
638 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

Neural Network Output Optimization
Using Interval Analysis

E. de Weerdt, Q. P. Chu, and J. A. Mulder

Abstract—The problem of output optimization within a speci-
fied input space of neural networks (NNs) with fixed weights is
discussed in this paper. The problem is (highly) nonlinear when
nonlinear activation functions are used. This global optimization
problem is encountered in the reinforcement learning (RL) com-
munity. Interval analysis is applied to guarantee that all solutions
are found to any degree of accuracy with guaranteed bounds. The
major drawbacks of interval analysis, i.e., dependency effect and
high-computational load, are both present for the problem of NN
output optimization. Taylor models (TMs) are introduced to re-
duce these drawbacks. They have excellent convergence proper-
ties for small intervals. However, the dependency effect still re-
mains and is even made worse when evaluating large input do-
mains. As an alternative to TMs, a different form of polynomial
inclusion functions, called the polynomial set (PS) method, is in-
troduced. This new method has the property that the bounds on
the network output are tighter or at least equal to those obtained
through standard interval arithmetic (IA). Experiments show that
the PS method outperforms the other methods for the NN output
optimization problem.

Index Terms—Feedforward neural networks (FFNNs), global
optimization, inclusion function, interval analysis, optimization
methods, polynomial set, radial basis function neural networks
(RBFNNs), Taylor expansion, Taylor model (TM).

I. INTRODUCTION

N EURAL networks are general function approximators
that are widely used in the scientific community. Applica-

tions in business [1], [2], pattern recognition and classification
[3]–[6], statistical modeling [7], and many other research fields
provide an enormous amount of information on neural net-
works (NNs), which comes in many forms and sizes. There are
self-organizing maps, recurrent networks, feedforward neural
networks (FFNNs), radial basis function neural networks
(RBFNNs), and many others [8]. The origin of artificial NNs
lies in 1943 when a first attempt was made by mathematicians
McCulloch and Pitts to mimic the neurons in the human brain
[9]. This opened a new research field although it was not until
1974 with the invention of error-back propagation learning by
Werbos that the NNs became more widely applicable [10].
Since then many new NN forms and learning algorithms have
been developed. Although great advances have been reported

Manuscript received November 13, 2007; revised November 03, 2008; ac-
cepted December 02, 2008. First published February 24, 2009; current version
published April 03, 2009. This work is part of the MicroNed MISAT project.

The authors are with the Control and Simulation Division, Faculty of
Aerospace Engineering, Delft University of Technology, 2629 HG Delft,
The Netherlands (e-mail: E.deWeerdt@TUDelft.nl; Q.P.Chu@TUDelft.nl;
J.A.Mulder@TUDelft.nl).

Digital Object Identifier 10.1109/TNN.2008.2011267

in the past, there still remain some challenges. An example
being the global optimization of network structure and weights
given a certain data set. Various methods have been proposed
that can be divided into two categories: probabilistic methods
and deterministic methods [11]. Probabilistic methods, such as
global descent [12] and the hybrid method of Baba et al. [13],
guarantee to find the global optimal weight set provided that the
number of iterations can go to infinity. Since the optimization
problem must be solved within finite time, one cannot guarantee
to (always) find the global optimum weight set (unless one
knows the cost function value of the global minimum). More-
over, it has been shown in [14] that many global optimization
methods of probabilistic nature have similar performance to
standard gradient methods but have much larger computational
costs.

Deterministic optimization method can guarantee to find the
global optimum within finite time. However, there are few op-
timization methods available in literature which are truly deter-
ministic global optimization methods. Methods as proposed by
Toh [15], which use a penalty function that determines a correct
outcome, or the NOVEL method proposed by Shang and Wah
[11], which uses search trajectories to circumvent uninteresting
regions, do not have an absolute guarantee to find the global
minimum. So-called covering methods do have this guarantee
and can moreover provide bounds on the found solution(s). The
method of Tang and Koehler [16] based on Lipschitz bounds is
such a method. Li et al. [17] use a method based on interval anal-
ysis to provide guaranteed bounds on the solutions. The latter
method applies, among other things, gradient inclusion to cutoff
uninteresting regions of the search space similar to the method
of Tang and Koehler.

Instead of minimizing an error cost, in this paper, we solve
the problem of global maximization of NN output, for networks
with a fixed set of weights, within a given input space, i.e., find
the input , which lead to the maximum output value

(1)

where is an NN where is the input vector, is
the total input space, and is the set of network weights. This
problem becomes a (highly) nonlinear optimization problem
with many local maxima and minima when the NN uses non-
linear activation functions (see Fig. 1). The need to solve this
problem stems from the reinforcement learning (RL) topic [18].
RL is an optimal control technique in which the agent (or agents)
learns to control a system by interaction with the environment
or with a model of the environment [19]. To derive the optimal
control law the agent must process and store the gained knowl-
edge. For -learning and advantage learning, this knowledge is

1045-9227/$25.00 © 2009 IEEE

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

DE WEERDT et al.: NEURAL NETWORK OUTPUT OPTIMIZATION USING INTERVAL ANALYSIS 639

Fig. 1. Example of an input–output mapping of a 2-64-1 radial basis function
network.

stored as a mapping from states and actions to expected accu-
mulated future rewards, i.e., the state-action value function [20]

with (2)

where is the state vector, is the action vector, is a discount
factor is the reward signal, and is the policy (mapping
between state and actions). For most problems, this function is
a nonlinear input–output mapping whose shape is not known
beforehand.

NNs are commonly applied in RL techniques [21] to repre-
sent the state-action value function. NNs circumvent the “curse
of dimensionality” since they are capable of providing a con-
tinuous nonlinear approximation of (in theory) any continuous
function to any degree of accuracy [22] in an efficient manner,
i.e., the number of parameters is limited compared to other
storing methods. When applying -learning (or advantage
learning), the agent uses an update rule to store the gained
information in the state-action value function. To compute
the weight update, one needs to determine which action set
within the action input space leads to the maximal NN
output value given the future state and network weights [18].
Furthermore, when applying RL, the applied policy is (at some
stage) a greedy policy meaning that we apply those actions
which lead to the maximal function output. It poses the same
global optimization problem. In practice, the posed problem
has to be solved each time step, which requires an efficient
optimization algorithm. The accuracy of the found solution, in
both the control input space and the output space, influences
the outcome of the -learning algorithm and the performance
of the agent. Moreover, all solutions leading to the maximal
network output must be found such that the agent knows the
complete set of optimal actions. It also helps in the exploration
aspect of RL.

To solve the problem of finding the maximal network output
one can use any covering method which provides guaranteed
bounds (as presented earlier). In this paper, we propose to
use interval analysis (IA) to solve the problem. IA is a global

optimization technique developed in the 1960s by Moore
[23], which finds all solutions to any required degree of accu-
racy with guaranteed bounds. These properties make interval
analysis very attractive for solving the stated problem. In the
past, the applicability of interval analysis was limited because
it can be computationally expensive. However, currently,
this research field is rapidly growing due to the increasing
computation power of personal computers. Examples of ap-
plications range from nonlinear aircraft trim [24] to reentry
flight clearance [25], integer ambiguity resolution [26], stock
market forecasting [27], data analysis [28], and many more
(see also the Journal of Reliable Computing). In Section II,
we will provide more information regarding interval analysis.
The inclusion function theory on which interval analysis is
based is given and the standard branch-and-bound algorithm
is explained. The branch-and-bound algorithm is enhanced
using the same improvements as given in [17] such that we can
compare our new implementation to their method. In Section II,
we also discuss several key drawbacks of interval analysis
which, in the specific case of NN output optimization, lead
to severe degradation of algorithm efficiency. In Section III,
Taylor model (TM) inclusion functions are introduced in an
attempt to remove the drawbacks and speed up the process.
TMs have been developed by Lanford around 1980, subse-
quently studied by Eckmann, Koch, Wittwer, Berz, Makino,
and Hoefkens [29]–[32], and have been successfully applied
to many problems [33], [34]. However, for the current opti-
mization problem, we will show that these models suffer from
remainder blowup. We will combine TM with standard interval
analysis to prevent the remainder blowup. A different approach
to solving the drawbacks of standard interval analysis is given
in Section IV, where we introduce another form of polynomial
inclusion functions called the polynomial set (PS) method.
Unlike TM, the PS method is guaranteed to have bounds equal
to or tighter than the bounds provided by standard interval
analysis. Simulation results for all described techniques are
given in Section V followed by conclusions in Section VI.

For this paper, we handle two types of NNs: single-hidden-
layer FFNNs with tangent sigmoidal activation functions and
RBFNNs

(3)

where

output ;

input ;

output weight: from hidden-layer neuron to output ;

input weight: from input for hidden-layer neuron

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

640 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

bias weight for output ;

bias weight for hidden-layer neuron ;

center weight: hidden-layer neuron for input
dimension .

II. INTERVAL ANALYSIS

In standard mathematics, crisp numbers, either real or imag-
inary, are used to perform crisp arithmetic operations. With in-
terval mathematics, we use interval numbers that represent a set
of crisp numbers, i.e., the interval number is the set of crisp
numbers such that . Interval numbers become
equal to crisp numbers when the interval has zero width, e.g.,

. Variables representing an interval number
are indicated with capital letters whereas variables representing
crisp numbers are written in lowercase. When dealing with in-
terval numbers the arithmetic operations change. Some exam-
ples are as follows (1):

addition

(4)

subtraction

(5)

multiplication

(6)

division (excluding division by an interval containing 0)

with (7)

For a complete overview of interval arithmetic (IA) operands,
see [35]. The key aspect of interval analysis is the ability of
providing bounds on the output of any rational function with
inputs within a specified domain. This property of IA follows
from the inclusion function theorem given by Moore [23], [36]:

Theorem II.1: If is a rational expression
in the interval variables , i.e., a finite combina-
tion of and a finite set of constant intervals with
IA operations, then

(8)

implies

(9)

for every set of interval numbers for which the
IA operations in are defined.

Proof: For the proof of this theorem, the reader is directed
to [36].

If we take to be crisp numbers
and apply the theorem, we have

(10)

1The lowest bound of an interval number is always written first, i.e., � �
������

TABLE I
STANDARD BRANCH-AND-BOUND ALGORITHM

for . This means that if
we replace all variables with their interval counterparts ,
we can compute guaranteed bounds on any rational function for

. Theorem II.1 is the foundation of interval analysis and
we can use this important property of function evaluations to
obtain global optimization algorithms.

Using Theorem II.1, we can compute guaranteed bounds on
the output of an NN for any input space

(11)

The obtained bounds on the output can be used to determine
whether the corresponding input space contains the maximal
output value.

Corollary II.2: If for and , we have
, then the subset is guar-

anteed not to contain any solution of

(12)

Proof: Theorem II.1 states that
. Therefore, implies

and thus the
location of the maximum of cannot lie in .

A. Basic Branch-and-Bound Algorithm

The basic optimization algorithm to find the location and
value of the maximal output is called branch-and-bound. The
general setup of the basic branch-and-bound algorithm is given
in Table I. If the task at hand is the computation of the maximal
output of , we replace the steps in Table I with the
following.

• Step 2: Function evaluation is the computation of
.

• Step 3: The criterion is that where
is the current estimate of the maximal output value. It

is equal to the highest of all the boxes in
the list . The stopping criterion is commonly defined as

, where is some minimal width per dimension
of or when .

• Splitting of the box is commonly done by bisecting the box
in the dimension that has the largest width.

To clarify the basic algorithm, we will discuss a simple example.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

DE WEERDT et al.: NEURAL NETWORK OUTPUT OPTIMIZATION USING INTERVAL ANALYSIS 641

Fig. 2. Function mapping and algorithm output for simple example branch-
and-bound algorithm. (a) Function output. (b) Algorithm output.

1) Example Branch-and-Bound: Consider a 2-2-1 radial
basis function network

(13)

The function is plotted in Fig. 2(a). The maximal output value
is 1 and the input set leading to this value is located at
the center of both neurons. If we want to find the maximal value
and its location, we apply the branch-and-bound algorithm with
initial conditions , and , i.e.,
the best estimate of the maximal value is zero and the algorithm
stops when all solution boxes are smaller than 0.1 in and

. The solution is plotted in Fig. 2(b). The accuracy of the
solution can be increased by decreasing .2 As we can see, the
algorithm can find the maximal value and both locations where
this value is attained with guaranteed bounds (see Table III).

Global optimization algorithms, such as the branch-and-
bound algorithm, are based on the principle of box evaluation

2We have kept � large to make the example clearer.

and box elimination, i.e., discarding regions where the solution
is guaranteed not to lie. The key to an efficient algorithm lies
therefore in the box evaluation: the higher the accuracy and
the more useful information about the output shape within the
interval, the more efficient the optimization algorithm will be.
This is where the drawbacks of standard interval analysis lie.
There are two issues.

1) Standard IA provides an inclusion of the function on
the domain . Although this inclusion function is critical
for the implementation of any optimization algorithm, its
information contents is limited: no information regarding
the behavior of the function of the domain is given
except that its value lies within the interval . If more
information is available, then it could be used to enhance
the efficiency of the algorithm, e.g., by enabling faster box
elimination or box contractions.

2) IA has the following properties:
• associative: ;
• commutative: ;
• nondistributive: but

.
The nondistributive property can lead to the so-called de-
pendency effect. When evaluating a function over do-
main , each occurrence of is treated as an independent
interval parameter. This can result in an inclusion function

, which has nontight bounds, i.e., and
. A simple example is the function

, which is equal to zero on any domain. In-
terval evaluation leads to

for (14)

The dependency effect can expand the bounds of the inclu-
sion function, therefore creating less accurate information,
which lowers the efficiency of the algorithm.

Unfortunately, the dependency effect is very hard to elimi-
nate. If possible, one could rewrite the optimization problem
such that the number of occurrences of each variable is as low as
possible. For the current NN output optimization algorithm, this
is not possible. We therefore focus on increasing the amount of
useful information obtained during a function evaluation.

B. Enhanced Branch-and-Bound Algorithm

In this paper, we apply three additional steps to enhance the
efficiency of the algorithm.

• Midpoint evaluations. By evaluating the NN at midpoint
in the box ,3 we can possibly update the current estimate
of the maximal output value

(15)

Since we have significant dependency in the interval eval-
uations, this crisp evaluation step can quickly drive the es-
timate of the maximal value to its final value.

• Derivative evaluations. For the NN, we can evaluate its
derivatives with respect to using IA. The result is a
guaranteed inclusion of the derivative value within box .

3One can choose any point in box �, but for convenience, we select the
midpoint.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

642 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

TABLE II
ENHANCED BRANCH-AND-BOUND ALGORITHM

Since we are searching for a maximum, we can eliminate
any box that does not contain zero in one or more of the
derivative intervals. Care must be taken when the box
lies on the border of the original search space. It could
be that the maximal output value lies on the border of
dimension while the first-order derivative with respect to

is nonzero. In the following cases, we must keep the
box (possibly reduce it).
— Keep entire box when

(16)

— Keep box and reduce when

(17)

— Keep box and reduce when

(18)

where is the original search space. In all other cases,
we can remove the box.

• Box contractions. By using the inclusion of derivatives
and the current estimate of the maximal value, one can
possibly contract the box . The method applied here is
a Newton step method [37] and it applies to any dimension

(19)

where is the interval set minus dimension and
is the expansion point somewhere in domain . During
the experiments, we select once as and once as

during one iteration.
The additional steps presented here are added to the branch-

and-bound algorithm and the complete algorithm is given in
Table II.

Next we will look at TMs that are used to determine an inclu-
sion function consisting of a crisp polynomial with an interval

remainder. The shape of the crisp polynomial will give more in-
formation regarding the actual shape of the function within that
interval. This information can be used for more efficient box
evaluations and contractions.

III. TAYLOR MODEL METHOD

TM methods use TM expansions of order about the point
within interval with bounds on the remainder. The inclusion
function obtained in this way is a polynomial inclusion function
formed by a polynomial of order and an interval which en-
closes the remainder. Taylor’s formula with remainder is given
by

(20)

where is an arbitrary function with nonvanishing derivative
strictly between and and lies strictly between and .
The form of the remainder depends on the choice of the function

. When choosing

(21)

we obtain the Lagrange’s remainder

(22)

where again lies strictly between and . For the multivariate
case, we can use the following notation for the th-order Taylor
polynomial and corresponding remainder:

(23)

By evaluating the remainder with IA, we can obtain a bound
on the remainder, which, together with the crisp polynomial of
order , forms the inclusion function called a TM. First we will
give the formal definition of a TM. Then, we will derive the TM
for the FFNN and the RBFNN.

A. Taylor Model

The formal definition of a TM is taken from [34]:

Let be on , and
be an interval box containing the point .

Let be the Taylor polynomial of around the point .

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

DE WEERDT et al.: NEURAL NETWORK OUTPUT OPTIMIZATION USING INTERVAL ANALYSIS 643

We call the interval an -th order Remainder Bound of
on if

for all (24)

We call the pair an -th order TM of . The set of all
remainder bounds is called the Remainder Family. Since
all partial derivatives of are continuous on the compact
set , they are bounded there, and so is the -th appli-
cation of the directional derivative . This entails
that for all , the Lagrange remainder is bounded, and
hence a finite remainder bound exists. Furthermore, since

is continuous, it assumes extrema at .
So is a remainder
bound; all other remainder bounds must contain , and thus

is often called the Optimal Remainder Bound.

A nice property of TMs is that the remainder decreases with
order as . To obtain the bounds on the remainder
for the interval , we can use standard IA and insert

for and (since lies somewhere between and thus
somewhere in the interval). We obtain

(25)

The width of depends on the width of and on the func-
tion . If the interval is large then the multiplication

will
cause a blowup of the remainder if the th order derivative
of is nonzero. Another difficulty is the number of occurrences
of in the th order derivative of . As for any function,
multiple occurrences of can cause overestimation, which
yields large remainder bounds. We will show that for the case
of NNs the remainder can become extremely large due to the
previously described effect.

B. RBFNN

First we will derive the TM for the RBFNN. We restrict
ourselves to first- and second-order TMs because for these
models we can easily determine location and value of the
maximum–minimum value, i.e., . For
orders up to 2, we can also easily determine the interval for
which , which we can use to contract :

. The first-order TM is defined as (notation has
been simplified)

(26)

and the second-order model is defined as

(27)

To construct the first- and second-order TM, we need the deriva-
tives up to order 2 and 3, respectively

(28)

where

We can see from the derivatives that for this problem the number
of occurrences of increases with increasing order of deriva-
tives. This results in overestimation of the remainder bounds

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

644 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

for interval set in which the th-order derivative of
one or more neurons is nonzero.4 To show the effect of de-
pendency, in the remainder, we will look at a single-hidden-
layer neuron output and the corresponding first-order TM [see
Fig. 3(a)]. Note that the TM for the complete network is simply
the summation of the TMs of each hidden-layer neuron, there-
fore any blowup for a single-hidden-layer neuron will also be in
the total TM. For the single-hidden-layer neuron, we have evalu-
ated three intervals with increasing diameter. We can clearly see
that the remainder blowup is considerable for the larger inter-
vals. For the smallest interval , we have a fairly accurate TM
inclusion function, which contains more information regarding
the shape of and has tighter bounds on part of the do-
main compared to the inclusion provided by standard IA.
The higher the derivative order is, there are more occurrences
of , and the dependency effect is more severe [see Fig. 3(b)].
This means that if the th-order derivative is nonzero on
the domain and is not sufficiently small, the obtained in-
clusion function will become worse if the order of the TM is
increased. This is a highly undesirable property and can have
severe consequences for the efficiency of the optimization algo-
rithm. In Section III-D, we will discuss a method to reduce the
overestimation of the remainder. First, we will discuss the im-
plementation of TMs for FFNNs.

C. FFNN

As for the RBFNN, we will restrict our discussion to first- and
second-order TMs. In Section III-D, we will show that for these
models, we can easily derive contraction rules that improve the
algorithm efficiency. The first- and second-order TMs are given
by (26) and (27), respectively. To derive the models, we need
the multidimensional derivatives up to order 3

(29)

Again, we can see that the parameters occur multiple times
in the derivatives since is a function of . Therefore, we ex-
pect, as for the RBFNNs, that the remainder will expand in case
of larger interval sets in which the second and third deriva-
tives are nonzero. We will demonstrate the remainder blowup

4When using NNs, one usually wants approximation capacity for the entire
range� for which we require that at least one neuron has a first-order derivative
unequal to zero. Therefore, we can conclude that we always have overestimation
for �.

Fig. 3. (a) First- and (b) second-order TM inclusion of a 1-1-1 RBFNN.

of a first-order TM for a single-hidden-layer neuron FF net-
work [see Fig. 4(a)]. As expected, the remainder indeed grows
with increasing diameter of . However, the effect of increasing

is far lower for the FFNNs than for the RBFNNs, because
only the terms contain and the output of this function is
bounded between and . Therefore, higher orders of are
also bounded between and . This means that the cause
of the blowup of the remainder is determined by the width of

and if is sufficiently small then an increase in order
would provide a TM with smaller remainder [see Fig. 4(b)].

A conclusion is that TMs are better suited for FFNNs than for
RBFNNs. In Section III-D, we will discuss our implementation
of the branch-and-bound algorithm using TMs. A combination
of standard IA and TMs is used to prevent remainder blowup
and make the algorithm more efficient.

D. TM Optimization Algorithm

The optimization algorithm based on TMs is an adapted
version of the branch-and-bound algorithm and it is given
in Table IV. In step 2, we perform function evaluation over
domain using a TM and standard interval analysis

. During the computation of the TM, we also computed

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

DE WEERDT et al.: NEURAL NETWORK OUTPUT OPTIMIZATION USING INTERVAL ANALYSIS 645

Fig. 4. (a) First- and (b) second-order TM inclusion of a 1-1-1 FFNN.

the bounds provided by standard IA. To prevent the expansion
of the function evaluation due to TM remainder blowup (see
Sections III-B and III-C), we take the lowest upper bound and
the highest lower bound

(30)

The computation of and depends on the
order . To make these computations easy, we restrict ourselves
to orders up to 2.

An important step in the optimization algorithm is the con-
traction step. If the upper bound of , i.e., the
upper bound of the TM with dimension reduced to a crisp
value, is lower than , the current estimate of the maximum
value, then contraction of might be possible. The problem
with the implementation of contractions is that the domain ,
where is usually not aligned with the co-
ordinate axis of , which could mean that contractions are not

TABLE III
SOLUTION BOXES FOR SIMPLE EXAMPLE BRANCH-AND-BOUND ALGORITHM

TABLE IV
TM OPTIMIZATION ALGORITHM

possible. If, however, we were able to contract for at least
one dimension, we must first look if the stopping condition has
been reached. If not, we must check if the diameter of the do-
main is reduced by a factor or more (is usually defined in
the range of). If this check is passed, then we decide not
to split the box and place it back into the list. This approach re-
duces the number of bisections and increases the efficiency of
the algorithm in terms of total number of required box evalu-
ations. The choice of is problem dependent and the optimal
value can be found through investigation. The rest of the algo-
rithm is the same as the enhanced branch-and-bound algorithm.
For orders up to 2, the contraction step is easily performed using
simple algebraic relations.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

646 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

IV. POLYNOMIAL SET METHOD

The problem of TMs lies in the determination of the re-
mainder, which leads to an inclusion that can be larger
than the inclusion bounds obtained through standard IA. In
this section, we will derive the PS method. There are two key
aspects of the new method.

1) The inclusion function is defined as a set of two crisp poly-
nomials , where

(31)

2) The inclusion function always lies within
the bounds provided by standard IA, i.e.,

(32)
The first aspect makes this method different from TMs, where

one crisp polynomial is used plus a bounded remainder, and
the method of Hansen, where one polynomial with interval pa-
rameters is used [38]. The second aspect ensures that the in-
formation obtained through a function evaluation is equal to
or richer than the information obtained through standard in-
terval analysis. The upper and lower bounds are equal to or
tighter than those obtained with standard interval analysis and
the shapes of the polynomials give more information about the
shape of the NN output. Better estimates of the maximum output
value are possible. The method of deriving the two polyno-
mials is problem dependent, but always
possible. In the worst case scenario, one can only derive a ze-
roth-order polynomial, which reduces the method to standard
IA. We will first discuss the application to RBFNNs and there-
after the application to FFNNs.

A. RBFNN

The approach to deriving the polynomial model is based on
summation of the weighted polynomial models of each hidden-
layer neuron

(33)

We will therefore focus on a single RBF for domain

(34)

For the RBFNNs, the input space is mapped into the hidden-
layer neuron input space through the relation

(35)

If we determine a first-order polynomial in terms of , by sub-
stitution of the previous relation, we can obtain a second-order
polynomial in . Higher order polynomials in of order
therefore lead to -order polynomials in . The benefit of de-

riving the polynomial in first is that we simplify the deriva-
tion. The drawback on the other hand is that information is lost
during the mapping , which can lead to overesti-
mation of the inclusion function bound, i.e., the integrated error

could be made smaller.
Theorem IV.1: Assume the polynomials

(36)

on the domain , where the parameters are defined
as

(37)

with , then

(38)

on the domain and the integrated errors

are minimal.
Proof: See the Appendix.

Once the polynomials have been determined in , we can
determine the polynomials in by substituting equation (35).
The final polynomials are of the form

(39)

with parameters

(40)

(41)

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

DE WEERDT et al.: NEURAL NETWORK OUTPUT OPTIMIZATION USING INTERVAL ANALYSIS 647

Fig. 5. Hidden-layer neuron activation functions. (a) Exponential function.
(b) Tangent sigmoidal function.

Fig. 6. PS inclusion of a 1-1-1 RBFNN.

The inclusion function for the complete NN is given by

(42)

Since the output is simply the summation of hidden-layer
neuron outputs, the guarantee of tighter bounds on the
hidden-layer neuron outputs implies that we have equal or
tighter bounds on the output of the complete network as com-
pared to standard IA (see Fig. 6).

An advantage is that the obtained crisp polynomial for the
upper bound and lower bound in can be easily analyzed. The
value of the maximum minimum value can be computed analyt-
ically and used to update the estimate of the maximum output
value, i.e.,

(43)

Then, we can compute the region where the inclusion function
upper bound is lower than the current estimate such that we
can possibly contract the domain . This process is the same as
for the TMs (see Section III-D).

B. FFNN

The approach taken here is similar to the one for RBFNNs.
Since the output is the weighted summation of the hidden-layer
neuron output [see (33)], we will look at a single-hidden-layer
neuron

(44)

The input space is mapped into the hidden-layer neuron input
space through the relation

(45)

If we determine th-order polynomial in terms of , by sub-
stituting the previous relation, we can obtain an th-order poly-
nomial in . For , we can easily derive bounds on the
maximum and minimum values of and contrac-
tions can be performed using simple algebraic rules.

Theorem IV.2: Assume the polynomials

(46)

on the domain , where the parameters are defined
as

(47)

with , then

(48)

on the domain and the integrated errors

are minimal.
Proof: See the Appendix.

Once the polynomials have been determined in , we can
determine the polynomials in by substituting equation (45).
The final polynomials are of the form

(49)

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

648 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

Fig. 7. PS inclusion of a 1-1-1 FFNN.

with parameters

(50)

(51)

The inclusion function for the complete NN is given by (42).
Since the output is simply the summation of hidden-layer
neuron outputs, the guarantee of tighter bounds on the
hidden-layer neuron outputs implies that we have equal or
tighter bounds on the output of the complete network as com-
pared to standard IA (see Fig. 7).

As for the RBFNNs, we can use the obtained crisp polynomial
for the upper bound to derive the value of the maximum–min-
imum used to update the estimate of the maximum output value.
Moreover, we can apply contractions based on the current esti-
mate of the maximum output value and the inclusion polyno-
mials.

C. Polynomial Optimization Algorithm

The optimization algorithm using polynomial inclusion func-
tions is equal to that of the TM optimization algorithm (see
Table IV) except for step 2. Step 2 becomes as follows.

Perform function evaluation with polynomial inclusion
function

Evaluation using standard IAs is not required since we have
guaranteed tighter bounds when using polynomial inclusion
functions. In Section V, we will present the results for all the
methods discussed in this paper.

V. SIMULATION RESULTS

The methods discussed in this paper differ in the setup of the
function evaluation. To test the efficiency of different methods,

a simulation is performed. The setup of the experiments for the
RBF networks is as follows.

• A vector containing the number of hidden-layer neurons is
selected: . is set to 1% of the
input range for each input dimension and is set to 0.25.

• For each entry in this vector, a batch of 250 randomly ini-
tialized RBFNNs is created for the case of a 1-D, 2-D, and
3-D input.

• For each RBFNNs in the batch, we perform the optimiza-
tion task with the following optimization algorithms:
1) enhanced branch-and-bound (BB) algorithm, without

contractions (step 6) (see Section II);
2) enhanced BB algorithm, with contractions (WC) based

on Newton step (see Section II);
3) TM optimization algorithm, second-order polynomial

(see Section III);
4) TM optimization algorithm with contractions (WC),

second-order polynomial (see Section III);
5) PS optimization algorithm, second-order polynomial

(see Section IV);
6) PS optimization algorithm with contractions (WC),

second-order polynomial (see Section IV).
• For each algorithm, the computation time will be recorded.
• The experiments are performed on a single 2.4-GHz

Intel(R) Core(TM) 2Quad core. During the evaluation
of the results, we will look only at relative results since
the absolute value of the computational load is central
processing unit (CPU) dependent.

• The experiments are performed using MATLAB c and in-
terval toolbox INTLAB c developed by S. M. Rump at
Hamburg University of Technology, Hamburg, Germany.

We have chosen to use the second-order TM for the
RBFNNs to make a fair comparison with the PS method.
Due to the setup of the polynomial derivations for the PS
inclusion function, we obtain a second-order polynomial for
this method (see Section IV-A). The experiments for the
FFNN are the same as for RBFNN although now we choose

, and first-order polynomials are
selected for both the TM and the PS methods.

The results of the RBF experiments are shown in Fig. 8. Based
on the results, we can note the following.

• The computational load increases approximately linearly
with the number of hidden-layer neurons for each method.
More neurons means more computation per function eval-
uation and also more dependency effect due to more oc-
currences of in the network output function. This result
does depend on the required accuracy .

• The PS method with contractions is most efficient for all
cases. When considering number of neurons, the PS
method is followed by the TM method with contractions
and thereafter the BB algorithm. This is purely due to the
level of information content obtained from a function eval-
uation . BB uses standard IA, which yields the
minimum required information content. TMs provide more
information of the function shape if the remainder bound
is small enough (see Section III-B). The remainder bound
is the main problem for the TM method. When the interval

is small enough for each hidden-layer neuron then the

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

DE WEERDT et al.: NEURAL NETWORK OUTPUT OPTIMIZATION USING INTERVAL ANALYSIS 649

Fig. 8. Optimization algorithm comparison results for RBFNNs. (a) 1-N-1
RBFNNs. (b) 2-N-1 RBFNNs. (c) 3-N-1 RBFNNs.

method provides more information than the standard in-
terval analysis method. This means that during the opti-
mization the initial phase will mostly consist of function
evaluations based on standard interval analysis whereas the

final phase (when has become small enough) will con-
sist of function evaluations based on TMs. This is the dif-
ference with the PS method for which the function evalua-
tions are always performed using the PS and not with stan-
dard interval analysis. This means that more information
can be used from the very beginning of the optimization
therefore making the algorithm more efficient.

• For lower amount of hidden-layer neurons, the BB algo-
rithm performs better than the PS and TM method without
contractions. The reason is that the determination of the
inclusion function for PS and TM methods demands more
computational load, while the additional information about
the network shape and output bounds does not improve
the efficiency (in terms of computational load) much, since
little dependency is present. The methods with contractions
are performing equally well or better than the BB algorithm
since they make better use of the information regarding the
network shape (via contractions).

• The application of contractions decreases efficiency in
terms of computational load for the BB algorithm. The
additional computations required for the contractions and
the larger dependency effect in the derivatives cause little
reductions of the boxes. The increased computational
load outweighs the increased algorithm efficiency, which
causes the overall computation time to increase.

• The application of contractions enhances efficiency of the
PS and TM algorithms for the lower number of hidden-
layer neurons. This result is depends on the required ac-
curacy . In the experiments, we kept this param-
eter constant, which implies that for a higher amount of
hidden-layer neurons, the minimum interval width in-
creases. The information content using the TM method
and the PS method increases with decreasing intervals
and contractions are only possible when enough informa-
tion is present. Therefore, the percentage of actual con-
tractions decreases with increasing number of hidden-layer
neurons. If we decreased or with increasing number
of hidden-layer neurons such that the same widths of
were attained, then we predict that the contractions would
speed up the optimization process for higher number of
hidden-layer neurons.

The results for the FFNN experiments are shown in Fig. 9.
The conclusions drawn from these results are similar to the case
of RBFNNs.

• The computational load increases approximately linearly
with the number of hidden-layer neurons for each method.

• The PS method with contractions is most efficient for the
2-D and 3-D cases. When considering number of neu-
rons, the PS method is followed by the TM method and
thereafter the BB algorithm. For the 1-D case, the BB algo-
rithm without contractions outperforms the other methods
for low number of neurons. This is due to the increased
computational load for computing the inclusion functions
for the PS and TM methods. It appears that the increase
in algorithm efficiency does not outweigh the increase in
computational load.

• For lower amount of hidden-layer neurons, the BB algo-
rithm performs better than the PS and TM methods without

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

650 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

Fig. 9. Optimization algorithm comparison results for FFNNs. (a) 1-N-1
FFNNs. (b) 2-N-1 FFNNs. (c) 3-N-1 FFNNs.

contractions. The reason for this is the more efficient algo-
rithm in terms of computational load, not in terms of eval-
uation efficiency as explained before.

• The application of contractions enhances efficiency of the
optimization algorithms for the lower number of hidden-
layer neurons due to the same reason as for the RBFNNs.

Looking at the results for both RBF and FF networks, we
can state that the computational load increases considerably
when increasing the input dimension. Finally, we note that the
superior performance of the PS method becomes more pro-
nounced with respect to other methods for higher dimensional
input spaces.

VI. CONCLUSION

NN output optimization via interval analysis guarantees that
all solutions are obtained. Standard interval analysis is slow due
to dependency and minimal information content of a function
evaluation. Introducing TMs makes the algorithm more efficient
for larger amounts of neurons and higher dimensional input
spaces, although it still suffers from dependency, which can lead
to severe remainder blowup. Therefore, using TMs is only ben-
eficial for smaller input space intervals. The PS method guar-
antees bounds tighter than those of standard interval analysis
irrespectively of input space interval widths. Therefore, more
useful information is introduced from the beginning of the op-
timization. This information can be used to increase efficiency
considerably, and therefore, the PS method has proved to be the
fastest algorithm for both the FFNNs and the RBFNNs.

APPENDIX

PROOF OF THEOREMS IV.1 AND IV.2

In this Appendix, we will present the proof of Theorems IV.1
and IV.2.

Proof of Theorem IV.1: The derivative of is

(52)

which is negative on the domain . This means that is
monotonically decreasing on domain and that the maximal
value of is attained at and the minimal value at

. By Theorem II.1, we have that

(53)

Since we must have ,

we know that

(54)

Now we only need to specify the value of and . Let us first
look at the value of . Since we require

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

DE WEERDT et al.: NEURAL NETWORK OUTPUT OPTIMIZATION USING INTERVAL ANALYSIS 651

, we can find the optimal value of by minimizing the inte-
grated error between the polynomial and the activation function

(55)

The term is always positive thus we know
that the minimization of the integral can be seen as the mini-
mization of . The lowest possible value of is determined
by the constraint

(56)

We can rewrite this in the form

(57)

We can take the derivative of the latter function with respect to
to find the value of such that the constraint holds

(58)
Since we have that

(59)

we know that the right-hand side of (58) is always positive if

(60)

We can rewrite this relation to

(61)
which holds since

(62)

and the derivative with respect to of the right-hand side of
(58) is always larger than that of the left-hand side

(63)

Since we know that the function is always positive, we
can determine the maximal value of the right-hand side of (58)

(64)

We need to minimize the value of , which means that the
optimal value of is

(65)

In a similar way, we can prove that we have for the value that
the minimization problem of

(66)

is solved by taking the lowest possible value of . This value,
however, is a constraint by the following relation:

(67)

It is stated without proof that the relation on the right-hand side
is monotonically increasing [proof is the same as for relation
(57)] and that the maximal value is found when taking the fol-
lowing limit:

(68)

Since we want to minimize the integrated error, we need to min-
imize , which means we have the optimial value

(69)

This completes the proof.
Proof of Theorem IV.2: The derivative of is

(70)

which is positive on the domain since .
This means that is monotonically increasing on domain

and that the minimal value of is attained at

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

652 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 4, APRIL 2009

and the maximal value at . By Theorem II.1, we
have that

(71)

Since we must have ,
we known that

(72)

Now we only need to specify the value of and . Let us first
look at the value of . Since we require

, we can find the optimal value of by minimizing the inte-
grated error between the polynomial and the activation function

(73)

The term is always positive thus we know
that the minimization of the integral can be seen as a maximiza-
tion of . The largest possible value of is determined by the
constraint

(74)

This relation can be rewritten into

(75)

The right-hand side is always positive and, depending of the
value , has one or no point in domain where the deriva-
tive is zero. If the derivative does become zero within domain

, then the second derivative will be negative at that location.
This means that the minimal value of the right-hand side of (75)
will be obtained on the border of domain

(76)

Since we need to fulfill the constraint and maximize , the
optimal value of will be

(77)

In a similar way, we can prove that we have for the value the
minimization problem of

(78)
which is solved by taking the highest possible value of . This
value is, however, a constraint by the following relation:

(79)

It is stated without proof [which is similar as for (75)] that the
minimal value of the right-hand side is obtained at the border of
domain . We need to maximize the value of to minimize
the integrated error, which means that the optimal value of is

(80)

This completes the proof.

REFERENCES

[1] G. Zhang, Neural Networks in Business Forecasting. Hershey, PA:
Information Science Publishing, 2003.

[2] K. Smith and J. Gupta, Neural Networks in Business: Techniques and
Applications. Hershey, PA: IGI Global, 2002.

[3] P. Bhagat, Pattern Recognition in Industry. New York: Elsevier,
2005.

[4] C. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Oxford Univ. Press, 1995.

[5] B. Ripley, Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[6] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. New
York: Wiley, 2001.

[7] M. Smith, Neural Networks for Statistical Modeling. New York: Van
Nostrand, 1993.

[8] S. Haykin, Neural Networks a Comprehensive Foundation. Upper
Saddle River, NJ: Prentice-Hall, 1994.

[9] W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bull. Math. Biophys., vol. 5, pp. 115–133, 1943.

[10] P. Werbos, The Roots of Backpropagation. New York: Wiley, 1994.
[11] Y. Shang and B. Wah, “Global optimization for neural network

training,” IEEE Comput. Sci. Eng., vol. 29, no. 3, pp. 45–54, Mar.
1996.

[12] B. Cetin, J. Burdick, and J. Barhen, “Global descent replaces gradient
descent to avoid local minima problem in learning with artificial neural
networks,” in Proc. IEEE Int. Conf. Neural Netw., 1993, pp. 836–842.

[13] N. Baba, Y. Mogami, M. Kohzaki, Y. Shiraishi, and Y. Yoshida, “A
hybrid algorithm for finding the global minimum of error function of
neural networks and its application,” Neural Netw., vol. 7, no. 8, pp.
1253–1265, 1994.

[14] L. Hamm, B. Brorsen, and M. Hagan, “Comparison of stochastic
global optimization methods to estimate neural network weights,”
Neural Process. Lett., vol. 26, pp. 145–158, 2007.

[15] K. Toh, “Deterministic global optimization for FNN training,” IEEE
Trans. Syst. Man Cybern. B, Cybern., vol. 33, no. 6, pp. 977–983, Dec.
2003.

[16] Z. Tang and G. Koehler, “Deterministic global optimal FNN training
algorithms,” Neural Netw., vol. 7, pp. 301–311, 1994.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

DE WEERDT et al.: NEURAL NETWORK OUTPUT OPTIMIZATION USING INTERVAL ANALYSIS 653

[17] H. Li, H. Li, and Y. Du, “A global optimization algorithm based on
novel interval analysis for training neural networks,” in Advances in
Computation and Intelligence. Cambridge, MA: MIT Press, 2007,
vol. 4683, pp. 286–295.

[18] E. de Weerdt, Q. Chu, and J. Mulder, “Continuous state and action ad-
vantage-learning using interval analysis and neural networks,” in Proc.
AIAA Guid. Navigat. Control Conf. Exhibit, 2007, AIAA-2007-6522.

[19] R. S. Sutton and A. G. Barto, , T. Dietterich, Ed., Reinforcement
Learning, An Introduction, 3rd ed. Cambridge, MA: MIT Press,
1998, printing (2000).

[20] L. Baird, “Reinforcement learning in continuous time: Advantage up-
dating,” in Proc. IEEE Int. Conf. Neural Netw., Jun.–Jul. 1994, vol. 4,
pp. 2448–2453.

[21] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Bel-
mont, MA: Athena Scientific, 1996, vol. 1.

[22] G. Cybenko, “Approximations by superpositions of a sigmoidal func-
tion,” Math. Control Signals Syst., vol. 2, pp. 303–314, 1989.

[23] R. Moore, Interval Analysis. Englewood Cliffs, NJ: Prentice-Hall,
1966.

[24] E. van Kampen, Q. Chu, J. Mulder, and M. van Emden, “Nonlinear air-
craft trim using interval analysis,” in Proc. AIAA Guid. Navigat. Con-
trol Conf. Exhibit, Aug. 2007, AIAA-2007-6766.

[25] S. Juliana, Q. Chu, J. Mulder, and T. van Baten, “Flight envelope clear-
ance of atmospheric re-entry module with flight control,” in Proc. AIAA
Guid. Navigat. Control Conf. Exhibit, 2004, AIAA-2004-5170.

[26] E. de Weerdt, E. van Kampen, Q. Chu, and J. Mulder, “Integer am-
biguity resolution using interval analysis,” J. Navigation, 2008, to be
published, .

[27] C. Hu and L. T. He, “An application of interval methods to stock market
forecasting,” Reliable Comput., vol. 13, no. 5, pp. 423–434, Oct. 2007.

[28] J. Garloff, I. Idriss, and A. Smith, “Guaranteed parameter set estimation
for exponential sums: The three-terms case,” Reliable Comput., vol. 13,
no. 4, pp. 351–359, Aug. 2007.

[29] A. Neumaier, “Taylor forms—Use and limits,” Reliable Comput., vol.
9, pp. 43–79, 2002.

[30] K. Makino and M. Berz, “Taylor models and other validated functional
inclusion functions,” Int. J. Pure Appl. Math., vol. 4, no. 4, pp. 379–356,
2003.

[31] K. Makino and M. Berz, “Higher order multivariate automatic dif-
ferentiation and validated computation of remainder bounds,” Trans.
Comput., vol. 4, pp. 1611–1618, Nov. 2005.

[32] K. Makino and M. Berz, “New applications of Taylor model methods,”
Automatic Differentiation of Algorithms: From Simulation to Optimiza-
tion, pp. 359–364, 2000, ISBN: 0-387-95305-1.

[33] K. Makino and M. Berz, “Higher order verified inclusions of multi-
dimensional systems by Taylor models,” Nonlinear Anal., vol. 47, pp.
3503–3514, 2001.

[34] M. Berz and G. Hoffstatter, “Computation and application of Taylor
polynomials with interval remainder bounds,” Reliable Comput., vol.
4, pp. 83–97, 1998.

[35] E. Hansen and G. Walster, Global Optimization Using Interval Anal-
ysis, 2nd ed. New York: Marcel Dekker/Sum Microsystems, 2004.

[36] R. Moore, Methods and Applications of Interval Analysis. Philadel-
phia, PA: SIAM, 1979.

[37] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Anal-
ysis. New York: Springer-Verlag, 2001.

[38] E. Hansen, A Generalized Interval Arithmetic. Berlin, Germany:
Springer-Verlag, 1975, vol. 29.

E. de Weerdt received the M.Sc. degree in
aerospace engineering with honors from the Faculty
of Aerospace Engineering, Delft University of
Technology, Delft, The Netherlands, in 2005, where
he is currently working towards the Ph.D. degree at
the Division of Control and Simulation.

His research field ranges from neural networks
to flight dynamics and control, satellite formation
flying, nonlinear control, adaptive control, and global
optimization.

Q. P. Chu received the Ph.D. degree in aerospace
engineering from the Faculty of Aerospace Engi-
neering, Delft University of Technology, Delft, The
Netherlands, in 1987.

Currently, he is an Associate Professor at the Divi-
sion of Control and Simulation, Faculty of Aerospace
Engineering, Delft University of Technology, respon-
sible for aerospace guidance, navigation and control
education, and research activities. His research field
ranges from adaptive control, nonlinear control, ro-
bust control, and intelligent control for aerospace ve-

hicles to precise navigation, system identification, and nonlinear optimization.
He is also the responsible teacher for courses on aerospace GNC.

Dr. Chu was the designer of the attitude control system for the third Dutch
satellite Sloshsat launched in Feb. 2005. He is reviewer for many international
journals in aerospace guidance navigation and control and a member of the
American Institute of Aeronautics and Astronautics (AIAA).

J. A. Mulder received the Ph.D. degree with honors
from Delft University of Technology, Delft, The
Netherlands, in 1986.

In 1989 he was appointed Full Professor at Delft
University of Technology, where he is the Head
of the Control and Simulation Division, Faculty
of Aerospace Engineering. He serves as Scientific
Director of the Institute for Research in Simulation,
Motion and Navigation Technologies (SIMONA)
and the Institute for Aerospace Software and Tech-
nologies (ASTI) of Delft University of Technology.

Dr. Mulder has served in numerous ministerial advisory committees, as ad-
visor to the board of the National Aerospace Laboratory (NLR) and the Radio-
biological Institute of the Netherlands Organisation for Applied Scientific Re-
search (TNO). He has been a member of the AGARD Flight Mechanics panel
from 1982 to 1997. Currently, he is a member of the Avionics Committee of
the Society of Automotive Engineers (SAE), member of the American Institute
of Aeronautics and Astronautics (AIAA) AFM Technical Committee and As-
sociate Editor of the AIAA Journal of Aerospace Computing, Information, and
Communication.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on February 17,2010 at 08:19:11 EST from IEEE Xplore. Restrictions apply.

