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Discrete-Time Analogs for a Class of
Continuous-Time Recurrent Neural Networks

Pingzhou Liu and Qing-Long Han

Abstract—This paper is concerned with the problem of local and
global asymptotic stability for a class of discrete-time recurrent
neural networks, which provide discrete-time analogs to their con-
tinuous-time counterparts, i.e., continuous-time recurrent neural
networks with distributed delay. Some stability criteria, which in-
clude some existing results as their special cases, are derived. A
discussion about the dynamical consistence of discrete-time neural
networks versus their continuous-time counterparts is provided.
An unconventional finite difference method is proposed and an ex-
ample is also given to show the effectiveness of the method.

Index Terms—Delays, discrete-time analogs, recurrent neural
networks, stability.

I. INTRODUCTION

I N standard neural networks theory, neural activity is de-
scribed in terms of rates. The rate of neural is an analog

variable which nonlinearly depends upon the excitation of
the neuron

(1)

where is usually taken as a sigmoid function. The excita-
tion is given by a linear sum over input connections

(2)

where is the output rate of a presynaptic neuron . The sum
runs over all neurons which send signal to neuron . The param-
eter , called synaptic efficacy, is the weight attributed to the
connection from to .

Equations (1) and (2) can be summarized in a single equation

(3)

The expression (3) is a static equation. It applies to the situa-
tion where a stationary input (a set of firing rates ) is mapped
to a stationary output (the rate ).
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In order to make the equation time-dependent, a straightfor-
ward way to introduce dynamics into the rate (3) is to replace it
by a continuous-time differential equation [1], [8], [9], [21]

(4)
The system (4) is usually called the Hopfield neural network

[9]. It has been customary to impose several types of restrictions
on the elements of the interconnection matrix and the activity
functions to guarantee the stationary state (2) or (3) of the neural
network (4) to be a global attractor.

One limitation of model (4) is that it ignores interneuron prop-
agation delays. But, neural networks usually have a spatial ex-
tent due to the presence of a multitude of parallel pathways with
a variety of axon sizes and lengths. Thus, there is a distribution
of conduction velocities along these pathways and a distribution
of propagation delays. In these circumstances, the signal prop-
agation is not instantaneous. The value of the state variable in
the past, which affects its present dynamics, is determined by a
synaptic filter or a delay kernel. Therefore, one may express the
synapse input to the activity function as the following convolu-
tion integral [19]:

(5)

where or . Typically, each synaptic filter is
assumed as causal, i.e., , while . Consequently,
if , we have the system

(6)

where the synaptic filter has infinite memory; if , the
synaptic filter has finite memory and then, we have

(7)

System (6) is well known as a recurrent neural network model
with distributed delay [5], [6], [16], [19], [29]. But for system
(7), to the best of our knowledge, little research has focused on
it. The initial condition of system (7) can be given as

(8)

If , the function reduces to an initial vector .
In practical situations, a system always starts at time . If
the system has been switched off and restarts at time ,
the memory from 0 to may influence the system’s operation.
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In the case of infinite memory of system (6), the assumption
of memory of all the past is a simplification. In fact, through a
simple transformation, system (6) can be rewritten as

(9)

which is autonomous from the view of dynamical systems.
System (7) is a typical Volterra integrodifferential equation.

Recently, Liu and Han [19] have studied system (7) and its rela-
tionship with system (6). The results in [19] have unified many
existing results in the literature about recurrent neural networks
with or without delays.

For continuous-time recurrent neural networks, there are
many results available in the literature. For example, recurrent
neural networks have successfully been applied to solving non-
linear convex programs, subject to linear constraints and convex
quadratic programs [20], [26], [27], while projecting neural
networks for addressing constrained optimization problems
[11], [23]–[25], [28]. However, in sequence processing, we use
discrete-time iteration rather than continuous-time as neurons
may have no temporal response. In the cases of designing com-
puter simulations or sampling, without additional conditions
or information about discrete or sampling time intervals, one
would not expect that the networks can be completely repre-
sented by their discrete counterparts or recoverable from the
samples. Some methods for analyzing discrete-time systems
and their continuous-time counterparts may look similarly, but
the analysis of continuous-time networks may not be applicable
to their discrete-time version. Therefore, the detailed analysis
for discrete-time models is necessary and important. Recently, a
discrete-time recurrent neural network, which is a discrete-time
analog of system (4), has been studied and some criteria for
global stability of the equilibrium have been given in [10], [12],
and [13].

In this paper, first, we will model discrete-time analogs of sys-
tems (6) and (7). These discrete-time analogs can be regarded
as stand alone discrete-time recurrent neural networks with dis-
crete-time distributed delay. Second, we will study their local
and global stability. Third, we will discuss the complexity of
discrete-time recurrent neural networks versus their continuous-
time counterparts and propose an unconventional finite differ-
ence method for discretizing continuous-time recurrent neural
networks. Finally, we will give some concluding remarks of the
results.

II. DISCRETE-TIME RECURRENT NEURAL NETWORKS

For sequence processing using a neural network, we may in-
troduce dynamics into the rate (3) by the following difference
system:

(10)

where . To distinguish between con-
tinuous-time and discrete-time processes, we use to denote the
discrete-time independent variable and brackets to enclose .

The sampling operation also generates a discrete-time signal
from a continuous-time signal. In this case, we may define a
discrete-time signal that is equal to the samples of
at integer multiples of a sampling interval , that is

.
For computer simulation of a continuous-time system, one

can use finite difference algorithm to generate a discrete-time
system. For example, the forward Euler’s approximation of
system (4) with discrete step will lead to

(11)

where , , and .
The previous first-order nonlinear difference system (11) has
been studied in [10], [12], and [13].

In the following, we consider a recurrent neural network with
discrete-time distributed delay described by a discrete-time
scale nonlinear system of the form:

(12)

for infinite memory or

(13)

for finite memory.
The inside sum of the systems (12) and (13), i.e.,

(14)

where or , is the so-called convolution sum. If
one chooses the delayed kernels as the discrete -function

otherwise

then systems (12) and (13) become system (11).
In general, by choosing appropriate delayed kernels, systems

(12) and (13) include all higher order difference systems that can
be considered as discrete analogs of any infinite and finite de-
layed neural networks models. However, systems (12) and (13)
are not usual difference systems; they are so called nonlinear
Volterra difference systems. Thus, the standard theory about dif-
ference systems would not work on them.

Systems (12) and (13) may be represented by the following
compact vector forms:

(15)
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and

(16)

respectively, where is the state vector
of the network, ,
is the real-valued matrix of the synaptic connection weights,

is the delayed kernels matrix, and
is a vector of nonlinear activa-

tion function.
In this paper, we focus on the stability analysis for a class of

discrete-time recurrent neural networks, where activation func-
tions are globally Lipschitz continuous of classes , , or .
If , then there exist such that , , and

If is also monotone nondecreasing, i.e., , then
there exist and such that , , and

In addition, if is also differentiable, i.e., , then
1) and for , and

;
2) and , as .

Obviously, .
In order to analyze the properties of systems (12) and (13),

in the remainder of this section, we will give some notations
and some preliminary results about linear Volterra difference
systems.

Let denote a real -dimensional Euclidean space of
column vectors with the Euclidean

norm . Let the sets and denote the

set of integers and the set of nonnegative integers, respectively.
Let be an matrix whose entries are real
functions defined in and .
For any , the norm of matrix is defined by

For convenience, the notation and
.

For systems (15) and (16), the initial functions are given by

and

respectively. The solution of system (15) [or system (16)]
with initial values is denoted by and it
satisfies (15) [or (16)] for and agrees with on the set

(or ).

Let denote the set of all bounded sequences
; given in , define

Let denote the set of all bounded sequences
; given in , define

Definition 2.1: Consider the system (16) with initial condi-
tions ; the trivial solution is
called as follows.

1) Stable if given any and ; there exists
a number such that whenever

, the solution exists for
and satisfies

Otherwise, the trivial solution is unstable.
2) Uniformly stable if it is stable and can be chosen inde-

pendent of .
3) Asymptotically stable if it is stable and if given any

there exists , such that when

as

4) Uniformly asymptotically stable if it is uniformly stable
and if there exists , such that given any there
exists such that

uniformly for all , , and all ,
with .

5) Exponentially stable if there exist two positive numbers
and such that for sufficiently small

6) Globally asymptotically (uniformly asymptotically, ex-
ponentially) stable if 3) [4), 5) ] is satisfied for

.
Let be a pair of initial data in for system

(15), i.e., on ,
. The various stability properties for the trivial solution

of system (15) can be defined in the same way as in Definition
2.1. Note that if is a solution of system (15), then

for . Thus, is also a solution of system (15).
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For any initial pair , let ; since
and satisfy the same initial condi-

tion, it follows:

(17)

In this sense, we can say that system (15) is “autonomous.” In
particular, it follows that one needs only to consider system (15)
with initial time . Moreover, stability and uniform sta-
bility are equivalent in such cases.

III. LINEAR APPROXIMATION AND LOCAL STABILITY

It is a formalization of the intuition that a nonlinear system
should behave similarly to its linearized approximation for small
range motions. In this section, we will consider the properties
of linear approximations of systems (15) and (16) with the as-
sumption of . Rewrite systems (15) and (16) as

(18)

and

(19)

respectively, where

(20)

and stands for higher order terms in , i.e.,

is a point on the linear segment connecting to the origin.
If we ignore the higher order terms in systems (18) and (19),

then systems

(21)

and

(22)

are the linearizations (or linear approximations) of systems (15)
and (16) at the equilibrium point , respectively. As the
linear system (21) is autonomous, its stability and uniform sta-
bility are equivalent, which is closely related to uniform stability
of (22). The following has been proved [17].

Theorem 3.1: Let . Then, the following state-
ments are equivalent:

1) the trivial solution of system (22) is uniformly stable;
2) the trivial solution of system (21) is (uniformly) stable.

Theorem 3.2: Let and suppose that system
(22) is uniformly stable. Then, the following statements are
equivalent:

1) the trivial solution of system (22) is uniformly asymp-
totically stable;

2) the trivial solution of system (21) is (uniformly) asymp-
totically stable.

Based on Theorems 3.1 and 3.2, one only needs to consider
system (22) since the results are also true for system (21) and
vice versa.

We now state and establish the following result about local
stability of the trivial solution for the nonlinear system (19) by
investigating its stability of trivial solution for the linear approx-
imation system (22).

Proposition 3.3: If is in and suppose that
the trivial solution of system (22) is uniformly asymptotically
stable, then the nonlinear system (19) is locally uniformly
asymptotically stable.

To prove Proposition 3.3, we introduce here the so-called re-
solvent matrix of linear Volterra difference system (22), which
is far more theoretical than practical and enables us to overcome
some difficulties of dealing with a variety of initial conditions.

The resolvent matrix associated with the linear system
(22) satisfies the resolvent matrix equation

(23)

or equivalently

(24)

For any initial value , system (22) can be written as

(25)

where if and is related
to the initial function and when .

Given any initial value , by the variation of constant
formula [17], the corresponding solution of system
(22) can be written in the form of

Replacing in the previous formula with ; then, we have

(26)
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Lemma 3.4: Suppose that and is the
resolvent of system (22). Then, the following statements hold
true.

1) The trivial solution of system (22) is uniformly
stable if and only if defined by

(27)

is finite for all and both and are
uniformly bounded on .

2) The trivial solution of system (22) is uniformly
asymptotically stable if and only if it is uniformly stable
and both and tend to zero as .

Proof: Suppose that is uniformly stable. Then,
there exists a constant such that for any with
and , one obtains

If , then
for all and . In partic-

ular, choosing such that , we have
for all . By the variation of constant

formula (26)

Applying property of triangle inequality to the previous equa-
tion, for all

Let tend to infinity, then for all .
Conversely, if and for some constant

, then by (26) one has

Thus, is uniformly stable. This proves condition 1). Con-
dition 2) follows in a similar manner.

Lemma 3.5: [17] Suppose that . The trivial
solution of system (22) is uniformly asymptotically stable if and
only if either one of the following conditions are satisfied:

1) for ;

2)
where is the resolvent of system (22) and is the -trans-
form of .

We are now in a position to prove Proposition 3.3 as follows.
Proof: Suppose that linear system (22) is uniformly stable.

Then, by Lemmas 3.4 and 3.5, and
, where is the solution of system

(22).
System (19) can be rearranged as

Suppose that now is the solution of system (19)
with the same initial value of the solution of
system (22). Employing the formula of variation of constants
again, can be expressed as

Replacing by , we have

(28)

Let be defined as in Lemma 3.4. Then, from the proof of
Lemma 3.4, , as and are
both in .

From

as
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then, for any

there exists such that

Summing up (28) over from to and intro-
ducing , we have

(29)

Isolating from (29) yields

(30)

where and

By Lemmas 3.4 and 3.5, . It follows that
. Thus, for any , there exists a constant

such that

for all , which implies that the trivial solution of
the nonlinear system (19) is locally uniformly asymptotically
stable.

IV. GLOBAL STABILITY

In this section, assuming that , we give several
sufficient conditions on global asymptotic stability of the trivial
solution for the neural network model (12).

Proposition 4.1: Suppose that there exist positive constants
such that

(31)

for all . Then, the trivial solution of system (12)
is globally asymptotically stable.

Proof: From (12), exchanging with and , we have

(32)

thus

(33)

Let , then

(34)

Let

then

(35)

Define a Liapunov functional as

(36)

Using (34) and (35) and calculating
along the solution of system (12), one obtains

(37)

where
due to condition (31).
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The inequalities in (37) lead to

(38)

Adding the inequalities in (38) vertically, we have

(39)

It follows from (36) and (39) that

uniformly converges as . Consequently, we can con-
clude that

uniformly as . Thus, the globally asymptotic stability of
the trivial solution of system (12) follows.

Proposition 4.2: Suppose that there exist positive constants
such that

(40)

for all . Then, the trivial solution of system (12)
is globally asymptotically stable.

Proof: Let and

where and represents the ele-
ment product of two matrices. From the condition (40), we have

(41)

for some constants and for all . It indicates
that the matrix is strictly diagonal row dominant. Notice
also that matrix has nonpositive off-diagonal elements. From

-matrix theory [2], there exists a diagonal matrix (for con-
venience and no ambiguity, we still use ) such that is
strictly diagonal column dominant and then the condition (31)
of Proposition 4.1 is satisfied. This completes the proof.

As the nondelay items in the convolution
sum of system (12) can contribute to the diagonal domination,
through a simple modification to the proofs of the previous
propositions, we have Proposition 4.3.

Proposition 4.3: Suppose that for all there
exist , such that (42), shown at the bottom of the
page, holds, or for all , there exist ,
such that (43), shown at the bottom of the page, holds. Then, the
trivial solution of system (12) is globally asymptotically stable.

For linear systems, one can verify that the stronger the delay
kernel of is, the stronger the stability conclusion becomes
[17]. For the nonlinear neural network system (12), we have the
following global exponential stability result.

Proposition 4.4: Suppose that there exits a , such that
is in and any of the conditions of Proposi-

tions 4.1–4.3 holds. Then, the trivial solution of system (12) is
globally exponentially stable.

Proof: We only prove here for the condition (31) of the
Proposition 4.1 and the proofs for other conditions are similar.

Since , we have

Let

(44)

(42)

(43)
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Then, is well defined and

(45)
from (31). By the continuity of for , there exists

, such that .
Choose a Liapunov function defined by (46), shown at the

bottom of the page. Then, the equation shown at the bottom of
the page, holds. Therefore

However

where

are bounded.
From (46), we have

i.e.,

where ; so

exponentially as , which implies that the trivial solution
of system (12) is globally exponentially stable.

So far we have only focused on system (12) because of its
“autonomous” property. The equivalence of the stability of sys-
tems (12) and (13) (see Theorems 3.1 and 3.2) indicates that
the results are also true for system (13). For the special case of
system (11), which is a first-order difference system, one can
choose the delayed kernels as discrete -function, as mentioned
in Section II, and can easily verify that (31) of Proposition 4.1,
(40) of Proposition 4.2, and (42)–(43) of Proposition 4.3 recover
the following group of conditions that were given in [10] and
[13] and each of them is sufficient for global exponential sta-
bility of system (11):

(47)

(48)

(49)

(50)

(51)

(52)

Remark 4.5: The assumption of in this section is
only for our convenience to state the propositions. In fact, the
conclusions are also true for except for Proposition
4.3, where we have to separate the self-regulation feedback from
the convolution, and thus, monotonicity of the activity function
is needed.

(46)
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Fig. 1. Simulation of (53). (a) Asymptotically stable. (b) Starfish. (c) Periodic. (d) Chaotic.

V. DISCRETE-TIME NEURAL NETWORKS VERSUS THEIR

CONTINUOUS-TIME COUNTERPARTS

The systems (12) and (13) that we have studied in previous
sections can be considered as stand alone discrete-time neural
networks or as discrete-time analogs of their continuous-time
counterparts. In contradistinction to their continuous-time coun-
terparts, even for simple discrete-time neural networks it is pos-
sible to observe some interesting behavior, including limit cy-
cles and chaos. The following example is a discrete-time neural
network, which we modified from [15] to the form of system
(12) with delay kernel as discrete -function .

1) Example 5.1: Consider the discrete-time neural network

(53)

where

and and .

The result of the simulation is plotted in the phase plane
by choosing , ,

, and , respectively. One can see
the attractor changing from single point to a shape of starfish, to
a stable limit cycle, and to chaos (Fig. 1).

One can either design a discrete-time neural network from
scratch or discretize a given continuous-time system. The
second approach has the advantage that one can keep track of
the known properties of the continuous-time model. In practice,
this type of approximation occurs when numerical integration
algorithm is used for computer simulation, as in the Euler or
Runge–Kutta methods. Of course, taking a differential model
as the source of a difference model, one should check whether
the discrete-time system still has the desired properties of its
continuous-time counterpart. From the previous example, we
can see that discrete-time version of a continuous-time system
can posses complex dynamic behaviors.

Taking systems (12) and (13) as the discretization of systems
(6) and (7) in the case of Euler’s approximation with step-size
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, one can easily check out that the conditions of global stability
in Section IV are well coincident with the conditions assigned
to systems (6) and (7) when is sufficiently small. For example,
the condition (47) to system (11) is

(54)

If , then (54) becomes

(55)

which is one of the simple sufficient conditions to guarantee
global asymptotic stability of the trivial solution of system (11)
[10], [19]. The remaining conditions of the group can be verified
in the same way.

It is worth mentioning that if in system (4) is sym-
metric, the dynamic of system (4) is always convergent, namely,
every initial state will approach a fixed point asymptotically.
But, its discrete-time counterpart (11) is either convergent or
approaches a periodic orbit of 2 (i.e., a two-cycle) [3], [7], [14].
To guarantee the convergent to fixed points (cycle-free), a suffi-
cient condition can be obtained if the discretization step-size
is small enough when the Euler’s method is used.

When discretizing a continuous system, extra parameter
(step-size, for example) is introduced into the discrete-time
system. Therefore, it is no surprise that extra conditions are
needed to keep the discrete-time system dynamically consistent
with the continuous-time one.

In order to guarantee the stability of a discrete-time system
under the same conditions with its continuous-time counterpart,
we propose an unconventional finite difference method, which is
specially useful for discrete-time neural network models and is
stated as follows.

For systems (6) and (7), it is reasonable from sampling to
replace the convolution integral in the right of the equation by a
discrete convolution sum, i.e.,

(56)

where is the sampling period or discrete step.
Recall the domination of the linear part in the stability of

a continuous-time system; we consider the linear differential
equation

(57)

which is exactly solvable. For any step , integration of
(57) on leads to

(58)

Rearrange (58) to

(59)

Drawing inspiration from (57) and (59), we propose the fol-
lowing replacement:

(60)

which may be used to eliminate the elementary numerical in-
stability in the discrete-time modeling of a continuous-time dif-
ferential equation. For many situations, also satisfies the
condition

(61)

Let and . Then, the discrete-time analog
of system (6) or (7) can be written in the following form:

(62)

where

(63)

or

(64)

are the two common choices of . Notice that the method
of differential equations with piecewise constant arguments has
been used to discretize continuous-time population models [18]
and neural network models [22]. The method provided in this
paper is based on sampling and instantaneous domination of the
systems.

It is easy to verify that the stability conditions in Section IV to
system (62) coincide well with the stability conditions to con-
tinuous-time systems (6) and (7) [10], [19], regardless of the
size of . In the following, we use computer simulation for an
example to compare the Euler method and the unconventional
finite difference method.

2) Example 5.2: Consider the neural network (6) with

, , , and , i.e.,

(65), shown at the bottom of the next page. If and
, then the trivial solution of system (65) is

globally asymptotically stable [4], [10], [19].
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Fig. 2. Simulation of system (66) with h = 0:9=11.

Using forward Euler approximation, we can write the dis-
crete-time analog of system (65) as (66), shown at the bottom
of the page. The stability of the trivial solution of system (66)
definitely depends on the step-size of . For computational pur-
pose, we choose

where is called fading memory, is called eventually
fading memory, and both are normalized with .
Fig. 2 shows the stability of the trivial solution with
while Fig. 3 shows that when , system (66) is un-
stable.

We now employ the unconventional finite difference method
to consider the case of the same . The stability
property will maintain if we use the analogs (62) and (63) (see

Fig. 4). In fact, the stability dynamics of system (62) is consis-
tent with its continuous-time counterpart without size restriction
imposed on the discretization step .

VI. CONCLUDING REMARKS

We have established local stability result for discrete-time re-
current neural networks by linearizing them to Volterra differ-
ence systems, and the results are extremely useful to the net-
works that have more than one equilibria. The sufficient con-
ditions in Section IV about global stability also guarantee the
uniqueness of the equilibrium and thus one can avoid the diffi-
culty in proving the existence and uniqueness of the equilibrium,
which forms the underlying basis for the ad hoc constructing of
a special Lyapunov function or functional. This is also why we
start at the beginning to set the equilibrium at the origin (this can

(65)

(66)
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Fig. 3. Simulation of system (66) with h = 1:05=11.

Fig. 4. Simulation of the discreet-time analog of system (65) using (62) and (63) with h = 1:05=11.

always be achieved from a simple transformation). The gener-
ality of systems (12) and (13) is that they include not only fi-
nite and infinite memories, but also nearly all possible forms of

discrete-time neural networks, as one can choose any possible
combination of kernels and functions , like what we have
done in Example 5.1.
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It is a trick and difficult task to discretize continuous-time
neural networks, especially for computer simulation for delay
systems, because their dynamical properties are not always con-
sistent. From the unconventional finite difference method we
have provided in the paper, we can see that one has to decrease
the step-size or to strengthen the self regulation of the neural net-
works (through ) in order to guarantee the stability proper-
ties are heritable.

It is well known that the dynamicsofcontinuous-timeHopfield
neural networks with symmetric synaptic interactions is always
convergent and the dynamics of their discrete-time analogs either
convergent or approach to a two-periodic orbit. However, for a
general discrete-time neural network, we can see from Example
5.1 in Section V that its attractor may be very complex. Lyapunov
exponent analysis can be used to determine the dimension of the
attractor. If the attractor has noninteger dimension, then it is a
stranger attractor or it exhibits chaos. To establish the structure
of the attractor of a neural network, which usually has more than
one equilibriums, will be a difficult but more challenging task.
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