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Solving Nonstationary Classification Problems
with Coupled Support Vector Machines

Guillermo L. Grinblat, Lucas C. Uzal, H. Alejandro Ceccatto, and Pablo M. Granitto

Abstract— Many learning problems may vary slowly over time:
in particular, some critical real-world applications. When facing
this problem, it is desirable that the learning method could find
the correct input–output function and also detect the change
in the concept and adapt to it. We introduce the time-adaptive
support vector machine (TA-SVM), which is a new method for
generating adaptive classifiers, capable of learning concepts that
change with time. The basic idea of TA-SVM is to use a sequence
of classifiers, each one appropriate for a small time window
but, in contrast to other proposals, learning all the hyperplanes
in a global way. We show that the addition of a new term
in the cost function of the set of SVMs (that penalizes the
diversity between consecutive classifiers) produces a coupling of
the sequence that allows TA-SVM to learn as a single adaptive
classifier. We evaluate different aspects of the method using
appropriate drifting problems. In particular, we analyze the
regularizing effect of changing the number of classifiers in the
sequence or adapting the strength of the coupling. A comparison
with other methods in several problems, including the well-known
STAGGER dataset and the real-world electricity pricing domain,
shows the good performance of TA-SVM in all tested situations.

Index Terms— Adaptive methods, drifting concepts, support
vector machine.

I. INTRODUCTION

IN MANY real-world applications, pattern recognition prob-
lems may vary slowly over time. For example, weather

conditions under which meteorological alerts should be raised
are seasonal, or the state of a critical mechanical system
that should trigger an alarm could change with the wear
of the machine. In most cases, the underlying causes and
characteristics of these slow changes are not evident from the
data under analysis. Under such circumstances, it is desirable
for the pattern recognition method to be able to learn related
but distinct input–output functions at different epochs and, in
particular, to have the flexibility to do it in a continuous way,
profiting from the slow-drift property and thereby harnessing
information from the entire historical database.

In the next section, we review some previous works on
this topic, which is sometimes called “drifting concepts”
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[1]–[4]. In this context, some authors distinguish sudden or
instantaneous drift from gradual change [5], [6]. As Stanley [5]
points out, the two problems present very different challenges.
Algorithms appropriate for sudden concept changes [7]–[13]
should be fast in detecting the change and react to it in an
appropriate way. In gradual drift [4], [14]–[18], on the other
hand, there is no need for a rapid reaction and the interesting
problem is how to use efficiently the information from the
full dataset. Our method focus on this latter kind of problems,
and in particular on situations with scarce data, but also works
efficiently for problems with a sudden change, as we will show
later.

Most previous approaches to handle concept drift rely on
the use of “local” classifiers, each one fitted or adapted to a
particular temporal window of a given length [2], [7]–[9], [19],
[20]. As we discuss in Section II, the methods differ in how
they select the length of the window, or in how they weigh the
selected samples, or even in how they use the set of classifiers
(some methods keep several classifiers in an ensemble, others
use only the classifier corresponding to the current window).
Here we present a new approach to this problem, the use
of a sequence of classifiers that vary following the concept
change, but which are all fitted in a global way. To build the
sequence of classifiers, we selected one of the most powerful
methods nowadays, the support vector machine (SVM) [21],
[22], which we adapted accordingly. As in most previous
methods, each SVM in the sequence is trained using data
points from only one of a set of consecutive nonoverlapping
time windows. The novelty of our method is that the sequence
is not independent. We solve all the SVMs at the same time,
using a coupling term that force time neighbors to be similar
to each other. In our method, the interval of validity of each
classifier can be as small as needed to follow the change in
the concept but with reduced overfitting because the classifiers
are trained to minimize a global measure of the error instead
of adjusting them locally.

In a previous work [23], we introduced a limited version of
this method and showed its potential using an artificial drifting
problem. In this paper, we describe an extended version of
our algorithm that can use fewer classifiers than points in the
dataset,1 producing more robust and efficient solutions. Based
on the ideas of [4], we evaluate the new method in three
different settings for drifting concepts: estimation, prediction,
and extrapolation.

1The previous version was limited to use one SVM for each point in the
training sequence.
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In the estimation task, we train a sequence of classifiers
using a given dataset, and then we test the sequence of
classifiers in a new dataset equivalent to the training one
(involving the same time span of the training set). This
estimation task is appropriate, for example, to the analysis
of a slow drifting problem with a cyclic behavior [24]. In this
case, it is important to model accurately all the time span of
the dataset, not only the last section. Our method is particularly
aimed at this task, in which one can use not only information
from past records but also from records corresponding to a
future time.

For the prediction and extrapolation tasks, we train a se-
quence of classifiers on a section of a dataset and then test it
on the following section. In the prediction task, we evaluate
each sequence using only the next point in the dataset. In
the more difficult extrapolation task, we use a subset of data
points including several steps ahead in the future. In this case,
we need to extrapolate the position of the decision boundary,
for which we use a simple linear technique. The objective in
these two tasks is to make short-term predictions on a system
that is evolving in a completely unknown way. In both cases,
the evaluation puts emphasis in the performance of the last
classifier(s) in the sequence. We discuss the three settings
again in Section IV.

This paper is organized as follows. In Section II, we discuss
previous works on concept drift. In Section III, we introduce
our solution to the problem and show illustrative examples,
leaving mathematical details to Appendix A. We also discuss
the relation with similar solution in other areas. Then, in
Section IV, we present empirical results and comparisons with
similar methods using artificial and real-world datasets and,
finally, Section V closes the work with some remarks and
conclusions.

II. PREVIOUS WORK

Drifting concepts are specific classification problems in
which the labels of examples or the shape of the decision
boundaries change over time. In particular, we are interested
in problems that change slowly over time. In a recent work,
Kolter et al. [25] include a lengthy review of the state of the
art in the field, starting from the early work of Schlimmer and
Granger Jr. [26]. According to this, in this section we limit
ourselves to briefly describe most of the previous methods
and refer the interested reader to [25] for details and further
references.

There are three main approaches to concept drift in the
literature: sample selection, sample weighting, and ensemble
methods [5], [6].

As we stated before, the most common solution to the
drifting concepts problem is to use a temporal window of
a given length, also called a sliding window (SW) and to
build a different classifier (or adapt a previous one) for each
window [2], [7]–[9], [19], [20]. Some authors prefer to use
the equivalent idea of uniform or stationary “batches” [20],
[27], [28]. If the window is too big, the response time needed
by the algorithm to follow the changes is excessive. On the
contrary, when the window is too small, the algorithm adapts

quickly to any drift in the data, but it is also more sensitive to
noise and loses accuracy because it must learn the input–output
relationship from only a few examples. As a potential solution,
many algorithms include an adaptive window size. One of the
first to do that was FLORA2 [8]. Klinkenberg and Renz [19]
presented an algorithm that modifies the number of stationary
batches in the dataset by monitoring the accuracy, recall, and
precision of the method. They applied it to the problem of
detecting relevant documents in a series. Klinkenberg and
Joachims [2] used SVMs to find the optimal time interval. The
method adjusts SVMs with various window sizes, calculates
the corresponding ξα − estimator [29] using the last batch,
and keeps the window size that minimizes that quantity.

Castillo et al. [27] and also Lanquillon [20] use statistical
quality control to determine whether there is a concept change
in a given batch. When this happens, a new classifier is
constructed from scratch using only the data points considered
to belong to the new context. Koychev et al. [30] also used
a (different) statistical test to determine whether there was a
change in concept in the last batch. In an interesting series of
papers, Alippi and Roveri [12], [13], [31] developed another
test for concept change and an adaptive classifier based on
nearest neighbors.

In a work focused on recurrent systems, Koychev [32]
proposed to use a relatively small time window to learn the
current context, then to select the past episodes that show a
high predictive accuracy, and finally to train again the classifier
using the original and the newly selected data points. In a
similar way, Maloof et al. [33] introduced a method for the
selection of examples in a partial memory learning system.
They select some extreme examples and add them to the
current ones to model the actual concept description. FLORA3
[8] also takes recurrence into account.

In general, all these methods select an appropriate subset
of the original dataset to train independent classifiers that
are, each one, accurate at the corresponding time. In most
cases, the selected subset is taken from the most recent
examples. As a representative of sample selection methods
in the comparisons we present in Section IV, we selected to
use a simple SW, but with the length of the window optimized
using independent validation sets.

In an early work, Koychev [34] proposed to decrease the
importance of old examples in the classifier simply by giving
each data point a relative weight that decreases with time.
The method, called gradual forgetting (GF), can be viewed
as a softening of the sliding windows (SW) strategy, which
gives “hard” (0/1) weights to (older/newer) examples. The
author suggests using a simple linearly decreasing function
for the relative weight. Klinkenberg [28] used an exponentially
decaying function to weight older samples. The GF method is
simple and easy to implement, and usually gives better results
than SW. We also included (linear) GF in the comparisons in
Section IV as a representative of sample weighting methods.

Several authors have discussed the use of ensemble methods
for drifting concepts. The streaming ensemble algorithm [10]
fits an independent classifier to each batch of data, which
are combined into a fixed-size ensemble using a heuristic
replacement strategy. Wang et al. [35] used a similar strategy,
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weighting each member of the ensemble according to its accu-
racy on the current batch. Gao et al. [36] applied ensembles
to the task of classifying data streams and Hashemi et al.
[37] used evolving one-versus-all multiclass classifiers for the
same problem. Polikar and co-workers [24], [38], [39] devel-
oped an ensemble-based framework for different nonstationary
problems. Recently, Kolter and Maloof [25], [40] introduced
an improved ensemble method based on a previous work
of Littlestone et al. [41]. Their dynamic weighted majority
algorithm (DWM) dynamically creates and removes weighted
experts in response to changes in performance. DWM uses
four mechanisms to cope with concept drift: it trains, weights,
or removes learners based on their individual performance,
and also adds new experts based on the global performance of
the ensemble. The authors produced an extensive evaluation
and concluded that DWM outperformed most of the other
learners considered in their work. DWM is also included in
the evaluation in Section IV as the representative of ensemble
methods.

Finally, out of the scope of our work, we mention that the
drifting problem has also been addressed from a computational
learning theory point of view [4], [14], [16], [17], where some
guarantees and theoretical bounds regarding the learning of
sequences of functions were established.

III. TA-SVM

Let us assume that we have a dataset [(x1, y1), . . . ,
(xn, yn)], where each pair (xi , yi ) was obtained at time i (that
is, they are time ordered), xi is a vector in a given vector
space, yi = ±1, and that the relation between x and y has a
slow change in time. Our strategy to cope with this problem
is to divide the dataset into m consecutive nonoverlapping
time windows twν (with ν = 1, . . . , m and m ≤ n), and to
create a coupled sequence of m (static) classifiers, each one
being optimal in the corresponding time window. As we are
assuming that the concept has a slow evolution, we expect
that the classifiers will have the same property. According
to this, we seek for a sequence of good classifiers in which
time neighbors are similar to each other. The best solution
to our problem should be a compromise between (individual)
optimality and (neighbor) similarity. If we can define a simple
distance measure d(cν, cμ) to quantify the diversity between
two neighbor classifiers cν and cμ, the base idea of our method
is to minimize a two-term cost function

min
1

m

m∑

μ=1

Err2
μ + γ

m−1∑

μ=1

d(cμ, cμ+1) (1)

where the first term is the average of the usual cost function
for each of the m classifiers and the second evaluates the
total difference among the sequence of discriminant functions.
The free parameter γ regulates the compromise between both
terms, as in any regularized fitting. In principle, this method
can be used with any classifier, if an appropriate distance
measure can be defined. In this formulation, we use linear
SVMs as classifiers (as, usually, we can use Kernels to produce
nonlinear predictors if needed). Therefore, we look for a
sequence of m pairs (w, b), each one defining a high-margin

hyperplane hν given by wνx + bν = 0, where x belongs to
the dataset’s vector space.

We use a simple quadratic distance measure to quantify the
diversity between hyperplanes

d(hν, hμ) = ||wν − wμ||2 + (bν − bμ)2.

Applying this measure to (1), we can introduce a new cost
function for the full sequence of SVMs

min
1

m

m∑

μ=1

||wμ||2 + C
n∑

i=1

ξi + γ

m − 1

m−1∑

μ=1

d(hμ, hμ+1) (2)

subject to

ξi ≥ 0

yi (wμ(i)xi + bμ(i)) − 1 + ξi ≥ 0

where i = 1, . . . , n and μ(i) indicates the time window
including point xi . The first two terms in (2) correspond to
the usual margin and error penalization terms in SVM [42],
but for a complete set of classifiers, each one trained on a
different time window. It is easy to see that the solution of
this two-term problem gives the same sequence of SVMs that
can be obtained by solving each SVM individually (if we use
the same C for all SVMs). The last term in (2) corresponds
to the new diversity penalization. The inclusion of this term
couples the sequence, making each SVM dependent of all the
others. The free parameter γ regulates the relative cost of the
new term. Low γ values will almost decouple the sequence
of classifiers, allowing for increased flexibility. High γ values,
on the other side, will produce a sequence of almost similar
SVMs.

In this formulation, we have only considered the case in
which data points arrive at regular time intervals. The more
general case of nonconstant intervals (including missing data
or data coming in bursts) can be addressed with simple
extensions, for example, by giving different relative weights
to the distances considered in the second term of (1), or by
assigning different amounts of points to each hyperplane (see
Appendix A).

It is interesting to see that this formulation is valid even
for time windows including only one point (m = n), because
the coupling introduced by the new penalization term breaks
with the indetermination of having only one point to define a
hyperplane.

As we show in detail in Appendix A, by deriving the cor-
responding dual (as usual in SVM methods) we can rephrase
the problem in (2) as

max
α

−1

2
αT Rα +

∑

i

αi

subject to

0 ≤ αi ≤ C
∑

αi yi = 0

where αi are the Lagrange multipliers and R is a matrix with
Kernel properties. The solution to this maximization problem
is a coupled set of SVMs that evolve in time, which we call
time-adaptive SVMs (TA-SVMs).
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The time complexity of a TA-SVM is similar to that of
the plain SVM. It can be analyzed in two stages, the kernel
computation and the solution of the optimization problem.
The new kernel can be computed in O(n2), as we show in
Appendix B. What is left after this is solving a conventional
SVM optimization problem, which is also O(n2) using for
example sequential minimal optimization (SMO) [43].

Overall, TA-SVM, in its basic form, has the same scaling
problems as plain SVM. For the estimation task this is not
critical, as one usually needs to solve the problem only once.
But basic TA-SVM does not work by making updates of
previous solutions, it always looks for a new global solution.
Then, for the prediction and extrapolation tasks our method
requires to solve an O(nt

2) problem each time a new batch
arrives, where nt is the total number of instances at time t .

A. Connections with Other Areas

There are connections between TA-SVM and methods from
other areas, so it is interesting to discuss them at this point.

In online learning [41], [44], [45], the objective is to
learn the correct input–output relationship as fast as possible
from data that arrive sequentially, one instance at a time.
Algorithms for online learning mostly work by making updates
from the solution at the previous step. Many concept drift
methods, including for example ensemble methods or the
FLORA series described before, also update their classifiers
as a function of the last batch. Some of these methods can
use very short batches or even learn from one point at a time,
making them closer to online learning strategies. The main
difference between the two settings is that online learning
does not necessarily track concept changes, and therefore no
efforts are made to forget out-of-date information in most
cases. In particular, algorithms for sudden drift are more
related to online learning, given their common objective of
fast convergence to the optimal solution.

In a recent work, [46] introduced an online learning
algorithm for kernel methods, the passive-aggressive (PA)
algorithm. At each step, PA modifies its solution trying to give
the right label to the newly arrived instance while keeping the
solution similar to the previous step by using a coupling term,
similar to our formulation (2). The general idea of keeping a
tradeoff between local accuracy and smoothness of the time
evolution of the solution is similar to ours, but with two
main differences. One is determined by the different objectives
of the methods. TA-SVM is able to use information from
both past and future times (when available), because it fits
(offline) the full sequence of SVMs at the same time, while PA
looks for the best current solution using only past information.
This becomes particularly relevant for the estimation task, as
defined before. The second difference is that TA-SVM looks
actively for a maximum margin solution, while PA does not
update its solution if the margin of new points is greater than
a given value, because of its passive nature. Other authors
have also used the idea of constraining the possible updates
of the current solution [47], [48]. For example, [49] projects
the update to a convex set, which allows establishing shifting
bounds on the total loss for some general additive regression
algorithms.

TA-SVM is in fact more related to the area of multiple task
learning (MTL) [50], [51]. MTL algorithms are designed to
learn several related tasks at the same time, profiting from
the relevant information available in the different tasks. Our
method makes use of the same idea. In TA-SVM, each of
the related tasks is the classification problem corresponding
to a given time window. As we are assuming a gradual drift,
time-neighbor tasks should be similar to each other. Recently,
[52] introduced a framework for MTL with kernel methods.
In their formulation, the relation between the different tasks
can be regulated using an appropriate homogeneous quadratic
function. TA-SVM can be viewed as a particular case of
this formulation, using the first and third terms of (2) as the
regularizer.

As we mentioned in the introduction, we use three different
tasks to evaluate TA-SVM, namely estimation, prediction, and
extrapolation. The estimation task is more related to the MTL
problem, giving the same importance to all problems, while the
prediction and extrapolation tasks are more tied to the online
learning problem and its emphasis on the current hypothesis.

B. Illustrative Example

As a first example of the potential of TA-SVM, we apply
it to the artificial sliding Gaussians dataset. This is a two-
class problem, in which each class is sampled from a Gaussian
distribution. Both classes drift together, following a sinusoidal
trajectory on a 2-D input space. We generated n = 500 points
according to

xi =
{

2iπ

500
− π + 0.2yi + ε1, sin

(
2iπ

500
− π + 0.2yi

)
+ ε2

}

where i = 1, . . . , 500, ε1,2 are sampled from a normal
distribution with zero mean and σ = 0.1, and yi is a balanced
random sequence of ±1. Fig. 1 shows a realization of the
dataset at three different times.

We used the first 450 points as training set, and generated
in each case a second realization of 450 points to use as
validation set, in order to select the optimal values of γ , C ,
and the length l of the window used by SW. Fig. 2 shows the
sequence of hyperplanes obtained with TA-SVM (m = n) and
SW-SVM. In this latter case, for each point xi we trained an
SVM using a specific time window of length 2l + 1 centered
on that point (when this is not possible, here and in all
other experiments we used l points from one side and all the
available points from the other). To improve the readability of
the figure, we show only one in every ten consecutive SVMs.
It is evident that the coupled solution of TA-SVM produces a
more regular less noisy sequence of classifiers than the use of
independent optimal SWs.

C. Dependence on γ

As a second demonstrative example, we evaluated the
dependence on γ of TA-SVM solutions. In this case, we used
the rotating hyperplane dataset, which is a set of 500 points
sampled from a uniform distribution in a d-dimensional hyper-
cube [−1, 1]d [35], [53], [54]. The decision boundary for the
two classes is a slowly rotating hyperplane (passing through
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Fig. 1. Sliding Gaussians dataset at (a) t = 25, (b) t = 175, and (c) t = 475 time units. In each figure, the last 25 generated points are filled.
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Fig. 2. Sequence of hyperplanes obtained as a solution of the sliding
Gaussians dataset with (a) TA-SVM and (b) SW-SVM.

the origin). The direction of the hyperplane is defined by its
normal vector v, which in this experiment follows the law:

v1(i) = cos(2π i/500)

10
v2(i) = sin(2π i/500)

v3,...,d(i) = 0.

Point xi has class yi = sign(xi v(i)).
In this first experiment with this dataset, we used d = 2,

m = n, and three different γ values that show the typical
responses of our method. The C parameter was set to 1 in
all cases, because we checked that the solutions are almost
independent of C in this problem.

In Fig. 3, we plot the real angle between v and the first axis,
as a function of time. We also show the solutions found by TA-
SVM for three values of γ . Using a low γ (∼102, dashed line),
the TA-SVM solution is too flexible, following particularities

0

π/2

π

3π/2

2π

0 100 200 300 400 500
A

ng
le

Time (i)

Real
Low γ
Mid γ

High γ

Fig. 3. TA-SVM solutions for the rotating hyperplane problem using different
γ values.

of the training set. For an adequate mid-γ value (∼105, dash-
dotted line), there is an optimal solution, with a balance
between local accuracy and global flexibility. Last, for a high γ
(∼108, dotted line), the change over time of the hyperplane is
highly penalized, therefore it remains almost constant and sim-
ilar to the solution that can be found by a classical SVM. For
this particular dataset, as v does a complete turn, both classes
are almost uniformly distributed and the optimal static solution
is a null vector. The soft and erratic trajectory of TA-SVM
corresponds to the angle of a nearly null vector in this case.

D. Dependence on m

In the previous example, we used the maximum flexibility
of TA-SVM, m = n, and regularized it by optimizing the
value of γ . TA-SVM has other simple way to control its
complexity, i.e., to use a shorter sequence of SVMs (m < n),
with the added advantage of a reduced computational burden.

In Fig. 4, we show the evaluation of this possibility.
Again, we used 100 realizations of the rotating hyperplane
dataset, with d = 2. We considered three settings: one
classifier for each training data (m = n, full line), one
classifier for every two data points (m = n/2, dotted line)
and one for every eight points (m = n/8, dashed line). In
(a), we show the corresponding results as a function of γ .
The first observable result is that the optimal values of γ
decrease when using fewer classifiers. This is easy to explain
considering that shorter sequences are naturally less flexible
(simply because there are fewer hyperplanes and hence fewer
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Fig. 4. Test errors for the rotating hyperplane problem as a function of γ .
(a) Results using d = 2 and different values of m. (b) Same as before, but
for a noisy dataset with 10% flipped labels.

adjustable parameters) and thus require a lower diversity
penalization. A second observation is that the best result is
obtained with m = n, and that in this case the use of fewer
SVMs produces a small decrease in performance. This result
is a consequence of using a noiseless dataset, as will become
clear when analyzing (b) of the same figure. Horizontal lines
represent the error rates produced by SW-SVM with different
lengths (l). It is interesting to note that in all cases there is a
wide range of γ values for which TA-SVM outperforms the
results of the optimal l.

We repeated the full experiment using a noisy dataset, in
which 10% of the labels were randomly switched. We show
the corresponding results in Fig. 4(b). Qualitatively, the results
are similar to the noiseless dataset. TA-SVM results are better
than SW-SVM over a wide range of γ values. The only
difference is that in this noisy case the best performance
is obtained using eight points per hyperplane (m = n/8,
dashed line). In this case, the higher flexibility of the m = n
models allow them to learn some noisy characteristics of the
datasets, and the problem cannot be avoided using a stronger
coupling. Using more points per hyperplane allows TA-SVM
to filter some noise locally, at each SVM, thereby improving
the performance of the sequence.

E. STAGGER

As a last example, we applied TA-SVM to the most used
benchmark in drifting concepts methods [8], [30], [32]–[34],

i.e., the STAGGER dataset [26]. The dataset has three categor-
ical inputs, each one taking three possible values. The dataset
has 120 training instances, and the concept changes abruptly
two times, one every 40 instances. This is a particularly
challenging problem for TA-SVM, because there are only
sudden drifts of the concept in this case. With this dataset,
we are demonstrating the capabilities of our method in the
most unfavorable situation.

We first generated the training sequence of 120 data points,
each time sampling with repetition from the set of 27 possible
instances, and labeling each point with the right concept for
each time step. As in [8], we generated a similar test sequence
but with 100 points at each one of the 120 time steps. We also
generated a third sequence with 100 points at each time step
to use as a validation sequence.2

At each time step i , we trained a sequence of classifiers
using x1,...,i , and used the last classifier in the sequence to
predict point xi in each one of the 100 test points (i.e., the
prediction setting). For both methods, we used one SVM per
training instance (n = m) and the independent validation set
to select the optimal γ and l values for the full sequence, as
in previous datasets. Again, we used a fixed C value in this
noiseless dataset, because we verified that both methods are
nearly independent of C also in this case. The full experiment
was repeated 100 times.

In Fig. 5, we show the average accuracy of both methods as
a function of time. In both (a) and (b), the two vertical dashed
lines correspond to the concept changes. In (a), we show the
performance of independent SWs for three different lengths.
For a short window, there is a quick response to changes,
but there is also a lack of information about the concept. On
the contrary, for the biggest window the adapting times are
bigger, but the final performance is better. The optimal length
compromises between both situations. In (b), we compare
the optimal settings for both methods. TA-SVM is equivalent
to or better than independent SW-SVM even in this (most
unfavorable) dataset.

IV. EMPIRICAL EVALUATION

In this section, we compare the new method with other
state-of-the-art strategies for drifting problems under the three
settings discussed in the introduction: prediction, estimation,
and extrapolation. We use the same artificial datasets and
the STAGGER concepts introduced in the previous section,
and the real-world electricity pricing dataset [55]. Unless
stated otherwise, we report the mean classification error,
with its standard deviation, over 100 independent realiza-
tion of the training sets. In all cases, we use independent
validation sets to optimize the internal parameters of the
methods under evaluation. We always use the same real-
izations of the training, validation, and test sets for all the
methods.

2The use of a validation sequence is not typical in the previous literature
on the STAGGER dataset. The setting we use in this example is therefore
not comparable with previous works. We use it as a demonstration of the
capabilities of TA-SVM in its optimal setting. In Section IV, we use this
dataset to evaluate TA-SVM in the standard setting.
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Fig. 5. Results for the STAGGER dataset. (a) Behavior of independent SVMs
using overlapping sliding time windows. (b) Direct comparison of optimal
settings of both methods.

A. Prediction

In the prediction task, we are given a subset of data points
spanning some period of time and our goal is the prediction
of the next arriving data point (which should have no drift
from the last one). To evaluate the different methods in this
case, we use the same settings as for the STAGGER dataset in
the previous section. We compare TA-SVM with other three
methods that we described in Section II: SW, GF, and DWM,
in all cases using linear SVMs as classifiers.

In a first evaluation we use the rotating hyperplane
dataset, but with a uniform rotation in this case: vi =
(cos(2π i/500), sin(2π i/500)). In all cases, we generated 100
training sets with 500 points, and for each time i and each
training set we generated an independent validation and test
sequence with 100 points. We use different values of d in
order to evaluate the performance of the methods in high-
dimensional spaces. For each training set (and all the cor-
responding validation and test sets), we applied a random
rotation of the original space, to produce a dataset in which all
the variables are relevant to the concept. We use one classifier
per data point (which is the most flexible setup) for the four
methods. For TA-SVM, this means that we set m = n (which
could be not optimal, as we showed in Fig. 4). In the case
of SW-SVM and GF-SVM, for each point xi we fit an SVM
using a specific time window of length 2l +1 centered on that
point. It is worth mentioning that in this case consecutive time
windows are almost completely overlapped. For DWM-SVM,
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Fig. 6. Prediction test errors as a function of the dataset dimension for the
rotating hyperplane problem.

this is the default setting where the ensemble is updated at
each time step.

In Fig. 6, we compare the performance of all methods as
a function of the number of dimensions in the dataset. SW
and GF are the best methods for d = 2, probably because
of some small overfitting due to the nonoptimal setting of
TA-SVM. On the other hand, they are clearly more affected
by the increase in the number of dimensions. This can be ex-
plained considering that, even if SVMs are known to work well
in high-dimensional spaces, there are always more chances of
producing solutions with bad generalization in this case. SW
and GF can use bigger time windows (that is more training
points) to increase their performance, but this has the added
cost of allowing a bigger concept change in the considered
window. TA-SVM can deal more efficiently with this problem,
because it searches for a global solution of the problem,
sharing information among all classifiers as a consequence of
the coupling. DWM starts with a relatively low performance,
but it is also less affected by the “curse of dimensionality”
than SW and GF, probably because it also shares information
among the sequence of classifiers, as we discussed before.

We repeated the evaluation using the rotating Gaussians
dataset. This dataset is very similar to the previous one. The
main difference is that the classes are sampled not from
uniform distributions at each side of the hyperplane but from
normal distributions centered at +vi/2 and −vi/2, both with
σ = 0.3. The optimal solution of this problem is more difficult
for SVMs because it has some class overlapping and fewer
points on the decision boundary. We consider two scenarios
here. In the first one, all other settings of the problem are equal
to the previous case. The corresponding results are shown in
Fig. 7(a). Qualitatively, the behavior of all four methods is
the same as in the previous dataset. There is a bigger gap
for low-dimensional problems and also a bigger decay of the
performance of SW and GF for high-dimensional datasets.
In the second scenario, we considered a faster drift of the
classes, including two full turns of the Gaussians around the
origin at the same time. In this case, we generated sequences
of 500 points using vi = (cos(2π i/250), sin(2π i/250)).
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Fig. 7. Prediction test errors as a function of the dataset dimension for
the rotating Gaussians problem (a) for a dataset including a full turn of the
Gaussians and (b) for the same problem, but including two full turns of the
classes, i.e., a faster drift.

In Fig. 7(b), we show the corresponding results. It is easy
to see that there is a general increase in error levels, associ-
ated with the faster drifting of the classes. Again, SW and
GF are better than the other methods for low-dimensional
datasets. TA-SVM still outperforms the other methods for
high-dimensional datasets, but DWM-SVM does not work well
in any situation in this case.

We also evaluated the STAGGER dataset in the prediction
task. In this case, we followed as much as possible the settings
used in previous works with this dataset. According to this,
we do not use an external validation sequence, we only use
the training and test sequences described in the previous
section. We replace the external validation with an internal
fourfold cross validation using the training sequence available
at each time step in order to set the optimal values of the free
parameters of all the methods. In Fig. 8, we show the average
prediction accuracy as a function of time. TA-SVM shows
the fastest response to concept drift, but after that DWM-
SVM shows a better convergence to the optimal decision. The
bias to a continuous drift in TA-SVM reflects in a slower
convergence rate in this case. In Table I, we show the same
results averaged over time. Overall, TA-SVM shows a very
good performance in this problem involving sudden concept
drift. DWM-SVM slightly outperformed the new method, but
most of the difference is in the first concept, before any
concept drift.

TA-SVM

GF-SVM

SW-SVM

DWM-SVM

1.0

0.8

0.6

A
cc

ur
ac

y

0.4

0.2
0 20

Time Steps
40 60 80 100 120

Fig. 8. Average prediction accuracy of the methods tested in this paper
on the STAGGER dataset, as a function on time. Error bars show the 95%
confidence interval.

TABLE I

PREDICTION ACCURACY ON THE STAGGER DATASET, AVERAGED OVER

REALIZATIONS AND TIME, FOR THE METHODS TESTED IN THIS PAPER.

IN PARENTHESIS WE SHOW THE STANDARD DEVIATION OF THE

MEAN ACCURACIES

Method Accuracy (%)

SW-SVM 87.14 (0.12)

GF-SVM 87.67 (0.12)

TA-SVM 90.00 (0.10)

DWM-SVM 90.83 (0.12)

B. Estimation

As we stated in the introduction, in the estimation task we
train a sequence of classifiers using a given dataset and then
we test the complete sequence of classifiers in an independent
test set involving the same time span of the training set. The
objective is to evaluate all the classifiers at the same time,
not only the last one as in the previous task. In this case, for
each training set of 500 points we generated 100 equivalent
validation and test sets. We optimized all internal parameters
using the validation sets and then we evaluated the resulting
classifiers on the test sets. We assume that we know the time
step i at which each point in the test set was measured, so we
can use the corresponding classifier from the trained sequence.
For the SW and GF methods we use symmetric time windows
of length 2l + 1, centered at time i . We do not use DWM
in this case because it was not designed for the estimation
task. In DWM, the classifier corresponding to time i can only
use information from the points in its past. The other three
methods can see the full training set, which would make the
comparison unfair.

In this evaluation, we fixed the number of dimensions at
d = 2 (for all the datasets) and varied the number m of
classifiers in the sequence, in order to evaluate the dependence
of the methods with the m/n ratio. In the first place, we used
the same rotating hyperplane dataset as in the prediction task.
In Fig. 9(a), we show the results for the three methods included
this time. We also evaluated a noisy version of this dataset,
(b), in which a random 10% of the labels were switched. In
(c) of the same figure we show the results corresponding to
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Fig. 9. Estimation test errors as a function of the number m of classifiers in the sequence (a) for the rotating hyperplane problem, (b) for the same problem
with 10% noise, (c) for the sliding Gaussians problem, and (d) for the same problem using normal distributions with bigger σ .

the sliding Gaussians dataset, using the same settings as in
Section III-B. Finally, in (d) we use a second version of the
sliding Gaussian generated with σ = 0.3, i.e., with more
overlap of the classes, and the other setting equal to (c).
In the four situations (two datasets times two noise levels),
the qualitative results are similar. The overall performance
of SW and GF deteriorates when fewer classifiers are used
in the sequence (higher n/m values). Clearly, when using
fewer SVMs the concept drift becomes more relevant to the
problem. The effect is clearer for the low-noise situations,
(a) and (c). For noisy situations, as we discussed before,
there is always certain trade-off between noise and drift.
TA-SVM clearly outperforms SW and GF in the estimation
task. This was expected, as TA-SVM was designed to learn
accurately all the sequence at once. We already showed in
Section III-D that TA-SVM usually works better when using
n/m > 1, in particular in noisy situations. This result is
evident here in all cases except for (c), which is a problem
with low-noise and a relatively fast drift of the decision
boundary.

C. Extrapolation

The extrapolation task is an extension of the prediction task,
in which we are interested in the prediction of several steps
ahead into the future. In this case, we need to extrapolate

the position of the decision boundary some steps into the
future, starting from the last classifier in the sequence.3 Our
method does not assume any functional form for the time
evolution of the sequence of classifiers, the only constraint
is that neighboring hyperplanes should be close to each other,
so we do not have a principled way to determine the position
of each future classifier. In consequence, we must choose an
appropriate external method to make an extrapolation based on
the position of each classifier in the sequence. In this paper,
we use a simple linear extrapolation, but a more complex
model could be applied if required (and if there is enough
data available).

For the experiments in this task, we generated training
sequences with 450 points, and for each one of these training
sets we generated 100 test sequences with 500 points each.
At each run, we optimized all internal parameters using the
first 450 points of the test sequences as validation sets and
then evaluated the resulting classifiers on the last 50 points of

3A simple way to do it would be to use an extended sequence of classifiers
with hyperplanes located in the future period that we want to predict, and let
TA-SVM choose the position of each one. Unfortunately, this procedure will
not have the effect we are looking for. As we do not have training points for the
future period, the solution will be a compromise between only two penalties:
the last term in (2), which will make the solution to stay at the position of
the last hyperplane before the extrapolation period, and the first term in (2),
which will move the solution to the null vector in the extrapolation period.



46 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 1, JANUARY 2011

TA-SVM
GF-SVM
SW-SVM

0.26

0.24

0.22

0.20

0.18

T
es

t E
rr

or
s

0.16

0.14

0.36

0.34

0.32

0.30

T
es

t E
rr

or
s

(a)

50 10
n/m

15 20

(b)

50 10
n/m

15 20

Fig. 10. Extrapolation test errors as a function of the number m of classifiers
in the sequence (a) for the sliding Gaussians problem and (b) for the same
problem using distributions with bigger σ .

these test sets. As in the previous case, we fixed the number
of dimensions at d = 2 and varied the number m of classifiers
in the sequence, from n/m = 1 to n/m = 20. To extrapolate
the position of the decision boundary, we used a simple linear
extrapolation of the values of each component of w (wi (t) =
αi t + βi ) and of b (b(t) = αbt + βb), fitting the coefficients
of the linear models (αi,b and βi,b) using all the SVMs in the
last 50 training points. The number of SVMs included in the
extrapolation goes from 50 for n/m = 1 to only 2 for n/m =
20. We do not use DWM in this case because it produces an
ensemble of SVMs and there is no simple way to extrapolate
the position of the decision boundary for this method.

For this evaluation, we used the sliding Gaussians dataset in
the same two settings that we explained in the estimation task.
In Fig. 10, we show the corresponding results. All methods
become more unstable in this task, as indicated by the bigger
error bars, because we are superposing two error sources, the
fitting of the classifiers, and the extrapolation of their position.
In Fig. 10(a), we can see again a typical behavior of TA-
SVM, with the best performance at n/m > 1. For n/m = 20,
all methods show similar poor results, mainly associated with
bad extrapolations of the decision boundaries. For the noisy
situation in Fig. 10(b), the difference between TA-SVM and
the other methods is clearer. In Fig. 11, we show, for the
same two datasets, the evolution of the classification error as
a function of the number of time steps into the future predicted

TA-SVM
GF-SVM
SW-SVM

TA-SVM
GF-SVM
SW-SVM

0.4

0.3

0.2

0.1

T
es

t E
rr

or
s

0.0

0.42

0.36

0.30

0.24

T
es

t E
rr

or
s

(a)

2010 30
Steps

40 50

(b)

2010 30
Steps

40 50

Fig. 11. Extrapolation test errors as a function of the number of predicted
steps into the future (a) for the sliding Gaussians problem and (b) for the
same problem using distributions with bigger σ .

by all methods. The results correspond to n/m = 10. In the
low-noise situation, (a), TA-SVM shows the best performance
for all but the maximum number of time steps, when all
methods are equivalent. With more noise present, (b), TA-
SVM is clearly superior in all situations.

D. Real-World Case: Electricity Pricing

As a last evaluation of TA-SVM we considered a real-
world problem, the electricity pricing dataset [55]. The dataset
contains 45 312 instances collected at regular 30-min intervals
during 30 months, from May 1996 to December 1998. The
data was first obtained directly from the electricity supplier
in New South Wales, Australia. There are five attributes in
total. The first two date the record in day of week (1 to 7) and
half-hour period (1 to 48). The last three attributes measure the
current demand, the demand in New South Wales, the demand
in Victoria, and the amount of electricity scheduled for transfer
between the two states. The target is a binary value indicating
whether the price of electricity will go up or down.

Following Harries [55], we considered batches of 1-week
length. At each week, we train the classifiers with all previous
batches and predict the next batch (i.e., the 336 instances in
the current week). We considered this setting as a prediction
task, and correspondingly for our method we use the last SVM
in the sequence to make predictions. In order to select the
free parameter of other methods, we used a simple validation
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TABLE II

PREDICTION ACCURACY ON THE ELECTRICITY PRICING DATASET,

AVERAGED OVER TIME, FOR ALL METHODS TESTED IN THIS PAPER.

THE ROWS LABELED SVM SHOW THE RESULTS OBTAINED WITH

STATIONARY SVM

Method Kernel Accuracy (%)

SVM Linear 63.3

GF-SVM 65.1
SW-SVM Linear 65.3

DWM-SVM 63.3
TA-SVM 65.6

SVM Gaussian 66.1

GF-SVM 67.2
SW-SVM Gaussian 67.8

DWM-SVM 66.9
TA-SVM 68.9

scheme. At each step, we set aside the last available week in
the training set as a validation set (not the current week, which
we want to predict, but the previous one). Once we selected
the parameters that are optimal for this validation set, we train
again all methods using the complete training set.

As this is a real-world dataset, we do not know in advance
what is the real amount of drift in the data. In order to
have an estimation of the benefits of using concept drift
methods in this case, we also applied a standard SVM using
the same procedure as described before (i.e., for each week
we determined optimal parameters, trained the SVM, and
predicted the current week).

In Table II, we show the corresponding results. In the first
rows we show the result obtained using a linear kernel, as in all
previous datasets. All adaptive methods outperformed the stan-
dard SVM in this case, suggesting the actual presence of some
concept drift in the dataset. TA-SVM shows the best perfor-
mance in this case. For reference, Harries used a decision tree
with a sliding window in the same problem, reporting 1-week
prediction accuracies for various window sizes between 66%
and 67.7%. Looking for a better solution, we repeated the
experiment using a Gaussian kernel in this case. All meth-
ods improved with the use of nonlinear classifiers. Again,
TA-SVM shows the best performance in this dataset.4

V. CONCLUSION

In this paper, we presented the TA-SVM, which is a new
method for generating adaptive classifiers and capable of
learning concepts that change with time. The basic idea of
TA-SVM is to use a sequence of classifiers, each one appropri-
ate for a small time window but, in contrast to other proposals,
learning all the hyperplanes in a global way. Starting from the
solution of independent SVMs, we showed that the addition of
a new term in the cost function (which penalizes the diversity
between consecutive classifiers) produces in fact a coupling of
the sequence. Once coupled, the set of SVMs acts as a single
adaptive classifier.

4DWM shows a low performance on this setup. Kolter and Maloof [25]
applied DWM to this dataset with better results, but using an online learning
setting, learning, and predicting one instance at a time (an easier task for this
problem), which differs from Harries’s methodology.

We evaluated different aspects of the TA-SVM using artifi-
cial drifting problems. In particular, we showed that changing
the number of classifiers (the n/m ratio) and the coupling
constant γ , we can effectively regularize the sequence of
classifiers. We compared TA-SVM with other state-of-the-art
methods in three different settings: estimation, prediction, and
extrapolation, including problems with small datasets, high-
dimensional input spaces and noise. TA-SVM showed in all
cases to be equivalent to or better than the other methods.
Even for the most unfavorable situation for TA-SVM, i.e., the
sudden changes of the STAGGER dataset, our new method
showed a very good performance. We also applied TA-SVM
to a real-world dataset, i.e., Harries’s electricity pricing, with
very good results.

TA-SVM has two free parameters, m and γ. In our ex-
perience, the more efficient way to use them is to fix the
n/m ratio in a range of 5 to 10, and then tune γ using an
internal cross validation. If the dataset is small or there are
indications of high drift levels, one can use n = m to increase
the flexibility of the model. The C parameter follows the same
rules as in standard SVMs. If there is previous knowledge
about noise levels, the C value can be set accordingly. If not,
we recommend to begin with a low C value and leave the
regularization to the coupling term.

There is nothing in our formulation or the derivation of the
dual problem that prevents the use of arbitrary kernel functions
to evaluate distances and create nonlinear adaptive classifiers.
We already used this possibility in the modeling of the elec-
tricity pricing domain. The only potential difficulty can arise
in the extrapolation setting. For kernel functions corresponding
to finite-dimensional feature spaces, it is always possible, in
principle, to use our simple extrapolation. However, this cannot
be done if the kernel is associated to an infinite-dimensional
feature space.

If needed, there are some simple ways to make TA-SVM
scale efficiently to larger problems. For the prediction or
extrapolation tasks, the focus is on the performance of the
last classifiers in the sequence. In the prediction case, we
only use the last classifier to predict the labels of the test
samples. For the extrapolation task, we use only a few SVMs
from the end of the sequence in order to extrapolate the
solution. As the coupling term in (2) involves only interactions
to first time neighbors, the influence of old examples to the
actual TA-SVM prediction decays exponentially with time.
According to this analysis, very old examples quickly become
useless to TA-SVM and can be eliminated from the dataset.
In practice, for prediction and extrapolation we will pay a
reduced cost by limiting TA-SVM to use a fixed number of
the more recent examples. In addition, we can easily force
the first hyperplane in this reduced sequence to keep the
optimal position found in a previous step, which will reduce
even more the loss in performance. Going further in the
same direction, we can even arrive at a quasi online version
of TA-SVM, where only a few hyperplanes are adjusted at
each step.

We are currently studying the application of TA-SVM to
real problems in slowly drifting systems, in particular to
fault prediction in critical mechanical systems. Also, we are
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evaluating the extension of TA-SVM to one-class classification
and regression problems. Finally, we are considering the use
of partially overlapping windows for TA-SVM.
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APPENDIX A
DERIVING THE DUAL PROBLEM

First, we introduce the notation we use in this section. We
consider the case where we want to adjust a sequence of m
hyperplanes to a dataset with n points. We use Greek letters
for the indices that vary in the number of hyperplanes and
Latin letters for the indices that vary in the number of points.

As we explained in the main text, the hyperplanes are
defined by a vector wμ and a scalar bμ, for μ ∈ {1, . . . , m}.
The hyperplane corresponding to the i -th point is defined by
(wμi , bμi ). pμ is the set of points {i : μi = μ}. P is an m × n
matrix defined as Pμj = 1, if j ∈ pμ, 0 otherwise.

Also, we use the kernel matrix K, defined by Kij =
yi y j xix j . As in conventional SVMs, we can always replace
this definition with any other including a useful inner product.

Other required matrix is Q given by

Qμν =
{

1, if hyperplanes ν and μ are neighbors,

0, otherwise

which we symmetrize by QS = (Q + QT )/2.
We also use the notation P � Q for the entrywise (or

Hadamard) matrix product of P and Q: (P � Q)i j = Pij Qi j .
We start from the problem

min
wμ,bμ

1

2m

m∑

μ=1

(
||wμ||2 + γ

2

m∑

ν=1

Qμν

(||wμ − wν ||2

+ (bμ − bν)
2)

)
+ C

n∑

i=1

ξi

subject to

ξi ≥ 0

yi (wμi xi + bμi ) − 1 + ξi ≥ 0

where ||w||2 = w ·w. This is the same problem we introduced
in the main text, with small differences that help in the search
of the solution.

Given the symmetry of the term including Q, it is easy to
rewrite the problem using QS

1

2m

m∑

μ=1

(
||wμ||2 + γ

2

m∑

ν=1

QS
μν

(||wμ − wν ||2

+ (bμ − bν)
2)

)
+ C

n∑

i=1

ξi .

Then, the corresponding Lagrangian is

L = 1

2m

m∑

μ=1

(
||wμ||2 + γ

2

m∑

ν=1

QS
μν

(||wμ − wν ||2

+ (bμ − bν)
2)

)
+ C

n∑

i=1

ξi

−
n∑

i=1

αi
(
yi(wμi xi + bμi ) − 1 + ξi

)

−
n∑

i=1

βiξi

(3)

where αi ≥ 0 and βi ≥ 0.
We have to maximize L with respect to αi and βi and

minimize it with respect to wi , bi and ξi . At this point, the
derivatives with respect to the primal variables should be zero

∂L

∂ξi
= 0,

∂L

∂wμ
= 0,

∂L

∂bμ
= 0.

From these equations, we can eliminate the variables ξi , wμ,
and bμ from L and obtain the dual problem. We start with the
derivative with respect to ξi

∂L

∂ξi
= 0 = C − αi − βi

which implies that
0 ≤ αi ≤ C.

On the other hand, taking into account that each ξi is
multiplied by (C − αi − βi ), (3) becomes

L = 1

2m

m∑

μ=1

(
||wμ||2 + γ

2

m∑

ν=1

QS
μν

(||wμ − wν ||2

+ (bμ − bν)
2)

)
−

n∑

i=1

αi
(
yi (wμi xi + bμi ) − 1

)
.

(4)

In the case of wμ we have

∂L

∂wμ
= 0

= 1

m

(
wμ + γ

∑

ν

QS
μν(wμ − wν)

)
−

∑

j∈pμ

α j y j x j

which results in

1

m

(
wμ + γ

∑

ν

QS
μν(wμ − wν)

)
=

∑

j∈pμ

α j y j x j . (5)

Defining the matrix M as

Mμν =
{(

1 + γ
∑

κ QS
μκ

)
/m, if μ = ν,

−γ QS
μν/m, otherwise

we can write wμ as

wμ =
∑

j

M−1
μμ j

α j y j x j .
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Using this, we can rewrite the term
∑ ||wμ||2 in (4)

∑

μ

||wμ||2 =
∑

μ

∑

i j

M−1
μμi

M−1
μμ j

αiα j yi y j xi x j .

On the other hand
(

PT M−2P
)

i j
=

∑

μ

M−1
μμi

M−1
μμ j

.

With this and the definition of K, we have
∑

μ

||wμ||2 = αT
((

PT M−2P
)

� K
)

α. (6)

The
∑

μν QS
μν ||wμ − wν ||2 term can be rewritten as

∑

μν

QS
μν ||wμ − wν ||2 =

∑

μν

QS
μν

∑

i j

(
M−1

μμi
− M−1

ννi

)

×(
M−1

μμ j
− M−1

νν j

)

αiα j yi y j xi x j =
∑

i j

2

(∑

μ

M−1
μμi

M−1
μμ j

Dμμ

−
∑

μν

M−1
μμi

M−1
νμ j

QS
μν

)

×αiα j yi y j xi x j

as QS is symmetric and using the m × m diagonal matrix
defined by

Dμν =
{∑

κ QS
μκ , if μ = ν

0, otherwise.

Given that
(
PT M−1(D − QS)M−1P

)
i j

=
∑

μ

M−1
μμi

M−1
μμ j

Dμμ −
∑

μν

M−1
μμi

M−1
νμ j

QS
μν

we can write
∑

μν QS
μν ||wμ − wν ||2 as

∑

μν

QS
μν||wμ − wν ||2

= 2αT
((

PT M−1(D − QS)M−1P
) � K

)
α. (7)

Using (6) and (7) we can write (4) as

L = 1

2m
αT

(
PT M−2P � K

)
α

+ γ

2m
αT

(
PT M−1(D − QS

)
M−1P � K)α

+ γ

4m

∑

μ,ν

QS
μν

(
bμ − bν

)2 − αT
(

PT M−1P � K
)

α

+
∑

i

αi −
∑

i

αi yi bμi .

The matrices M, D, and QS are related by the equation

M = I + γ
(
D − QS

)

m
.

With this equality, we can simplify the obtained L

L = − 1

2
αT

(
PT M−1P � K

)
α

+ γ

4m

∑

μ,ν

QS
μν

(
bμ − bν

)2 +
∑

i

αi −
∑

i

αi yi bμi . (8)

Now we should use the derivatives with respect to bμ. In
the case

∂L

∂bμ
= 0 = γ

m

m∑

ν=1

QS
μν(bμ − bν) −

∑

i∈pμ

αi yi

which gives

γ

m

(
bμ

m∑

ν=1

QS
μν −

m∑

ν=1

QS
μνbν

)
=

∑

i∈pμ

αi yi (9)

which, defining hi = αi yi , we can write as

γ

m

(
D − QS

)
b = Ph. (10)

Since (D − QS) is singular, given that (D − QS)1 = 0, we
can write

0 = γ

n
0b = γ

n
1
(

D − QS
)

b = 1Ph =
n∑

i=1

αi yi .

In this case, the solution to the system (10) is

b = m

γ

(
D − QS

)+
Ph (11)

[where (D−QS)+ is the pseudoinverse of (D−QS)]. We still
need to eliminate the bμ from L. The part that depends on b is

γ

4m

∑

μ,ν

QS
μν

(
bμ − bν

)2 −
∑

i

αi yi bμi

= γ

4m

∑

μ,ν

QS
μν

(
bμ − bν

)2 − bT Ph. (12)

We can write this as
γ

4m

∑

μ,ν

QS
μν(bμ − bν)

2 − bT Ph

= γ

4m

∑

μ,ν

QS
μν

(
b2
μ − 2bμbν + b2

ν

)
− bT Ph

= γ

2m

(
∑

μ,ν

b2
μQS

μν − bT QSb

)
− bT Ph

= γ

2m

(
bT

(
D − QS

)
b
)

− bT Ph

= bT Ph
2

− bT Ph

= −bT Ph
2

= − m

2γ
hT PT

(
D − QS

)+
Ph

= − m

2γ
αT

((
PT

(
D − QS

)+
P
)

� Y
)

α
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where Y = yyT . Taking into account the last equality, L
becomes

L = − 1

2
αT

((
PT M−1P

) � K + (
PT (M − I)+P

) � Y
)
α

+
∑

i

αi

which has the form

L = −1

2
αT Rα +

∑

i

αi

with the matrix R defined accordingly. Finally, the dual
problem is

max
α

−1

2
αT Rα +

∑

i

αi (13)

subject to

0 ≤ αi ≤ C

∑
αi yi = 0

which is the same quadratic minimization problem with re-
strictions solved in SVM (with a different matrix R). In
consequence, any technique employed to solve the conven-
tional SVM problem can be used here, as, for example,
SMO [43].

APPENDIX B
COMPLEXITY EVALUATION

As follows from (13), the complexity of the whole problem
is given by the computation of the matrix R and the solution
of the optimization problem. As we mentioned before, this
last step is equivalent to a conventional SVM optimization
problem, which is O(n2).

The computation of R involves the inversion of M and the
computation of the pseudoinverse of (M − I). The general
solutions of these problems are costly but in our case, given
that we consider only interactions to first time neighbors, both
problems can be solved analytically.

After this, the computation of PT M−1P and PT (M − I)+P
is trivial, given that

(PT M−1P)i j = M−1
μi μ j

(PT (M − I)+P)i j = (M − I)+μi μ j
.

Hence, the computation of each element of the Hadamard
product is O(1), which means that the computation of R is
O(n2), i.e., no greater than the optimization step.
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