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Optimized Discriminative Kernel for SVM Scoring
and its Application to Speaker Verification

Shi-Xiong Zhang, Student Member and Man-Wai Mak, Member

Abstract—The decision making process of many binary clas-
sification systems is based on the likelihood-ratio (LR) scores
of test patterns. This paper shows that LR scores can be
expressed in terms of the similarity between the supervectors
formed by stacking the mean vectors of Gaussian mixture models
corresponding to the test patterns, the target model, and the
background model. By interpreting the SVM kernels as a specific
similarity (or discriminant) function between supervectors, this
paper shows that LR scoring is a special case of SVM scoring
and that most sequence kernels can be obtained by assuming
a specific form for the similarity function of supervectors. The
paper further shows that this assumption can be relaxed to derive
a new general kernel. The kernel function is general in that it is
a linear combination of any kernels belonging to the reproducing
kernel Hilbert space. The combination weights are obtained by
optimizing the ability of a discriminant function to separate the
positive- and negative-classes using either regression analysis or
SVM training. The idea was applied to both high- and low-level
speaker verification. In both cases, results show that the proposed
kernels achieve a better performance than several state-of-the-
art sequence kernels. Further performance enhancement was also
observed when the high-level scores were combined with acoustic
scores.

Index Terms—Support vector machines; kernel optimization;
sequence kernels; speaker verification.

I. INTRODUCTION

Speaker verification is a binary classification problem in
which a person’s identity is verified based on his/her voice.
Current implementations of speaker verification typically use
Gaussian mixture models (GMM) [2] to represent the low-
level acoustic characteristics of speakers via extracting the
frame-based mel-frequency cepstral coefficients (MFCCs) [3]
from their speech. One drawback of using low-level features
is that they are sensitive to background noise and channel
effects. Over the years, various approaches to overcoming
this drawback have been proposed. These approaches can be
divided into feature transformation [4], [5], model transfor-
mation [6], score normalization [7], model-based projection
[8], [9], factor analysis [10], and long-term, high-level features
modeling [11]–[14].

In most of these speaker verification systems (e.g. acoustic-
based GMM-UBM [2] and articulatory feature-based n-gram
(AFCPM) [14]), scoring is done by computing the log-
likelihood ratio given the speech signal of a claimant. More
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specifically, each frame of speech is scored independently
against a speaker-dependent generative model and a universal
background model (UBM), and the resulting frame-based
likelihood ratio (LR) scores are accumulated to produce an
utterance-based score for decision making. A drawback of this
approach is that the target-speaker model and the UBM are
trained separately to maximize the likelihood of the speaker-
class data and impostor-class data. To mitigate this drawback,
a number of sequence kernels—such as the generalized linear
discriminant sequence (GLDS) kernel [15], n-gram kernel
[16], linearized LR kernel [17], GMM-supervector (GSV)
kernel [18], and Fisher kernel [19]—have been proposed
for speaker verification. All of these kernels can convert
variable length sequences into fixed-dimension vectors for
classification (or scoring) by support vector machines (SVM)
[20]. They are derived from similarity metrics between two
sequences by assuming a specific form for the similarity (or
discriminant) functions. A key advantage of these kernel-based
approach is that the discriminative information of the speaker-
and impostor-class data can be harnessed via the speaker-
dependent SVMs.

In this paper, we first argue that likelihood-ratio scoring is
a special case of SVM scoring. We use this relationship to
explain why SVM-based speaker verification systems usually
perform better than conventional GMM-UBM systems. Then,
we further generalize the SVM scoring by relaxing the form of
the similarity function used by the SVMs. More specifically,
instead of assuming a fixed form for the discriminant or scor-
ing functions, we use a linear combination of kernel functions
in the reproducing kernel Hilbert space as the discriminant
function. We show that the optimal combination weights of the
discriminant function can be obtained by solving a functional
optimization problem using regression analysis, leading to a
kernel that is a general form of the GLDS, GSV, linearized LR
or n-gram kernel. We further demonstrate that the combination
weights can also be optimized by the SVM training algorithm.
Then, using the idea of empirical kernel map [21]–[23],
the optimized discriminant function can satisfy the Mercer’s
condition [24] and be used as a kernel for SVM scoring.

The main contribution of this paper is as follows. Unlike the
conventional GMM-SVM approach where only the Lagrange
multipliers of the scoring SVM are optimized, our method
also optimizes the combination weights that constitute the
kernel. This idea of double optimization is applied to both
low- and high-level speaker verification. For the former, the
discriminant function is a linear combination of the GMM-
supervector kernels. For the latter, the discriminant function
is a linear combination of linearized LR kernels [17]. In
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both cases, the combination weights are determined by either
regression analysis or soft-margin maximization. Evaluations
show that the proposed kernel scoring approach is superior
to conventional SVM scoring and LR scoring. In particular,
the double optimization procedure can effective explore the
discriminative information among speakers, resulting in more
discriminative SVMs than those based on single optimization.
It was also found that the kernel-based SVM scoring and
likelihood ratio scoring are complementary to each other,
leading to better performance when they are combined. Further
performance enhancement was also observed when the high-
level feature-based scores were combined with acoustic scores.

Notational Convention. Throughout the paper, boldface
lowercase letters represent vectors and boldface uppercase
letters represent matrices. Italic letters with an arrow on top
represent supervectors. Subscribes s, c, and b represent target
speakers, claimants, and background speakers, respectively.
For example,

−→
As,

−→
Ab, and

−−→
Abk denote the supervector of

speaker s, the universal background model, and the k-th
background speaker, respectively.

II. SUPERVECTOR-BASED FRAMEWORK FOR SPEAKER
VERIFICATION

A. Supervector-Based Likelihood Ratio Scoring

In speaker verification, speech utterances are typically rep-
resented by variable-length observations O = {o1, . . . ,oT }.
Given the observations Oc of claimant c , many speaker verifi-
cation systems compute the utterance-based score SLR(Oc, s)
of claimant c for target speaker s by accumulating the frame-
based likelihood ratio (LR) scores. More specifically, each
frame of speech is scored independently against a speaker-
dependent generative model ps(x) and a universal background
model (UBM) pb(x), and the resulting frame-based LR scores
are accumulated to produce an utterance-based score for
decision making:

SLR(Oc, s) =
1

T

T∑
t=1

log
ps(ot)

pb(ot)
, where ot ∈ Oc. (1)

It can be shown that for both discrete (e.g. n-gram models)
and continuous (e.g. GMMs) cases, the LR scores can be
expressed via the similarity between the supervectors obtained
from the models of target speaker s, background speakers and
the test utterance of claimant c:1

SLR(Oc, s) =
1

T

T∑
t=1

log
ps(ot)

pb(ot)

.
= f

(−→
Ac,

−→
As

)
− f

(−→
Ac,

−→
Ab

)
+ ds,

(2)

where
−→
A is a supervector formed by stacking the parameters

of the corresponding generative model, f(·, ·) is a similarity
function and ds is a bias. The definition of

−→
A, f and ds for

different models are summarized in Table I. See the appendix

1For continuous models, Eq. 2 holds under the conditions that the number
of training vectors is significantly larger than the relevance factor in MAP
adaptation and that only one iteration of MAP adaptation is performed (see
the appendix for details).

for a derivation of Eq. 2 for continuous generative models
and refer to [17] for discrete models. Fig. 1 illustrates the
supervector-based implementation of LR scoring.

Obviously, the supervectors derived from continuous gen-
erative models are different from those derived from discrete
models. Specifically, for GMM-UBM, given a test utterance
from claimant c, a GMM is created by adapting the UBM
using maximum a posteriori (MAP) adaptation [2]; a super-
vector

−→
Ac is then constructed by stacking the mean vectors of

the GMM. The supervector
−→
As for speaker s is constructed

in a similar manner. The supervector
−→
Ab is constructed by

stacking the mean vectors of the UBM. For n-gram models,
the supervectors are constructed by stacking the probabilities
of different n-gram combinations.

Note that because the LR function comes from a Bayesian
framework, Eq. 2 is only valid for probability-based (genera-
tive) models.
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Fig. 1. The supervector-based implementation of LR scoring in speaker
verification. The LR score can be obtained by computing the similarity
between claimant’s supervector and target speaker’s supervector minus the
similarity between claimant’s supervector and background supervector, where
the similarity (or discriminant) function f and bias ds are defined in Table I.
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Fig. 2. SVM scoring in speaker verification. K(·, ·) could be any of the six
kernels discussed in Sections III and IV. See Fig. 1 for a comparison between
kernel-based SVM scoring and LR scoring.

B. Supervector-based SVM Scoring

Fig. 1 and Eq. 2 suggest three possible improvements of LR
scoring:

1) Replacing the fixed multiplication factors ‘+1’ and ‘−1’
by weights that are optimally determined by SVM train-
ing.
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TABLE I
DEFINITION OF

−→
A AND f FOR DIFFERENT TYPES OF MODELS IN COMPUTING SLR(Oc, s) IN EQ. 2. µi IS THE MEAN OF THE i-TH GAUSSIAN;

QGSV = diag
{
λ−1
b,1diag

(
Σb,1

)
, . . . , λ−1

b,Gdiag
(
Σb,G

)}
, WHERE λb,i AND Σb,i ARE THE MIXTURE WEIGHT AND COVARIANCE MATRIX OF THE i-TH

GAUSSIAN IN THE UBM, AND G IS THE NUMBER OF GAUSSIANS; fs,s , f
(−→
As,

−→
As

)
; Pr(i) IS THE PROBABILITY OF OCCURRENCES OF THE i-TH

COMBINATIONS IN N-GRAMS; R IS THE NUMBER OF COMBINATIONS; `ot IS THE PHONE LABEL OF ot ; log
−→
As/

−→
Ab MEANS ELEMENT-WISE DIVISION

FOLLOWED BY LOGARITHM.

Supervector Formulation of LR: SLR(Oc, s) =
1
T

∑T
t=1 log ps(ot)/pb(ot)

.
= f

(−→
Ac,

−→
As

)
− f

(−→
Ac,

−→
Ab

)
+ ds

Type of Generative Models PDF p(ot) Supervector
−→
A Similarity f

(−→
Ac,

−→
As

)
Bias ds

GMM-UBM [2]
G∑

i=1

λiN (ot;µi,Σi) [µT
1, . . . ,µ

T
G]

T −→
Ac

TQ−1
GSV

−→
As − fs,s−fb,b

2

n-gram Model [14], [25] Pr(i = `ot) [Pr(1), . . . ,Pr(R)]T
〈−→
Ac, log

−→
As/

−→
Ab

〉
0

2) Replacing the function f that measures the similarity
between input supervectors by a suitable kernel, e.g., the
GSV kernel [18] or GLDS kernel [15].

3) The LR scoring in Fig. 1 contains two processing nodes.
More discriminative information may be obtained by
adding extra processing nodes that evaluates the differ-
ence between the claimant’s speech (

−→
Ac) and each of the

background speakers
−→
Abi .

These improvements lead to the SVM scoring shown in Fig. 2.
The SVM output in Fig. 2 can be considered as a scoring
function:

Sker(Oc, s) = α0,sK(
−→
Ac,

−→
As)−

M∑

i=1

αi,sK(
−→
Ac,

−→
A bi)+ds, (3)

where K(·, ·) could be any sequence kernels that satisfy the
Mercer condition, α0,s is the Lagrange multiplier correspond-
ing to the target speaker, αi,s (i = 1, . . . ,M ) are Lagrange
multipliers (some of which may be zero) corresponding to the
background speakers, and ds is a bias term.

Comparing Eq. 2 and Eq. 3 and comparing Fig. 1 and Fig. 2
suggest that kernel-based SVM scoring is more general and
is potentially better than LR scoring in two aspects. First,
the SVM optimally selects the most appropriate background
speakers through the non-zero αi,s. Second, instead of using a
single background model that contains the average character-
istics of all background speakers, a specific set of background
speakers is used for each target speaker for scoring. This is to
some extent analogous to cohort scoring [26]. However, the
cohort set is now discriminatively and optimally determined by
SVM training, and the contribution of the selected background
models is also optimally weighted through the Lagrange
multipliers αi,s.

III. SIMILARITY METRICS AND SEQUENCE KERNELS

Comparing Fig. 1 and Fig. 2 and comparing Eq. 2 and
Eq. 3 suggest that the sequence kernels K(

−→
Ac,

−→
As) in Eq. 2

can be derived from a similarity metric or similarity function
f(
−→
Ac,

−→
As). However, to make sure that the SVM training

algorithm converges to a stable solution, the function f inside
the circle in Fig. 1 should satisfy the Mercer condition [27],
i.e., f(

−→
Ac,

−→
As) can be expressed as

〈
φ(
−→
Ac), φ(

−→
As)

〉
. For those

similarity functions that do not satisfy this requirement, e.g.
f
(−→
Ac,

−→
As

)
=

〈−→
Ac, log

−→
As/

−→
Ab

〉
in Table I, some approxima-

tions will need to be made. The following subsections describe

four commonly used kernels derived from a specific similarity
metric or function. Table II summarizes the properties of these
kernels.

TABLE II

SEQUENCE KERNELS K(
−→
Ac,

−→
As) =

〈
Q− 1

2
−→
A c,Q

− 1
2
−→
A s

〉
AND THEIR

CORRESPONDING SIMILARITY METRICS.

Kernel Specific Similarity Metric Matrix Q

Euclidean Euclidean Distance I

GSV [18] KL Divergence QGSV (Eq. 6)

LLR [17] KL Divergence diag
{−→
A b

}

GLDS [15] Linear Discriminant 1
M

∑M
i=1

−→
A bi

−→
A T

bi

A. Euclidean Kernel

The simplest type of Mercer kernel is a linear kernel:

KE(
−→
Ac,

−→
As) =

〈−→
Ac,

−→
As

〉
. (4)

Note that this kernel can be obtained from the Euclidean
distance between vectors in the feature space [27]. Therefore,
we refer to it as Euclidean kernel.

B. Divergence Kernel

One commonly used distance metric for probability dis-
tributions is the Kullback-Leibler (KL) divergence. Here, we
highlight two types of divergence kernels: GMM-supervector
kernel and linearized likelihood-ratio kernel.

1) GMM-Supervector (GSV) kernel: Campbell et al. [9]
use the log-sum inequality to approximate the KL divergence
between two GMMs with the same mixture weights λb,i and
covariance matrices Σb,i but with different mean vectors (µc,i

and µs,i). The approximation leads to the GMM-supervector
kernel:

KGSV(
−→
Ac,

−→
As) =

−→
Ac

TQ−1
GSV

−→
As =

〈
Q

− 1
2

GSV

−→
Ac,Q

− 1
2

GSV

−→
As

〉
, (5)

where

QGSV = diag
{
λ−1
b,1diag(Σb,1), . . . , λ

−1
b,Gdiag(Σb,G)

}
. (6)
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2) Linearized Likelihood-Ratio Kernel: Kernels for discrete
models such as n-grams [16], [17] can be derived from the
similarity measure between the claimant (test) model

−→
Ac and

the target-speaker model
−→
As using the KL divergence:

f
(−→
Ac,

−→
As

)
= DKL(

−→
Ac ‖ −→

Ab)−DKL(
−→
Ac ‖ −→

As)

=

〈
−→
Ac, log

−→
Ac−→
Ab

〉
−
〈
−→
Ac, log

−→
Ac−→
As

〉
=

〈
−→
Ac, log

−→
As−→
Ab

〉
,

(7)

where the notation log
−→
X−→
Y

means element-wise division fol-
lowed by logarithm. Using the technique in [17] to approxi-
mate the KL divergence, the linearlized likelihood ratio kernel
can be obtained:

KLR(
−→
Ac,

−→
As) =

−→
Ac

T
Q−1

LR

−→
As =

〈
Q

− 1
2

LR

−→
Ac,Q

− 1
2

LR

−→
As

〉
(8)

where QLR = diag
{−→
Ab

}
= diag {Ab,1, . . . , Ab,i, . . . , Ab,N}.

C. GLDS Kernel

A kernel can be obtained by finding a linear disclaimant
function fs(

−→
Ac) = wT

s

−→
Ac that optimally divides the training

data into target-speaker class and impostor class. This leads
to the generalized linear discriminant sequence (GLDS) kernel
[15]:

KGLDS(
−→
Ac,

−→
As) =

〈
QGLDS

− 1
2
−→
A c,QGLDS

− 1
2
−→
A s

〉
(9)

where QGLDS =
1
M

∑M
k=1

−→
A bk

−→
AT

bk
is a second moment matrix

of
−→
A bi derived from background speakers.

IV. OPTIMIZATION OF KERNELS

A common characteristic of the kernels in Section III
is that they are all derived under the assumption that the
discriminant function or similarity metric has a specific form.
For example, the GSV kernel is derived from KL divergence,
the linearized LR kernel is derived from discriminant function
fs(

−→
Ac) =

〈−→
Ac, log

−→
As/

−→
Ab

〉
, and the GLDS kernel is derived

from linear discriminant function fs(
−→
Ac) = wT

s

−→
Ac. This

constraint can be relaxed by using a general discriminant
function fs(

−→
A ). This section derives two new kernels, namely

regression optimized kernel and maximum-margin empirical
kernel, based on two different approaches to optimizing a
general discriminant function.

A. Regression Optimized Kernel

1) Formulation: Instead of assuming a specific form for the
discriminant function as in the GLDS kernel, our derivation
begins with a general discriminant function: f(

−→
A,

−→
As) ,

fs(
−→
A ). Our goal is to derive a kernel from the “best” dis-

criminant function f̂s(
−→
A ) that optimally divides the training

data into {−→As; ys = +1} and {−−→Abk ; ybk = 0}Mk=1.2 This can

2Setting the ideal outputs as ys = +1 and ybk = 0 (instead of −1) will
greatly simplify subsequence derivation.

be achieved by solving:

f̂s = arg min
fs∈H





∑

i∈{s,bk}M
k=1

γiL
(
fs(

−→
Ai), yi

)
+ λ ‖ fs ‖2





(10)
where M is the number of background speakers, λ > 0 is
a regularizing parameter, L(·, ·) is a loss function, and γi is
to alleviate the imbalance between the two classes of data.
According to [28], the optimal solution of Eq. 10 can be
written as:

f̂s(
−→
A ) =

∑

i∈{s,bk}M
k=1

ws,ik(
−→
A,

−→
Ai), (11)

where ws,i are speaker-dependent weights and k(·,−→Ai) : RN×
RN 7→ R are kernels in the reproducing kernel Hilbert space
H such that

〈
fs(·), k(·,−→Ai)

〉
H

= fs(
−→
Ai) ∀ fs ∈ H. (12)

When L(·, ·) is a squared loss function, the optimization
problem amounts to finding the combination weights ws,i for
which regression analysis using the least squares method is
a natural solution. Eq. 11 suggests that supervector

−→
A is

first mapped to an (M + 1)-dim space defined by k(·,−→Ai).
Regression analysis is then performed in this space.

Eq. 11 and Eq. 12 suggest that

‖ f̂s ‖2= 〈f̂s, f̂s〉 =
〈
f̂s,

∑

i∈{s,bk}M
k=1

ws,ik(
−→
Ai, ·)

〉

=
∑

i∈{s,bk}M
k=1

ws,i


 ∑

j∈{s,bk}M
k=1

ws,jk(
−→
Ai,

−→
Aj)




= wT
sKsws,

(13)

where ws = [ws,s, ws,b1 , . . . , ws,bM ]T and

Ks =




ks,s kb1,s · · · kbM ,s

ks,b1 kb1,b1 · · · kbM ,b1
...

...
. . .

...
ks,bM kb1,bM · · · kbM ,bM


 , (14)

where ki,j = kj,i = k(
−→
Ai,

−→
Aj).

Therefore, the optimization problem in Eq. 10 can be
formulated as:

min
ws∈RM+1

{
(y −Ksws)

TΓ(y −Ksws) + λws
TKsws

}

(15)

where y = [1, 0, . . . , 0]T(M+1)×1,

Γ = diag{γs, γb1 , . . . , γbM } = diag{γ+, γ−, . . . , γ−}. (16)

Setting the derivative of the objective function in Eq. 15 to
zero, we obtain the optimal value of ws :

ws = (KsΓKs + λKs)
−1(KsΓy), (17)

where we have used the symmetric property of Ks .
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Using Eqs. 16–17, we can express the optimal discriminant
function (Eq. 11) as:

f̂s(
−→
A ) =

∑

i∈{s,bk}Mk=1

ws,ik(
−→
A,

−→
Ai)

=
[
(KsΓKs + λKs)

−1(KsΓy)
]T
(M+1)×1




k(
−→
A,

−→
As)

k(
−→
A,

−−→
Ab1 )

...
k(
−→
A,

−−→
AbM )




= γ+




k(
−→
As,

−→
As)

k(
−→
As,

−−→
Ab1 )

...
k(
−→
As,

−−→
AbM )




T

(KsΓKs + λKs)
−1




k(
−→
A,

−→
As)

k(
−→
A,

−−→
Ab1 )

...
k(
−→
A,

−−→
AbM )




.

Because γ+ is a constant, it can be discarded without affecting
the discriminative ability of f̂s(

−→
A ). Note that the matrix

Ks and the vector k(
−→
A , ·)|(s,b1,...,bM ) are target speaker-

dependent.3 Consider that these matrices and vectors are dom-
inated by non-target speaker data; to make fs(

−→
A c) symmetric

and to reduce computation time and storage space, we perform
the following approximations:

Ks
.
= K =




kb,b kb1,b · · · kbM ,b

kb,b1 kb1,b1 · · · kbM ,b1
...

...
. . .

...
kb,bM kb1,bM · · · kbM ,bM


 , (18)

and
k(
−→
A, ·)|(s,b1,...,bM )

.
= k(

−→
A, ·)|(b,b1,...,bM ),

where the universal background supervector
−→
Ab is used to

approximate
−→
As. These approximations are valid because when

the number of background speakers M is sufficiently large,
small variation in one component of the (M + 1)-dim vector
k(
−→
A, ·)|(s,b1,...,bM ) will not cause it to deviate from its true

position significantly. Moreover, as
−→
As is adapted from

−→
Ab,

the closest approximation to
−→
As is

−→
Ab.

With the above approximations, the regression optimized
kernel is written as:

KReg(
−→
Ac,

−→
As) =

〈
(KΓK+ λK)

− 1
2 k(

−→
Ac, ·)|(b,b1,...,bM ),

(KΓK+ λK)
− 1

2 k(
−→
As, ·)|(b,b1,...,bM )

〉
,

(19)
where K and Γ are defined in Eqs. 18 and 16.
(KΓK+ λK)

− 1
2 can be considered as a normalization matrix

computed from the background speakers. Note that ki,j =

k(
−→
Ai,

−→
Aj) should belong to H. For low-level systems, one

possibility is to use the GSV kernel; for high-level systems,
the linearized LR kernel can be used.

2) Double-Optimization Procedure: The above derivation
suggests that constructing a regression-kernel-based SVM for
target speaker s involves a 2-step optimization process:
Step 1 Find the weights ws,i in Eq. 11 that optimize the

objective function in Eq. 10, which leads to the nor-
malization matrix KΓK+ λK in Eq. 19.

3k(
−→
A, ·)|(s,b1,...,bM ) ,

[
k(
−→
A,

−→
As), k(

−→
A,

−−→
Ab1 ), . . . , k(

−→
A,

−−→
AbM )

]T
.

Step 2 Optimize the Lagrange multipliers in Eq. 3 via SVM
training using Eq. 19 as the kernel, with

−→
Ac replaced by−→

As for speaker-class data and by
−→
Abj , j = 1, . . . ,M ,

for impostor-class data.
During verification, given a test utterance, a supervector

−→
Ac

is derived and is applied to Eq. 3 to compute the verification
score, using Eq. 19 as the kernel. Fig. 3 illustrates the scoring
process and the structure of the regression optimized kernel.

…
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Fig. 3. The scoring process of the regression optimized kernel. αi,s and
ws,i (in red) are optimized by a double-optimization procedure described in
Section IV-A2.

B. Maximum-Margin Empirical Kernel

1) Formulation: If the lost function L(x, y) in Eq. 10 is
the Vapnik’s ε-insensitive loss function [20]

L(x, y) =

{
0 if |x− y| < ε
|x− y| − ε otherwise,

then it can be shown [28] that the minimization in Eq. 10 is
equivalent to the SVM training algorithm. Therefore, we can
generalize Eq. 11 to

fs(
−→
A ) = vs,0k(

−→
A,

−→
As)−

∑

i∈Sb

vs,ik(
−→
A,

−→
Ai) + d′s, (20)

where Sb ⊆ {bk}Mk=1 is a set of support vector indexes from
the negative class, vs,0 is the Lagrange multiplier correspond-
ing to the (solely) positive support vector,4 and vs,i are the
Lagrange multipliers corresponding to the negative support
vectors. Therefore, the optimal weights (Lagrange multipliers
and bias) in Eq. 20 can be found by maximizing the margin of
an SVM that separates the target speaker s from background
speakers bk. We cannot, however, use Eq. 20 as a kernel,
because it may not satisfy the Mercer’s condition. One possible
solution is to use empirical kernel map [21]–[23] as follows.

Assume that we have M background speakers. We first
train a UBM using these M speakers, which results in a
supervector denoted

−→
Ab. For the i-th background speaker, an

SVM is trained to distinguish his/her voice from that of the
other M − 1 background speakers and the UBM. Similarly,
an SVM is trained to distinguish the UBM from all of the M

4We assume that each target speaker has one enrollment utterance. Gener-
alization to multiple training utterances is trivial.
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background speakers. Denote the output of the i-th SVM as
fbi(

−→
A ) and that corresponding to the UBM as fb(

−→
A ), where

we have replaced s in Eq. 20 by bi and b. During enrollment,
given an utterance from a target speaker s, we estimate the
corresponding supervector

−→
As and present it to the UBM’s

SVM and M background SVMs. We also present the UBM’s
supervector

−→
Ab and each of the background supervectors

−→
Abi

to the speaker’s SVM. The two sets of outputs are averaged
to produce an (M + 1)-dim vector:

fs =
1

2




fb(
−→
As) + fs(

−→
Ab)

fb1(
−→
As) + fs(

−→
Ab1)

· · ·
fbM (

−→
As) + fs(

−−→
AbM )


 .

This vector represents the speaker class for training a linear
scoring SVM. Vectors representing the impostor class are
obtained by presenting each of the background speakers to the
UBM’s SVM and the M background SVMs, which results in
M training vectors:

fbj =
1

2




fb(
−→
Abj ) + fbj (

−→
Ab)

fb1(
−→
Abj ) + fbj (

−→
Ab1)

· · ·
fbM (

−→
Abj ) + fbj (

−−→
AbM )


 , j = 1, . . . ,M.

The kernel of the scoring SVM is given by

KMM-Emp(
−→
Ac,

−→
As) =< F

− 1
2

b fc,F
− 1

2

b fs >, (21)

where Fb = [fb fb1 . . . fbM ] . We refer to KMM-Emp as the
maximum-margin empirical kernel.

2) Double-Optimization Procedure: Again, constructing a
maximum-margin kernel-based SVM for target speaker s
involves a 2-step optimization process:
Step 1 Optimize the Lagrange multipliers vs,i in Eq. 20 via

SVM training, using k(·, ·) as the kernel. For low-level
systems, k(·, ·) is the GSV kernel (Eq. 5), and for
high-level systems, k(·, ·) is the linearized LR kernel
(Eq. 8).

Step 2 Optimize the Lagrange multipliers αs,i in Eq. 3 via
SVM training using Eq. 21 as the kernel, with fc
replaced by fs for speaker-class data and by fbj ,
j = 1, . . . ,M , for impostor-class data.

3) Advantages: The maximum-margin empirical kernel has
two advantages over the regression optimized kernel.

• Ease of Training. Apart from the penalty factor in SVM
training, no parameters need to be tuned. The training
of the regression optimized kernel, on the other hand,
requires tuning the parameters Γ and λ in Eq. 19.

• Avoid the Inference of Outliers. In the regression opti-
mized kernel, supervectors that are mapped to points far
away from the decision plane defined by {vs,i} in the
(M +1)-dim space will have significant influence on the
position and orientation of the plane, which may not be
desirable. On the other hand, the SVM training algorithm
will pick the supervectors that are mapped to points close
to the decision plane as support vectors, thereby allowing
these important vectors to have a higher influence on the
decision plane.

V. RELATIONSHIP BETWEEN DIFFERENT KERNELS

A. Regression Optimized Kernels Vs. Other Kernels

The regression optimized kernel can be considered as a
general form of the Euclidean, GSV, linearized LR and GLDS
kernels. Starting from Eq. 19, if Γ = 0 and λ = 1, then
the (i, j)-th element of the regression optimized kernel matrix
KReg becomes:

{KReg}i,j = KReg(
−→
Ai,

−→
Aj)

=

〈
K− 1

2




k(
−→
Ai,

−→
Ab)

k(
−→
Ai,

−→
Ab1)

...
k(
−→
Ai,

−−→
AbM )



,K− 1

2




k(
−→
Aj ,

−→
Ab)

k(
−→
Aj ,

−→
Ab1)

...
k(
−→
Aj ,

−−→
AbM )




〉

=
〈
φ(
−→
Ai), φ(

−→
Aj)

〉
.

(22)
Define Ωs =

[
φ(
−→
As), φ(

−→
Ab1), . . . , φ(

−−→
AbM )

]
. Then we have

Ωs = K− 1
2




ks,b kb1,b · · · kbM ,b

ks,b1 kb1,b1 · · · kbM ,b1
...

...
. . .

...
ks,bM kb1,bM · · · kbM ,bM




.
= K− 1

2Ks,

where Ks is defined in Eq. 14. Therefore, using Eq. 22, the
regression optimized kernel matrix for target speaker s is:

Ks
Reg = ΩT

sΩs = (K− 1
2Ks)

T(K− 1
2Ks)

= KT
sK

− 1
2K− 1

2Ks
.
= Ks. (because Eq. 18: K .

= Ks)

Consider the elements of Ks. If we choose

ki,j = k(
−→
Ai,

−→
Aj) = KGSV(

−→
Ai,

−→
Aj)

=

G∑
g=1

(√
λb,gΣ

− 1
2

b,g µi,g

)T (√
λb,gΣ

− 1
2

b,g µj,g

)
,

(23)

then the regression optimized kernel matrix Ks
Reg becomes

the GSV kernel matrix Ks
GSV. The above derivation can be

generalized to other kernels. Therefore, by choosing special
values of Γ and λ and by using a special form of k(

−→
Ai,

−→
Aj)

in Eq. 19, the regression optimized kernel can be reduced to
other sequence kernels.

This generalization property can also be observed from
the scoring procedure shown in Fig. 3. For example, if the
number of inner nodes in Fig. 3 reduces to one per outer node,
then regression kernel scoring reduces to Euclidean, GSV,
linearized LR or GLDS kernel scoring. Further, if the number
of outer nodes in Fig. 3 reduces to two with α0,s = α1,s = 1,
then kernel scoring reduces to LR scoring.

The discriminant function (Eq. 11) that leads to the regres-
sion kernel has a form similar to the sparse multiple-kernel
[29]. However, there are two major differences. First, in Eq. 11
the number of kernels is equal to the number of training
vectors, whereas in the sparse multiple-kernel the number of
kernels is pre-defined. Second, the weights ws,i in Eq. 11
is obtained by linear regression whereas the combination
weights in the sparse multiple-kernel are estimated by gradient
projection.
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B. Regression Optimized Kernel Vs. Maximum-Margin Empir-
ical Kernel

In Eq. 19, when Γ = 0 and λ = 1, the regression optimized
kernel becomes:

KReg(
−→
Ac,

−→
As)

=

〈
K− 1

2




k(
−→
Ac,

−→
Ab)

k(
−→
Ac,

−→
Ab1)

...
k(
−→
Ac,

−−→
AbM )



,K− 1

2




k(
−→
As,

−→
Ab)

k(
−→
As,

−→
Ab1)

...
k(
−→
As,

−−→
AbM )




〉
.

(24)

Rewrite the maximum-margin empirical kernel in Eq. 21 as
Eq. 25. Comparing Eq. 24 and Eq. 25 suggests that the
maximum-margin empirical kernel is a general form of the
regression optimized kernel.

C. Comparing Computational Complexity

Table III shows the computational complexity of different
kernels. In terms of scoring, the Euclidean distance, GSV
and linearized LR kernels are the least complex, while the
maximum-margin empirical kernel are the most complex.

VI. EXPERIMENTS

The kernels in Sections III and IV were used for high-
and low-level speaker verification. This section describes the
speech data and evaluation procedures.

A. Low-Level Speaker Verification

The classical GMM-UBM [2] and GMM-SVM [18] were
used as the baselines for comparison. For the GMM-UBM,
gender-dependent UBMs with 1,024 Gaussians were used,
because in NIST speaker recognition evaluation, each hypoth-
esized speaker will only be tested against utterances of the
same gender. The GMMs of target speakers were adapted
from the UBMs using MAP adaptation [2], with relevance
factor r = 16. Each supervector in the GMM-SVM comprises
the mean vectors of a MAP-adapted GMM, each with 256
Gaussians.5

For each utterance, an energy-based voice activity detector
was used to remove the silence regions. Twelfth-order MFCCs
[3] plus their first derivative were extracted from the speech
regions of the utterance using a 25-ms Hamming window with
a shift of 10 ms, leading to a 24-dim acoustic vector per frame.
Cepstral mean normalization [30] was applied to the MFCCs,
followed by feature warping [31].

To reduce the effect of session variability, nuisance attribute
projection (NAP) [9] with corank=8 was applied to the super-
vectors. The NAP parameters were obtained from speakers in
NIST SRE 2001 [32] who provide multiple conversations in
different sessions. This amounts to 74 male speakers and 100
female speakers, each providing 12 conversations on average.

T-norms [7] were applied to normalize the SVM scores and
the LR scores to further reduce the effect of session variability.

5We have tried using different numbers of Gaussians and found that 256
gives the best performance.

B. High-Level Speaker Verification

We used articulatory features (AFs) to build speaker-
dependent pronunciation models. AFs are representations de-
scribing the movements or positions of different articulators
during speech production. Following [14], [33], we used 6
manner classes and 10 place classes to describe the articula-
tors. AFs were automatically determined from speech signals
using AF-based multilayer perceptrons (MLPs) [33]. More
specifically, given a sequence of acoustic vectors (MFCCs) xt

where t = 1, . . . , T , the MLPs produce a sequence of manner
and place labels. These labels were then used to create an AF-
based conditional pronunciation model (AFCPM) using MAP
adaptation [34]. Each AFCPM comprises the joint densities
of 6 manner and 10 place classes, conditioned on 12 phonetic
classes, leading to a 720-dim AF-supervector. T-norm was
applied during scoring.

The phone recognizer for extracting AFs uses standard
39-dim vectors comprising MFCCs, energy, and their deriva-
tives. The inputs to the manner and place MLP comprise 9
frames of 26-dim acoustic vectors: 12 MFCCs, log-energy,
and their first derivatives.

C. Speech Corpora

NIST SRE 2001 [32], NIST SRE 2002 [35], SPIDRE [36],
and HTIMIT [37] were used in the experiments.

NIST SRE’01 contains 2,350 cellular-phone conversations
extracted from the Switchboard-II Phase IV Corpus. All of the
utterances in NIST01 were used for creating the background
models. All of the training utterances (112 male utterances and
122 female utterances) in the corpus were used as gender-
dependent impostor data when training the target-speaker
SVMs. Test utterances with length (after silence removal)
longer than 25 seconds were used for creating the T-norm
speaker models, which amount to 127 male and 145 female
T-norm speakers. The corpus was also used for computing the
NAP projection matrix. Specifically, speakers with multiple
conversations were identified and the conversations of these
speakers are assumed to be extracted from different sessions.
This amounts to 74 male speakers and 100 female speakers,
each providing 12 conversations on average.

NIST SRE’02 contains the cellular-phone conversations of
139 male and 191 female target speakers. All of these speakers
were used in the evaluation. We followed the protocol of one-
speaker detection task, which amounts to 2,983 true-speaker
trials and 36,287 impostor attacks.

HTIMIT and SPIDRE were used to train the MLPs and the
phone recognizer for high-level speaker verification. Specif-
ically, 3,794 utterances selected from HTIMIT were used
to train the manner and place MLPs, and utterances from
SPIDRE were used to train a null-grammar phoneme recog-
nizer with 46 context-independent phoneme models (HMMs
with 3 states, 16 mixtures per state).

D. Training of SVMs and Kernels

The SVM of each target speaker was trained by using
his/her training utterance as the positive sample and the
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KMM-Emp(
−→
Ac,

−→
As) =

〈
F

− 1
2

b




(vb,0 + vc,0)k(
−→
Ac,

−→
Ab)−

∑
i vb,ik(

−→
Ac,

−→
Ai)−

∑
i vc,ik(

−→
Ab,

−→
Ai) + d′b + d′c

(vb1,0 + vc,0)k(
−→
Ac,

−−→
Ab1)−

∑
i vb1,ik(

−→
Ac,

−→
Ai)−

∑
i vc,ik(

−−→
Ab1 ,

−→
Ai) + d′b1 + d′c

...
(vbM ,0 + vc,0)k(

−→
Ac,

−−→
AbM )−∑

i vbM ,ik(
−→
Ac,

−→
Ai)−

∑
i vc,ik(

−−→
AbM ,

−→
Ai) + d′bM + d′c



,

F
− 1

2
b




(vb,0 + vs,0)k(
−→
As,

−→
Ab)−

∑
i vb,ik(

−→
As,

−→
Ai)−

∑
i vs,ik(

−→
Ab,

−→
Ai) + d′b + d′s

(vb1,0 + vs,0)k(
−→
As,

−−→
Ab1)−

∑
i vb1,ik(

−→
As,

−→
Ai)−

∑
i vs,ik(

−−→
Ab1 ,

−→
Ai) + d′b1 + d′s

...
(vbM ,0 + vs,0)k(

−→
As,

−−→
AbM )−∑

i vbM ,ik(
−→
As,

−→
Ai)−

∑
i vs,ik(

−−→
AbM ,

−→
Ai) + d′bM + d′s




〉
(25)

TABLE III
COMPUTATIONAL COMPLEXITY OF DIFFERENT KERNEL SCORING METHODS. D IS THE DIMENSIONALITY OF ot , N IS THE DIMENSIONALITY OF ~A, M IS

THE NUMBER OF BACKGROUND SPEAKERS, T IS THE NUMBER OF FRAMES (LABELS) IN THE VERIFICATION UTTERANCE. IT IS ASSUMED THAT ALL OF
THE NORMALIZATION MATRICES Q AND F HAVE BEEN PRE-COMPUTED.

Scoring Method Scoring Equation Kernel Function Scoring Complexity

KE

(−→
Ac,

−→
As

)
=

〈−→
Ac,

−→
As

〉
O(N(M + 1) +N2T )

KGSV

(−→
Ac,

−→
As

)
=

〈
QGSV

− 1
2
−→
A c,QGSV

− 1
2
−→
A s

〉
O(N(M + 1) +N2T )

SVM α0,sKker(
−→
Ac,

−→
As)− KLR

(−→
Ac,

−→
As

)
=

〈
QLR

− 1
2
−→
A c,QLR

− 1
2
−→
A s

〉
O(N(M + 1) +N2T )

Scoring
∑M

i=1 αi,sKker(
−→
Ac,

−→
A bi) KGLDS

(−→
Ac,

−→
As

)
=

〈
QGLDS

− 1
2
−→
A c,QGLDS

− 1
2
−→
A s

〉
O(N(M + 1) +D2T )

+ds KReg

(−→
Ac,

−→
As

)
= k(

−→
A c, ·)T(KΓK+ λK)−1k(

−→
A s, ·) O((M + 1)2 +N2T +N(M + 1))

KMM-Emp

(−→
Ac,

−→
As

)
=< F

− 1
2

b fc,F
− 1

2
b fs > O(N2T +N(M + 1)2 +M3)

LR Scoring
f(

−→
Ac,

−→
As)− f(

−→
Ac,

−→
Ab) + ds — O(N +N2T )

1
T

∑
t log (ps(ot)/pb(ot)) — O(NT )

training utterances of the same gender in NIST SRE 2001
as negative training samples. This amounts to 112 male and
122 female negative samples for each SVM. The same set
of data was used for training different types of kernels. The
regression and maximum-margin kernels can leverage the
double optimization process by using two different training
sets for the two stages of optimization. However, to be fair to
other kernels that only have one optimization step, we apply
the same training set to the two optimization steps in the
regression and maximum-margin kernels. SVMlight [38] was
used for training the SVMs.

In Eq. 16, γ+ = M
M+1 and γ− = 1

M+1 , where M is the
number of negative-class speakers in SVM training, i.e. 112
for male and 122 for female. Moreover, in Eq. 15, λ = 0.8
for high-level systems and λ = 0.2 for low-level systems.
A small λ was chosen for low-level systems because their
speaker models are more reliable; therefore less regularization
is required. We did not attempt to optimize these parameters,
although it may improve performance.

For high-level systems, we used the LR kernel (KLR) as
the reproducing kernel k(·, ·) in Eqs. 19 and 25. For low-level
systems, we used the GMM-supervector kernel (KGSV) as the
reproducing kernel.

E. Fusion of High- and Low-Level Systems
The articulatory feature-based models and the acoustic

GMMs characterize speakers at two different levels. The

former represents the pronunciation behaviors of individual
speakers, whereas the latter focuses on their vocal-tract charac-
teristics. Therefore, fusing their scores is expected to improve
speaker verification performance. In this work, the scores from
articulatory feature-based models and the acoustic GMMs
(GMM-UBM and GMM-SVM) were linearly combined to
obtain the fused scores:

SFuse(O) = η
SHigh(O)− µHigh

σHigh
+ (1− η)

SLow(O)− µLow

σLow
(26)

where µ and σ are the mean and standard deviation of scores,
respectively.

VII. RESULTS AND DISCUSSIONS

Table IV shows the equal error rate (EER) and minimum
decision cost (DCF) achieved by LR scoring and various
types of kernel scoring in both low- and high-level speaker
verification systems. Fig. 4 shows the detection error tradeoff
(DET) performance for high-level systems. Fig. 5 show the
corresponding performance for the low-level systems and the
fusion of the high- and low-level systems.

A. LR Scoring Versus Kernel-based SVM Scoring

For low-level speaker verification, the performance of GSV
kernel scoring (KGSV) is better than that of LR scoring.



9

TABLE IV
PERFORMANCE (EER AND MINIMUM DCF) ACHIEVED BY DIFFERENT SCORING METHODS IN LOW-LEVEL AND HIGH-LEVEL SPEAKER VERIFICATION. IN

LOW-LEVEL SYSTEMS, GLDS SUPERVECTORS ARE THE SECOND ORDER POLYNOMIAL EXPANSIONS [15] OF MFCCS. FOR OTHER KERNELS IN
LOW-LEVEL SYSTEMS, SUPERVECTORS ARE THE STACKING OF THE GAUSSIANS MEAN VECTORS. IN HIGH-LEVEL SYSTEMS, SUPERVECTORS ARE

FORMED BY STACKING THE ENTRIES IN THE PROBABILITY MASS FUNCTIONS (AFCPM [17]).

Scoring Method Kernel Type Formulation
EER min. DCF

Low-L High-L Low-L High-L

Euclidean KE

(−→
Ac,

−→
As

)
=

〈−→
Ac,

−→
As

〉
12.57% 26.86% 0.0475 0.0944

GSV KGSV

(−→
Ac,

−→
As

)
=

〈
QGSV

− 1
2
−→
A c,QGSV

− 1
2
−→
A s

〉
9.32% – 0.0363 –

Linearized LR KLR

(−→
Ac,

−→
As

)
=

〈
QLR

− 1
2
−→
A c,QLR

− 1
2
−→
A s

〉
– 22.69% – 0.0865

Kernel GLDS KGLDS

(−→
Ac,

−→
As

)
=

〈
QGLDS

− 1
2
−→
A c,QGLDS

− 1
2
−→
A s

〉
14.56% 25.67% 0.0647 0.0928

Regression KReg

(−→
Ac,

−→
As

)
= k(

−→
A c, ·)T(KΓK+ λK)−1k(

−→
A s, ·) 8.84% 22.19% 0.0335 0.0857

Max-Margin KMM-Emp

(−→
Ac,

−→
As

)
=< F

− 1
2

b fc,F
− 1

2
b fs > 9.14% 21.68% 0.0332 0.0811

LR — SLR = 1
T

∑T
t=1 log ps(ot)/pb(ot) 10.29% 23.79% 0.0428 0.0916

Kernel + LR

GSV

η SKer(O)−µKer
σKer

+ (1− η)SLR(O)−µLR
σLR

8.51% – 0.0351 –

Regression 8.21% – 0.0318 –

Linearized LR – 22.17% – 0.0849

Max-Margin – 21.38% – 0.0809

All 7.74% 21.23% 0.0281 0.0807

High + Low All η
SHigh(O)−µHigh

σHigh
+ (1− η)SLow(O)−µLow

σLow
7.32% 0.0276
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Fig. 4. DET performance of high-level systems using different kernels
scoring approaches and the fusion of kernel scoring and likelihood-ratio (LR)
scoring. The legends are arranged in decreasing EER.

For high-level speaker verification, Fig. 4 shows that the
performance of linearized LR kernel scoring (KLR) is sig-
nificantly better than that of LR scoring (red dashed-dot)
across a wide range of decision thresholds. This is mainly
attributed to the explicit use of discriminative information in
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EER=7.32%, DCF=0.0276

Fig. 5. DET performance of low-level systems using different kernel scoring
approaches and the fusion of all high-level systems and all low-level systems.
The legends are arranged in decreasing EER.

the kernel function of the SVM and to the optimal selec-
tion of background speakers by SVM training. Although LR
scoring also considers the impostor information, it can only
implicity use this information through the UBM. In LR kernel
scoring, on the other hand, the SVM of each target speaker
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is discriminatively trained to differentiate the target speaker
from all of the background speakers. The SVM effectively
provides an optimal set of weights for this differentiation. On
the other hand, in LR scoring, all target speakers share the
same background model and the weight is always identical
(= −1) across all target speakers. This explains the superiority
of the kernel scoring approach.

B. Effect of the Kernel Normalization

Among all the kernels, only the Euclidean kernel (KE) does
not use normalization, i.e., does not pre-multiply the super-
vectors by a normalization matrix during kernel evaluation.
Comparing the EER of KE and other kernels in Table IV
suggests that normalization can help improve performance,
which is consistent with the results of [18]. The reason is
that normalizing the supervectors by the background models
can prevent some features (with large numerical values) from
dominating the SVM scoring.
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Fig. 6. The effect of the normalization term Q− 1
2 (see Eq. 8 and 5). Each

column in the images represents the supervector of one target speaker. Upper
panel: High-level system. Lower panel: Low-level system.

To highlight the importance of normalization, let us consider
the matrix QGSV (Eq. 5) in the GSV kernel and QLR (Eq. 8)
in the linearized LR kernel. Figures 6(a) and 6(b) display the
un-normalized

−→
As and the normalized

−→
As for 150 speakers, re-

spectively. Evidently, without normalization (Fig. 6(a)), some
features have a large but almost constant value across all target
speakers, e.g., rows with dark-blue in Fig. 6(a). These features
will cause problems in SVM classification because they will
dictate the decision boundary of the SVM, even though they
contain little speaker-dependent information. This problem has
been largely alleviated by the normalization, as demonstrated
in Fig. 6(b). In particular, the normalization has the effect of
keeping all features within a comparable range, which helps to
prevent the large but almost constant features from dominating
the classification decision.

C. Compare Different Kernel Scoring

Table IV suggests that the proposed regression optimized
kernel and maximum-margin empirical kernel are the best
among all kernels that we evaluated. The differences in EER
between GSV and regression kernels and between GSV and
max-margin kernels have p-values [39] smaller than 0.01.
This suggests that optimizing a general discriminant function
(Eq. 11 and Eq. 20) to derive a kernel is better than (a)
using a specific distance metric (e.g., Euclidean kernel KE
and GSV kernel KGSV) and (b) assigning a specific form for
the discriminant function as in the linearized LR kernel (Eq. 7)
and the GLDS kernel.

D. Fusions of Kernel Scoring and LR Scoring

Figures 4 and 5 demonstrate that the fusion of LR scores
and the SVM scores leads to better performance across a wide
range of decision thresholds for both high-level (red-dashed in
Fig. 4) and low-level (dark-green dashed in Fig. 5) cases.

E. Fusions of High- and Low-Level Systems

Table IV and Fig. 5 (solid red) show that the performance
can be further improved by fusing the high-level systems and
the low-level systems, resulting in an EER of 7.32%, with a p-
value [39] smaller than 0.0001 when compared with the EER
(7.74%) without fusion. This EER is also lower than other
recent results (e.g., [40]) on the same corpus in the literature.

VIII. CONCLUSIONS AND FUTURE WORK

This paper provides theoretical and experimental evidences
to demonstrate that kernel-based SVM scoring is superior to
frame-based LR scoring in speaker verification. The paper
proposes an optimization procedure for kernel construction,
which results in two discriminative kernels that are more
general than the existing ones. Results show that the proposed
optimized regression kernel and maximum-margin empirical
kernel outperform the GSV kernel and LR scoring. This
suggests that optimizing a general discriminant function to
derive a kernel is better than (a) using a specific distance
metric (e.g., GSV kernel) and (b) assigning a specific form
for the discriminant function as in the linearized LR kernel
and the GLDS kernel. Results also show that the fusion of LR
scoring and kernel scoring can further reduce the EER in both
high- and low-level speaker verification. The performance can
be further improved by linearly fusing the high- and low-level
systems, resulting in an EER of 7.32%. Although the proposed
kernels are evaluated on a speaker verification task, they are
general enough for other classification problems.

We notice that the dimensionality of the supervectors is
fairly high (6144 for low-level systems and 720 for high-
level systems) and that many of the dimensions have low
variances [41]. This suggests that some of the dimensions
could be discarded. Another possibility is to find the optimal
discriminant subspace and project the supervectors into the
subspace. As the number of training vectors for each target
speaker is significantly smaller than the feature dimension,
the discriminative common vector method [42] could be a
potential candidate for this purpose.
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APPENDIX

This appendix derives Eq. 2 for continuous generative
models in Table I. Specifically, it shows that the LR score
of a GMM-UBM system can be expressed as a function of
supervectors derived from the claimant, target-speaker, and
UBM. For the case of discrete models, see [17].

Assume that the continuous model for a speaker can be
expressed as a Gaussian mixture density function: p(o) =∑G

i=1 λiN (o ;µi,Σi), where λi are mixture weights, N (·)
represents a Gaussian density with mean vector µi, and
covariance matrix Σi. Given a GMM, a supervector −→µ can
be obtained by stacking all of the GMM mean vectors [18].

Given an utterance Oc = {o1, . . . ,oT } from claimant c,
the LR score of the utterance can be obtained by averaging
the individual log-likelihood ratios as follows:6

SLR(Oc, s) =
1

T

T∑
t=1

log

∑G
i=1 λ

s
iN (ot;µ

s
i ,Σ

s
i )∑G

i=1 λ
b
iN (ot;µb

i ,Σ
b
i )
, (27)

where s and b represent the target speaker and background
speakers, respectively, and T is the number of frames in the
utterance.

The following Lemma will be used for deriving the
supervector-based formulation.

Lemma 1 Let ai, bi ≥ 0 for i = 1, . . . , n, then

log

∑n
i=1 ai∑n
i=1 bi

≥ 1∑n
j=1 bj

n∑

i=1

(
bi log

ai
bi

)
, (28)

with equality iff ai

bi
= constant. This lemma can be proved

using Jensen inequality.

Lemma 2 Let ai, bi ≥ 0 for i = 1, . . . , n, then

log

∑n
i=1 ai∑n
i=1 bi

≤ 1∑n
j=1 aj

n∑

i=1

(
ai log

ai
bi

)
. (29)

This lemma is the log-sum inequality used in [18], [43].

Let ai = λs
iN (ot;µ

s
i ,Σ

s
i ) and bi = λb

iN (ot;µ
b
i ,Σ

b
i ).

Using Lemma 2 and Lamma 1, we can write:

1

T

T∑
t=1

G∑

i=1

λs
iN (ot;µ

s
i ,Σ

s
i )∑G

j=1 λ
s
jN (ot;µs

j ,Σ
s
j)

log
λs
iN (ot;µ

s
i ,Σ

s
i )

λb
iN (ot;µb

i ,Σ
b
i )

≥

SLR(Oc, s) =
1

T

T∑
t=1

log

∑G
i=1 λ

s
iN (ot;µ

s
i ,Σ

s
i )∑G

i=1 λ
b
iN (ot;µb

i ,Σ
b
i )

≥ 1

T

T∑
t=1

G∑

i=1

λb
iN (ot;µ

b
i ,Σ

b
i )∑G

j=1 λ
b
jN (ot;µb

j ,Σ
b
j)

log
λs
iN (ot;µ

s
i ,Σ

s
i )

λb
iN (ot;µb

i ,Σ
b
i )
.

(30)

Denote γb
i (t) =

λb
iN (ot;µ

b
i ,Σ

b
i )∑G

j=1 λb
jN (ot;µb

j ,Σ
b
j)

as the posterior proba-
bility that ot is generated by the i-th mixture in the UBM.
(Similarly, γs

i (t) for speaker s.) In GMM-UBM systems, the
MAP algorithm [2] is applied to the mean vectors only.

6Note that λb
i here is equivalent to λb,i in Table I.

Therefore, Σs
i = Σb

i and λs
i = λb

i . As a result, Eq. 30 can
be expressed as:

1

T

T∑
t=1

G∑

i=1

γs
i (t) log

N (ot;µ
s
i ,Σ

b
i )

N (ot;µb
i ,Σ

b
i )

≥ SLR(Oc, s)

≥ 1

T

T∑
t=1

G∑

i=1

γb
i (t) log

N (ot;µ
s
i ,Σ

b
i )

N (ot;µb
i ,Σ

b
i )
.

(31)

Because every speaker model is adapted from the same
UBM, the difference between the upper bound and the lower
bound of the LR score in Eq. 31 is finite. Therefore, we can
use the lower bound as an approximation to the LR score:

SLR(Oc, s)
.
=

1

T

T∑
t=1

G∑

i=1

γb
i (t) log

N (ot;µ
s
i ,Σ

b
i )

N (ot;µb
i ,Σ

b
i )

=
1

2T

G∑

i=1

T∑
t=1

γb
i (t)

{
− (ot − µs

i )
T(Σb

i )
−1(ot − µs

i )

+ (ot − µb
i )

T(Σb
i )

−1(ot − µb
i )
}

=
1

2T

G∑

i=1

T∑
t=1

γb
i (t)

{ [
(ot − µs

i ) + (ot − µb
i )
]T

(Σb
i )

−1(µs
i − µb

i )
}
.

(32)

For ot belonging to claimant c, we express the MAP-
adapted mean of the i-th Gaussian at iteration k as:

µ
c,(k)
i =

∑T
t=1 γ

c,(k−1)
i (t)ot + τµb

i∑T
t=1 γ

c,(k−1)
i (t) + τ

, (33)

where γc,(0)
i (t) , γb

i (t) and τ is the MAP adaptation relevance
factor which controls the influence of the prior distribution on
the final model. Assuming that T À τ and that only one
iteration is performed, we have:

µc
i
.
=

∑T
t=1 γ

b
i (t)ot∑T

t=1 γ
b
i (t)

. (34)

The maximum-likelihood estimates of the i-th mixture weight
in the UBM is given by:

λ
b,(k)
i =

1

T

T∑
t=1

γ
b,(k−1)
i (t). (35)

Substituting Eq. 35 into Eq. 34, we have:

T∑
t=1

γb
i (t)ot = Tλb

iµ
c
i . (36)
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Substituting Eq. 36 into Eq. 32, we have:

SLR(Oc, s)
.
=

1

2

G∑

i=1

{[
(λb

iµ
c
i − λb

iµ
s
i ) + (λb

iµ
c
i − λb

iµ
b
i )
]T

(Σb
i )

−1(µs
i − µb

i )
}

=

G∑

i=1

(√
λb
i (Σ

b
i )

− 1
2µc

i

)T (√
λb
i (Σ

b
i )

− 1
2µs

i

)
−

G∑

i=1

(√
λb
i (Σ

b
i )

− 1
2µc

i

)T (√
λb
i (Σ

b
i )

− 1
2µb

i

)
+ ds

=
−→
Ac

TQ−1
GSV

−→
As −−→

Ac
TQ−1

GSV

−→
Ab + ds,

(37)

where QGSV = diag
{
(λb

1)
−1diag

(
Σb

1

)
, . . . , (λb

G)
−1diag

(
Σb

G

)}
,−→

A = [µT
1, . . . ,µ

T
G]

T is a supervector formed by stacking all
of the Gaussians mean vectors, and

ds = −1

2

−→
As

TQ−1
GSV

−→
As +

1

2

−→
Ab

TQ−1
GSV

−→
Ab.

Note that
−→
Ac

TQ−1
GSV

−→
As in Eq. 37 is actually the GMM-

supervector (GSV) kernel in [18] and that unlike [18] the
above derivation derives the GSV kernel from the likelihood
ratio in Eq. 27.
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