �

(�)
n =

1

2

H

i=1

a
2
i +

H

j=1

b
2
j +

1

2

n2I

�
2
n + �

�2
n

+C
n2I

(�n + �
�

n)�
n2I


C2

2
(12)

constrained to

yn � aaa
T
���y(yyyn�1)� bbb

T
���u(uuun) � "+ �n (13)

�yn + aaa
T
���y(yyyn�1) + bbb

T
���u(uuun) � "+ �

�

n (14)

and �(�)n � 0, forn = 1; . . . ; N . By stating the Lagrangian and making
its gradient zero, the AR and MA vector coefficients are given by

aaa =

N

n=1

�n���y(yyyn�1) bbb =

N

n=1

�n���u(uuun) (15)

which is a different expression for the model coefficients in (6), because
AR and MA coefficients are now uncoupled in the RKHS.

After introducing (15) into the Lagrangian, we can identify two dif-
ferent Gram matrices, one for the input and other for the output DTP,
denoted as

RRRy;ij = ���y(yyyi�1); ���y(yyyj�1) = Ky(yyyi�1; yyyj�1) (16)

RRRu;ij = h���u(uuui); ���u(uuuj)i = Ku(uuui; uuuj): (17)

Equations (16) and (17) can be seen as uncoupled Gram matrices that
also account for the sample estimators of input and output DTP auto-
correlation functions [15], respectively, in the RKHS. The dual problem
consists now in the constrained maximization of

L
2k
D �

(�)
n = �

1

2
(���� ���

�)T [RRRu +RRRy + 
III](���� ���
�)

+(���� ���
�)Tyyy � "1

T (���+ ���
�): (18)

The output for a new observation vector is obtained as

ŷr =

N

n=1

�n Ky(yyyn�1; yyyr�1) +Ku(uuun; uuur) : (19)

Note that the model complexity, in terms of number of coefficients, is,
as in (9), equal to the number of training samples N . We will denote
this algorithm as SVM-ARMA2K .

To gain further insight about the structure that SVM-ARMA2K has,
we can analyze the temporal structure of the proposed model. Ac-
cording to [1], there are two main general classes of system identifi-
cation algorithms: prediction error methods (PEM), which are based
on the minimization of a function of the residual variance for a given
model (e.g., least-squares and/or maximum a posteriori estimators);
and correlation methods (CM), which minimize the cross correlation
between a (possibly nonlinear) function of the residuals and some trans-
formation of the data. In [11], a comparison of linear SVM-ARMA
system identification with PEM and CM was presented. The SVM-
ARMA2K nonlinear system identification model solves the regular-
ized normal equations in some RKHS while minimizing the cross cor-
relation between the data and a nonlinear function of the residuals, as
shown in Appendices I and II. This nonlinear relationship is determined
by the free parameters of the "-Huber CFR.

IV. SVM SYSTEM IDENTIFICATION WITH COMPOSITE KERNELS

In Sections II and III, we have described the SVR-based and the
SVM-ARMA2K system identification algorithms. Two questions can
be raised at this moment. First, note that (19) in SVM-ARMA2K shows
an apparent uncoupling between the input and the output DTP in the
final solution, with no explicit consideration of the (maybe relevant)
cross information between them. Although we are solving the normal
equations in the RKHS, and the cross correlation is indeed implicitly
considered therein, the SVM-ARMA2K model could be somewhat lim-
ited in the cases when strong cross information was present. There-
fore, we will look for an SVM-ARMA system identification model
capable of considering a cross comparison between input and output
DTP states, when this becomes necessary in the problem at hand. This
new algorithm will be called SVM-ARMA4K . Second, if we observe
prediction equations (9) and (19), we can think of the possibility of
combining them into a joint model for improving performance and
flexibility simultaneously. These two additional algorithms are called
SVR-ARMA2K and SVR-ARMA4K .

In this section, we first describe the elements of a generic nonlinear
mapping into an RKHS in an SVM system identification problem.
Then, we use composite kernels as direct sum of different RKHS (a
well-known result of functional analysis theory, see e.g., [16]), which
allows us both to represent the previously described SVM models, and
to formulate the aforementioned new system identification algorithms.

A. Generic SVM Algorithm for System Identification

Property 2: Let ���(zzzn) be a composite nonlinear transformation
(into an RKHS H) given by the concatenation of M single nonlinear
transformations to their RKHS, i.e.,

���(zzzn) = ���1(zzzn)
T
; ���2(zzzn)

T
; . . . ; ���M (zzzn)

T
T

: (20)

The corresponding SVM system identification model is given by
yn = hwww;���(zzzn)i + en, where www 2 H. The kernel matrix is
KKKij = h���(zzzi); ���(zzzj)i, and it allows to state a dual QP problem
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that yields the model coefficients. The dual problem consists of
maximizing with constraints

LD �
(�)
n = �

1

2
(���� ���

�)T [KKK + 
III ](���� ���
�)

+(��� � ���
�)Tyyy � "1

T (���+ ���
�) (21)

and the prediction model is ŷr =
N

n=1 �nK(zzzn; zzzr).
Proof: The derivation is similar to those presented in Sections II

and III.
Property 3: VR From Composite Kernels: It is straightforward to

see that the SVR system identification model is obtained for ���(zzzn) =
���z(zzzn). In this case, the kernel matrix is (7). Given that prediction
model is (9), where a single kernel is used, the explicit consideration of
input and output DTP is lost, and the normal equations are generated
in an RKHS where the input and output effects are coupled.

Property 4: SVM-ARMA2K From Composite Kernels: The pro-
posed SVM-ARMA2K algorithm can be obtained from a composite
kernel formulation by using ���(zzzn) = [���y(yyyn�1)

T ; ���u(un)
T ]
T

. It is
straightforward to see that the model kernel is

K(zzzi; zzzj) = ���y(yyyi�1)
T
; ���u(uuui)

T
T

; ���y(yyyj�1)
T
; ���u(uuuj)

T
T

=Ky(yyyi�1; yyyj�1) +Ku(uuui; uuuj) (22)

where the kernel (being the sum of two kernels) accounts for the input
and output DTP.

B. Composite Kernels for Input–Output Cross Information

Composite kernels can be used to emphasize, if necessary, the cross
information between input and output DTP. Assume a nonlinear map-
ping '''(�) into an RKHS H' and three linear transformations AAAi from
H' toHi, i =1,2,3. Note, however, that in this case,uuun and yyyn need to
have the same dimension for the formulation to be valid. For simplicity,
we force P 0 = Q0 = max(P;Q), which yields input and output vec-
torsuuu0n and yyy0n�1 that are ensured to contain all the relevant time-series
information (plus some amount of redundant information).

For the following composite transformation:

���(zzz0) = AAA1'(uuu
0)T ; AAA2'''(yyy

0)T ; AAA3 '''(uuu0) + '''(yyy0)
T

T

(23)

the obtained kernel is

K zzz
0

i; zzz
0

j = '''
T

yyy
0

i RRR1''' yyy
0

j + '''
T

uuu
0

i RRR2''' uuu
0

j

+'''T yyy
0

i�1 RRR3''' uuu
0

j + '''
T

uuu
0

i RRR3''' yyy
0

j�1 (24)

where RRR1 = AAAT
1AAA1 + AAAT

3AAA3, RRR2 = AAAT
2AAA2 + AAAT

3AAA3, and RRR3 =
AAAT
3AAA3 are three (independent) definite-positive matrices. The last two

terms can be grouped into a Mercer’s kernel Kuy accounting for cross
information

Kuy uuu
0

i; yyy
0

j�1 = K3 yyy
0

i�1; uuu
0

j +K3 uuu
0

i; yyy
0

j�1 (25)

which is warranted to be a valid Mercer kernel if K3 is a valid Mercer
kernel. Then, the final kernel expression is

K zzz
0

i; zzz
0

j = Ky(yyyi�1; yyyj�1)+Ku(uuui; uuuj)+Kuy uuu
0

i; yyy
0

j�1 (26)

TABLE I
SYSTEM IDENTIFICATION SIMULATION RESULTS. BOLD AND ITALICS INDICATE

THE TWO BEST MODELS FOR EACH MERIT FIGURE

and using this kernel in the generic SVM system identification algo-
rithm gives us the so-called SVM-ARMA4K algorithm. It can be seen
that we are now using four different kernels to build the composite
kernel. A cross information analysis of this algorithm can be made,
according to the corresponding normal equations in the RKHS for this
case (not included here and left as further work).

C. Composite Kernels for Improved Versatility

Instead of using separately the proposed algorithms for SVM system
identification, one can think of using in a collaborative way the different
kernel structures that have been presented here.

Property 5: The first possibility is using three concatenated trans-
formations into RKHS, one for input uuun, one for output yyyn�1, and one
for their concatenation zzzn. The result is a combination between the
SVM-ARMA and the SVR structures described in the preceding sec-
tions. The transforming concatenation is

���(zzzn) = ���y(yyyn�1)
T
; ���u(uuun)

T
; ���z(zzzn)

T
T

: (27)

It is straightforward to see that the corresponding kernel is

K(zzzi; zzzj) = Ky(yyyi�1; yyyj�1) +Ku(uuui; uuuj) +Kz(zzzi; zzzj) (28)

and its introduction in the generic SVM system identification model
yields the so-called SVR-ARMA2K algorithm.

Property 6: A composite transformation given by

���(zzz0) = AAA1'(uuu
0)T ; AAA2'''(yyy

0)T ; AAA3 '''(uuu0) + '''(yyy0)
T
; ���z(zzz)

T
T

(29)

gives the following composite kernel:

K zzz
0

i; zzz
0

j = Ky(yyyi�1; yyyj�1) +Ku(uuui; uuuj)

+Kuy uuu
0

i; yyy
0

j�1 +Kz(zzzi; zzzj) (30)

which produces the SVR-ARMA4K algorithm.
Note that SVR-ARMA2K and SVR-ARMA4K have not a straight-

forward interpretation in terms of normal equations in the RKHS, but
rather they can contain all the relevant model information that can be
extracted from the data by each component kernel. Therefore, despite
that SVM-ARMA and SVR nonlinear system identification are dif-
ferent problem statements, both underlying models can be combined
and embedded into a more general SVM signal processing framework
for nonlinear system identification.

In conclusion, we can say that composite kernels can be used to pro-
vide us with model flexibility in terms of: 1) emphasized consideration,
if necessary, of the input–output cross information; and 2) straightfor-
ward and natural combinations of implicit and explicit ARMA models.
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TABLE II
NMSE IN VALIDATION SET FOR THE SVM MODELS AND METHODS IN [19]

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of the SVR and the
SVM-ARMA formulations in the previous sections. In all kernel com-
putations, we used the Gaussian kernel, which provides universal non-
linear mapping capabilities and computational convenience [17], [18].
Different types of kernels (linear, polynomial, etc.) could be considered
for the input, output or cross-information kernels, according to a priori
knowledge of the system.

Example 1. Nonlinear Feedback System: We first consider the
following system. Input DTP is generated with Lorenz equations,
given by du=dt = ��u + �y, dy=dt = �uz + ru � y, and
dz=dt = uy � bz, and using � = 10, r = 28, and b = 8=3. Only
component u is used as the input signal to the system, and it enters
through an eighth-order low-pass FIR filterH(z)with cutoff frequency
!n = 0:5 and normalized gain 6 dB at !n. The output signal goes
through a feedback loop consisting of a high-pass minimum-phase
channel G(z) = (1:00 + 2:01z�1 + 1:46z�2 + 0:39z�3)

�1
and

then distorted with nonlinearity f(�) = log(�).
This system was used to generate 10 000 input–output DTP

samples that were split into a training set (first 50 samples) and
a test set (following 500 samples). The experiment was repeated
100 times with randomly selected starting points in the DTP. Free
parameters were selected through eight-fold cross-validation using
the training set, and average results for the test set are shown in
Table I for mean error (ME), mean-squared error (MSE), mean-ab-
solute error (MAE), correlation coefficient (r), and normalized MSE
(nMSE = log10( MSE=var(y)) of models in the test set. It is worth
noting that SVM-ARMA2K is the best model for this example, and
that also SVR-ARMA2K and SVM-ARMA4K outperform the SVR.
However, the composite SVR-ARMA4K turns to be here the worst
model specification. SVR-ARMA4K is a more complex model, which
can be appropriate for much more complex dynamics; otherwise, the
complexity of the model may degrade the generalization performance.

Example 2. The Mackey–Glass Time Series: We also compared the
performance of SVM models in the standard Mackey–Glass time-series
prediction problem following the same approach as in [20], where the
use of the standard SVR was originally presented for time-series pre-
diction. This classical high-dimensional chaotic system is generated by
the following delay differential equation:

dx(t)

dt
= �0:1x(t) +

0:2x(t� t�)

1 + x(t� t�)10
(31)

with delays t� = 17 and 30, yielding time series MG17 and MG30, re-
spectively. For comparison with [20], we considered 500 training sam-
ples and used next 1000 for free parameter selection (validation set).
This procedure also allows us a direct comparison with previous results
in the literature [19], [21], [22], in terms of nonlinear MSE (nMSE).

Results are shown in Table II. The SVR algorithm outperformed the
preceding methods for both time series. The methods proposed here
widely outperform SVR in MG17; note that a difference of 0.5 between
SVR and SVM-ARMA4K in nMSE is equivalent to almost one order
of magnitude in MSE. Nevertheless, they did not outperform SVR in
MG30; this could be due to differences in the kernel choice (RBF in-
stead of trigonometric kernel [20]) or the considered embedding.

VI. CONCLUSION

This paper presents the explicit formulation of nonlinear
SVM-ARMA models in RKHS, which makes possible to scruti-
nize the statistical properties and the time-series structure in system
identification problems. In addition, a full family of methods for non-
linear system identification have been proposed, by taking advantage
of composite kernels, in which dedicated mappings are used for input,
output, and cross terms. Simulation results reveal the potential capa-
bilities of this approach, as recently demonstrated in the field of image
processing [23]. This framework also allows a successful integration
and combination of nonlinear SVR and SVM-ARMA models.

APPENDIX I
NONLINEAR SVM-ARMA AND PREDICTION ERROR METHODS

Property 7: Let us denote quadratic cost conditions (QCC) as " = 0
andC =1 in (12). Then, for QCC we have that model weights in (19)
are proportional to the residuals, that is �n = (1=
)en. The proof is
immediate by making " = 0 and C = 1 in (10).

Property 8: For QCC, the linear SVM-ARMA model can be viewed
as a regularization of the normal equations of the Wiener filter for
system identification. See [11] for proof.

Theorem 1: For QCC, nonlinear SVM-ARMA2K algorithm solves
the regularized normal equations in the RKHS.

Proof: Let ���u(xxxi) 2 Hu and ���y(yyyi) 2 Hy , vectors of size
(Hu � 1) and (Hy � 1), respectively, for i = 1; . . . ; N . Let the data
matrix in each RKHS be given by ���u = [���u(uuu1); . . . ; ���u(uuuN)] and
���y = [���y(yyy1); . . . ; ���y(yyyN )]. Then, the matrix-form equation of the
model for the observed data is yyy = ���T

u bbb + ���T
y aaa + eee. Dual problem

(18) can now be expressed (in matrix form) as the maximization of

L2kQCC(eee) =
1

2
2
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eeeTeee: (32)

By making zero the gradient of L2kQCC and after some manipulations,
the following is obtained:
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By denoting ���y���
T
y = RRRyy , ���u���

T
u = RRRuu, ���u���

T
y = RRRuy , ���y���

T
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(34)

the following term grouping can be done:

���T
y ;���

T
u rrr2kzy = ���T

y ;���
T
u (RRR2k + 
III)[aaaT ; bbbT ]T (35)

which holds if and only if rrr2kzy = (RRR2k + 
III)[aaaT ; bbbT ]T , that are the
regularized Wiener equations in RKHS.
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Therefore, the SVM-ARMA2K formulation for nonlinear kernels
and QCC leads naturally to the statement of the equations in the joint
RKHS. Note that for some Mercer’s kernels, the dimension of these
equations can be infinite; however, as far as we are not solving them
explicitly, but rather implicitly in (18) and by means of the kernel
trick, we will still be able to scrutinize the statistical properties of the
time-series problem, specially if these properties can be conveniently
expressed with dot products in the RKHS and subsequently analyzed
using Mercer’s kernels.

APPENDIX II
NONLINEAR SVM-ARMA AND CORRELATION METHODS

CM for system identification are based on the assumption that a good
model produces residuals that are uncorrelated with past data, and,
consequently, these methods minimize the cross correlation between a
function of the residuals and a transformation of the data, both of them
being possibly nonlinear. Different approaches in the literature [1] are
based on different methods for determining suitable residual functions
and data transformations.

Property 9: For QCC, the nonlinear SVM-ARMA2K system identi-
fication model minimizes the cross correlation between the data trans-
formed to the RKHS and the residuals.

Proof: Taking into account (15) and Property 2, we haveaaa = ���yeee

and bbb = ���ueee, and according to the primal problem statement (12), we
are minimizing the L2 norm of the coefficients, even though they are
in the RKHS and they cannot be explicitly known (see [11] for details
on the equivalent property for linear SVM-ARMA).

Property 10: Under the set of nonzero and finite possible values for
the free parameters of the "-Huber cost function (0 < ", C , 
 < 1),
the nonlinear SVM-ARMA2K system identification algorithm mini-
mizes the correlation between the data and a nonlinear transformation
of the residuals.

Proof: For each given fixed subset of the free parameters 0 < ",
C , 
 < 1, the nonlinear relationship between the model coefficients
and the residuals is given by (10). According to (15) and (10), we have
aaa = ���ygnl(eee) and bbb = ���ugnl(eee), which stand for the model coeffi-
cients being the (uncoupled) cross correlation between the nonlinearly
transformed residuals and the data in the RKHS. Furthermore, we are
minimizing the norm of these coefficients in (12).
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