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Abstract—In this paper, a novel class of multiclass classifiers
inspired by the optimization of Fisher discriminant ratio and
the support vector machine (SVM) formulation is introduced.
The optimization problem of the so-called minimum within-class
variance multiclass classifiers (MWCVMC) is formulated and
solved in arbitrary Hilbert spaces, defined by Mercer’s kernels,
in order to find multiclass decision hyperplanes/surfaces. Af-
terwards, MWCVMC s are solved using indefinite kernels and
dissimilarity measures via pseudo-Euclidean embedding. The
power of the proposed approach is first demonstrated in the facial
expression recognition of the seven basic facial expressions (i.e.,
anger, disgust, fear, happiness, sadness, and surprise plus the
neutral state) problem in the presence of partial facial occlusion
by using a pseudo-Euclidean embedding of Hausdorff distances
and the MWCVMC. The experiments indicated a recognition
accuracy rate achieved up to 99%. The MWCVMC classifiers are
also applied to face recognition and other classification problems
using Mercer’s kernels.

Index Terms—TFace recognition, facial expression recognition,
Fisher linear discriminant analysis (FLDA), Mercer’s kernels,
multiclass classifiers, pseudo-Euclidean embedding, support
vector machines (SVMs).

1. INTRODUCTION

HE best studied techniques for binary pattern classi-

fication include Fisher’s linear discriminant analysis
(FLDA) [1], its nonlinear counterpart, the so-called kernel
Fisher discriminant analysis (KFDA) [2], [3], and support
vector machines (SVMs) [4]. A combination of SVMs and
FLDA has been performed in [5], where a two-class classifier
has been constructed, inspired by the optimization of the Fisher
discriminant ratio and the SVMs separability constraints. More
precisely, motivated by the fact that the Fisher’s discriminant
optimization problem for two classes is a constraint least
squares optimization problem [2], [5], [6], the problem of
minimizing the within-class variance has been reformulated,
so that it can be solved by constructing the optimal separating
hyperplane for both separable and nonseparable cases. The
classifier, proposed in [5], has been applied successfully in
order to weight the local similarity value of the elastic graphs
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nodes according to their corresponding discriminant power for
frontal face verification. It has been also shown there that it
outperforms the typical maximum margin SVMs in the specific
problem.

In [5], the proposed classifier has been developed only for
two-class problems. Moreover, only the linear case has been
considered and only when the number of training vectors is
larger than the feature dimensionality (i.e., when the within-
class scatter matrix of the samples is not singular). An effort
to extend the two-class classifiers of [5] in order to solve mul-
ticlass classification problems has been performed in [7]. The
limitation of the multiclass classifier constructed in [7] is that its
optimization problem has not been formally defined in Hilbert
spaces, but has been considered only for cases in which the
within-class scatter matrix of the data is invertible. The classi-
fiers proposed in [7] have been shown to outperform the typical
maximum margin SVMs in the recognition of the six basic fa-
cial expressions by large margins.

A lot of research has been conducted regarding facial expres-
sion recognition in the past 15 years [8]. The facial expressions
under examination were defined by psychologists as a set of six
basic facial expressions (anger, disgust, fear, happiness, sadness,
and surprise) [9]. The interested reader may refer to [7], [10],
[11] and the references therein, regarding the various technolo-
gies developed for facial expression recognition. In the system
proposed in [7], the Candide grid [12] is manually placed on the
neutral image and afterwards tracked until the fully expressive
video frame is reached. The vectors of the Candide node defor-
mations are the features that have been used for facial expression
recognition. The system requires the detection of the neutral fa-
cial expression prior to tracking and recognition. Highly related
methods with the one proposed in [7] have been also proposed
in [13] and [14].

In this paper, a general multiclass solution of the optimization
problem proposed in [5] and [7] is presented. The problem is
solved in arbitrary Hilbert spaces built using Mercer’s kernels,
without having to assume the invertibility of the within-class
scatter matrix neither in the input nor in the Hilbert space. In this
way, a new class of multiclass decision hyperplanes/surfaces is
defined. In order to build our classifiers in arbitrary dimensional
Hilbert spaces, we use a method similar to the one proposed in
[3]. In [3], a framework for solving the Fisher discriminant opti-
mization problem (the KFDA optimization problem) using ker-
nels has been proposed. That is, in [3], it has been shown that by
using kernel principal component analysis (KPCA), it is feasible
to solve KFDA using kernels and that under KPCA the nonlinear
Fisher discriminant analysis optimization problem with kernels
is transformed into an equivalent linear (without kernels) op-
timization problem that produces the so-called complete kernel
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Fisher discriminant analysis (CKFDA). Since the approach pro-
posed in this paper requires the solution of a quite different op-
timization problem than the one in [3] (i.e., the optimization
problem in [3] is solved via eigenanalysis and our problem is
a quadratic optimization problem), we explicitly prove that the
framework in [3] can be safely applied in our case for providing
solutions to proposed classifiers. Moreover, we provide some in-
sights of the relationship between the proposed multiclass clas-
sifiers and the classifiers proposed in [3].

Afterwards, the problem is solved using indefinite kernels
and/or dissimilarity measures with the help of pseudo-Euclidean
embedding. The extension of the proposed classifiers using dis-
similarity measures for facial expression recognition problems
is motivated by the following. In [7], facial expression recogni-
tion has been performed by classifying the displacements of the
grid nodes between the neutral and the expressive grid. In that
case, the knowledge of the neutral state is required a priori. In
order to be able to recognize the neutral state, as well as the other
expressions, we had to deal with directly comparing grids (and
not grid displacements). The grids consist of a set of points and
some of the most widely used measures for comparing point sets
that are also robust to a series of manipulations (i.e., partial oc-
clusion, etc.) is the family of Hausdorff distances (which are dis-
similarity measures). Thus, we had to successfully combine the
multiclass classifiers (which are naturally defined in Euclidean
spaces) with pseudo-Euclidean spaces defined by dissimilarity
measures. By using the proposed classifier in pseudo-Euclidean
spaces, combined with Haussdorf distances, the recognition of
the six basic facial expressions plus the neutral state is achieved.

The use of dissimilarity measures and indefinite kernels has
gained significant attention in the research community due to
their good performance in various pattern recognition applica-
tions [15]-[18]. In [15], various classifiers, such as two-class
FLDA and maximum margin SVMs, have been designed in var-
ious pseudo-Euclidean spaces. For more details on the geometry
of Euclidean and pseudo-Euclidean spaces, the interested reader
may refer to [19]-[23]. In [16] and [18], indefinite kernels have
been used for feature extraction to boost the performance of face
recognition. The geometric interpretation of maximum margin
SVMs with indefinite kernels has been given in [17].

In summary, the contributions of this paper are as follows:

» the presentation of the minimum within-class variance
multiclass classifiers (MWCVMC) in their general form
for multiclass classification problems using the multiclass
SVM formulation in [4] and [24], the exploration of their
relationship with SVMs, and with FLDA;

* the generalization of MWCVMC in arbitrary Hilbert
spaces, using Mercer’s kernels in order to define a novel
class of nonlinear decision surfaces;

* the solution of MWCVMC using indefinite kernels and
pseudo-Euclidean embedding.

Finally, the power of the proposed classifiers is demonstrated in
various classification problems. In order to show the potentials
of the proposed MWCVMCs we apply the following:

e Mercer’s kernels, such as polynomial kernels, for face
recognition and for various other classification problems
using multiclass data sets from University of California at
Irvine (UCI) repository [25];

 dissimilarity measures with pseudo-Euclidean embedding
for the recognition of seven basic facial expressions.

The rest of this paper is organized as follows. The problem is
stated in Section II. The novel class of multiclass classifiers in
Hilbert spaces is developed in Section III. The proposed clas-
sifier in pseudo-Euclidean spaces is described in Section IV.
The application of the novel classifiers in facial expression, face
recognition, and other classification problems is demonstrated
in Section V. Conclusions are drawn in Section VI.

II. PROBLEM STATEMENT

Let U be a training data set with finite number of elements
U = {xi,i € {1,...,N}}, whose elements belong to two
different classes U1 and U5, containing training data samples
(feature vectors) x; € RM and class labels y; € {1,—1}. The
simplest way to separate these classes is by finding a separating

hyperplane
wlix+b=0 (1)

where w € RM is the normal vector of the hyperplane and
b € R is the corresponding scalar term of the hyperplane, also
known as bias term [5]. The decision whether a test sample x
belongs to one of the different classes {41 or U is taken by using
the linear decision function gy 4(x) = sign(w”x + b), also
known as canonical decision hyperplane [4].

A. Fisher Linear Discriminant Analysis

The best known pattern classification algorithm for separating
these classes is the one that finds a decision hyperplane that
maximizes the Fisher’s discriminant ratio, also known as FLDA

wlS,w

X TS w 2)

where the matrix S,, is the within-class scatter matrix defined
as

Sw = Z (x—my)(x—m; )"+ Z (x—my)(x—my)?. (3)

xXEUL xXEU>

m; and mj are the mean sample vectors for the classes ¢/; and
Uo, respectively. The matrix S, is the between-class scatter ma-
trix defined in the two class case as

Sy =Ni(m —m;)(m — ml)T
+ Na(m — my)(m — my)? 4
= N1 Na(my — my)(m; — my)” (5)

where N7 and N, are the cardinalities of the classes U/ and
Us, respectively, and m is the overall mean vector of the set
U. The solution of the optimization problem (2) can be found
in [1]. It can be proven that the corresponding separating hy-
perplane is the optimal Bayesian solution, when the samples of
each class follow Gaussian distributions with same covariance
matrices [1].



B. Support Vector Machines

In the SVM case, the optimal separating hyperplane is the
one which separates the training data with maximum margin
[4]. The SVM optimization problem is defined as

1
min —w’'w (6)
w,b

subject to the separability constraints

yi(wlx; +b) > 1, i=1,...,N. (7

C. Minimum Within-Class Variance Two-Class Classifier

In [5], inspired by the maximization of the Fisher discrim-
inant ratio (2) and the SVM separability constraints, the min-
imum within-class variance two-class classifier MWCVTCC)
has been introduced. The MWCTCC optimization problem is
defined as

min WTS“,W, wlS,w>0 (8)

w,b

subject to the separability constraints (7). Thus, the within-class
variance of the training samples is minimized when projected to
the direction w subject to the constraint that the samples are sep-
arable along this projection. More details about the motivations
of the optimization problem (8) can be found in [5].

If training errors are allowed, the optimum decision hyper-
plane is found by using the soft formulation [4], [5] and solving
the following optimization problem:

N
min w’'S,w + C i wlS,w>0 9
. ;ﬁ ©)

w,b,

subject to the separability constraints

(Wi +b)>1-¢,6>0,  i=1...,N (10

where & = [{1,...,&nN] is the vector of the nonnegative slack
variables and C' is a given constant that defines the cost of the
errors after the classification. Larger values of C' correspond to
higher penalty assigned to errors. The linearly separable case
(8) can be found when choosing C' — oo.

The solution of the minimization of (9), subject to the con-
straints (10), is given by the saddle point of the Lagrangian

N
L(W*, b7 a*, I‘.{g) = WTSU)W + OZ 67'
N =1 N
=S (W R H b)) — 1+ 6] = S mg (D

i=1 =1

where a = [a1,...,ax]T and r = [rq,...,rn]7 are the vec-
tors of the Lagrangian multipliers for the constraints (10). The
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Karush—Kuhn—Tucker (KKT) conditions [26] imply that for the
optimal choice of w, a, r, b, &, the following hold:

N

1
VWL|W:WO =0¢ Swwo = 5 Z i 0YiXq
=1

oL

— =0&aly=0

b |y, B ¥
oL
B :0<:>7‘i7020—ai70

fi £i=Eio0

Ti0 > 07 0< Aj.0 < 07 fi,o > Ovri,ogi,o =0
Yi (W2 Xi+bo) =14 &0 > 0,05, {yi (Wi Xi+bo) —14&i 0}
=0 (12)

where the subscript o denotes the optimal case and
vy = {yi1,...,yn} is the vector denoting the class labels.
If the matrix S,, is invertible, i.e., the feature vector dimen-
sionality is less or equal to the number of samples minus two
(M < N — 2), the optimal normal vector w of the hyperplane
is given by (12)

1 1 N
Sww, = 3 2; a; o YiXi & W, = 55;1 Z; a;oyiXi. (13)
1= 1=

By replacing (13) to (11) and using the KKT conditions (12),
the constraint optimization problem (9) is reformulated to the
Wolf dual problem

1
max f(a) = 15a — §aTQa

subjectto 0 < a; < C, i=1,...,N, aly =0

(14)

where 1y is an N-dimensional vector of ones and [Q]; ; =
(1/2)yiy;xF'S,1x;. It is worth noting here that, for the typ-
ical maximum margin SVM problem [4], the matrix Q has ele-
ments [Q];.; = v;y;x; x;. The corresponding decision function
is given by

N
1
g(x) = sign(w’x +b) = sign <§ Z aioyiXi Sytx + b, | .

= 5)
The optimal threshold b, can be found by exploiting the fact
that for all support vectors x; with 0 < a;, < C, their corre-
sponding slack variables are zero, according to the KKT condi-
tions (12). Thus, for any support vector x; withi € § = {i :
0 < a; < C}, the following equation holds:

N
1
Yi 3 Zyjaj,oxjrs;lxi +b, | =1. (16)

i=1

Averaging over these patterns yields a numerically stable
solution

N
1 1 Tq-1
bo= 2 | 52 ¥imiex) Syt xi — i (17)

= j=1
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As can be seen, the described MWCVTCC [5] have been pro-
posed for two-class problems and define only linear classifiers.
Actually, in [5], nonlinear decision surfaces have been defined,
but there were not the generalization of MWCVTCC in Hilbert
spaces. These surfaces will be discussed in Section III-B.

D. Multiclass SVM

Many methods have been proposed for the extension of
binary SVMs to multiclass problems [4], [24], [27], [28]. The
multiclass SVMs classifiers in [4], [24], [27], and [28] are
the most elegant multiclass SVM algorithms closely aligned
with the principle of always trying to solve problems directly.
That principle entails the modification of the SVM objective
in such a way that it simultaneously allows the computation of
a multiclass classifier learning with kernels [4]. Nevertheless,
the theory that will be presented in the next sections can be
extended using other multiclass SVM classifiers in a straight-
forward manner. The interested reader can refer to [4], [24],
[27], [29], and the references therein for the formulation and
solution of multiclass SVM optimization problems.

Let the training data set I/ be separated to K disjoint classes
Uy,...,Uk. The training data are (x1,l1),...,(xn,In) and
l; € {1,..., K} are the class labels of the training vectors. The
multiclass SVM problem solves only one optimization problem
[27]. It constructs K classification rules, where the kth function
w} ¢(x;)+ by, separates the training vectors of the class & from
the rest of the vectors, by minimizing the objective function

K N
. 1 T k
min o> wiwi+C) D g (Y
k=1 j=1 k£,
subject to the constraints
W?;Xj +by, > WX+ b +2 — f;
& >0, j=1,...,N, ke{l,...,K}\l; (19

where C is the term that penalizes the training errors.
The vector b = [by...bg]|T is the bias vector and
& = [&,...,&k . €8]T is the slack variable vector.
Then, the decision function is

f(x) = arg max (Wi x +by) . (20)

k=1,..,K
For the solution of the optimization problem (18), subject to the
constraints (19), the reader can refer to [4], [24], and [27].

E. Relationship Between the Minimum Within-Class Variance
Classifiers and Support Vector Machines

In this section, we will explore the relationship between
MWCVTCC and maximum margin SVMs. Let us define the
following optimization problem:

1
min ~w’S,w (21)
w,b 2
under the separability constraints
yi (Wh(x; —m) +b) > 1 (22)

which is the MWCVTCC (under some minor calculations, i.e.,
subtracting the mean vector from all vectors).

Let the matrix S,, be nonsingular. We consider the trans-
formed vectors x; to the vectors p; = S;(l/ 2)(x,,; — m) and
by letting w = Sllu/ 2 g, the above optimization problem is refor-
mulated to a maximum margin classifier (g, b) such that

.17
= 23
Hgl}gl 2g g (23)
subject to the separability constraints
yi(g"pi+b) > 1. 24)

The above analysis shows that MWCVTCCs are equivalent to
maximum margin classifiers when the within-class scatter ma-
trix is the identity matrix.

The geometric interpretation of the optimization problem
(21) subject to the constraints (22) and of the equivalent opti-
mization problem (23) subject to (24) is pictorially described
in Fig. 1(a) and (b). The optimum hyperplane in the case of
the optimization of (21) subject to (22) is demonstrated in
Fig. 1(a). The optimum hyperplane in this case is the one with
normal vector such that r7 + 73 is minimized. The equivalent is
a maximum margin hyperplane (maximize 2r) in a normalized
space where S,, = I, as described in Fig. 1(b).

Another attempt to relate further MWCVTCCs, maximum
margin SVM classifiers, and the recently introduced Ellip-
soidal kernel machines [30] is through the following. From
Vapnik—Chervonenkis (VC) dimension theory for a set of
binary classifiers in R with minimum margin p and under
the assumption that the data are enclosed in a hypersphere with
radius R, then the VC dimension h is

R2
hSphere = min {ceil (—2> /M} +1
p

where ceil is the ceiling operator. The VC dimension is di-
rectly related to the generalization error [4], [30], [31]. The
theory of SVMs has emerged from the above equation. That is,
in SVM theory, the family of classifiers obtained by the con-
straint optimization problem (6) maximize the margin, while
the constraints (7) ensure empirical error minimization. As can
be seen by the generalization error theory [4], [30], the VC di-
mension depends not only on the margin but also on the di-
ameter of the enclosing hypersphere. The geometric area of a
hypersphere in ®Y with radius R and center m is defined as
(x—m)T (x—m) < R?, orequivalently, (x—m)? A(x—m) <
1 with A being an M x M diagonal matrix with diagonal ele-
ments A; ; = 1/R2.

Let us now consider the enclosing hyperellipse with semi-
major axis equal to R. The minimum enclosing hyperellipse is
defined as G = {x : (x —m)"S™!(x — m) < 1} where
S is the covariance matrix of the hyperellipse. From the above
observation, it is easy to show that for the VC dimension of a
classifier defined in a hyperellipse, it is valid that

(25)

th < hSphoro~ (26)



(a)
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(b)

Fig. 1. Geometrical interpretation of minimum within-class variance two-class classifiers: (a) the optimization problem (21) subject to the constraints (22) finds
the optimum hyperplane w’'x + b such that the variances r? + 72 is minimized subject to data separability; (b) the equivalent optimization problem (23) subject
to the constraints (24) is to find a maximum margin SVM hyperplane in a space where S,, = I (i.e., maximize 27 subject to separability).

The above can be easily proven by observing that the area de-
fined by the hyperellipse is inside the hypersphere [30]. Sup-
pose the two parallel hyperplanes that define the classifier can
shatter [-points for a known margin in the hyperellipse. Then,
the exact [-points can be shattered having the same margin in
the hypersphere.

As has been shown by the above analysis, the so-called ellip-
soidal classifiers in [30] have VC dimension less or equal to the
dimension of maximum margin classifiers. The ellipsoidal clas-
sifiers minimize the functional w” Sw (instead of the functional
wTw for SVMs and w’'S,,w for MWCVTCCs). Thus, the
ellipsoidal classifiers [30] are equivalent to maximum margin
classifiers subject to the transformation p; = S~(*/2)(x; — m).
In MWCVTCCs, we use Sip ™/ instead of S~(1/2) . The above
is a first attempt to relate intuitively the proposed classifiers
with maximum margin classifiers and the ellispoidal classifiers
in [30].

III. MINIMUM WITHIN-CLASS VARIANCE MULTICLASS
CLASSIFIERS USING MERCER’S KERNELS

In this section, we describe the way the two-class
MWCVTCC (described in Section II-C) can be extended
to multiclass classifications problems using the multiclass
SVM formulation presented in [4], [24], and [27]. The proce-
dure followed in order to generalize in arbitrary Hilbert spaces
the optimization problem (9) subject to the constraints (10),
using a nonlinear function ¢, so as to define decision surfaces,
is also presented. The training data x; are initially mapped to
an arbitrary Hilbert space under the map ¢ : R — H.In
this section, only the case in which the mapping ¢! satisfies
the Mercer’s condition [4] (or conditionality positive kernels)
will be taken into consideration. It is not necessary to know
the explicit form of the function ¢, since all the algorithms that

IThe following discussion holds for the linear case as well, when (b(x) =X
and is interesting since it provides solutions in linear cases when the number of
samples is smaller than the dimensionality, i.e., the within-class scatter matrix
is singular.

will be defined from now onwards require only the close form
of the dot products in H, the so-called kernel trick

h(x,y) = ¢(x)" p(y) 27
where h is called the kernel function. The typical kernels used
in literature are the polynomial and the radial basis functions
(RBFs)

h(x,y) =¢(x)"p(y) = (x"y + 1)
_ =T (x=y)

h(x,y) =¢(x)"¢(y) =e 7 (28)

where d is a positive integer that is the degree of the polynomial
and 7 is the spread of the Gaussian kernel.

A. Solution of the Optimization Problem
Using Mercer’s Kernels

The constrained optimization problem (9) subject to (10) is
extended in Hilbert spaces using the multiclass SVM formula-
tion in Section II-D. This novel multiclass classifier is the gen-
eralization of the two-class problem defined in (9) in arbitrary
Hilbert spaces. The within-class scatter matrix of the training
vectors is defined in the K -class case as

ST=3" 3 (9(x) — mf) (6(x:) ~m)”

k=1x;EUy

(29)

where mf is the mean vector of the class U, i.e.,
D _
my = (1/Nk) 3y, e, #(%i)-
The modified constraint optimization problem is formulated
as

min
wy,b,§

K 1 N
> §w;§s:{’,wk +CY > &k

k=1 J=1k#l;

(30)
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subject to the separability constraints in

m‘I’)—{—blj ZwkT (¢(xj)—
j=1,...,N, kefl,...,

m®) + by, +2 - ¢F,
K}\l; (3D

and inspired by the above constraints, we propose a variant
where we subtract the mean of each class from the vectors. In
this case, we have to solve the optimization problem (30) sub-
ject to

wi (4(x;)
& >0,

_mf;)—i_bl] > wi (¢(x]) —mf)—i—bk—l—Z—ff,
j=1,...,N, ke{l,....K}\l;. (32

The solution of the constraint optimization problem (30) sub-
ject to the constraints (31) can be given by finding the saddle
point of the Lagrangian

Ll(wk7b757a7ﬂ)

K 1 N K N K
D PR R 3 D B W
k=1

i=1 k=1 i=1 k=1
X [(wli —wi)" (p(xi)—m®) + by, _bk_2+€ﬂ

N K
=D pret

(33)
i=1k=1
where « = [af,...,« ,ak] and B =
[B,....B5 ... ,BK] are the Lagranglan multipliers for
the constraints (31) with
ali=0 ¢i=2 pl=o, i=1,...,N (34)
and constraints
af >0 pF>o0, i=1,...,N, Ee{l,....,K}\1I;.
(35)

For the second optimization problem of the variant
MWCVMC s [i.e., (30) under the constraints (32)], the corre-
sponding Lagrangian is

LZ(WIW b7§7a7:8)

> .
S SRCLIIRC) 3 S 3 3t
k=1

i=1 k=1 i=1 k=1

X [WZT ((j)(xi)—mf’) —WZ (¢(Xi)_m}f)

ke

i=1 k=1

+b;, —bk—2+€ (36)

The Lagrangian equations (33) and (36) have to be maxi-
mized with respect to @ and 8 and minimized with respect to
w and €. In order to produce a more compact equation form, let
us define the following variables:

K
A=yt &=}

i1 £ k. 37

One of the KKT conditions for the Lagrangian (33) requires

[
VWL»L1|WL»:WA‘,0 =0« Sw
N

= Z (Ci'cAi,o —

=1

Wk,o

af,) (¢(x;)—m?®) (38)

where m?® = (1/N) Zf\;l ¢(x;) is the mean vector of the pro-
jected samples, and for the second Lagrangian (36)

L]
Vwk L2|Wk:Wk.o =0 Swwkyo
N

=Y (cfAio—af,) (p(xi)—mf) (39)
=1

where the subscript o denotes the optimal parameter choice.
Since the Hilbert space H is of arbitrary dimension, the matrix
S® is almost always singular. Thus, the optimal normal vector
Wy, cannot be directly found from (38) or from (39), since the
matrix S& cannot be inverted. A solution of the optimization
problem (30) subject to the separability constraints (31) [and of
(30) subject to (32)] will be provided without having to assume
that the within-class scatter matrix of the data is invertible, nei-
ther in the input space R nor in the Hilbert space 7. The exis-
tence of a solution to this optimization problem will be justified
by proving that we can find a mapping that makes the solution
feasible. This mapping is the kernel PCA (KPCAZ2) transform
[32].

Let the total scatter matrix Sy" in the Hilbert space H be de-
fined as

N

$F =3 (4(x) ~ m®) (d(x)) ~ m®)"

i=1

(40)

The matrix Sf’ is a bounded, compact, positive, and self-ad-
joint operator in the Hilbert space H. Thus, according to the
Hilbert—Schmidt theorem [26], its eigenvectors system is an or-
thonormal basis of H. Let B and B} be the complementary
spaces spanned by the orthonormal eigenvectors of S that cor-
respond to nonzero and zero eigenvalues, respectively. An arbi-
trary vector w € H can be uniquely represented as w = ¢ + ¢
with ¢ € B? and ¢ € B?. Let us define the linear mapping

®:H — B®as

w=p+(— . 41)

The following proposition demonstrates that the optimization of
the (30), subject to the constraints (31), can be performed in the
space B®, instead of H, without any information loss.

Proposition 1: Under the mapping L®, the optimization
problem (30) subject to the constraints (31) is equivalent to

K 1 N
S aelste 0y S g
k=1

J=1 k#l;
2This is particularly important for the small sample size problem in which
the within-class scatter matrix is singular. In the linear case, i.e., d)(x) = x, the
KPCA degenerates to the typical PCA transform.

min

4
®;.,b€ ( )
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subject to the constraints
m®) + b, > @ (¢(x;) —m®) + b +2 £
j=1,...,N, ke{l,....,K}\l;. 43)

The corresponding optimization problem for the MWCVMCs
variant is to optimize (42) subject to the constraints

@ (¢(Xj)
& 20,

—m{) by, > of (dxg) —m) + by +2 - €}
j=1,...,N,  ke{l,...,K}\l;. (44

]

A proof of this Proposition can be found in Appendix L.

The optimal decision surfaces of the optimization problem
(30) subject to the constraints (31) and of (30) subject to (32)
can be found in the reduced space B® spanned by the nonzero
eigenvectors of S¥. The number of the nonzero eigenvectors of
S? ism < N —1, Thus, the dimensionality of BZism < N—1.
Therefore, according to the functional analysis theory [33], the
space B is isomorphic to the (N — 1)-dimensional Euclidean
space RV ~!. The isomorphic mapping is

p=Pn neR"! 45)
where P is the matrix having as columns the eigenvectors of
S that correspond to nonnull eigenvalues. Equation (45) is a
one-to-one mapping from RV ~! onto B.

Under this mapping, the optimization problem is reformu-
lated to

min

46
7;,b.€ ( )

Z S u’7k+CZka

= J=1 k#l;

where S, is the within-class scatter matrix of the projected vec-
tors at the nonnull KPCA space given by S,, = PTS2P, sub-
ject to the constraints

(X — W) + by, > m (% — ) + by +2 - &

>0, j=1,...,N,  ke{l,...K}\l; @7
and for the variant the constraints are
nf (% —1y)) + by, > af (% — ) + by +2 - €

>0, j=1,...,N, ke{l,....K}\l; 48

where x; = PT¢(x;) and my, = PTm} are the projected vec-
tors to the nonnull KPCA space. More details on the calculation
of the projections to the KPCA space can be found in [3] and
[32]. Under mapping (45), the optimal decision surface in H for
the optimization problem (42), subject to (43), can be found by
solving the optimization problem (46) subject to (47) in RN 1

Howeyver, the matrix éw may still be singular, since its rank is
equal to V — K. If this is the case, i.e., Sw is singular, it contains
K null dimensions. Thus, in order to satisfy the invertibility of
S. along with the null eigenvectors of P, K more eigenvectors
are discarded, which correspond to the lowest nonzero eigen-
values. An alternative way here is to perform eigenanalysis on
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the singular matrix Sw and remove the eigenvectors that cor-
respond to null eigenvalues (the latter case requires a second
eigenanalysis).

The Lagrangian of the optimization problem (46) subject to
the constraints (47) is given by

(49)

The search of the saddle point of the Lagrangian (49) is re-
formulated to the maximization of the Wolf dual problem

N K
1 1, L1
W(a)=2 Z Z af—l—i Z <—§cj A;Aj+akali - 2afa§>

X (%;—m)S;(x;—m) (50)

which is a quadratic function in terms of a with the linear
constraints

N N
k_ k

E a; = E c; Ai,

i=1 i=1

The above optimization problem can be solved using optimiza-
tion software packages [27] or the MATLAB [34] function
quadprog. The corresponding decision hyperplane is

(D

f(x)= arg max (W,{ (gb(x) — mq)) + bk)

k=1,...,.K

= arg max Ao — i’o) (gb(xz) — mq))T
o =1
x PS,'PT (4(x) — m®) + b | (52)
as detailed in Appendix II.
For the variant [i.e., (46) subject to (48)], the corresponding
Lagrangian multiplier is

(nlmb 6 o ﬂ) «
—Z mSwﬂHCZZf’“ ZZ@
1=1k=1 i=1k=1
[?71,( X;—1iy,) =0, (X —1hg) + by, —bp—2+&] ]
N K
- prek (53)
1=1k=1

as can be seen in Appendix III. The Wolf dual problem is the
maximization of

K N N
W(a) = 22 af + Z Z Zwi7j7kxi§;1xj

(54)
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Fig. 2. Diagram of the MWCVMC training procedure.
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Fig. 3. Diagram of the MWCVMC testing procedure.

where w; ; 1, is defined in Appendix III. The corresponding de-

cision function for the variant is
f(x) = arg max (w] (¢(x) — my) + by)
k=1,.. K
= arg KAi, —af ;) —my g
arg max Z (cFAi, —af,) (¢(xi) — mf)

—mf) +bio|. (55)

Summarizing, in the training phase, the samples are first pro-
jected using KPCA. Afterwards, the optimization problem (46)
subject to (47) [or the variant (46) subject to (48)] is solved. The
training phase is schematically described in Fig. 2. When a test
sample arrives, it is first projected using KPCA and afterwards
it is classified using (52) or (55). The test step is schematically
described in Fig. 3.

B. Alternative Multiclass Decision Surfaces in [5] and [18]

The decision surfaces proposed in [5] and [7] have been
inspired by the solution of the linear case where the term
x!'S,'x; is employed in the dual optimization problem (14).
Assuming that the original within-class scatter matrix of the
data is not singular, this term has been expressed as an inner
product of the form (S_(1/2) i)T(S;(l/z)xj) (if S, is invert-
ible, then it is a positive—definite matrix). Then, in [5], instead of
projecting x; using ¢ (as described previously), the transformed
vector Sy, x; is projected in the Hilbert space (also using
¢) and the matrix [Q];; = (1/2)yiy;h(Sw™ Vxi, Su M Px,)
is used for the solution of the dual optimization problem. Of
course, the decision surface provided in [5] does not constitute

MWCVMC w2

the solution of the optimization problem of MWCVTCC in
Hilbert spaces.

Following this strategy, the nonlinear multiclass decision
surfaces proposed in [7] have been formulated. The fact that
the term XTS X, can be written in terms of dot products as
(Sw(l/ Dx; (s, (72 xj) is taken under consideration. Then,
kernels are apphed in (50) as

N K
ZZZQ
i=1 k=1

l; kL
+ <—§Cj AZAJ + ;o) —

1 k_k
§Oli CYJ>

(56)

[\3|’—‘
>;-

1!7

x h (Sw%xi7 S;%xj) .

The corresponding decision function is

]\T
; [Z (cfAi—a?)h(S;%xi, S;%x) bl
K

f(g)=argmax =
k=1 i=1

yeeey

(57)

The above decision surfaces are not the ones derived from
the generalized MWCVMC optimization problem (30), subject
to the constraints (19), which is described in Section III. It has
been shown, in [7], that these surfaces outperform maximum
margin SVM in facial expression recognition. Moreover, in [5],
it has been shown that the above surfaces outperform maximum
margin SVMs in a two-class problems for face verification. As
we already mentioned, we have generalized the methods and
concepts presented in [5] and [7] using arbitrary Mercer’s kernel
in multiclass problems (the two-class problem is a special case
of the treated problem).

C. Relationship With Complete Kernel Fisher
Discriminant Analysis

In this section, the relationship of the proposed decision hy-
perplanes/surfaces with the ones derived through CKFD [3] is
analyzed. Only the linear case will be considered, in our discus-
sion, since the nonlinear case is a direct generalization of the
linear one using Mercer’s kernels.

As it has been shown by the Proposition 1, in order to solve
the linear or the generalized nonlinear constraint optimization
problems of MWCVMCs, the problem can be solved in RV 1
using PCA (KPCA using a linear kernel becomes PCA), where
an equivalent linear can be solved.
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wiSyw =0

Fig.4. Tllustration of the effect of the projection to a vector w withw’'S,, w =
0.If wTS;w > 0 is valid for the vector w, then all the training vectors of the
different classes are projected to one vector different for each class, while if
wTS,;w = 0, all the training vectors are projected to the same point.

In the linear case (i.e., when a linear kernel h(x,y) = xTy
is used), in order to move from RV~ to RN ~K we have re-
moved K columns from the matrix P (the PCA matrix), which
are the eigenvectors that correspond to the lowest nonzero eigen-
values of S;. If these columns are not removed from P, then
S, = PTS,,P contains K eigenvectors p,, that correspond to
a null eigenvalue. Let vy, € RM be vy, = Pp,., then, under the
projection to vy, all the training samples are separated without
an error, since v} S,,v;, = 0 and v} S,vy > 0. That is, vy, is
a solution of the optimization problem (9) and since the data
are projected to the 1-D space, it is very easy to find thresholds
in order to perfectly separate the projected vectors. This can be
easily proven by observing that all samples after projecting to
one of the directions v;, fall in the center of each class [35].

Fig. 4 describes pictorially the effect of the vectors w (K total
vectors) for the cases, w!'S,,w = 0 and wI'S;w > 0.

It is interesting to notice that the vectors vy, are the same ones
given by the irregular discriminant projection defined in [3] and
[36]. That is, the vectors vy, are produced by the solution of the

optimization problem
max tr[WIS, W] (W = [wy,...,wg]||wi|] = 1)

wi ERM

subjectto Wi S, Wi =0 (58)

which is also a maximization point of the Fisher discriminant
ratio

WIS, W]
~ w[WTS, W]

that makes J(U) — +oco0 and (U = [vy,...,vk]). Summa-
rizing, we can tell that we remove the K dimensions of the
space RV 1 due to the fact that the interesting vectors w;, with
wT'S,,wi, = 0 that provide fully class separability can be only
found by eigenanalysis and not by solving a quadratic optimiza-
tion problem. Hence, in the new space RN=K _all the solutions
7);, of the MWCVMC optimization problem satisfy 7 S, >
0.

J(W) (59)

IV. MINIMUM WITHIN-CLASS VARIANCE MULTICLASS
CLASSIFIERS IN PSEUDO-EUCLIDEAN SPACES

In the previous section, only conditionally positive kernels
have been considered [17]. In this section, the use of not condi-
tional positive kernels (i.e., indefinite kernels and dissimilarity
measure) along with the MWCVMC will be presented. In [15]
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and [37], a unified theory for (dis)similarity measures and ker-
nels has been developed. In terms of kernels, the Lo similarity
measure between the two vectors x; and x; using a function ¢
can be written as
d(xi, %) = [[p(xi) = $(x;)]”
= p(xi) " (xi) — p(xi) d(x;) — b(x;) " b(xi)
+d(x;) " p(x;)

= h(xi, %) — 2h(x;,%;) + h(x;, %x;). (60)
Let us define the similarity (or dissimilarity) matrix D € RNV >N
as
[Dlij = d(xi, x;). (61)
The centered matrix B is defined as
B= —%JDJ (62)

where J = Inyny — (1/N)1y1% € RYXN is the centering
matrix, Inyxn is the N x N identity matrix, and 1y is the
N -dimensional vector of ones. It can be proven that the matrix
B is positive semidefinite, if and only if the kernel A is con-
ditionally positive [37]. Many kernels exist, which have been
used very successfully in pattern recognition applications such
as face recognition [16]—-[18] that do not necessarily define posi-
tive—semidefinite matrices B. Typical examples of these kernels
are the sigmoid kernels

h(x;,x;) = tanh (x (x] x;) + 0) (63)
with & > 0 and § < 0, as well as the fractional polynomial
models [16], [18]

h(x;,x;) = (X;TFX]' + l)d (64)
with0 < d < 1.In the following, the MWCVMC using noncon-
ditionally positive kernels will be defined for the general case
where only the dissimilarity measure d is known and the explicit
form of the kernel function h remains unknown. In the trivial
case that the kernel function is known, the dissimilarity can be
built using h. In this case, data representation is not strictly per-
formed with vectors but possibly by other means as well (e.g.,
sets). A dissimilarity measure that can quantify the similarity be-
tween object representations .A;3 and obeys the following prop-
erties should be available:

* reflectivity: d(A;, A;) = 0;

e positivity: d(A;, A;) > 0if A; # Aj;

* Symmetry: d(A1A]) = d(.Aj,.Ai);
where d(A;, A;) is a dissimilarity measure between the two ob-
ject representations A;, A;.

A. Embedding Function to Pseudo-Euclidean Spaces

The dissimilarity matrix D is used to define an embedding
function G € R**N, where k < N is the dimensionality of
the embedding. Therefore, the ith column of G, denoted by g;,
corresponds to the features of the object .A; in the pseudo-Eu-
clidean space. In order to find the embedding G, the matrix B is

3The object .A; can be a set/vector but is not necessary to be explicitly defined
because its definition is not of particular interest here. The only thing that should
be defined is the dissimilarity measure.
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defined as in (62). The matrix J projects the data so that the em-
bedding G has zero mean. The eigendecomposition of the ma-
trix B will give us the desired embedding. The matrix B is pos-
itive semidefinite (i.e., it has real and nonnegative eigenvalues),
if and only if the distance matrix D is a Euclidean matrix [15].
Therefore, for a non-Euclidean D, B has negative eigenvalues.
For more details on pseudo-Euclidean embedding and dissimi-
larity-based pattern recognition, the interested reader may refer
to [15], [20], [23], and [38]. Let the matrix B have p positive
and ¢ negative eigenvalues. Then, the matrix B can be written
as

B = QAQ” = QA} {M 0}|A|%QT:GTMG (65)

where A is a diagonal matrix with the diagonal consisting of the
p positive and ¢ negative eigenvalues, which are presented in
the following order: first, positive eigenvalues with decreasing
values, then negative ones with decreasing magnitude, and
finally zero values. The matrix Q is an orthogonal matrix of
the corresponding eigenvectors. The matrix M is equal to
[ Lxp

0 I,
q X q matrices, and k = p + ¢. The matrix G is the embedding
of the facial image database in the pseudo-Euclidean space
Rk = R@D [15]

where 1,5, and 1, are the identity p X p and

G = |A:2QT (66)
where Ay, contains only the nonnull diagonal elements of A. Qy
is the matrix with the corresponding eigenvectors.

Actually, the pseudo Euclidean-space R(®+%) consists of two
Euclidean spaces, where the inner product is positive definite
for the first one and negative definite for the second one. Using
the previous remark, for the sake of completeness, a brief de-
scription of the procedure followed, when going back from the
embedding G to the dissimilarity matrix D, will be provided.
The inner products in the pseudo-Euclidean space are defined as

P rtq
(g.y) = Zﬁh‘yi - Z 9iyi = g My. (67)
1=1 Jj=p+1

The norm of a nonzero vector g in a pseudo-Euclidean space is
defined as

Igll* = (g,8) = g"Mg (68)

which can be positive, negative, or zero (contrary to the positive
or zero norm value in a Euclidean space). The dissimilarity ma-
trix D can now be retrieved from the embedding G, using the
notion of the inner products as

[D];,; =llgi — glI* = (g — 8j,8i — &)
=(gi — g;) " M(gi — gj)

=d(A;, A;) =b1T 167 — 2B (69)

where b is a vector with the diagonal elements of the matrix B.

Prior to proceeding to the description of the MWCVMC in
pseudo-Euclidean spaces, someone should notice that the ma-
trix G has uncorrelated features with zero mean vector m =

(1/N) Zi\;l g; = 0. That is, if S; is the total scatter matrix,
then

S; =) (g —m)(g—m) ' M=GG'M=|AM=A.

l (70)
Therefore, G can be considered to be the result of a mapping of
a KPCA projection procedure [32] using indefinite kernels [15],
[17]. Thus, if a vectorial object representation is available (i.e.,
the representation of 4; is a vector) and d is defined as in (60)
using conditionally positive kernels, then this embedding is the
KPCA projection that has been used in Section III prior to the
optimization of the MWCVMC in Hilbert spaces.

Each object A; is supposed to belong to one of the K object
classes {U1,Ua, . .., Uk }. For notation compactness, the set L,
will be used for referring to both to the set of the object represen-
tations of the kth object class and to the various feature vectors
that are produced during the embedding and correspond to the
objects of the kth object class. The mean vector for the class r
is denoted as m,.. Then, the within-class scatter for the vectors
g; is defined as

K
Sw = Z Z (gi - Iﬁr)(gi - Iﬁr)TM'

r=1g; €U,

(71)

As seen previously, the dimensions that correspond to the null
eigenvalues of B have not been taken into consideration for the
definition of the embedding G and the matrix S, since they
offer no information for the optimization of the MWCVMCs
(as described in the previous section). Now we should take care
of the dimensions of the embedding that correspond to negative
eigenvalues. The problem of these dimensions is that they lead
to Hessian matrices that are not positive semidefinite. Hence, the
optimization problems are not convex and generally NP-com-
plete. Two alternatives exist regarding the dimensions of the em-
bedding G that correspond to negative eigenvalues.

* To remove the dimensions that correspond to negative

eigenvalues. In this case, the embedding G degenerates to

G,=A:Q" (72)
where G, € RP>™V. This step is preferred when the negative
eigenvalues are few in number and very small in magni-
tude, in comparison to the magnitude of the positive eigen-
values (i.e., the dissimilarity measure is almost Euclidean).
Such embedding has been successfully used for face recog-
nition when using KPCA with fractional polynomial ker-
nels [16], [18].

* Touse only the magnitude of the negative eigenvalues. This
step is preferred when the magnitude of the negative eigen-
values is not small, or when there are many dimensions that
correspond to negative eigenvalues in the embedding. In
this case, the new embedding is

G =A/Qf (73)
where A; is a diagonal matrix having as diagonal ele-
ments the magnitude of the diagonal elements of A;, in
descending magnitude order. The matrix Q; contains the
corresponding eigenvectors. For the dimensionality / of the
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new embedding, it is valid that [ < k < N. This step is
preferred for the definition of the Hessian matrix of the
quadratic optimization problem of SVMs in pseudo-Eu-
clidean spaces [15], [17].
In both cases, the new embedding G, is purely Euclidean.
Without loss of generality, the embedding G; will be consid-
ered for the description of the MWCVMC. Let the vector g! be
the 7th column of the matrix G;. The mean vector for the class
r is denoted by m, and the mean of all classes by m (which,
in the case under examination, is a zero vector). Since there
are no dimensions that correspond to negative eigenvalues, the
within-class scatter matrix of the embedding Gy is defined as

K
s,=Y"3 (g -m,) (g -m,)".

r=1 gi cu,

(74)

The dimensionality of the embedding is [ < k& < N, while
the rank of S!, is less than or equal to N — K. Thus, there is
not a guarantee that the within-class scatter matrix S!, will be
invertible. Two alternatives exist regarding the solution of this
problem:

* to avoid initially eigenvectors corresponding to the
smallest eigenvalues of B, when defining the pseudo-Eu-
clidean space (i.e.,l < N — K);

* to perform eigenanalysis to S! and remove the null
eigenvectors.

Without loss of generality, let us follow the first approach, by
choosing ! < N — K. The MWCVMC is defined in the pseudo-
Euclidean space as

K N
Z §W£Siuwk + OZ Z &

min (75)
wy,,b.§ °
k=1 J=1 k;él]‘
subject to the constraints
wlj; (gé»—n'l)—{—blj > wi (gé—rﬁ)+bk+2—f}“
&>0, j=1,....N, ke{l,...,K}\1l;. (76)
For the MWCVMCs, the variant is
wi (g5 —1hy,) + b, > wi (] —1hy) + b +2 &
>0 j=1,...,N, ke{l,...,K}\l. (I7)
The corresponding hyperplanes (wq,by), -, (Wg,bx) are

found by solving the optimization problem (75) subject to the
constraints (76) as in Appendix II, and for the variant solving
(75) subject to (77) as presented in Appendix III.

B. Classifying Novel Object Representations Using
Pseudo-Euclidean Embedding and MWCVMC

Let {By,---,B,} be a set of n objects. The matrix D,, €
R*N s created: [Dy];; = d(B;,A;), which represents the
similarity between the n test object and all the training object
representations. The matrix B,, € "% of inner products re-
lating all new data to all data from the training set can be found
as follows:

B, = —%(Dn.] — UDJ) (78)
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where J is the centering matrix and U = (1/N)1,1% €
R"*N_ The embedding of the test object representations
G,, € R™ that is used for classification is

G, =A *QIBI. (79)
The columns of the matrix G,, are the features used for classi-
fication. Let g; ,, € R! be the ith column of the matrix G,,. For
more details about the embedding of novel data in pseudo-Eu-
clidean spaces, the interested reader may refer to [15]. After
the embedding, the classification of B; to one of the K -object
classes is performed by using the decision function

f(B;) = arg nax (Wi (gi,n — 1h) + by) (80)
or for the variant
f(B;) = arg nax (Wi (0 — 1hy) + by) (81)

g yeeey

where wy, and by, have been found during training.

V. EXPERIMENTAL RESULTS

Three sets of experiments have been conducted in order to

test the proposed methods:

e multiclass classification experiments using Hausdorff
distances for the facial grids in order to recognize the
seven basic facial expressions (i.e., test the MWCVMCs
in pseudo-Euclidean spaces);

* multiclass classification experiments using polynomial
Mercer’s kernels for face recognition (i.e., test the
MWCVMCs in Hilbert spaces);

* multiclass classification experiments with various Mercer
kernels using data sets from UCI repository [25].

Moreover, we compare the two MWCVMCs variants presented
in Section III [i.e., the one that optimized (30) subject to the
constraints (31) and the one that optimizes the same functional
subject to (32)]. Since these two MWCVMCs variants minimize
the same functional and have about the same separability con-
straints with a small difference (i.e., in the first, we subtract the
total mean vector, like a normalization, while in the second, we
subtract the mean of the class to be classified), we anticipate
small performance difference between them.

A. Multiclass Classification Experiments in
Face Expression Recognition

1) Database Description: The database used for the experi-
ments was created using the Cohn—Kanade database. This data-
base is annotated with facial action units (FAUs). These com-
binations of FAUs were translated into facial expressions ac-
cording to [39], in order to define the corresponding ground truth
for the facial expressions. The facial expressions under exam-
ination are the six basic ones (anger, disgust, fear, happiness,
sadness, and surprise) plus the neutral state. All the available
subjects were taken under consideration to form the database
for the experiments.

The geometrical information vector taken under considera-
tion is the deformed Candide grid produced by the grid tracking
system as described in [40]. In Fig. 5, a sample of an image
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Fig. 6. Poser example from the Cohn—Kanade database, depicting the grid taken under consideration in the original image (second row) and when mouth and eyes

occlusion is present (first and last row, respectively).

for every facial expression for one poser from this database and
the corresponding deformed grid is shown. The deformed grids
were afterwards normalized in order to have the same scale and
orientation.

Facial expression recognition was also studied in the pres-
ence of partial facial occlusion. A pair of black glasses and a
mouth mask as well as left and right face area masks were cre-
ated using a graphics computer program, to be superimposed on
the eyes or mouth regions, respectively, to simulate partial oc-
clusion. The glasses were similar to black sun glasses, while the
mouth mask was similar to a medical mask that covers the nose,
cheeks, mouth, and chin. The Candide nodes corresponding to
the occluded facial area were discarded. Fig. 6 presents one ex-
presser from Cohn—Kanade database posing for the six basic fa-
cial expressions. On each image, the Candide grid has been su-
perimposed and deformed to correspond to the depicted facial
expression, as it is used for the facial expression classification
using shape information. The first and last rows show the fa-
cial part that is taken under consideration when mouth and eyes
occlusion is present. The equivalent subset of the Candide grid
used for classification is also depicted. In Fig. 7, one expresser
is depicted from the Cohn—Kanade database for the six basic fa-
cial expressions under partial occlusion.

2) Hausdorff Distance: In order to calculate the distance be-
tween two grids, the Hausdorff distance has been used. More
specifically, given two finite point sets, A = {ai1,...,a,} and
B = {b1,...,b,} (in our case, this set of points is the set of
Candide nodes), the Hausdorff distance is defined as

H(A, B) = max {d(A, B), d(B, A)} (82)

where

d(A, B) = sup inf |ja— b]. 83
(A, B) = sup inf [|la = bl (83)

|| - || represents some underlying norm defined in the space of
the two point sets, which is generally required to be an L), norm,
usually the Lo or Euclidean norm.

In the proposed method, a robust alternative of the Hausdorff
distance, the so-called mean Hausdorff distance [41], is used in
order to measure the similarity between facial grids. The mean
Hausdorff distance dps g (A, B) from A to B is defined as

duu(A,B) = (84)

min ||a — b||

1
N(A) ; beB

where N(.A) is the number of points in A. The mean Haus-
dorff distance is used to create a feature space, using pseudo-Eu-
clidean embedding, as described in Section IV, so as to de-
fine later a multiclass SVM classifier in this space. It should be
noted here that in the setup used in this paper, where the same
grid (the Candide grid) is tracked in all cases over facial video
frames, the correspondences between the grid nodes a; and b,
i=1,...,p (p = ¢) in the two grid sets are known. Thus, the
sum of Euclideans ) ||a; — b;|| would suffice. However, the
use of Hausdorff distance makes the proposed system applicable
to other scenarios, e.g., when different grids are used or when
part of the grid is not available (p # ¢, e.g., due to image crop-
ping). This may occur when a tracking algorithm is applied and
some nodes are lost or considered unreliable. Thus, the general
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Fig. 7. Poser example from the Cohn—Kanade database, depicting the original images (second row) and eyes and mouth occlusion (first and last row, respectively).

Hausdorff distance is adopted. Another measure that we are cur-
rently investigating is the angle of the Candide points between
the neutral and expressed grids. Using the angle of points in a
sequence of grids, the dynamics of facial expression could be
described. However, this approach has the same disadvantage
as the one proposed in [7], in which deformation vectors have
been used for facial expression recognition, and require the ini-
tial detection of the neutral state (the neutral state is not required
in the proposed procedure).

3) Experimental Protocol: The most frequently used ap-
proach for testing the generalization performance of a classifier
is the leave-one-out cross-validation approach [42]. It was
devised in order to make maximal use of the available data
and produce averaged classification accuracy results. The
term leave-one-out cross validation does not correspond to the
classical leave-one-out definition, as a variant of leave-one-out
was used (i.e., leave 20% of the samples out) for the formation
of the test data set in our experiments. However, the procedure
followed will be called leave-one-out from now on for notation
simplicity without loss of generalization. More specifically,
all image sequences contained in the database are divided into
seven facial expression classes. Five sets containing 20% of
the data for each class, chosen randomly, were created. One set
containing 20% of the samples for each class is used as the test
set, while the remaining sets form the training set. After the
classification procedure is performed, the samples forming the
test set are incorporated into the current training set, and a new
set of samples (20% of the samples for each class) is extracted
to form the new test set. The remaining samples create the new
training set. This procedure is repeated five times. A diagram of
the leave-one-out cross-validation method can be seen in Fig. 8.
The average classification accuracy is defined as the mean value
of the percentages of the correctly classified facial expressions
over all data presentations. The accuracy achieved for each
facial expression is averaged over all facial expressions and
does not provide any information with respect to a particular
expression. The confusion matrices [7] have been computed to

Training test Test set
——— N

Anger Anger 20% Anger 20% Anger 20% Anger 20%

Disgust 20% | Disgust 20% Disgust 20% Disgust 20%

Disgust

Fear Fear 20% Fear 20% Fear 20% Fear 20%

ngpiness Happiness 20% Happiness 20% ,,, |Happiness 20% Hoppiness 20%

Sadness 20% Sadness 20% Sadness 20%

Sadness Sadness 20% | ..

Surprise Surprise 20% | Surprise20% Surprise20% Surprise 20%

Neutral 20% | Neutral 20% Neutral 20%

[

Fig. 8. Diagram of leave-one-out method used in classification assessment for
facial expression and FAUs recognition.

Neutral Neutral 20%

handle this problem. The confusion matrix is an n X n matrix
containing information about the actual class label lab,. (in
its columns) and the label obtained through classification lab,;
(in its rows). The diagonal entries of the confusion matrix
are the percentages that correspond to the cases when facial
expressions are correctly classified, while the off-diagonal
entries correspond to misclassifications. The abbreviations
an, di, fe, ha, sa, su and ne, represent anger, disgust, fear,
happiness, sadness, surprise, and neutral, respectively. We have
experimented with various values of the C' parameter (from
C = 1076 until C = 10° in log scale) and the best setup has
been when using C' = 100 for all tested classifiers. Only the
best accuracies achieved for any method used are taken under
consideration to make the final conclusions.

4) Experiments Regarding the Entire Candide Grid: The
confusion matrix obtained when maximum margin SVMs were
used taking under consideration the deformed Candide grids
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TABLE I
CONFUSION MATRICES WHEN USING (A) MAXIMUM MARGIN SVMS AND (B) MWCVMCs
labge% \labcl % an di fe ha sa su ne labge% \laber % an di fe ha sa su ne
an 91 14.3 0 0 10.8 0 4.8 an 100 0 0 0 0 0 0
di 6 85.7 7.3 0 0 0 0 di 0 100 0 0 0 0 0
fe 0 0 71.2 0 0 7.1 2.4 fe 0 0 93 0 0 0
ha 0 0 8.8 91 4.6 0 0 ha 0 0 7 100 0 0 0
sa 0 0 5.5 0 80 0 2.4 sa 0 0 0 100 0 0
su 3 0 0 0 0 929 5.8 su 0 0 0 0 0 100 0
ne 0 0 7.2 9 4.6 0 84.6 ne 0 0 0 0 0 0 100
(a) (b)
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Fig. 9. Recognition accuracies obtained for facial expression recognition using maximum margin SVMs and MWCVMC in the pseudo-Euclidean space when
(a) all the grid nodes were used, (b) eyes occlusion is present (mouth nodes discarded), and (c) mouth occlusion is present (eyes nodes discarded).

is presented in Table I(a). The accuracy achieved was equal
to 85.2%. As can be seen from the confusion matrix, fear
seems to be the most ambiguous facial expression having the
lowest correct classification ration (71.2%). The overall facial
expression recognition accuracy rates achieved for different
number of dimensions of the pseudo-Euclidean space of the
Hausdorff distances taken under consideration when maxim
margin SVMs, MWCVMCs, and MWCVMCs variant were
used are depicted in Fig. 9(a). The highest overall accuracy rate
achieved was equal to 99% (achieved by MWCVMC and the
variant). The confusion matrix calculated in this case is pre-

sented in Table I(b). As can be seen from the confusion matrix,
almost all previous misclassifications are now eliminated. The
only misclassification remaining is the one between fear and
happiness, which was actually the most usual misclassification
appearing when the maximum margin SVMs were used.

A comparison of the recognition rates achieved for each
state-of-the-art facial expression [42]-[45], when six facial ex-
pression were examined (the neutral state was not taken under
consideration) is depicted in Fig. 10, where the recognition rate
of each of the six basic facial expressions is depicted. As can
be seen, our recognition rates are the highest for each facial ex-
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Fig. 10. Comparison of the recognition rate for every of the six basic facial
expression of various state-of-the-art facial expression recognition methods.

pression. The second best reported results are the ones in [45],
where a 97% total recognition rate has been reported. Moreover,
the proposed method has been tested for the recognition of the
neutral state, unlike the methods in [43]-[45] that have been
tested only for the recognition of the six expression. That is,
the error that will be introduced by the inclusion of the neutral
state to the other expressions remains unknown. The method
in [42] has been tested for the recognition of neutral state and
has achieved 78.59% (our method had 100% performance for
the neutral state). To the best of the authors’ knowledge, these
are the best results achieved in Cohn—Kanade database for the
recognition of the seven facial expressions.

5) Experiments in the Presence of Eyes Occlusion: The
recognition accuracy rate achieved when eyes occlusion was
present and the maximum margin SVMs were used was equal
to 83.5%. Thus, the introduction of eyes occlusion results
in a 1.7% recognition accuracy rate drop. The equivalent
recognition accuracy rate achieved when MWCVMC (or
MWCVMC variant) were used was equal to 96.3% (2.7% drop
in recognition accuracy due to eyes occlusion). The recognition
accuracy rates achieved for different number of dimensions of
the pseudo-Euclidean space of the Hausdorff distances taken
under consideration when maximum margin SVMs and the two
MWCVMC were used are depicted in Fig. 9(b).

6) Experiments in the Presence of Mouth Occlusion: The
recognition accuracy rate achieved when mouth occlusion was
present and the maximum margin SVMs were used was equal
to 79.8%. Thus, eyes occlusion results in a 5.4% recognition
accuracy rate drop. The equivalent recognition accuracy rate
achieved when MWCVMC (or MWCVMC variant) were used
was equal to 93.7% (5.3% accuracy drop due to eyes occlu-
sion presence). The recognition accuracy rates achieved for dif-
ferent number of dimensions of the pseudo-Euclidean space of
the Hausdorff distances taken under consideration when max-
imum margin SVMs and MWCVMC were used are depicted in
Fig. 9(c).
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Fig. 11. Mean face recognition error rates in ORL database.

B. Multiclass Classification Experiments in Face Recognition

The face recognition problem has been performed in order
to assess the proposed method using Mercer’s kernels. Experi-
ments were performed using the Olivetti Research Laboratory
(ORL) database. This database includes ten different images
of 40 distinct subjects. For some of them, the images were
taken at different times and there are variations in facial expres-
sion (open/closed eyes, smiling/nonsmiling) and facial details
(glasses/no glasses). The original face images were all sized
92 x 112 pixels. The gray scale was linearly normalized to
lie within the range [—1, 1]. The experiments were performed
with five training images and five test images per person for
a total of 200 training images and 200 test images. There was
no overlap between the training and test sets. Since the recog-
nition performance is affected by the selection of the training
images, the reported results were obtained by training five
nonoverlapping repetitions with different training examples
(random selection of five images from ten ones per subject, out
of a total of selections) and selecting the average error over all
the results. In Fig. 11, the mean error rates for the proposed
approach and the maximum margin SVM are depicted. The
tested kernels have been the polynomial kernels with degrees
from 1 to 4. The best error rate of the proposed method has
been measured at about 1.5% for the proposed methods (both
MWCVMC variants gave the same mean recognition rate in
this experiment). However, individual experiments had given
error rates as low as 0%. The SVM classifier in this problem
achieved the best error rate at about 3%.

For completeness, we should note here that the proposed
MWCVMCs classifiers are similar to the classifiers tested
for face recognition in the ORL database using a KPCA plus
SVM scheme. That is, the method for finding the MWCVMCS
classifier comprises an initial KPCA step, and afterwards, a
minimum within-class variance multiclass system is trained.
The method of the KPCA plus SVM classifier in [46] has
shown superior results in face recognition in comparison to the
other tested methods. Actually, the successful application of
a KPCA plus SVM scheme has motivated the application of
MWCVMCs for face recognition in ORL database. We have
experimented with a KPCA plus SVM approach as in [46] and
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TABLE II
MEAN ERROR RATES (A) BALANCE SCALE, (B) GLASS, (C) IRIS, AND (D) WINE

Method Kernel | Mean Error Rate % Method Kernel | Mean Error Rate %
SVMs linear 87.7 SVMs RBF 58.4
MWCVMCs linear 92.9 MWCVMCs RBF 63.01
MWCVMCs Variant | linear 93.5 MWCVMCs Variant | RBF 64
(a) (b)
Method Kernel | Mean Error Rate% Method Kernel | Mean Error Rate%
SVMs RBF 96 SVMs RBF 93.3
MWCVMCs RBF 96.7 MWCVMCs RBF 96.67
MWCVMCs Variant | RBF 96.7 MWCVMCs Variant | RBF 97.1
(c) (d

the best mean recognition rate has been 2.5%. As can be seen,
our method outperforms KPCA plus SVMs in ORL database.

C. Experimental Results in Other Databases

Apart from facial expression and face recognition, we have
applied the proposed classifier to other problems. To do so, we
have used benchmark data sets from the UCI Repository data-
base [25]. More precisely, we have used the Balance Scale,
Glass, Iris, and Wine databases. We have used a similar testing
protocol as the one used in facial expression recognition exper-
iments, but this time, we have considered 70% for training and
the remaining 30% for testing. This procedure has been repeated
five times. The average classification accuracy is defined as the
mean value of the percentages of the correctly classified samples
over all data presentations. We have tested various kernels (i.e.,
polynomial and RBF kernels) but we will report only the best
results for all the tested kernels and for all the tested approaches.
The C values that we have tested were from C = 107° to
C = 10% in log scale. For case of RBF kernels, in order to
choose the parameter v (spread), we have used a simple heuristic
method. That is, on the training set, we calculate the average of
the distance from each instance to its nearest neighbor and call
this yp. We used in the experiments v = {70, 270,470 }-

The Balance Scale was separated into three classes with a
total of 625 four-dimensional vectors. For this data set, the
linear kernel (i.e., k(xi,X2) = x¥x,) has given the best
results that have been 87.7% for typical SVMs, 92.9% for the
MWCVMCs, and 93.5% for the second variant of MWCVMCs
(in this case, the within-class scatter matrix was invertible). The
second data set was the Glass data set that was separated into
six classes giving a total of 214 nine-dimensional vectors. For
this data set, the best kernel was an RBF kernel with variance
v = 7 for SVMs and an RBF with variance v = 2 for the
MWCVMCs. The best mean error rate for SVMs was 58.4%,
and for MWCVMCs and for the second variant, it was 63%
and 64%, respectively. The third data set was Iris, which was
separated into three classes of a total of 150 four-dimensional
vectors. The best kernel for this data set was an RBF with
variance 7 = 27 for all the tested classifiers. The best results
were 96.07% for SVMs and 96.73% for both MWCVMCs and
for the second variant. The final data set was the Wine data

set, which was separated into three classes containing a total
of 178 13-dimensional vectors. The RBF kernel gave the best
results for all the tested classifiers, with v = 2. In this data
set, SVMs gave 93.3%, and the MWCVMCs achieved 96.67%
and the variant of MWCVMCs achieved 97.1%.

The best results are summarized in Table II. As can be seen,
the proposed classifiers outperform maximum margin classifiers
in all cases.

VI. CONCLUSION

In this paper, novel multiclass decision hyperplanes/surfaces
have been proposed based on the minimization of within-class
variance in Hilbert spaces subject to separability constraints. We
have provided robust solutions for the optimization problem. We
have related the proposed classifiers with SVMs and we have
provided insights why the proposed surfaces can outperform
maximum margin classifiers. Moreover, we have tried to relate
the proposed classifiers with Fisher kernel discriminant anal-
ysis. We have extended the proposed classifiers in pseudo-Eu-
clidean spaces (i.e., defining the proposed classifiers with in-
definite kernels). We have shown the usefulness of this exten-
sion by applying the proposed classifiers in a space defined
by Hausdorff distances and we have applied the method for
the classification of seven facial expressions, where state-of-
the-art facial expression recognition rates have been achieved.
We have applied the proposed classifiers to other classification
problems where it was shown that they outperform typical max-
imum margin classifiers. Further research on the topic includes
the explicit measurement of the VC dimension of the proposed
classifiers and finding surfaces with VC dimension strictly less
than the one of maximum margin classifiers. Another subject for
research on the topic is the robust calculation of the enclosing
hyperellipse of each class. This can be achieved by the robust
calculation of the covariance and the mean of each class. More-
over, the proposed classifiers can be applied in a straightforward
manner to other multiclass SVM approaches apart from the one
described in this paper [29], [47]. Furthermore, it would be an
interesting topic to make the training procedure of the classifiers
an online one. This requires the use of both iterative KPCA and
SVM algorithms. Thus, another possible research topic would
be the combination of algorithms such as [48] and [49] for iter-
ative KPCA and such as [50] for online SVM training in order
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to make online minimum within-class variance classifiers. Fi-
nally, it would be a very interesting topic to compare the pro-
posed classifiers to recently introduced SVM variants that con-
sider class statistics as well [30], [51], [52].

APPENDIX |
PROOF OF PROPOSITION

Proposition 2: If for some ¢ € H, ¢"S2¢ = 0, then under
the projection ¢ for all training vectors ¢(x;), d)(x%) with
d(xi) # P(x;), the following holds: Topxi) = ¢ d(x;).
In other words, under the projection ¢, all the training vectors
¢(x;) fall in the same point. Thus, r = (T ¢(x;) is a constant
Vx; €elU.

Let the matrix X® = [¢(x1) ... #(xn)] that has as columns
the projected training vectors. The total scatter matrix ST can
be written as

N
SF = 3" (60xi) —m®) (4(x:) - m®)”
= (>_<<I> ~-X?Gy)(X? - X?Gy)T (85)

where G is a matrix with elements equal to N —1 LetIy be
the identity N x N matrix. The following holds:

(T8P¢=0e (" (X?-X?Gy)(X?-X?Gy)T(=0

(1 - @x*e| =00 Totx) =T o) =
(86)

|
Let B® and Bf be the complementary spaces spanned by
the orthonormal eigenvectors of S{ that correspond to nonzero
eigenvalues and to zero eigenvalues, respectively. Let ¢ € B®
and ¢ € B}. Thus, w'Stw = ¢"S®o Vw € H. A proof
of the above proposition can be found in [3]. The normal vector
w . of the decision surface can be written as wy, = ;. +(;, with
¢, € B? and ¢, € BY.
Taking under consideration that w,, = ¢, + ¢, the La-
grangian of the optimization problem (30) subject to the sep-
arability constraints (19) can be written as

Li(wy,b.§ a,B)

K N K N K
=D wiSowe+CY Y =D "af
k=1 1=1 k=1 =1 k=1
X | (Wi, —wy) (¢(XL)—mq>) +b, —bp —2+¢ }
N K
> Bred
i=1 k=1
K K
:Z‘P w‘Pk+CZka ay
k=1 =1 k=1 =1 k=1

X

[ 01+C1,—pi—Ci) ($(x)—m™) b, _bk_2+éﬂ

N K
- B

i=1 k=1

87)
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Taking under consideration the Proposition 2, since for { ko €
By, (zoS?(km = 0, then Cf,(](b(xi) is a constant for all ¢(x;).
That is, {;,¢(x;) = ¢, m?® and {,¢(x;) = {,m®. Thus, L,
becomes

Li(wi, b€, a,B)
K N K
= Z w‘pk—i—czzgk Zzaf
k=1 1=1 k=1 1=1 k=1
[ 78 ‘Pk) (¢(xi;)—m?®) + bli_bk_2+£zkj|

(88)

D N

i=1k=1

The optimum hyperplane w, can be writtenas wy , = @, ,+
Ck,o- Then

Vchl/1|wkzwl\-.o = V‘PA<L1|‘P;\.:<P1\. =0 A4 Sq)‘Pk o

af,) (¢(xi) —m®) =0. (89)

It can be shown in a straightforward way that the gradient in (89)
is the same as the gradient of the optimization problem (42) sub-
ject to the constraints (43). Hence, the separability constraints
(31) can be safely replaced by the separability constraints (43).
Thus, the part ¢}, , of the vector wy , does not play any role in
the separability constraints (since an arbitrary vector {;, , can
be chosen, the vector ¢, , = 0 is selected) and the Propdsition
1 has been proven. A similar approach can be used for proving
the equivalent proposition for the MWCVMCs variant.

APPENDIX II
WOLF DUAL PROBLEM FOR THE OPTIMIZATION OF
LAGRANGIAN (49)

In order to find the optimum separating hyperplanes for the
optimization problem (46) subject to the constraints (47), we
have to define the saddle point of the Langragian (49). At the
saddle point, the solution should satisfy the KKT conditions,

fork=1,...,K
Vm L3|"IL Nko — =0 nk,o
N
=S,' > (cFAi, —af,) (X — 1) (90)
1=1
N N
oL
e} =06 Y af, =Y A, 1)
abk b =by =1 =1
oL
0—3 =0 ,Bka + Oé =C
Ck [
and 0< 0‘;0 <C. (92
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Substituting (90) back into (49), we obtain

k=11:=1 j5=1
K N
X (()N(L m)TS;I(iJ - ﬂl)) - Zzaf
k=1 i=1
N
1% (ha; - alf) (& = m) "S5 (%; - )
N
— 37 (k4 - af) ((xL — ) TS (%, — m))
Jj=1
K N
+bl—bk—2 Zzaklk
k=1 1i=1
N
+CZZ£" Z pEEr. (93)
k=11i=1 =1 k=1

Adding the constraint (92), the terms in & disappear. Only the

two terms in B are considered

By =Y afb, =Y b (Z cfA,)
ik k i
and
By=—) afbp=—) b (ZM) (94)
ik k i
However, from (91)
N
Z of = 4 ©3)
=1
so B; = B» and the two terms cancel each other, giving
L (nk b, 670 ﬁ)
=W(a)=2 Z o
_Z §chJ a——c ok —|—2a ;
1,5,k
- céfAjaf + afalj + ckA ok faf)
~ ~NT&—=1/~ ~
X ((xZ —m)" S, (x5 — m)) . (96)

kAJ o, we have

Since Y, cF Aok =3, ¢

2Za+ >

i,k

k_k

31

lj
j7

_ b
=c' =c’,s0

but Y-, cick

1
W(a):22af—|—§z {——C%AA +ajall -
i,k k

1
2afak
s 5]

X ((ii — )85 (x, - m)) 97)

which is a quadratic function in terms of alpha with linear
constraints

N N
doak=> A, k=1, K (98)
i=1 i=1
and
0<af<o,  i=1,...,Ndi=o,
Ee{l,....,K}\ ;. (99)
The combination of (90) with the fact that 9, , = PT¢k’O

[from the isomorphic mapping (45)] and the results of Proposi-
tion 1, provides the following decision function:

m‘b)—l—bk o]
m®)+by, o:|

=arg maxp—i,. K [Z (CL Ajo—ay o) (¢(XL) _m<1>)T
i=1
x PS,'PT (¢(x) ) +bio
(100)

or, equivalently

f(X) =argmaXg=1,. K

[ZAM X;)

iy, =k

- Y a

11y #k

x ($(x)-

~m®)" PS7'P7 (¢(x)-m®)
~m®)" PS;'P”

m?®) +by, | (101)

APPENDIX IIT
WOLF DUAL PROBLEM FOR THE OPTIMIZATION OF
LAGRANGIAN (53)

At the saddle point, the solution should satisfy the KKT con-
ditions, for k = 1,..., K

V"lkL4|7lk:nA 0o 0
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The other conditions are the same as (91) and (92).
By substituting (102) back into (53), we obtain

ar) (5 Aj = of)
k=11:=1 j=1
N K N
x (& = )8, (% — i) ) = 30 o

j=1
K N
b, —be =2 =D > aftf
k=1 1=1
K N N K
ZZ - > Bt (103)
k=1 i=1 i=1 k=1

As in Appendix II, the terms in £ disappear and (103) becomes

L4(nk7 b7£7 a, :B)

K N N
—QZa FY DD bk (Ri—ring) TS (%, —1ing,)
k=1i=1 j=1
K N N
=33 N (Ri—my )T ST (%, —mmy,)  (104)
k=1 i j
Whereéuk—(cA—a)( HA;—ak)—af(chA; — k) and

ij,k—a (c A; —aj)
In order to isolate X! S;'x; in (104), we expanded my, as

my = (1/Ne) Yger, X = Yopmy Vi pXp, Where vy, = 1/Nj
ifx, € Uy, and v , = 0if X, € U}. We expand the term as

(105)
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while the other one is expanded as

N N
+§ : : :leypl/lm,vm

p=1m=1

) %S, %;.  (106)

Thus, the Wolf dual problem is

L4(nk7 b7£~, a?ﬂ) = W(a)
K N N ~
) IEEDI) I) PR LS
ik k=1i=1 j=1
(107)
where
N N
Wik =8ijk = D Vkpbipk = D VhpOp ik
p=1 p=1
N N
+ Z Z VK pVkmOpmk + —Aijk
p=1m=1
N N
+ Z Vlr)vP)\PJ.:k + Z le:P)‘i,p,k
p=1 p=1
N N
=D D Vi (108)
p=1m=1

After solving the quadratic optimization problem (108), the de-
cision function is

k ) +bk,o]
E) +bk,o:|

|
&
=
Joic)
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N
r
S
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Q
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SR
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—ak,) (#(x;)-m})"

x PSL'PT (p(x)—my) +bo

(109)
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