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Model Selection Criteria for Image Restoration

Abd-Krim Seghouane

Abstract—In this brief, the image restoration problem is approached as a
learning system problem, in which a model is to be selected and parameters
are estimated. Although the parameters which correspond to the restored
image can easily be obtained, their quality depend heavily on a proper
choice of the regularization parameter that controls the tradeoff between
fidelity to the blurred noisy observed image and the smoothness of the re-
stored image. By analogy between the model selection philosophy that con-
stitutes a fundamental task in systems learning and the choice of the reg-
ularization parameter, two criteria are proposed in this brief for selecting
the regularization parameter. These criteria are based on Bayesian argu-
ments and the Kullback–Leibler divergence and they can be considered as
extensions of the Bayesian information criterion (BIC) and the Akaike in-
formation criterion (AIC) for the image restoration problem.

Index Terms—Akaike information criterion (AIC), Bayesian information
criterion (BIC), image restoration, model selection, regularization.

I. INTRODUCTION

Image restoration is an important problem of image processing
which has been extensively studied [1]–[5]. The aim is to construct a
good estimate of the original image from noisy, degraded observations.
This problem is, for example, encountered in astronomical imaging,
ultrasound imaging, and radar imaging. In most cases, the standard
statistical model used to relate the observations to the unknown
underlying image is given by

� � �� � � (1)

where the ��� vectors � , �, and� represent, respectively, the original
image, the observed image, and the noise with independent identically
distributed (i.i.d.) Gaussian elements of mean zero and variance ��

�
.

The matrix � � ���� represents the known distortion blurring ma-
trix, and it has as elements samples of the point spread function (PSF)
of the image system. � can have a special structure depending on the
properties of the PSF. For the general convolutional case, � is a block
diagonal matrix. The images are assumed to be of support ��	 pixels
where � and 	, respectively, represent the length and the width of the
image. The support of the above vectors is then � � ��	.

The simplest way to obtain an estimate �� from (1) is to select �� as a
minimizer of the least squares error criterion


��� �� � �� ����� (2)
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which results in the pseudoinverse estimate

�� � ��������� �� (3)

However, as is well known, this is an ill-posed problem, which means
that this estimate does not lead to a suitable restoration [1].

A classical framework in which to solve such an image estimation
problem is regularized estimation. The estimator is given by

��� � ����	

�

�� ����� � ������ (4)

which yields the estimate

��� � ���� � ��������� �� (5)

Assume that

� ���� 	�� �
�

�
	���
���

��� �
�

	��
�� ����� (6)

represents the probability density of � given � and that

� � �	�� � 	��� ��� �
�

	��
���� (7)

where ���� is a nonnegative quadratic form, denotes the prior
probability density of � dependent on a parameter 	�� , which in the
Gaussian case represents the variance of the prior. A conventional
choice for ����, which is widely used in image processing, is the
quadratic smoothness penalty ���� � ����� [1] (implicitly as-
suming a Gaussian prior on � ), where � is a differentiating operator
[6], [7]. A smoothness requirement on the solution can be imposed
by requiring � being a high-pass filter, for example, � is the 2-D
Laplacian operator [8]. This choice of penalty yields the estimate (5)
which penalizes large local variations in the image. For the Gaussian
model (1), the estimate ��� is linear in the data �.

The Bayesian interpretation of (4) is given by

��� � ������
�

� � ��� 	��� 	
�

�

� ������
�

� ���� 	�� � � �	��

� ������
�

��������� ���� (8)

It is commonly assumed in image restoration that ��� is a much more
preferable solution than �� . However, the quality of the restored image
depends heavily on a proper choice of the parameter� � 	���	

�

� called
the regularization parameter. Therefore, it is important to choose the
regularization parameter judiciously because it controls the tradeoff
between fidelity to the observations (the log-likelihood term) and the
smoothness of the estimated image (the regularization term). While it
is sometimes the case that a range of values of the regularization pro-
vides an acceptable estimated image, it is important to be in the correct
window of values.

Various approaches have been introduced in the literature for esti-
mating �. Among them, one can cite mean square error (MSE)-based
approaches, the Chi-squared method (CHI), and the equivalent degrees
of freedom method (EDF) [9]. MSE-based approaches require the a
priori knowledge of � and 	�� , whereas CHI and EDF methods require
only the knowledge of 	�� . However, in many practical situations, the
noise variance 	�� is not known; therefore, these methods cannot be ap-
plied directly. Maximum likelihood (ML) and cross validation (CV) are
the only methods that allow the selection of the regularization param-
eter when 	�� is unknown [10]. These methods are totally data based,
requiring no a priori knowledge whatsoever. However, the ML method
has the tendency to produce oversmoothed solutions [11] whereas CV

can fail in some circumstances producing either no positive smoothing
parameter or a grossly underestimated regularization parameter [12].

Learning from an experimental data set consists of two tasks, the
choice of an appropriate model structure and estimating its parame-
ters. The task of parameter estimation is generally achieved by ML or
least squares procedures given the structure or dimension of the model.
In image restoration problems, the unknown original image represents
the parameter vector and its estimate is given by (5). The choice of the
dimension of a model is often facilitated by the use of a model selec-
tion criterion where one only has to evaluate two simple terms. The un-
derlying idea of model selection criteria is the parsimonious principle
which says that there should be a tradeoff between data fitting and com-
plexity. In image restoration problems, the choice of the model struc-
ture corresponds to the choice of the regularization parameter that con-
trols the tradeoff between fidelity to the blurred noisy observed image
and the smoothness of the restored image.

Model selection criteria are powerful tools that have not yet been
applied to image restoration problems. Based on different approaches,
different model selection criteria have been proposed in the literature.
The first criterion which has gained widespread acceptance was the
Akaike information criterion (AIC), which is based on information
theoretic arguments [13]. In [14], based on Bayesian arguments and
maximum a posteriori probability, the Bayesian information criterion
(BIC) was introduced.

In this brief, the application of the model selection approach to the
problem of image restoration is proposed. By extending the AIC and
BIC derivation ideas, improved variants of AIC and BIC are devel-
oped for selecting the regularization parameters to control the amount
of smoothness of the restored image ���. These proposed criteria can be
considered as simple totally data-based alternatives to the ML and CV
methods for choosing the regularization parameter without knowledge
of 	�� .

II. THE KULLBACK–LEIBLER DIVERGENCE APPROACH

A. Review of the AIC

Suppose a collection of observed data � � ��� � � � � �� has
been sampled from an unknown distribution ���� having density
function ����. Estimation of ���� is done within a set of candidate
models ��� � � � ��� characterized by probability densities �������,
� � �� � � � � � , where �� � �� � �� . It is also assumed that the
generating density model � is a member of the approximating family
of models; ��� � �� such that ���� � ���� ��� [13]. Let �����
denote the vector of estimated parameters obtained by maximizing the
likelihood ������� over �� and let �������� denote the corresponding
fitted model.

To determine which candidate density model best approximates the
true unknown model ����, we require a measure which provide a suit-
able reflection of the separation between ���� and an approximating
model ��������. The Kullback–Leibler divergence also known as the
cross entropy or discrepancy is one of such measure.

For the two probability densities ���� and ��������, the Kull-
back–Leibler divergence between ���� and �������� with respect to
���� is defined as

�������� ��������� ��	  �

����

��������

��	 � �
 �������� � �	 	� �
 ����


� ����� ���� ����� ��

where

����� ��� � �		� �
 ��������
 (9)

Authorized licensed use limited to: Australian National University. Downloaded on December 7, 2009 at 22:59 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 8, AUGUST 2009 1359

and ����� represents the expectation with respect to ����. By splitting
the observed data into several subsamples ���� � ���� � � � � �����

��� �
������ � � � � ������ � � ��

��� � ����������� � � � � ���, the empirical com-
putation of ����� and (9) is obtained by

������ ��� �
�

�

�

���

�� �	 � �
�����	���

���� �

Since ����� �� does not depend on 	� , any ranking of the candidate
models according to 
������� �����	��� would be identical to ranking
them according to ����� ���.

The above discussion suggests that

����� ��� � �� �� �	 �����	��

� �� �	 �����	��


 �� �� �	 �����	�� � ��� �	 �����	��� (10)

would provide a suitable estimate of the Kullback–Leibler divergence
up to the order of a constant between the generating model ���� and
the candidate model �����	��. Yet evaluating ����� ��� is not possible,
since doing so requires the knowledge of ����.

However, as noted in [13], �� �	 �����	�� serves as a biased esti-
mator of (9) and that, under proper regularity conditions [15], the bias
adjustment

�� �� �� �	 �����	�� ��� �� �	 �����	�� (11)

can often be asymptotically estimated by ��. Based on such observa-
tion, the use of

AIC � �� �	 �����	�� 
 �� (12)

was proposed in [13] as a criterion for model selection

�� � �� ��	
�����������

AIC�

If we denote

����� �� � �� ������ ����

then the following approximation holds [13]:

����� �� � �� �AIC�
 �����

The penalty term in AIC is a simple minded bias correction to the log
maximum likelihood and there is no assurance that such a bias correc-
tion yields a good estimate of the Kullback–Leibler divergence. Indeed,
in [16], it was shown that in parametric linear regression and autore-
gressive time-series contexts the bias corrected AIC takes the form

AIC� � �� �	 ���� �	����� 
 �
�� 
 ��

� � � �
� (13)

B. Improved AIC for Regularized Parameter Selection

In this section, an information approach to the regularization param-
eter selection for the image restoration problem is introduced.

Given a family of probability densities ������ �� characterized by a
parameter vector � , the regularization parameter value corresponding
to the density function from the specified family that matches the un-
known density ���� most closely is chosen.

When the unknown image � is estimated by (4), each particular
choice of the regularization parameter � yields some approximating

density ���� ���� ��. The closeness of this approximating density
���� ���� �� to the unknown density ���� can be evaluated by the
Kullback–Leibler divergence between these densities


������ ���� ���� �����	������ �������	������ ���� ���� ��� (14)

where �	������ represents the expectation with respect to ����.
The regularization parameter can then be estimated to be the mini-

mizer of the Kullback–Leibler divergence

�� � ����	
�


������ ���� ���� ����

As before, the minimization of 
������ ���� ���� ��� is equivalent to the
maximization of the expected log likelihood �	������ ���� ���� ���.
Since ���� is unknown, the empirical distribution is used instead, and
the expected log likelihood is estimated by the average log likelihood
�� ���� ���� ���. However, it is well known that this estimation intro-
duces a bias in estimating

���� � �	���
�


�� ���� ���� ��� �	������ ���� ���� ��� (15)

that should be corrected.
Theorem: The asymptotic bias of the average log likelihood

�� ���� ���� ��� fitted by (4) in estimating the expected log likelihood
�	������ ���� ���� ��� is given by

���� �
�


������
� 
 ��
�����
 � 
 ����� (16)

Proof: See the Appendix.
Therefore

AIC� � �
�


�� ���� ���� ��


�


������
�
��
�����
 � (17)

is an asymptotically unbiased estimator of �	������ ���� ���� ���.
Minimizing (17) provides the smoothing parameter estimate ���	


���	
 � ����	
�

AIC��

A corrected version of AIC for smoothing parameter selection in image
restoration problem can be obtained by replacing � in (13) by the trace
of the matrix ���
� 
 ��
�����
 .

III. THE BAYESIAN APPROACH

A. Review of the BIC

The motivation behind BIC [17] can be seen through a Bayesian de-
velopment of the model selection problem. Given the observed data �
and the set of family of candidate models ��� � � � ��� , the approxi-
mating model �� which is a posteriori most probable is chosen. By
Bayes theorem, the posterior probability of the �th family of candidate
models is defined by

������� �
������������

����
(18)

where ������� represents the marginal density of the data given they
are generated by the model�� , ����� represents the prior probability
of the model �� , and

���� �

�

���

������������

represents the marginal density of the data.
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To find the best family of candidate models, we evaluate �������
for � � �� � � � � � and select the model that maximizes �������

�� � ��	 
��
�����������

��������

Since ���� is not a function of�� , it is a common factor for all models
and then does not affect the model selection procedure. If the prior
probabilities ����� are assumed equal for all the families of candidate
models, the best model corresponds then to the one that maximizes the
probability �������. This density can be evaluated from

������� � ��������������������� (19)

where ���������� represents the likelihood for � based on �� and
�������� denote the prior on the parameter vector �� given the model
�� . The evaluation of the marginal density ������� requires, in gen-
eral, multidimensional integration. One way of evaluating it is using
Laplace approximation [18]. In the case of flat prior �������� � �
and under certain regularity conditions [19], the Laplace approxima-
tion to (19) is

��������
��	����


��������������
��������������� �����


���

(20)
where ��� , as defined in Section II-A, is the ML estimate and

������ � �
�




� �� ����������

��� � ���

�

The BIC is obtained by taking �� ��	 of (20) and ignoring the terms
of order ���� and higher

BIC � �� �� ����������� � � ���
�� (21)

The expression (21), however, cannot be used directly for the choice of
the regularization parameter. In what follows, the above method used to
derive BIC is used to approach the regularization parameter estimation
problem in a model selection framework.

B. Improved BIC for Regularized Parameter Selection

In this section, BIC is extended so that it can be applied to the selec-
tion of the regularization parameter in image restoration problems.

The restored image ��� is estimated by maximizing the penalized
log-likelihood function, which is defined by (8)

����� � � �� �������� �������

The penalty term corresponds to a multivariate normal prior density
��� ���

��� ��� � ��	��	���	����� �� �
�

�
�
�
�
�
�

where � is an 
�
 matrix. The quantity of interest ������ is obtained
by integrating over � � �	

������ � ��������� ��� ������

� ����� ������ � �� ��� ������� (22)

The Laplace approximation of (22) is given by

������ �
��	�	��


	����� ��������
����� ������ ��� (23)

where

�� ���� � �
�




� �� ��� ��� ��

��� 
��


�
�



���

� � ��
�
���

It follows from (8) and (23) that �� �� ������ can be approximated by

�� �� ������ 	 �� �� ���� ���� � � ���� �
�
� ��� � 
 �����

� ������
� � ��

�
���� � ��������

Removing the terms that do not dependent on � provides

BIC� � �� �� ���� ���� � � ���� �
�
� ��� � 
 �����

� ������
� � ��

�
��� (24)

where ��� is a solution to the equation

�
 �� ��� ��� ��

�
�



�
� �� ������� ��

�
�
�
� � �

which for model (1) corresponds to ��� � ���� � ��������� �.
Minimizing (24) provides the smoothing parameter estimate �����

����� � ��	
��
�

BIC��

IV. SIMULATION EXAMPLES

The performances of the proposed techniques for choosing the reg-
ularization parameter � are illustrated using the three 512 ����� 512
images. The PSF, used to blur these original images, is the Gaussian-
shaped expressed as

���� �� � � 
 �� �
�� � ��

���
� �� � � �� �� � � � � 
� �

where � is a constant, which assures the response system to be lossless.
Due to the high-pass character of Laplace operator filter, this operator
is selected as the regularization operator.

Of particular interest is the comparative performance of the two
proposed criteria for choosing � and the two other totally data-based
methods cited in the introduction. As objective measurements of
the performance of these different methods, the improvement in
signal-to-noise ratio (ISNR) defined by

ISNR � �� ��	
�	

�� � ���

�� � ����

and the peak signal-to-noise ratio (PSNR) defined by

PSNR � �� ��	
�	


� �

�� � ����

where � , �, and �� are, respectively, the original, degraded, and re-
stored images, are used. Since the images tested are gray level im-
ages, the value of � � ���. The Gaussian-shaped PSF used to blur
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Fig. 1. (a) Original images and (b) noisy blurred image versions � � ���.

Fig. 2. Restored cameraman image obtained form the noisy blurred cameraman
image � � ��� with �� for (a), (c-zoom) and �� for (b) (d-zoom).

the original image had variance �� � �. Each blurred image was fur-
ther degraded by adding independent Gaussian noise having variance
�
�

�
� ��, ��

�
� ���, and ��

�
� ��� and uniform noise. The original

and noisy blurred images with ��
�
� ��� are displayed in Fig. 1.

An example of restored images obtained by the two choices of the
regularization parameter ���� and ���� are displayed in Fig. 2. This
figure illustrates the difference between the restored images obtained
form the noisy blurred cameraman image with ��

�
� ���; a zoom on

the image is included to highlight the difference.
In the tabulated results of Tables I and II, the three blurred images

are denoted I1, I2, and I3, while the four different noises are denoted
G1 (for Gaussian noise with variance ��

�
� ��), G2 (for ��

�
� ���),

G3 (for ��
�

� ���), and U (for uniform noise). The values of the
regularization parameter were found in all the above cases using the
methods described in Sections II and III and [10] (CV and ML); and
they are tabulated in Table I.

TABLE I
� VALUES OF THE DIFFERENT METHODS FOR VARIOUS NOISES

TABLE II
ISNR AND PSNR VALUES CORRESPONDING TO THE DIFFERENT

CHOICES OF � FOR THE DIFFERENT IMAGES

From Table I, it is clear that the ML method always yields the largest
value of �� and thus an over regularized estimate which oversmooths the
restored image. Further, the lower the SNR is, the larger the values of
�� are.

The results of Table I indicate that ����� � �����. As a result, it
appears that ����� is likely to oversmooth. This is in accordance with
the AIC criterion which tends to overfit. The tendency of AIC to over-
smooth in comparison to BIC is a result of AIC only providing an
asymptotically unbiased estimator of the Kullback–Leibler divergence
whereas BIC is based on maximum a posteriori probability. Therefore,
����� will only provide an asymptotically unbiased estimator of the true
ML as detailed in (10) and (11). Nevertheless, this estimate is better
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TABLE III
COMPARISON OF REGULARIZATION WITH � AND BILATERAL FILTERING

IN TERM OF PSNR FOR THE CAMERAMAN IMAGE

than the one provided by the ML method as it provides the bias correc-
tion estimate (15). A reason why ��� provides better results than ����
is that ���� only provides an asymptotically unbiased estimator of the
true ML, whereas��� is asymptotically equal to �����, where PMSE
stands for predicted mean square error [20]. As for AIC� in model se-
lection, a refinement of the bias correction estimate (15) will lead to
better image restoration with AIC. If ��	�� provides better results than
�����, it is also because BIC has a much smaller probability of overfit-
ting than AIC [21] in the case of linear regression models. Therefore,
��	�� is less prone to oversmoothing than �����.

In Table II, the results of the proposed methods for estimating the
regularization parameter in image restoration are compared in terms of
ISNR and PSNR. According to Table II, it can be seen that the restora-
tion obtained with �	�� generate the highest ISNR and PSNR in com-
parison to the other totally data-based methods used in this example.
�	�� should, therefore, be preferred in applications.

In Table III, the regularization method with a regularization param-
eter estimated with the proposed BIC variant BIC is compared to the
method of bilateral filtering [22] in terms of PSNR. The cameraman
image degraded by adding independent Gaussian noise having variance
�
� � ��, �
� � ��, and �
� � �� was used for this comparison. The
bilateral filter was applied with �� � � and �� � �� and a window
size � �� � ��.

V. CONCLUSION

Regularization parameter estimation has traditionally been recog-
nized as a critical task in image restoration problems. In this brief,
estimation of the regularization parameter value for image restoration
problems is cast in a model selection framework. Based on the Kull-
back–Leibler divergence and maximum a posteriori probability two
totally data-based criteria are proposed for selecting the regularization
parameter. These criteria can be seen as improved variants of AIC and
BIC for image restoration and can be considered as alternatives to the
ML and CV methods. As for model selection, it can be seen that the
BIC variant provides better results than the AIC variant. Indeed, the
AIC variant still presents the same inconvenience as AIC because it
tends to oversmooth. This is in accordance with AIC which presents a
higher asymptotic probability of overfitting than BIC for the linear re-
gression models. A way to avoid oversmoothing and improve the per-
formance of the AIC variant is as for AIC� to derive a more precise
approximation of the bias adjustment (15) than (16). Future work will
aim to refine approximation to obtain a variant of AIC� for estimating
the regularization parameter in image restoration problems.

APPENDIX

As defined in [23], the bias is given by

�����
�

�
��	 �
�� ���� ��� ��������	 �
�� ���� ��� �

�

�
	� 

��

with

	 � � �
��
��� �� �

�
���� ��

��
�	

�� (25)

where � is the unknown distribution and � ��
��� �� � is the influence
function.

The influence function of the estimator ��� for the model
��	 �
�� ���� �� is determined by the �-dimensional statistical func-
tional � 
�� defined by



�
�� ����
 � �����


� �
 �

�� � ��

From [23], it can be deduced that the influence function of the max-
imum penalized likelihood estimator ��� is of the form

�
��
��� �� � �


�� ����
 � �����
�

���

�

�

�� ����
 � �����
�

�
�	

� (26)

Inserting (26) in (25) and evaluating the expectation gives

	 � ���
��
� � ��

�
����� ��
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“Vague-to-Crisp” Neural Mechanism of Perception

Leonid I. Perlovsky

Abstract—This brief describes neural modeling fields (NMFs) for object
perception, a bio-inspired paradigm. We discuss previous difficulties in ob-
ject perception algorithms encountered since the 1950s, and describe how
NMF overcomes these difficulties. NMF mechanisms are compared to re-
cent experimental neuroimaging observations, which have demonstrated
that initial top-down signals are vague and during perception they evolve
into crisp representations matching the bottom-up signals from observed
objects. Neural and mathematical mechanisms are described and future
research directions outlined.

Index Terms—Brain imaging, brain mechanisms, cognition, cognitive
engineering, dynamic logic, neural mechanisms, neural networks, object
recognition, perception, “vague-to-crisp”.

I. NEURAL NETWORKS AND MECHANISMS OF THE MIND

The field of neural networks has achieved significant success in
engineering applications [1]–[4] and modeling mechanisms of the
brain-mind [5]–[10]. Still, most neural paradigms have not addressed
a recently discovered property of the visual perception mechanisms, a
vague-fuzzy nature of internal representations [11], which gives rise
to top-down priming signals. In this brief, we argue that this property
is essential for understanding the workings of the mind at lower
levels such as object perception, as well as at higher levels associated
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with abstract concepts, higher emotions including the beautiful and
sublime, and their roles in cognition, imagination, and intuition. At
lower levels, a process “from vague-to-crisp” is essential for fast
operation of perception. Mathematically, it reduces the complexity
of computation from (often) combinatorial to linear [1], [12], [13].
At higher levels, in addition to reducing complexity, it is essential for
understanding mechanisms that were not previously understood and
seemed mysterious [13]–[15].

This brief also touches on a role of logic in the mind mechanisms. For
the first time, we describe how logical states emerge from vague-fuzzy
states in the continuous process “from vague-to-crisp.” Whereas fuzzy
logic [16] is usually perceived in opposition to Aristotelian logic [17],
we note that Aristotle did not consider logic a fundamental mechanism
of the mind. His views on the mind operations incorporated vague-
fuzzy states of the mind and were closer to the process “from vague-to-
crisp” considered here [18].

The next three sections summarize neural modeling fields (NMFs)
and dynamic logic (DL) forming the mathematical foundation for the
paper. Section II summarizes difficulties of the past algorithms, which
NMF-DL overcomes; these difficulties are related to complexity and
logic. Section III describes the neural architecture of NMF-DL and its
operations. Section IV presents an example illustrating application of
NMF-DL to object detection in clutter, which significantly exceeds the
performance of previously known algorithms and neural networks. Ex-
perimental validation of DL in neuroimaging experiments is discussed
in Section V. Section VI discusses further directions.

II. PAST DIFFICULTIES, COMPLEXITY AND LOGIC

Biological object perception involves signals from sensory organs
and the internal mind’s representations (memories) of objects. During
perception, the mind associates subsets of signals corresponding to ob-
jects with representations of object [5], [6], [11], [19], the so-called
matching of bottom-up and top-down signals. This matching produces
object recognition.

Mathematical descriptions of the very first recognition step in this
seemingly simple association–recognition–understanding process have
met a number of difficulties during the past 50 years. These difficul-
ties were summarized under the notion of combinatorial complexity
(CC) [12]. CC refers to multiple combinations of various elements in
a complex system. For example, recognition of a scene often requires
concurrent recognition of its multiple elements that could be encoun-
tered in various combinations. CC is prohibitive because the number
of combinations is very large: for example, consider 100 elements (not
too large a number); the number of combinations of 100 elements is
���

���, exceeding the number of all elementary particle events in life
of the Universe. No computer would ever be able to compute that many
combinations.

Algorithmic complexity was first identified in pattern recognition
and classification research in the 1960s and was named “the curse of
dimensionality” [20]. It seemed that adaptive self-learning algorithms
and neural networks (see [21]) could learn solutions to any problem “on
their own,” if provided with a sufficient number of training examples.
The following 30 years of developing adaptive statistical pattern recog-
nition [22] and neural network algorithms led to the conclusion that the
required number of training examples often was combinatorially large.
Not only individual objects had to be presented for training, but also
combinations of objects. Thus, self-learning approaches encountered
CC of learning requirements [1], [12], [13].

Rule-based systems were proposed in the 1970s to solve the problem
of learning complexity [23], [24]. An initial idea was that rules would
capture the required knowledge and eliminate the need for learning.
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