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Abstract-- A feature ranking scheme for MLP ensembles is 

proposed, along with a stopping criterion based upon the out-of-

bootstrap (OOB) estimate. To solve multi-class problems feature 

ranking is combined with modified Error-Correcting Output 

Coding (ECOC). Experimental results on benchmark data 

demonstrate the versatility of the MLP base classifier in removing 

irrelevant features. 

 

Index terms—Classification, Multilayer Perceptrons, Pattern 

Analysis, Pattern Recognition.  

1   INTRODUCTION 

Whether an individual classifier or an ensemble of 

classifiers is employed to solve a supervised learning 

problem, finding relevant features for discrimination is 

important. Most previous research on feature relevancy has 

focussed on individual classifiers, but in this paper the issue 

is addressed for an ensemble of Multi-layer perceptron 

(MLP) classifiers. The extension of feature relevancy to 

classifier ensembles is not straightforward, because of the 

inherent trade-off between accuracy and diversity [1]. The 

trade-off has long been recognised, and arises because 

diversity must decrease as base classifiers approach the 

highest levels of accuracy. There is no consensus on the best 

way to measure ensemble diversity, and the relationship 

between irrelevant features and diversity is not known. 

Feature relevancy is particularly important for small 

sample size problems, that is when the number of patterns is 

fewer than the number of features [2]. With tens of features 

in the original set, feature selection using an exhaustive 

search is computationally prohibitive. Since the problem is 

known to be NP-hard [3], a greedy search scheme is 

required, and filter, wrapper and embedded approaches have 

been developed [4]. The advantage of an embedded method 

is that feature selection is inherent in the classifier itself, and 

there is no reliance upon a measure that is independent of 

the classifier.  

Feature ranking is conceptually one of the simplest search 

schemes for feature selection, and has the advantage of 

scaling up to hundreds of features. Uni-dimensional feature-

ranking methods consider each feature in isolation, but are 

disadvantaged by the implicit orthogonality assumption [4], 

whereas multi-dimensional methods consider correlations 

with remaining features. In this paper, we propose an 

ensemble of MLP classifiers that incorporates multi-

dimensional feature ranking based on MLP weights. The 

ensemble contains a simple parallel Multiple Classifier 

System (MCS) architecture with homogenous MLP base 

classifiers. 
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It is generally believed that MLP weights in a single 

classifier are not suitable for identifying relevant features 

[5]. However, in this paper it is shown that Ensemble MLP 

weights, when combined with Recursive Feature 

Elimination (RFE), are effective for eliminating irrelevant 

features.  An important issue for RFE is to determine when 

to stop eliminating features. In Section 2.1, the Ensemble 

Out-of-Bootstrap (OOB) estimate is proposed for the 

stopping criterion [6]. 

There has not been any systematic comparison of feature 

ranking methods in the context of MCS. Most previous 

approaches to feature selection with ensembles have focused 

on determining feature subsets to combine, but differ in the 

way the subsets are chosen. The Random Subspace Method 

(RSM) is the best-known method, and it was shown in [7] 

that a random choice of feature subset (allowing a single 

feature to be in more than one subset), improves 

performance for high-dimensional problems. In [2], forward 

feature and random (without replacement) selection methods 

are used to sequentially determine disjoint optimal subsets. 

In [8], feature subsets are chosen based on how well a 

feature correlates with a particular class. Ranking subsets of  

randomly chosen features before combining was reported in 

[9]. Bootstrap feature selection for ensembles was proposed 

in [10]. 

The main contributions are 1) feature ranking using 

ensemble MLP weights combined with RFE 2) OOB 

stopping criterion for optimal feature selection 3) extension 

to multi-class problems by combing RFE with weighted 

ECOC decoding strategy, and 4) incorporation of OOB 

estimate into ECOC decoding. 

The paper is organised as follows. In Section 2, six 

feature ranking strategies are described. RFE is applied to 

three weight ranking strategies MLP, SVC (Support Vector 

Classifier) and FLD (Fisher’s Linear Discriminant). The 

other three strategies are ranking by modified Boosting, and 

ranking by two statistical methods. Section 2.1 explains the 

criterion used to stop eliminating features, which is based on 

the OOB error estimate. In Section 3, multi-class problems 

are solved using Error-Correcting Output Coding (ECOC), 

modified to include problem-dependent decoding. The 

experimental results in Section 4 show the effectiveness of 

the embedded feature ranking method for two-class and 

multi-class problems. 

2  FEATURE RANKING 

In [11] feature ranking using single SVC was shown to give 

excellent results when combined with RFE, which operates 

recursively in two steps. First rank the features according to 

a suitable feature-ranking method and then identify and 

remove the r least ranked features. For efficiency reasons, 

usually r2, which produces a feature subset ranking. RFE 

only requires that, at each recursion, the least ranked subset 

does not contain a strongly relevant feature. Definitions of 
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redundancy, weak and strong relevance can be found in 

[12]. 

Feature selection using MLP weights was recently 

experimentally investigated in [13], but the emphasis was on 

retraining a single classifier, after each feature reduction. In 

contrast, we use ensemble feature ranking by MLP weights 

combined with RFE (rfenn). The output O of a single output 

single hidden-layer MLP, assuming sigmoid activation 

function S is given by 
21 )( qpq

q p

p WWxSO    (1) 

where p,q are the input and hidden node indices, xp is 

input feature, W
1 

is the first layer weight matrix and W
2
 is 

the output weight vector. In [14], a local feature selection 

gain wp is derived from (1) 

 
q

qpqp WWw 21
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The weight wp in (2) is the sum over hidden nodes of the 

product of two weights connected via each hidden node to 

the pth feature, but has been found in general not to give a 

reliable feature-ranking [5]. However, when used with RFE 

it is only required to find the least relevant features. The 

ranking using product of weights in (2) is performed once 

for each MLP base classifier. Then individual rankings are 

summed for each feature, giving an overall ranking, which is 

used for eliminating the set of least relevant features at each 

recursive step.  

For SVC the weights of the decision function are based 

on a small subset of patterns, the support vectors. In this 

paper, RFE incorporates linear SVC (rfesvc) in which linear 

decision function consists of the support vector weights, that 

is the weights that have not been driven to zero [11].  

Fisher’s criterion measures the separation between two 

sets of patterns in a direction w, and is defined for the 

projected patterns as the difference in means normalized by 

the averaged variance 
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 where SB is the between-class scatter matrix and SW is the 

within-class scatter matrix. The objective of FLD is to find 

the transformation that maximises J(w) in (3). The optimal 

transformation w* is known to be the solution of the 

following eigenvalue problem 0 WSWS WB , where 

 is a diagonal matrix whose elements are the eigenvalues 

of matrix BW SS 1
. 

The idea behind the noisy bootstrap [15] (details of 

bootstrapping in Section 2.1) is to estimate the noise in the 

data and extend the training set by re-sampling with 

simulated noise. Therefore, the number of patterns may be 

increased by using a re-sampling rate greater than 100 

percent, thus solving the small sample size problem. The 

noise model assumes a multi-variate Gaussian distribution 

with zero mean and diagonal covariance matrix, since there 

are generally insufficient number of patterns to make a 

reliable estimate of correlations between features. For each 

class, the standard deviation of each feature is used for the 

diagonal entry. The standard deviation of the noise added to 

normalised features is set to 0.25 and the ratio of number of 

samples to the number of features is set to 10. In rfenb, RFE 

incorporates the weight ranking defined by w* in (3). 

Boosting has become popular as a feature selection 

routine, in which a single feature on each Boosting iteration   

is selected that minimises the classification error on the 

weighted samples [16]. In our implementation, we use 

Adaboost with decision stump as weak learner. 

Class separability measures are popular statistical feature 

ranking methods [17].   The one-dimensional method (1dim) 

chosen here is defined as trace(SW
-1

SB), where SB and SW are 

defined in (3). A fast multi-dimensional search method that 

has been shown to give good results with individual 

classifiers is Sequential Forward Floating Search (SFFS). 

SFFS improves on (plus l – take away r) algorithms by 

introducing dynamic backtracking [18]. 

 

2.1 OOB Stopping Criterion 

 

Bootstrapping is applied to each base classifier in the 

ensemble, so that if µ training patterns are randomly 

sampled with replacement, approximately (1-1/))

  37% 

are not seen and therefore in the OOB set. Let B be the set 

of classifiers, Oj the set of OOB patterns for jth classifier 

(j=1...b) and )(mE  the error estimate for ensemble 

applied to mth pattern over classifier subset  . The 

jth base classifier OOB error estimate BCOOBj is computed 

over patterns in Oj and should be distinguished from the 

ensemble classifier OOB  
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m
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where Em is 1 if majority vote disagrees with target class 

m , otherwise 0. In (4) all training patterns contribute to 

the ECOOB estimate, but the only participating classifiers 

for each pattern are those that have not been used with that 

pattern for training (that is, approximately thirty-seven 

percent of classifiers). 

The proposed procedure for selecting optimal set of 

features for the nth recursive step is as follows 

while ECOOB(n) < ECOOB(n-1) 

 - rank features for b MLP base classifier using (2) 

  -sum rankings of b classifiers to produce overall ranking 

  -identify and remove r least relevant features 

3 MODIFIED ECOC 

Multi-class problems are solved using Error-Correcting 

Output Coding (ECOC) [19] [20], which is a two-stage 

process, coding followed by decoding. The coding step is 

defined by the binary k xb code word matrix Z that has one 

row (code word) for each of k classes, with each column 

defining one of b sub-problems that use a different labelling. 

If each element Zij )1,1( bjki     is a binary 

variable z, a training pattern with target class i is re-labelled 

as class 1 if  Zij = z  and as class 2  if Zij = z, the 

complement of z. The two super-classes 1 and 2 

represent, for each column, a different decomposition of the 

original problem. For example, if a column of Z is given by 

[0 1 0 0 1 1]
T
, this would naturally be interpreted as a six-

class problem in which patterns from classes 2,5,6 are 

assigned to 1 with remaining patterns assigned to 2.  This 
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is in contrast to the conventional One-versus-rest code, 

defined by the diagonal  code matrix. Usually codes are 

problem-independent, and theoretical and experimental 

evidence indicates that a long random code performs almost 

as well as a pre-defined code, optimised for its error-

correcting properties [20]. In this paper, the code is random 

with near equal split of labels in each column [21].   

An MLP base classifier is applied to each of the b sub-

problems defined by Z, and the feature ranking scheme 

rfenn, described in Section 2, is used to eliminate irrelevant 

features. Therefore, at each recursive step, there are fewer 

features available for solving two-class decompositions. As 

described below, the ECOC decoding stage is made 

problem-dependent, so that it is able to adapt to the 

changing number of features. 

Let the jth classifier produce an estimated probability 

mjq


 that the mth pattern comes from the super-class defined 

by the jth decomposition.  In the decoding step of ECOC, 

the mth pattern is assigned to the class m̂ represented by 

the closest code word 





b

j

mjijij
i

m qZw
1

ˆminarg̂        (5) 

where wij introduces problem-dependence into the 

decoding stage by allowing for ith class and jth classifier to 

be assigned a different weight. Conventional ECOC 

decoding is un-weighted with wij=1 in (5), L1 norm 

decoding using soft decision mjq


and Hamming decoding 

using binarised hard decision. To facilitate ECOOB estimate 

for multiclass, (5) is modified by removing columns of Z if 

they correspond to classifiers that used the mth pattern for 

training, that is the summation is over the subset 

 jOmBjj  ,  as in (4). 

  The weights wij in (5) are estimated using Walsh 

coefficients of a Boolean (binary-to-binary) mapping. The 

first order coefficients were derived from this mapping and 

used in [22] to define a measure of class separability, which 

is computed in Section 4 for experimental comparison. Let 

ymj }1,0{  be the jth classifier binary output of the mth 

pattern with target class tm  . Define  ymj=1 if and only 

if the classifier assigns the correct super-class tjZ . For target 

class t, the jth weight is defined as  

 
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     (6) 

where   is logical AND. The summation in (6) is over 

all pairs of patterns, mth pattern chosen from class t and nth 

pattern chosen from remaining classes. The motivation is 

that the weight is computed as the difference between 

positive and negative correlations of class t versus the rest. 

Negative weights are set to zero and for each class 

 


b

j jw
1

1 . 

4 EXPERIMENTAL EVIDENCE 

Experiments on two-class datasets compare the feature 

ranking schemes described in Section 2, and are designed to 

show that the OOB estimate in Section 2.1 may be used as a 

criterion for determining when to stop eliminating features. 

For multi-class datasets the proposed embedded feature 

ranking strategy is combined with problem-dependent 

ECOC decoding, which includes the OOB estimate. 

Natural benchmark problems [23] and [24] are shown  in 

Table 1 and Table 2. Noisy (mean 0 std 1) features are 

added after normalisation so that each dataset has a total of 

one hundred. Databases with one hundred features are 

chosen to facilitate comparison with a complex feature 

selection method such as SFFS. The experiments are 

performed with one hundred single hidden-layer MLP base 

classifiers, using the Levenberg-Marquardt training 

algorithm with default parameters. However, for ECOC 

experiments the number of ECOC columns is set to 200, 

except where otherwise stated. The random train/test split is 

[20/80, 10/90, 5/95]. The reason for using few patterns for 

training is to determine the small sample size performance. 

Random perturbation of MLP base classifiers is caused by 

different starting weights combined with bootstrapping, as 

described in Section 2.1.  For non-linear MLP, the number 

of nodes and epochs is selected as an optimal choice on 

average over two-class and multi-class datasets using 

ECOOB [6] (8 nodes with 7 epochs for 2-class and 20 

epochs for multi-class). Experiments are repeated twenty 

times and averaged, and we denote Ensemble and Base 

classifier test error by ECTE and BCTE respectively.  

To assist in understanding results, Bias and Variance of 

0/1 loss function according to Breiman’s definition [25] are 

reported. The required estimate of the Bayes classifier is 

performed for 90/10 split using original features, and a 

Support Vector Classifier (SVC) with polynomial kernel run 

hundred times. The polynomial degree is varied as well as 

the regularisation constant. The lowest test error found is 

given in Table 1, and the classification for each pattern is 

stored for the bias/variance computation. All datasets 

achieved minimum with linear SVC, with the exception of 

Ion (degree 2).  

The various feature-ranking schemes described in Section 

2 are compared using MLP and SVC, with ranking criteria 

computed on the training set. When the number of features 

is reduced, the ratio of the number of patterns to features is 

changing, so that optimal classifier parameters will be 

varying. This makes it a complex problem, since 

theoretically an optimisation needs to be carried out after 

each feature reduction. To make a full comparison between 

MLP and SVC, we would need to search over the full 

parameter space, which is not feasible. For this reason we 

compare linear SVC with linear perceptron ensemble.  Table 

3 shows that the ensemble is fairly insensitive to the ranking 

scheme and the perceptron ensemble performs similarly to 

SVC. In particular, the more sophisticated schemes of SFFS 

and Boosting are slightly worse on average than the simpler 

schemes. Although the 1-dimensional method (1dim) is best 

on average for 20/80 split, as number of training patterns 

decreases, performance is slightly worse than RFE methods. 

Since the differences between feature selection schemes 

were in general not statistically significant (McNemar test 

95% [26]), we show results graphically as the mean over all 

datasets, which clearly indicate the overall trend, despite 

small differences on individual datasets 

The recursive step size for RFE is chosen using a 

logarithmic scale to start at 100 and finish at 2 features. Fig. 

1 shows linear rfenn mean test error rates, BCOOB, 



ECOOB, bias and variance over all seven two-class datasets. 

For the 20/80 split Fig. 1 (a) shows that minimum base 

classifier error is achieved with 5 features compared with 

Fig. 1 (b) 7 features for the ensemble. Fig. 1f) shows that 

bias is minimised at 11 features, demonstrating that the 

linear perceptron with bootstrapping benefits (in bias 

reduction) from a few extra noisy features. Fig. 1 (e) shows 

that Variance is reduced monotonically as number of 

features is reduced. Note also that according to Breiman’s 

decomposition Fig. 1 (e) + (f) + 11.1 (mean Bayes)  equals 

(a). Fig 1 (c) and (d) show that while BCOOB, ECOOB do 

not accurately predict the absolute value of BCTE, ECTE 

they are good predictors of optimal number of features. 

Mean correlation coefficients between row/column pairs 

with respect to features for 2-class 20/80 linear and non-

linear MLP ensemble are shown in Table 4. For comparison 

two additional measures are included, the pair-wise diversity 

Q [27] and class separability  [1]. Table 4 also shows the 

number of datasets that are significantly correlated at 95% 

confidence, when compared with random chance. The non-

linear ensemble is better correlated (than linear ensemble) 

between ECOOB and ECTE, and the only dataset not 

significantly correlated is cancer. Both  and Q are 

correlated with BCTE, but not as highly as BCOOB. 

For non-linear MLP base classifier with rfenn, mean 

ECTE over 2-class for [20/80, 10/90 5/95]% train/test splits 

was [13.9,15.7,17.9]%  respectively, the improvement due 

mostly to ion dataset which has a high bias with respect to 

Bayes classifier. To determine an artificial performance 

limit for feature selection, we chose SFFS with the 

unrealistic case of full test set for tuning. The mean ECTE 

was [13.5, 14.1, 15.4]% showing that rfenn effectively 

eliminates irrelevant features, particularly for 20/80 split. 

Finally, rfenn without Bootstrapping showed that although 

variance is lower, bias is higher giving ECTE [15.7, 17.6, 

20.0]%, demonstrating that Bootstrapping has beneficial 

effect on performance. 

Fig. 2 shows weighted and un-weighted Decoding ECOC 

with rfenn and non-linear MLP base classifier as number of 

classifiers is reduced. Fig. 2 (c) and 2 (d) demonstrate that 

BCOOB, ECOOB are good predictors of the optimal 

number of features. Fig. 2 (e) shows that weighted decoding 

test error is smaller, when the number of features is greater 

than optimal. Below the optimal number, weighted decoding 

is inferior. It may be seen from Fig. 2 (d) that the ECOOB 

estimate gives quite reliable indication of optimal number of 

features down to 5 classifiers. The correlation with respect 

to features is shown in Table 5, from which it may be seen 

that ECOOB is highly correlated with ECTE, while  and 

BCOOB are highly correlated with BCTE.  

5  DISCUSSION & CONCLUSION 

An embedded feature ranking strategy based on MLP 

weights combined with Recursive Feature Elimination 

(RFE) is proposed, along with a stopping criterion based on 

Out-of-Bootstrap (OOB) estimate. The techniques work well 

for two-class problems, as well as for multi-class using 

modified decoding strategy for Error-Correcting Output 

Coding (ECOC). In [28] embedded feature ranking is 

applied to the Cohn-Kanade face expression database for 

detecting upper face action units, giving detection rates 

comparable with the  best currently attainable. 

 

 

 

 

DATASET #pat #con #dis %bayes 

cancer 699 0 9 3.1 

card 690 6 9 12.8 

credita 690 3 11 14.1 

diabetes 768 8 0 22.0 

heart 920 5 30 16.1 

ion 351 31 3 6.8 

vote 435 0 16 2.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

DATASET #pat #class #con #dis 

dermatology     366 6 1 33 

ecoli 336 8 5 2 

glass 214 6 9 0 

iris 150 3 4 0 

segment 2310 7 19 0 

soybean 683 19 0 35 

vehicle 846 4 18 0 

vowel 990 11 10 1 

wave 3000 3 21 0 

yeast 1484 10 7 1 

 Linear perceptron-ensemble classifier Linear SVC-classifier 

rfenn rfenb 1dim SFFS boost rfesvc rfenb 1dim SFFS boost 

diab 24.9/2 25.3/2 25.3/2 25.8/2 25.6/2 24.5/3 24.8/5 24.9/2 25.3/2 25.3/2 

credita 16.5/5 15.7/3 14.6/2 15.6/2 15.5/2 15.7/2 15.1/2 14.6/2 15.4/2 15.1/2 

cancer 4/7 4/5 4.1/5 4.4/3 4.9/7 3.7/7 3.7/7 3.8/11 4.2/5 4.5/7 

heart 21/27 21/18 21/11 23/5 23/18 20/18 20/11 20/18 22/7 24/18 

vote 5.5/5 5.3/7 5.6/18 5.7/2 5.5/2 4.8/2 4.8/2 4.7/2 4.3/3 4.7/2 

ion 18/11 16.7/3 14.8/3 15.8/3 18.1/2 15/11 15.9/7 15.3/5 17.9/5 19.5/5 

card 15.7/7 15/2 14.7/2 16.9/2 14.8/2 15.5/2 14.8/2 14.5/2 16.6/2 14.5/2 

Mean20/80 15.1 14.6 14.2 15.4 15.4 14.2 14.2 13.9 15.1 15.3 

Mean10/90 16.3 16.3 16.6 18.0 17.6 15.5 15.7 15.8 17.5 17.3 

Mean5/95 18.4 18.5 20.0 21.3 21.3 17.0 17.7 18.4 20.3 20.7 

Table 2:  Multi-class datasets showing numbers of 

patterns, classes, features 

Table 3: Mean best error rates ECTE%/number of features for two-class problems (20/80) with 

five feature-ranking schemes (Mean 10/90, 5/95 also shown) 

Table 1: Two-class Datasets showing numbers of 

patterns, features and estimated Bayes error rate 
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 ECOOB BCOOB Q  

ECTE(lin) 0.77/5 0.51/5 -0.17/3 -0.13/2 

BCTE(lin) 0.81/5 0.97/7 -0.70/5 -0.72/6 

ECTE(nlin) 0.85/6 0.46/2 -0.04/1 0.04/4 

BCTE(nlin) 0.76/5 0.98/7 -0.79/6 -0.73/6 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mean test error rates, OOB estimates, Bias, Variance for rfenn over  2-

classs  Datasets [20/80, 10/90, 5/95]  train/test split 

Table4: Mean Correlation coefficient/number of 

significant correlations over seven two-class datasets 

20/80 for linear and non-linear rfenn 

Table 5: Mean Correlation coefficient/ number of 

significant correlations over ten multi-class datasets 

20/80 for non-linear rfenn 

 

 

 ECOOB BCOOB Q  

ECTE 0.99/10 0.81/9 -0.03/4 -0.45/4 

BCTE 0.88/9 1.0/10 -0.42/4 -0.81/8 
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