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Abstract—In this paper, we present a network of silicon in-
terneurons that synchronize in the gamma frequency range
(20-80 Hz). The gamma rhythm strongly influences neuronal
spike timing within many brain regions, potentially playing a
crucial role in computation. Yet it has largely been ignored in
neuromorphic systems, which use mixed analog and digital cir-
cuits to model neurobiology in silicon. Our neurons synchronize
by using shunting inhibition (conductance based) with a synaptic
rise time. Synaptic rise time promotes synchrony by delaying the
effect of inhibition, providing an opportune period for interneu-
rons to spike together. Shunting inhibition, through its voltage
dependence, inhibits interneurons that spike out of phase more
strongly (delaying the spike further), pushing them into phase (in
the next cycle). We characterize the interneuron, which consists
of soma (cell body) and synapse circuits, fabricated in a 0.25-pym
complementary metal-oxide-semiconductor (CMOS). Further,
we show that synchronized interneurons (population of 256) spike
with a period that is proportional to the synaptic rise time. We use
these interneurons to entrain model excitatory principal neurons
and to implement a form of object binding.

Index Terms—Binding, conductance-based neuron circuit, delay
model of synchrony, inhibitory interneuron, neuromorphic engi-
neering, shunting inhibition, synaptic rise time.

I. GAMMA SYNCHRONIZATION

EUROMORPHIC engineering aims to reproduce the
Nspike-based computation of the brain by morphing its
anatomy and physiology into custom silicon chips. Using mixed
analog and digital circuits enables engineers to build dense
integrated networks of silicon neurons that run in real time.
But this performance comes at a price: A fixed silicon area can
accommodate a few large neurons that express little variation or
many small neurons that express great variation. This tradeoff
between resources and variance is fundamental to physical
systems including neurobiological ones, which employ large
neuron populations and tolerate variance. Modeling neural
systems in hardware provides a means to explore and exploit
tactics used by biology to manage this tradeoff and build robust
computing systems.

Having successfully implemented models of sensory regions
(such as the retina [1], [2] and the cochlea [3], [4]), the cur-
rent trend in neuromorphic engineering is to implement models
of cortical regions [5], [6]. However, certain aspects of cortex
remain largely ignored, such as the ubiquitous gamma rhythm
(20-80 Hz). Gamma controls spike timing, thereby influencing
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systems that encode information using synchrony or learn with
spike-timing-dependent plasticity (STDP) [7]. Although some
posit that the gamma rhythm is merely an epiphenomenon, ev-
idence suggests it is necessary in fine odor discrimination (in
insects) [8], and models of odor learning in the olfactory cortex
[9] and sequence memory in the hippocampus [10] require it.
Further, gamma has been implicated in (visual) object binding
[11], a fundamental function that may be its raison d’étre.

Cortical regions can bind neurons that represent various as-
pects of an object using gamma because it is more than a mere
global clock. When two distinct groups of neurons are excited,
neurons within each group synchronize, but the two groups have
independent rhythms, failing to phase-lock. However, when the
two groups overlap, all the neurons synchronize, signaling that
these two groups represent a single object. Evidence suggests
that this binding phenomenon requires distributed rhythmic syn-
chrony generated by locally interacting inhibitory interneurons
[12].

In this paper, we realize gamma synchrony in a population
of model spiking interneurons in the same way that neurobi-
ology does by relying on mutual inhibition. We have developed
anovel silicon interneuron that includes the necessary properties
that were lacking in simple neuromorphic neuron and synapse
models: synaptic delay (rise time) and shunting inhibition (con-
ductance based). Our special-purpose implementation allows us
to instantiate more silicon interneurons in a fixed area while
minimizing variance by avoiding increased complexity. We fab-
ricated a network of 256 silicon inhibitory interneurons on a
custom chip.

In Section II, we explain how delay and shunting enable inhi-
bition to realize synchrony. In Section III, we describe the cir-
cuits that implement our interneuron. In Section IV, we char-
acterize these circuits. In Section V, we use a network of these
interneurons to generate synchrony. In Section VI, we use a net-
work of interneurons to entrain excitatory principal neurons and
to implement spatial binding. In Section VII, we discuss the im-
plications of our new circuit designs.

II. ROLES OF DELAY AND SHUNTING

Inhibition often impedes synchrony while excitation pro-
motes it. Mutual inhibition retards spiking, pushing nearly
synchronous neurons apart, whereas mutual excitation ad-
vances the neuron that is late to spike [13], [14], bringing
neurons together. Although more potent inhibition can reset the
entire population, neurons do not spike together due to varia-
tions in excitability, leading to winner-takes-all behavior where
only the most excitable neurons spike. Thus, inhibition often
results in asynchrony and excitation in synchrony. However,
these relationships can be reversed by delays.
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Fig. 1. Inhibition lags network activity by half a cycle at the synchronous fre-
quency (65 Hz). The lag is the sum (dot—dash) of contributions from delay
(dashed) and decay (dotted). Delay’s contribution increases linearly with fre-
quency, whereas decay’s contribution saturates at a quarter cycle. Left inset: Lag
of decay, delay, and their sum at the synchronous frequency; continuous line is
network activity. Right inset: Inhibition has a rise time of w (10 ms) and a decay
constant of 7 (5 ms), obtained by low-pass filtering a pulse, which is evoked by
spike. In this case, the delay (d = w/2) is half the rise time (Appendix II).

Synaptic delay enables inhibition to promote synchrony. In
fact, for gamma, the synaptic delays found in biology are sig-
nificant compared to the rhythm’s period. When inhibition lags
network activity, it pushes out-of-phase neurons into phase in
subsequent cycles, promoting synchrony. Intuitively, delay pro-
vides an opportune period for neurons to spike together before
inhibition arrives. Synchrony is stable when inhibition lags net-
work activity by half a cycle. On the contrary, delayed excitation
impedes synchrony by promoting out-of-phase spiking.

Indeed, two recent studies have shown, both numerically and
analytically, that the gamma rhythm’s period is proportional to
the delay (axonal plus synaptic) and depends only weakly on
low-pass filtering at the synapse, which responds to a spike with
arapid onset followed by an exponential decay [15], [16]. These
two studies corrected earlier work that posited the decay-con-
stant determined the network period [17], establishing unequiv-
ocally that delay is the critical parameter influencing the period
of synchrony—the delay model of synchrony (DMS).

The decay constant’s role is purely modulatory. Although
both synaptic delay and decay contribute to inhibition’s half-
cycle lag at the synchronous frequency, decay can only con-
tribute arctan(2m7/T'), where T is the decay constant and T is
the network period (Fig. 1). This function saturates for small 7',
reaching a maximum of a quarter cycle. In that case, delay must
contribute the remaining quarter cycle, resulting in T' = 4d,
where d is the delay. For large 7', on the other hand, decay’s
contribution is negligible, so delay must contribute an entire half
cycle, resulting in T' = 2d. Thus, decay can only cause a twofold
change in the network period set by delay.

In addition to delayed inhibition, synchrony requires inhi-
bition to act as a shunt (i.e., nonzero conductance). Unlike a
current sink, the current passed by a shunt is proportional to
the voltage across it. Thus, neurons that have just reset their
spikes receive negligible inhibition while those that are close
to the spiking threshold receive massive inhibition. As a result,
neurons that spike in synchrony (within the synaptic delay) re-
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Fig. 2. Interneuron circuit comprises two modules, both based on log-domain
low-pass filters: the soma and the synapse. The soma includes the membrane
(Mp1-4), the axon-hillock (M 41-6), and the refractory period (M g1-2). The
synapse includes the cleft (A ;;1-2) and the receptor (M p1-4). A diffusor with
current mirrors spreads inhibition to neighboring interneurons (M pi-4). Single
arrows represent bias voltages; double arrows represent inputs and outputs. The
AND gate resets the interneuron’s spike (REQ), gated by an off-chip spike ac-
knowledgment (ACK). See Appendix I for transistor sizes and capacitor values.
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main unaffected while those that are late to spike are pushed
away. Shunting inhibition also combats variations among in-
terneurons: Excitable interneurons have higher potentials than
average, increasing shunting inhibition’s efficacy in reducing
their rates, whereas lethargic interneurons have lower potentials,
decreasing efficacy [18].

Lacking these properties, simple neuromorphic synapse
and neuron models synchronize poorly when using inhibition.
Current-mirror synapses (CMSs) [19] lack delay and inte-
grate-and-fire neurons (IFNs) [20] lack shunting inhibition.
Systems composed of these elements can achieve a moderate
degree of synchrony, but it is fragile, requiring recurrent exci-
tation to rescue it [21]. Another system used pulsed inhibition,
which, similar to our approach, yields an effective delay, but
lacking shunting inhibition, the model was sensitive to initial
conditions, displaying asynchrony as well as synchrony [22].
More sophisticated neuromorphic neurons include conduc-
tance-based inhibitory synapses, but they consume silicon area,
failing to reach the number of neurons necessary to support
system-level phenomena [23].

Our silicon interneuron (soma and synapse circuits) remedies
these deficiencies, using synaptic rise time as a surrogate for
synaptic delay to synchronize robustly, while being compact in
size.

III. NEUROMORPHIC IMPLEMENTATION

We construct the interneuron from two circuit modules based
on log-domain low-pass filters (LPFs) [24]: the soma and the
synapse (Fig. 2). The soma implements membrane dynamics
and spiking; the synapse supplies shunting inhibition.

A. Soma Circuit

We construct the soma from three subcircuits: the membrane,
the axon-hillock, and the refractory period (Fig. 2). The mem-
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brane realizes a leaky integrator (RC) response to excitatory cur-
rent and shunting inhibition. An input current drives the capac-
itor (C,) through a source-coupled current mirror (Mp1-2). As
the capacitor voltage approaches My ’s gate voltage, the cur-
rent decreases, compensating for the transistors’ nonlinear (log-
arithmic) voltage-current relation [25]. In this paper, the input
current is constant (or pulsed), whereas the leak current IsgynT
varies in time; it comprises the sum of a constant current (not
shown), an inhibitory synaptic current (M4), and a refractory
current (Mp3).

The membrane’s output (analogous to the potential of an RC
circuit) is the soma current Isona(Ma1). Increasing Ispunt
reduces the membrane’s steady-state output and decreases
its time-constant (identical to increasing the conductance in
an RC circuit). We derive the soma behavior (ignoring the
axon-hillock) by applying Kirchhoff’s current law to node C,,
which yields

dVe

Iy
o2 -
T SHUNT — 7-"°

ey

where V¢ is the potential at node Cr,, Ity is the input current,
and [ is a transistor parameter. Isona is in the denominator
because we connected M7p»’s source and bulk nodes to Cf,:
As Isoma increases, Mo s source and bulk (V) decrease re-
ducing its current. The result is exactly equivalent to reducing
Iix by the same factor.

Next, we take the derivative of Isona = Ip e ® (Voo =Ve)/Ur
with respect to time, where Vpp is the voltage supply and s and
Ur (thermal voltage) are transistor parameters

dl. Kk dV¢
—SOMA —  Isoma e —— )

dt Up dt

which we solve for dV/dt and substitute into (1). Then, we
multiply and divide each side of the equation by —Isona and
Ispunt, respectively, which results in

TdISOMA + Tsona = I Iy
dt Isgunt

3)

where 7 = (CpU; /kIsgunT) is the soma’s time-constant.!

In addition to the constant excitatory input and variable leak,
the membrane also receives a positive feedback current from
the axon-hillock (modified from [26] by Kai Hynna). As Isonma
increases, the feedback current (M 4¢) turns on more strongly,
overpowering the leak to cause a spike. When a spike occurs, the
axon-hillock initiates the process of sending it off chip, which
activates the refractory period.

The refractory period shunts Isona to near zero (pulls C'p, to
Vbp) for a brief period (a few milliseconds) after a spike, using a
pulse extender (PE). The PE interfaces fast (about 10 ns) digital
signals to slow (several milliseconds) analog ones by generating
a current-pulse output (Mp3) from a voltage-pulse input. Its

IEquation (3) is analogous to a conductance-based equation where E, the
reversal potential, is zero

dV Iix
— V-E)=—.
Tt )=

Here, V' is the soma potential, G is the shunting conductance to E, and 7 =
C'/G is the time-constant.

190um
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Fig. 3. (a) Neuron chip has a 16-by-16 array of microcircuits; one microcircuit
includes one inhibitory interneuron and four principal neurons, each with 21
STDP circuits. (b) Neuron chip is embedded in a circuit board including DACs,
a CPLD, and a USB chip, which communicates with a PC.

capacitor (Cg) is pulled to ground during a spike (Mg ), which
causes M3 to drive Cp, to Vpp, until the leak through Mpo
restores Cg.

B. Synapse Circuit

We construct the synapse from two subcircuits: the receptor
and the cleft (Fig. 2). The receptor, implemented with an LPF,
sets the synapse’s decay constant (similar to [27]), while the
cleft, implemented with a PE, sets its rise time. The receptor
differs from the soma’s membrane in that its input (from the
cleft) is a fixed-height pulse, which allows for a simpler circuit:
a voltage-limited source follower (Mp1-2), whose voltage limit
(applied to Mps’s gate) sets the pulse height, and hence, the
maximum current level that the receptor’s output (Mp4) can
achieve (synaptic strength). It saturates at this level when driven
at a high rate or with a pulse width that is long relative to its
decay constant.

The synapse’s output current drives a diffusor [28], which
spreads the synaptic current to neighboring silicon interneurons,
realizing all-to-all inhibition (unless otherwise noted).

C. Chip Architecture

We have designed, submitted, and tested a chip with an array
of our silicon interneurons [14]. Our circuits are similar in size
and complexity to IFNs with CMSs (256 interneurons use only
2.6% of the chip’s 10-mm? area), yet are capable of modeling
phenomena that depend on synaptic rise time or shunting inhi-
bition. Our log-domain neuron and its synapse are generally ap-
plicable to neuromorphic systems; we used neurons with similar
somas and synapses in a previous model of hippocampal asso-
ciative memory [29].

The neuron chip was fabricated through MOSIS in a 1P5SM
0.25-pm complementary metal-oxide—semiconductor (CMOS)
process, with just under 750 000 transistors in just over 10 mm?
of area [Fig. 3(a)]. It has a 16 by 16 array of microcircuits.
Each microcircuit contains one inhibitory interneuron (28um
by 36,m each) commingled with four principal neurons. Each
principal neuron has 21 STDP circuits that are not used here
[14]. The neuron chip uses the address—event representation
(AER) to transmit spikes off chip and to receive spike input
[30]-[32]. In addition, it includes an analog scanner that allows
us to observe the state of one neuron at a time (either its synapse
or soma) [33].
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Fig. 4. Soma responds sublinearly to current (above a threshold). Inset: Mem-
brane (current) traces for several step-input current levels show an RC rise and
a positive-feedback spike.

To test the silicon interneurons, we embedded the neuron chip
in a circuit board [Fig. 3(b)]. The board has four primary com-
ponents: a complex programmable logic device (CPLD), the
neuron chip, a universal serial bus (USB) interface chip, and
digital-to-analog converters (DACs). The central component in
the system is the CPLD; it mediates communication between the
neuron chip and the USB chip, which provides a bidirectional
link with a PC. The DACs enable the PC to control the analog
biases in the system.

IV. NEURON CHARACTERIZATION

In characterizing the interneuron, we focused on three as-
pects: the frequency-current curve (FIC), the synaptic rise time,
and the phase-response curve (PRC). The PRC summarizes the
effects of synaptic rise time and shunting inhibition on the soma.
These three aspects describe the properties relevant to gener-
ating synchrony.

A. Frequency-Current Curve

When various current levels are injected into the soma, its
spike frequency increases sublinearly above a threshold (Fig. 4).
Below this threshold (8 nA), the input current drove the soma
to a steady-state level too low for the positive feedback to over-
come the leak (see the inset in Fig. 4).2 Above it, the input cur-
rent invoked sufficient positive feedback to overcome the leak
resulting in a spike (which shut off the input by lowering M12’s
source).

B. Synaptic Rise Time

When stimulated with a spike, the synaptic current increased
linearly (far from the maximum level), and then decreased ex-
ponentially (decay-constant fit was 70 ms). We characterized
the synaptic rise time, defined as the time-to-peak (Fig. 5), by
varying the cleft’s leak current (adjusting Mgo’s gate voltage)
and hence the pulse width. The rise time depended exponentially

2To estimate the input current to an interneuron, we measured its amplified
soma current (Isoma = (JinJo/IsnunT)) through a current-out pad, which
yields I1n when Isyunt = . Hence, we disabled the inhibitory synapse (by
lowering its synapse strength); we also disabled the axon-hillock (by raising its
spike threshold). We estimated the input current as the pad current divided by
the pad amplifier’s gain (3564). Because the gain decreased for currents above
34 nA, we fit lower values with an exponential to extrapolate the input current.
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Fig. 5. Synapse responds to a spike with a low-pass filtered pulse. Inset: The
time-to-peak (triangles) depended exponentially on the gate-source voltage of
the cleft’s leak transistor (M- in Fig. 1).
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Fig. 6. Increase in interspike interval depends on when inhibition occurs.
Bottom: Membrane (current) traces of an interneuron that we drove with a
constant current and inhibited at various phases reveal that the response to
inhibition depended on when it occured (vertical bars). Top: The PRC shows
that inhibition is most effective between 15 and 30 ms after the interneuron
spikes, adding over 8 ms to its interspike interval (38 ms).

on Mg»>’s gate voltage, because the pulse width is inversely pro-
portional to the current through this transistor. Also, the peak
current increased with the pulse width, since the receptor’s cur-
rent had more time to rise.

C. Phase-Response Curve

The effect of synaptic inhibition depended on the phase at
which it occurred. We characterized this phase dependence by
inhibiting the interneuron at a random point in its cycle, once
every five cycles, observing the increase in interspike interval
(IST). We repeated this process several hundred times and
plotted the resulting PRC (top of Fig. 6). The rise time was set
to 1.5 ms and the synaptic decay constant was 5 ms, as found
in biology [34], [35].

The interneuron was most sensitive to inhibition between 15
and 30 ms after it spiked (its uninhibited ISI was 38 ms). In this
sensitive region, each inhibitory spike added more than 8 ms
to the interneuron’s ISI. During this phase of its cycle, the in-
terneuron’s membrane (current) was high, resulting in more ef-
fective shunting inhibition (bottom of Fig. 6). On the other hand,
inhibition applied less than 5 or more than 32 ms after it spiked
addedless than4 mstothe interneuron’s ISI. During these phases,
either its membrane potential was low, so shunting inhibition was
less effective, or the inhibition did not have time to rise to its peak
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Fig. 7. Uncoupled interneurons spike asynchronously. Bottom left: Rasters of
all 256 interneurons and membrane potential (current) of one representative in-
terneuron. Top left: Histogram of spike activity (2 ms bins). Bottom right: Av-
erage spike rate for each interneuron. Top right: Distribution of spike rates for
all interneurons.

effectiveness. Near the cycle’s end, the positive feedback from
the axon-hillock turned on, overpowering the inhibition.

V. SILICON SYNCHRONIZATION

Having characterized an individual interneuron’s properties,
we tested several aspects of the silicon interneuron network’s
ability to generate synchrony, focusing specifically on the di-
rect role of the synapse’s rise time and the modulatory role of
its decay constant. DMS predicts the synaptic rise time should
control the network period, modulated by the decay constant.
We also varied the values of the interneuron’s other parameters
for comparison. To further challenge the network, we investi-
gated its ability to synchronize with noisy inputs as well as when
reciprocally connected to the excitatory principal neurons.

A. Uncoupled Network

For the uncoupled (16 by 16) network, we configured each
interneuron to inhibit only itself (analogous to a calcium-de-
pendent potassium channel population) by limiting the diffusor
spread (Fig. 7). Each interneuron spikes asynchronously at its
own rate with a constant input current (31 nA); together the
interneurons express a frequency coefficient of variation (CV)
of 0.24. The intrinsic variations among the neurons result in
spike rates between 16 Hz for the least excitable interneuron
and 72 Hz for the most excitable one.

B. Synaptic Rise Time

We tested the network’s ability to synchronize for infinites-
imal (0.1 ms) and finite (11.7 ms) rise times. We drove each
interneuron with a constant current (31 nA) and configured it to
inhibit itself and all of its neighbors, using a diffusor biased to
spread synaptic current globally (all to all). When the rise time
was infinitesimal, inhibition had less time to rise, reaching a
lower peak. Therefore, we increased the amplitude of inhibition
(by increasing the maximum level) in that case. In both cases,
the interneurons received about the same amount of inhibition,

spiking at about the same rate, with about the same number of
interneurons active. The average rate was 36 Hz versus 38 Hz
and the number of active interneurons (those that spiked at least
once in 250 ms) was 115 (45%) versus 120 (47%) with the finite
and infinitesimal rise times, respectively.

Synchrony by inhibition required a synaptic rise time. Using
an infinitesimal rise time, the network did not synchronize
[Fig. 8(a)], whereas using a finite rise time, the network syn-
chronized at 38 Hz [Fig. 8(b)]. We quantified synchrony by
calculating the network’s vector strength (VS) [36]. VS is a
normalized sum of unit-length vectors, one for each spike:
Their angles correspond to the spike’s phase relative to the
strongest frequency (from an FFT of 3 s of the population
histogram). If all of the neurons’ spikes lined up at the same
phase (perfect synchrony), VS would equal one. Conversely, if
the neurons’ spikes distributed themselves at random phases
(asynchronous), VS would approach zero. Unlike other syn-
chrony measures, VS does not penalize suppression of neurons,
which is useful in our system. VS penalizes frequency drift
and phase shift, however. To minimize this effect, we only
calculated VS across a brief period—750 ms. VS equaled 0.18
and 0.83 for the infinitesimal and finite rise times, respectively.

To confirm the synaptic rise time’s pivotal role in synchrony
(DMS), we varied it and measured the network period (the
inverse of the strongest frequency). The network period was
one to two times the rise time, depending on the fall time
(i.e., synaptic decay constant), plus an offset, caused by the
axon-hillock’s positive feedback overpowering inhibition
shortly before a spike. With a rise time of 11.7 ms, and a
synaptic decay constant of 5 ms [same as Fig. 8(b)], the net-
work period (24.2 ms), minus an offset (7.3 ms), was 1.44
times the rise time. This same proportionality constant yielded
a good fit for rise times ranging from 7 to 100 ms (Fig. 9). The
period deviated from the linear fit as the rise time approached
the decay constant (5 ms). The network was synchronous (VS
> 0.5) for rise times between 10 and 60 ms.

The offset had the effect of increasing the rise time by 5.1 ms
(7.3 ms + 1.44), which corresponds to a axon-hillock delay of
about 2.6 ms, since the rise time is twice the effective delay
(See Appendix II). The axon-hillock circuit takes several mil-
liseconds to fully depolarize the soma (and tens of nanoseconds
to send the spike off chip) once positive feedback takes over.
This effect is visible in the PRC: At the end of its period, the in-
terneuron is resistant to inhibition (Fig. 6). Positive feedback’s
speed depends on how far above threshold the input current
drives the soma and, therefore, on the magnitude of the input
current (inset of Fig. 4).

C. Other Synaptic Parameters

We have verified that the synaptic rise time affects the
network period directly. But because changing the rise time
changes both the inhibitory delay and amplitude (Fig. 5), it
is unclear which effect influences the period. If the change in
network period is caused by the change in inhibitory delay, we
expect that changing the synaptic strength (with a fixed rise
time) would not change the network period.
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Fig. 8. Synchrony requires finite synaptic rise time. (a) With a infinitesimal rise time (0.1 ms), the interneurons (115 of 256 active) spiked asynchronously (vector
strength = 0.18). (b) With a finite rise time (11.7 ms), the interneurons (120) spiked synchronously (vector strength = 0.83). Conventions are the same as in Fig. 7.
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eter values across figures.

To determine the synaptic strength’s influence on synchrony,
we varied it and measured the network period.3 The network
period was nearly constant, within 2 ms (7%), even though we
varied the synaptic strength nearly an order of magnitude (left
column of Fig. 10). Therefore, we conclude that rise time affects
the network period by changing the inhibitory delay, supporting
DMS.

The synaptic strength does not change the network period but
it has a strong effect on VS and number of active interneurons
(NAI). A small synaptic strength (less than 0.11 GQ~1!) results

3To estimate the synaptic conductance, we measured the synapse’s maximum
current (achieved by stimulating the synapse fast enough to keep M1 on)
through a current-out pad, divided by the pad amplifier’s gain (3564). We fit our
measurements to an exponential for various gate voltages on M p,, obtaining
Ivax and & values, which we used to calculate the equivalent conductance
(kImax/Ur), where Uz = 25.6 mV.
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Fig. 10. Synaptic strength, synaptic decay constant, and input current influence
network period as well as vector strength and number of active interneurons, but
none affect the network period as strongly as the synaptic rise time. Conventions
are the same as in Fig. 9.

in asynchronous spiking, because interneurons only weakly in-
teract and are, therefore, unable to entrain each other. As the
synaptic strength increases, VS increases, until it reaches a crit-
ical point (about 1.0 GQ ') where NAI becomes low, the net-
work exhibiting winner-take-all behavior.

We also investigated the synaptic decay constant’s role by
varying it and measuring the network period (middle column of
Fig. 10). Our analysis (Appendix II) predicts that the network
period is between two and four times the effective delay, with
the proportionality constant’s exact value determined by the
synaptic decay constant, which has a modulatory role (Fig. 1).
As predicted, the network period increased (16.5 to 31.9 ms)
with increasing synaptic decay constant (1.1 us to 27.3 ms) for
synchronous network states. Thus, the network period ranged
from 1.0 to 1.9 times the synaptic rise time (plus offset), consis-
tent with DMS.
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Fig. 11. Synaptic decay constant modulates network period (asterisks) in the
range of two to four times the effective delay (dashed lines). For synchronous
network states (light asterisks), the network period is similar to the predicted
value (solid line) with a rise time of 11.7 ms (plus 5.1 ms from the axon-hillock,
fit from Fig. 9).

We fit the synaptic decay constant’s effect on the network
period to our analytical prediction (See Appendix II)

tan(wd) = —wt 4)

where w is 27 divided by the network period, 7 is the synaptic
decay constant, and d is the effective delay. Using the estimated
effective delay and measured network period, we observe that
for synchronous states the data are similar to the predicted value
(Fig. 11).

D. Input Current

To evaluate the input current’s influence on synchrony, we
varied it, observing the change in network period. The input cur-
rent had a modulatory effect on the network period, which de-
creased from 38.2 to 19.6 ms as the input current increased from
13 to 46 nA (right column of Fig. 10). The input current changes
the network period indirectly by influencing the time it takes the
axon-hillock to spike after the soma reaches threshold, which
changes the delay offset. At medium input current (31 nA), an
axon-hillock delay of 2.6 ms accounts for the observed network
period of 24.2 ms. For a smaller input current (13 nA), a 7.4-ms
delay accounted for the extended network period (38.2 ms); for
a larger input current (46 nA), a 1.0-ms delay accounted for the
truncated network period (19.6 ms).

In addition to the axon-hillock delay, input current influenced
VS and NAI. At small input current levels (below 10 nA), in-
terneurons spiked at low rates, resulting in a deficiency of in-
hibition in the network, insufficient to synchronize the popula-
tion. As input current increased, spike rates and inhibition in-
creased, enabling synchrony, and increasing NAI. Large input
currents (above 50 nA) drove many interneurons hard enough
to make them insensitive to inhibition, resulting in an asyn-
chronous state. These most excitable interneurons suppressed
the other interneurons that were still sensitive to inhibition, re-
ducing NAL
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Fig. 12. Synchrony by inhibition is robust to noisy input. Interneurons driven
by Poisson-generated spikes (1-ms pulses, 600-Hz mean rate) synchronize
with the same frequency as with constant input [Fig. 8(b)]; however, the vector
strength reduces from 0.83 to 0.75. On the contrary, the number of active
interneurons increases from 120 to 148. Conventions are the same as in Fig. 7;
parameters are the same as in Fig. 8(b).

E. Poisson Input

Our results show that silicon interneurons synchronize in the
gamma frequency range. However, most of our neurons spike
at the network rhythm, which is inconsistent with biological
observations: Individual interneuron’s membrane potentials
(currents) phase-lock with gamma, but they do not spike each
cycle; instead, they skip cycles randomly due to suppression
from other interneurons in the population [37]. A numerical
study showed that neuronal variability and noise in excitatory
synapses can account for this biological behavior [38].

To test our network in a noisy environment, we replaced the
constant current input with Poisson pulses (1 ms) at an average
rate of 600 Hz (equivalent to 100 inputs at 6 Hz), generated in-
dependently for each neuron (Fig. 12). With all parameters the
same as without input noise [Fig. 8(b)], interneurons synchro-
nized with a network period (25 ms) almost identical to the one
without noise (26 ms).

As expected, interneurons failed to spike in every cycle, skip-
ping them when they received less input (randomly), which ren-
dered them susceptible to suppression by other interneurons
(Fig. 12; compare membrane potential trace with those in Figs. 7
and 8). The random spiking provided an opportunity for less
excitable interneurons to participate (NAI = 148 compared to
120 with constant input), because more excitable interneurons,
which inhibited them, did not spike every cycle. But it reduced
the network coherence (VS = 0.75 compared to 0.83 with con-
stant input) by jittering interneurons’ spiking phases. When we
reduced the input rate, which increased the noise and reduced
excitatory drive, VS and NAI decreased, but the network period
remained constant (not shown).

VI. EXCITATORY—INHIBITORY INTERACTIONS

Having characterized our interneurons’ synchrony, we tested
their ability to entrain the principal neurons. The interneurons
inhibit the principal neurons through the same diffusor they use
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Fig. 13. Interneurons synchronize when driven by excitatory principal neu-
rons, entraining them as well. The interneurons’ degree of synchrony increases
(vector strength = 0.95) with principal neuron input over constant input
[Fig. 8(b)]; however, the number of active interneurons decreases from 120 to
89. Conventions are the same as in Fig. 7. Light rasters and histogram represent
excitatory neurons; spikes from only one of four excitatory neurons from each
microcircuit are shown.

to inhibit each other. The principal neurons drive the interneu-
rons with fast excitatory synapses (1-ms current pulse) through
an additional diffusor (that spreads excitation broadly).

A. Principal Neuron Entrainment

To confirm that interneurons entrain principal neurons, we
drove the principal neurons with a constant current input. When
the principal neurons spiked, they drove the interneurons to
spike with some delay (6-ms average); the interneurons in turn
inhibited the principal neurons (Fig. 13). The current drive to
the interneurons then ceased, as did their spiking. Once the
inhibition decayed sufficiently, the principal neurons spiked
again, repeating the process. The network behavior was similar
to the interneuron network alone but with added delay—the
time the principal neurons spiked to the time the interneurons
spiked. Adding twice the average time difference to the effec-
tive delay we found earlier (from the fit in Fig. 9) yielded a
network period of 41.4 ms; we measured 42.9 ms.

The interaction between the interneuron and principal neuron
populations provided a structured input to the interneurons, in-
creasing VS to 0.95 [from 0.83 with the constant current input;
Fig. 8(b)]. The interaction decreased NAI to 89 from 120, a
result of the added variability in potency and timing from the
principal neurons’ excitatory drive to the interneurons. Unlike
Poisson input, excitation from principal neurons was repetitive,
providing approximately the same excitation each period; how-
ever, the drive received varied among interneurons. On one end
of the spectrum, interneurons near excitable principal neurons
that consistently spiked early and drove strong synapses, re-
ceived potent excitation, causing many of them to spike. On
the other hand, interneurons near lethargic principal neurons
that consistently spiked late and drove weak synapses received
feeble excitation, causing many of them to be silenced by inhi-
bition.

B. Application to Binding

In addition to entraining principal neurons across the whole
network, interneurons can entrain local, independent patches
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Fig. 14. Patches’ coherence (see Section VI-B) decreases as either distance
(2-axis) increases or diffusion (line style) decreases. [1: Average periods dif-
fered by over 0.2 ms. ¢: Average phases differed by over 20°. A: Average phases
differed by 10°-20°. O): Average phases differed by less than 10°. Icons: Black
disks and gray halo represent stimulated patches of principal neurons and the
range of inhibition, respectively.

of principal neurons with spatially distributed synchrony. They
generate spatially distributed synchrony when we reduce the
spread of inhibition, such that each interneuron only inhibits
principal neurons and other interneurons within a few micro-
circuits (nodes). This distributed synchrony can realize binding;
we define two patches as binding if they synchronize coherently.
We quantified the binding between two patches with their coher-
ence, defined as the normalized dot product of the two patches’
(interneuron) population histograms over 10 s, which yields a
value between zero (nonoverlapping histograms) and one (iden-
tical histograms).

We tested binding in the network by stimulating (with con-
stant current) two circular 145-principal neuron patches (3.4-
node radii) spaced various distances apart; we also varied in-
hibition’s diffusion constant (Fig. 14). Binding was largely in-
dependent of distance when the diffusion constant* was high
(4.4 nodes or more); coherence remained above 0.5. In contrast,
binding depended on distance when the diffusion constant was
low; as the distance between patches increased, coherence de-
creased.

Coherence between patches was degraded by two factors: pe-
riod and phase differences. To calculate the period or phase dif-
ferences between patches, we subtracted the period or phase
[found using a fast Fourier transform (FFT) as before] of the
first patch from that of the second (one second of data). We cal-
culated the average difference by repeating this procedure ten
times (over 10 s of data) and taking the root mean square (rms)
of the differences. When the rms period difference exceeded
0.2 ms (0.5%), coherence was low, ranging from 0.05 to 0.22.
When the periods were similar but the rms phase difference ex-
ceeded 20°, coherence was moderate, ranging from 0.20 to 0.57.
When the phase difference was between 20° and 10° or below
10°, coherence was high, ranging from 0.39 to 0.81 or from 0.60
to 1.00, respectively.

4We calculate the diffusion constant as +/wpy / wy, where wy =
wpoe™ VH/UT and wy = wyoe® YV/UT are the strengths of the diffusor’s
horizontal and vertical transistors. V' and V. are their gate voltages, and wr¢
and wy o are their width-to-length ratios, respectively. We set k = 0.75 and
Ur = 26.5mV.
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VII. DISCUSSION

Our work extends DMS to include the synaptic rise time
using the concept of effective delay and provides a quantitative
description of the synaptic decay-constant’s role as well (see
Appendix II). Previous DMS models used pure delays to model
synchrony in populations of inhibitory interneurons and only
provided a qualitative description of the synaptic decay con-
stant’s role [15], [16]. We have shown that effective delay in
the form synaptic rise time, generated by low-pass filtering of a
pulse, acts as a surrogate for a pure delay equal to half the pulse
width. Synaptic rise time is useful for generating synchrony in
physical systems, such as silicon systems, where pure delays
are hard to come by.

The rise time is not only necessary for synchrony; it deter-
mines the network period. We found the network period to be
proportional to the rise time, which delayed inhibition by be-
tween a quarter and a half cycle (depending on the synaptic
decay constant). This explains rise time’s role in setting the
period, as ideal network activity should be half a cycle out of
phase with inhibition (Fig. 1) [15]. In addition to rise time, other
sources of delay can influence the network period: Axonal prop-
agation is the primary source of delay in biology.

Our network represents the first neuromorphic model of pop-
ulation synchrony by inhibition, verifying that synchrony by in-
hibition is robust to neuronal variability (from transistor mis-
match). When inhibiting each other, 45%—47% of interneurons
were active. In the asynchronous case (fast rise time), these in-
terneurons had a frequency coefficient of variation (CV) of 0.52,
whereas in the synchronous case (slow rise time), the CV de-
creased to 0.28 (in both cases the CVs were 0.24 when each
neuron only inhibited itself). Further, this synchrony is robust
to parameter variations with the network achieving synchrony
when synaptic parameters varied nearly an order of magnitude
or more (depending on the parameter) and when input current
varied more than a factor of three.

Our silicon interneurons synchronize using shunting inhibi-
tion with a rise time, demonstrating that silicon is an appro-
priate medium to build dense networks of conductance-based
neurons. Although synchrony is robust to variations, inhibition
suppresses many lethargic interneurons. Augmenting inhibition
with fast excitation (gap junctions) among interneurons may in-
crease NAI by providing additional current to less excitable neu-
rons, giving them the chance to spike before being inhibited. In
addition, biology could employ other tactics (e.g., homeostasis)
to reduce variance, and thereby, rescue suppressed interneurons.

We have shown that local inhibitory interactions, which gen-
erate synchrony in a spatially distributed manner, can mediate
binding, which is not possible with a global clock. When these
interactions are far-reaching (mediated by a diffusive grid), co-
herence was weakly dependent on distance; however, when the
extent of the interactions is only a few nodes, coherence de-
pends strongly on distance: Patches of neurons were incoherent
until they fused into a single patch, realizing binding. The two
groups need only to have overlapping memberships to synchro-
nize, thus this mechanism is generally applicable—connections
among a few neurons that represent each aspect of an object are
sufficient to synchronize them all.

TABLE 1
TRANSISTOR SIZES AND CAPACITOR VALUES

Transistor Width / Length Transistor ~Width / Length
(um / pm) (um / pm)
Mai 14737 ME2, L4, P3 0.7/4.7
Maz4e 06/24 Mpi2 14720
Mas 0.6/22 M3 07/14
Mpi.2 0.7/5.1 Mpy 12747
Mps 12712 Mp, 1.7/25
Mpy, pa 14720 Mgi 0.6/1.1
Mg, 1.0/1.6 Mgz 0.6/3.1
Capacitor Value (fF) Capacitor Value (fF)
Cg 78 Cp 1500
CL 1400 Cr 37
APPENDIX I
See Table I.

APPENDIX II
SYNAPTIC RISE TIME IN SYNCHRONIZATION

DMS quantitatively describes the synchronous behavior of
populations of interneurons with axonal and synaptic delay, pure
delay. In this section, we extend DMS to include synaptic rise
time using the concept of effective delay. Specifically, we show
that the effective delay of a synapse whose impulse response
(i.e., spike response) is a low-pass filtered pulse is equal to half
the pulse width. Further, unlike previous analyses, we derive an
explicit role for the inhibitory decay constant. Building on the
arguments in [16], we show that it sets the network period to
between two and four times the effective delay, or equivalently
between one and two times the pulse width.

Consider a population of inhibitory interneurons whose ac-
tivity A(t) is modeled by the following differential equation:

AA(t) = —A(t) + F(I — k(t)  A(t)) (5)

where [ is the constant input current, k(t) is the synaptic im-
pulse response, F' is the neuronal transfer function, and ) is the
soma’s time-constant; * represents convolution in time. A can
be instantaneous when the feedback inhibition (or any input)
is fast [39], therefore, we set it to zero, which is equivalent to
assuming the network activity is 180° out of phase with the in-
hibition [15].

We wish to determine if a rhythmic solution exists. To this
end, we linearize the neuronal transfer function about the asyn-
chronous state A(¢) = C (in this state neuronal firing is con-
stant), which gives

0= —y(t) — ak(t) *y() (©)

where y(t) = A(t)—C is the difference of network activity from
the asynchronous state and « is the linearized neuronal transfer
function at the asynchronous state.

Next, we assume y(t) is periodic with a solution of the form
y(t) = e (w = 27 /T, where T is the network period) and
transform (6) into the frequency domain

0=-Y(w)—aY (w)K(w). @)
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We use a synapse whose impulse response is a convolution
of a pulse (width T},) and an exponential [40], which in the fre-
quency domain is represented by

G

K(w) = 2dBSinc(wd)e_i“d X m

(®)
where 7 is the synaptic decay constant, d = T},/2 is the effective
synaptic delay, B is the pulse amplitude, and G is the exponen-
tial amplitude. The pulse provides effective delay (whereas the
convolution of two exponentials would not).

We substitute (8) into (7) and separate it into two equations,
one for the real part and one for the imaginary part, using the
identity e’ = cos(z) + isin(x), which gives

sin(wd) = wT
s = 2adT BGsinc(wd)
-1
d) = .
cos(wd) 2adT BGsinc(wd) ©)

Assuming a solution exists (the right side of each equation
is between negative and positive one), the two equations can be
combined to obtain (4), which is identical to the relation for a
synapse with a (purely) delayed exponential impulse response
(similar to [16]).

Since tan(z) is negative for 7/2 < z < w, we see from
(4) that if 7 > d, wd = 7/2, yielding T = 4d, where T is
the network period. Conversely, if 7 < d, wd = =, yielding
T = 2d. Therefore, T' depends strongly on d, which provides its
absolute minimum and maximum (2d < T < 4d), and weakly
on 7, which determines the value it takes within this range. If we
relate the network period back to the pulse width, we see T}, <
T < 21, Thus, we have extended the model put forth by [16]
to include the synaptic rise time (using a pulse), which describes
the behavior of our silicon inhibitory interneuron network that
uses nonzero synaptic rise time instead of pure synaptic delay
to synchronize.
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