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Mobility Timing for Agent Communities, a Cue for
Advanced Connectionist Systems

Bruno Apolloni, Simone Bassis, Elena Pagani, Gian Paolo Rossi, and Lorenzo Valerio

Abstract— We introduce a wait-and-chase scheme that models
the contact times between moving agents within a connectionist
construct. The idea that elementary processors move within a
network to get a proper position is borne out both by biological
neurons in the brain morphogenesis and by agents within social
networks. From the former, we take inspiration to devise a
medium-term project for new artificial neural network training
procedures where mobile neurons exchange data only when
they are close to one another in a proper space (are in contact).
From the latter, we accumulate mobility tracks experience. We
focus on the preliminary step of characterizing the elapsed time
between neuron contacts, which results from a spatial process
fitting in the family of random processes with memory, where
chasing neurons are stochastically driven by the goal of hitting
target neurons. Thus, we add an unprecedented mobility model
to the literature in the field, introducing a distribution law of
the intercontact times that merges features of both negative
exponential and Pareto distribution laws. We give a constructive
description and implementation of our model, as well as a short
analytical form whose parameters are suitably estimated in
terms of confidence intervals from experimental data. Numerical
experiments show the model and related inference tools to
be sufficiently robust to cope with two main requisites for its
exploitation in a neural network: the nonindependence of the
observed intercontact times and the feasibility of the model
inversion problem to infer suitable mobility parameters.

Index Terms— Algorithmic inference, brain morphogenesis,
complex networks, mobile neurons, mobility models, Pareto
distribution law, processes with memory, social networks.

I. INTRODUCTION

ACOUPLE of factors determining the success of complex
biological neural networks, such as our brain, are repre-

sented by a suited mobility of neurons during the embrional
stage along with a selective formation of synaptic connections
out of growing axons [1]. While the second aspect has been
variously considered in artificial neural networks, for instance
in the ART algorithms [2] or simply through growing and
pruning methods [3], a real mobility model of the single
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neurons in the topological space where connections lie has
not come into common use.

As for the biological side of this model, we may rely on
convincing explanations of the mobility strategies leading to
the definite brain morphology, like in the layered cortex [4], as
well as on clinical evidence of diseases due to incorrect neuron
migrations [5]. However, the neuron dynamics are related
to chemical and electrochemical phenomena coupled with
genetic primers [6] that prove difficult to handle quantitatively
in a numerical simulation setup. Therefore, working jointly at
different physical scales, we present in this paper a mobility
paradigm that is both aimed at reproducing the main features
of the epigenetic phenomena which characterize neuron mobil-
ity, and is checkable on a community of agents. As for the
latter, we will refer to social networks as the most common
implementation of the social computing paradigm [7], a set of
persons who: 1) accomplish circumscribed tasks, but; 2) share
a common interest; and 3) need a communication network to
cultivate this interest [8].

Thus, we deal with three ensembles of computing agents:
biological neural networks, at a micro scale, social networks
at a macro one, and networks of artificial mobile neurons at
an abstract level. The third represents the operational goal of
this research, in the idea that mobility may constitute a further
degree of freedom of the connectionist paradigm. This could
for instance prove profitable to overcome the common draw-
backs usually met in complex networks, such as the difficulty
we have in training deep networks [9]. In this case, mobile
neurons may find the proper reciprocal position by themselves,
as do their biological counterparts in the various layers of the
brain cortex. However, we focus on a very preliminary step
of this medium-term goal. We simply elaborate on the neuron
interaction timing and then compare our results with others
present in the literature in analogous fields.

All agent ensembles share the connectionist paradigm
according to which many elementary processors (agents in
the role of, biological neurons, people, and artificial neu-
rons) may develop a huge computational power, provided
that the processors are highly interrelated and collectively
driven toward a goal that may be transparent to the single
processor [10]. The additional feature of neuron mobility
intrinsically reflects epidemiological aspects of the inter-agent
communication network. The leading idea is that, in an
extended metric space taking into account both topological
distances and functional distances ruled by the synaptic con-
nections, only close neurons may efficiently interact with one
another.
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Actually, the mobility mechanisms are definitely different
in the three considered frameworks. However, we identify tar-
geted trajectories out of variously expressed random walks as
the common feature of the agent motion, which we reproduce
with an abstract wait-and-chase scheme, that constitutes the
core of our paper. It is a mobility model in the family of the
stochastic point processes [11] which is unprecedented as to
how it integrates Brownian motion [12], in the province of the
waiting phase, with less symmetric paths denoting the chasing
agent intentionality. Our focus is on the neuron dynamic
linkage, which we characterize through the distribution law
of the time elapsed between subsequent interactions. Then we
devote a large part of our work to checking the model on real
mobility trajectories of members of social networks. Both the
mobility model and the operability of the emerging distribution
law comprise the main results of this paper. As a further result,
we show their relevance to the new envisaged connectionist
paradigm in terms of a couple of statistical facilities com-
plying with it. They are: 1) a set of outperforming inference
tools allowing us to identify the distribution parameters from
sequences of non independent interaction times (like in the
artificial neuron mobility paths), and 2) a computationally
affordable regression procedure as a solution to the problem
of inverting the model, to infer the parameters of neuron
dynamics which are synergistic with the training process of
the neural network (we outline how in the conclusion section).

This paper is organized as follows. In Section II we intro-
duce our wait-and-chase model. In Section III we discuss
related research in the two reference frameworks of biological
neural networks and social networks, and the new neural
network concept as well. Then we move on to the experimental
part. Namely, in Section IV we introduce the benchmarks
we will use within the second framework. They are used to
validate an inference procedure that we introduce in Section V
to estimate the free parameters of the process. Then, in
Section VI we regress these parameters on the mobility fea-
tures of the model. In Section VII we compare these numerical
performances with those of current models in the literature.
Last, in the concluding section, we outline future work to train
artificial networks of mobile neurons.

II. MODEL TO MAINTAIN MEMORY IN A TIME PROCESS

Our focus is a (possibly) huge ensemble of particles mov-
ing in an Euclidean space of suitable dimension. A long-
time favorite framework to study statistical properties of this
ensemble is the random walk, where we consider the motion
of each particle as a sequence of equal size steps taken in one
of the directions allowed by the working space. At each step
the direction is selected randomly, assigning equal probability
each possible selection. This gives rise to Brownian motion tra-
jectories [13]. Namely, thanks to the central limit theorem [14]
after a large number of steps each trajectory coordinate in the
Euclidean space follows a Gaussian distribution law that is
centered on the starting point with a variance that linearly
increases with the number of steps [see Fig. 1(a)]. The same
theorem guarantees the reproducibility of these trajectories,
i.e., the property that, by sequencing Brownian trajectories of
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Fig. 1. Trajectories described by (a) Brownian motion, (b) Lévy flights, and
(c) proposed mobility model.

any length and in any number, we obtain a new trajectory
which is also described by a Gaussian distribution, yet with
different parameters. This means that the motion emerging
from an infinite sequencing of constant and randomly oriented
steps is modeled as the infinite sum of independent Gaussian
variables of 0 mean, constant variance on each direction,
and zero covariance on each pair of orthogonal directions.
For instance, these trajectories may describe the equilibrium
motion of gas particles in a cylinder, or even the crowd at
an expo, where the main trait is the full symmetry of their
evolution.

On the contrary, a distinguishing feature of animate agents
within a well structured ensemble - such as a social network -
is the causality of their actions, i.e., their intentionality as
the outcome of the agent memory. In turn, intentionality
introduces local asymmetries in the motion which have been
variously studied. A lead requirement is to maintain the
mentioned reproducibility property. We get it by using Lévy
flights [15] in place of random walks as elementary paths of
the motion. A typical picture of a sequence of Lévy flights
is shown in Fig. 1(b). It denotes paths which, besides even
specific instances of human mobility [16], may describe the
foraging patterns of animals such as albatrosses [17], namely,
temporary stays in place (to eat and rest) plus sudden jumps
here and there (to chase the food). We obtain a Lévy flight as
a variant of the random walk for which an extended version
of central limit theorem applies. This walk as well is defined
as a sum of independent identically distributed random steps.
The difference re Brownian motion is in the variance of the
new steps which is normally not definite (broadly speaking,
it is infinite) as a consequence of the above jumps. As a
matter of fact, we may exactly define the trajectory coordinate
distribution only in the Fourier transform space with uniquely
asymptotical approximation in the original space [18].

By contrast, here we present a model having the same
two-phase pattern as animal foraging, but with a greater
prominence of local stays in place and therefore a less dis-
persed general behavior. This results in a bounded variance of
the steps [see Fig. 1(c)]. The main benefit lies in a simple
analytical form of the distribution law of relevant motion
variables, at some expense of the reproducibility property. To
introduce it, think of the dodgem cars at an amusement park.

A. Very Abstract Framework and Its Model

Assume you are playing with dodgem cars. You drive
around until, from time to time, you decide to bang into a
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Fig. 2. Joint trajectories of two cars (plain and dashed curves, respectively)
when (a) both move according to a Brownian motion and (b) former moves
in a specific direction from a trigger time on, i.e., an oracle rotates this path
by �θ toward the other car with some approximation (quantified by the ray
of a proximity circle).

given car which is unaware of your intent. For the sake of
simplicity, we may assume the trajectory of each car to be
a plane Brownian motion before the chase triggering. Thus,
with the reference frame in Fig. 2(a), indexing with i = 1, 2
the cars whose stories we are following, we have

Xi (t) ∼ N0,
√

t , Yi (t) ∼ N0,
√

t (1)

where Nμ,σ is a Gaussian variable of mean μ and standard
deviation σ . Then you, sitting in the first car, decide at time
w to reach and crash into the second car. The questioned
variable records the instant T >w when you succeed. In the
case study, where cars are points in the plane, in order
to identify this instant we must specify: 1) an operational
definition of the cars’ clash since the probability of exact
matching is 0, and 2) the symmetry break introduced by
the chase intention. The chase effectiveness depends on the
ability to orient your motion in the direction of the target,
which corresponds to converting a part of the motion along
the cars’ connecting line from symmetric to oriented moves.
Mathematically, orientation corresponds to taking the chord of
the cumulative trajectory in this direction [see Fig. 2(b)].

In order to overcome analytical complications and fulfill
point 1) as well, we propose this simple scheme. As the
difference between two Gaussian variables is a Gaussian
variable too, we may use (1) also to describe the components
of the vectorial distance � between the two cars before w. We
just need to multiply them by

√
2 so as X�(t) ∼ N0,

√
2t and

similarly for Y�(t). Moreover, if we move to polar coordinates
(r, θ) with x = r cos θ and y = r sin θ , the density function
f� of � becomes

f�(r, θ) = 1

4π t
re− r2

4t (2)

which looks for the joint density function of (R,�), with
R a Chi variable with 2 degrees of freedom scaled by a
factor

√
2t , and � a variable uniformly distributed in [0, 2π)

independently of R. Our assumption about the pursuit is that,
with reference to the distances D1 and D2 of the two cars
from the position of the first one at time w, you are able to
maneuver �1 from w on, so that when D1 = D2 also �1 = �2
[see Fig. 2(c)].

Fulfilling point 2) with this assumption, we are interested in
the time t when D1 = D2. Given the continuity of the latter we
may measure only a probability density with t , which we may
integrate in suitable intervals - corresponding to the proximity
circle in Fig. 2 - to evaluate clashing probabilities. Since both
D1 and D2 scale with the square root of time, expressing their
dependence on the trigger time w and the pursuit time τ , we
have

D1(τ ) = √
τχ21, D2(τ ) = √

2w + τχ22 (3)

where χ2 denotes a Chi variable with 2 degrees of freedom
whose density function is, fχ2(z) = ze−(z2/2). Thus, after
equating D1(τ ) with D2(τ ) we obtain

1 = D2(τ )

D1(τ )
= χ22

χ21

√
2w + τ√

τ
(4)

under the condition χ21 ≥ χ22 . If we denote with T the
random variable with realizations τ and W with realizations w,
this equation finds a stochastic solution in the random variable

V = T

W
= 2

(
χ2

21

χ2
22

− 1

)−1

. (5)

It follows the same distribution law of the ratio between two
unconstrained Chi square variables, i.e., an F variable with
parameters (2, 2) [19], whose cumulative distribution function
(CDF) reads

FV (v) = 1 − 1

1 + v
I[0,∞)(v) (6)

where I[a,b](x) is the indicator function of x w.r.t. the interval
[a, b], thus being 1 for a ≤ x ≤ b, 0, otherwise.

Since τ = vw, to have the car pursuit time T , we need to
have a convolution of the above distribution with the trigger
time’s. Let fW be the probability density function of the latter,
defined in a range (winf, wsup). Since τ + w = (v + 1)w, we
obtain FT , with T = T + W , by computing

FT (t) =
∫ min{t,wsup}

winf

FV

(
t

w
− 1

)
fW (w)dw. (7)

The dependence of the convolution integral extreme on
t induces a tangible dependence of the final distribution
on the trigger time’s. Nevertheless, keeping in mind some
experimental results that we will discuss in the next sections,
we look for a general shape of T distribution able to recover
the mentioned dependences in a wide range of operational
fields. To this end, we first generalize the form (6) into

FV (v) = 1 − 1

1 + v2α
I[0,∞)(v)g (8)

obtained by changing
√

t into tα in (1). In this way we extend
the scaling of the stochastic dynamics from the (1/2) power
- used in the Brownian motion - to a generic power α - in
analogy to Lévy flights. Then, we approximate and further
generalize this form through

FV (v) = 1 − b + 1

b + (
v
c + 1

)a I[0,∞)(v) (9)

with a, c > 0 and b ≥ 0, whose template shape is reported in
Fig. 3 in terms of both FT (t) in normal scale [see Fig. 3(a)],
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Fig. 3. (a) CDF plot of a shifted-Pareto distribution and (b) LogLogPlot
representation of its complement.

and FT (t) = 1− FT (t), i.e., the CCDF, in LogLog scale [thus
representing both abscissas and ordinates in logarithmic scale,
see Fig. 3(b)]. We call it a shifted-Pareto distribution since
its typical elbow shape in the latter representation may be
recovered from a basic Pareto distribution [20] just by shifting
the time origin, i.e., through a law

F X (x) = b

b + xα
I[0,∞)(x). (10)

Though somewhat structurally different from (8) and (9)
coincides exactly with (6) when a = c = 1 and b = 0.
Indeed, the main benefit we draw from (9) is the gain in model
generality and flexibility, thanks to the three free parameters,
we may get satisfactory approximations not only of (8) but also
of (7) in a wide range of operational frameworks. Actually, by
plugging (8) or (9) and the chosen trigger time distribution
in (7), we obtain expressions whose analytical form is in
general not easily computable. A better understanding of the
interpolating role of (9) can be appreciated by referring to
numerical integrations of (7), whose curves are reported in
Fig. 4 for two typical instances. They refer to different trigger
time distributions - emerging in slight changes in the length of
the initial plateau, in the slope of the subsequent linear part,
and also in the smoothness of their unions - which are well
recovered by the parameters of (9).

Thus we will refer to the random variable T as a generic
success time concerning the wait-and-chase process, expressed
as a ratio V between chase T and wait time W , or as pure
chase time T , otherwise as the sum T + W of the two times.
In any case, we expect this variable to be described by the
CDF (9) with suitable parameters.

B. Processes with Memory

The main trait of (9) is the power course of the CCDF
with time - qualifying it as a heavy tailed distribution - in
contrast to the exponential trend universally employed with
temporal processes. We root it on the different dependence of
the process on the memory backlog. In very essential terms,
we speak of memory if we have a direction along which to
order the events. Now, for any ordered variable T , such that
events on their sorted values are of interest to us, the following
master equation holds:

P(T > t|T > k) = P(T > q|T > k)P(T > t|T > q)

∀k ≤ q ≤ t . (11)
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Fig. 4. CCDF LogLogPlot of contact times with a trigger time varying
according to distribution law (a) Pareto and (b) uniform. Parameter α = 0.9
in (8) for all distributions, while parameters specific to the trigger distributions
are set in order to have the same expected value.

It comes simply from the fact that in the expression of the
conditional probability

P(T > t|T > k) = P(T > t)

P(T > k)
= g(t)

g(k)
(12)

we may separate the conditioned variables from the condi-
tioning ones. While (11) denotes the time splitting to be a
general property of any sequence of data, (12) highlights
that events (T > t) and (T > k) are by definition never
independent. What is generally the target of the memory divide
in random processes is the time t − k elapsing between two
events. In this perspective, the template of the memoryless
phenomena descriptor is the (homogeneous) Poisson process,
whose essential property is P(T > t) = P(T > q)P(T >
t − q), if t > q . It says that if a random event (for instance
a hard disk failure) did not occur before time q and you ask
what will happen within time t , you must forget this former
situation (it means that the disk did not become either more
robust or weaker), since your true question concerns whether
or not the event will occur at a time t − q . Hence your local
variable is T − q , and the above property is satisfied by the
(negative) exponential distribution law with

P(T > t) = FT (t) = e−λt (13)

for constant λ > 0, since with this law (11) reads

e−λ(t−k) = e−λ(q−k)e−λ(t−q) (14)

and the property that g(t)/g(k) in (12) equals g(t−k) is owned
only by the exponential function.

On the contrary, you introduce a memory of the past
(q-long) if you cannot separate T − q from q . In this paper,
we consider very simple cases where this occurs because the
time dependence entails a local variable of the form (T/q)β .
The simplest solution of (11) is represented by

P(T > t|T > k) = FT (t) =
(

t

k

)−α

(15)

so that the master equation reads(
t

k

)−α

=
(

t

q

)−α (q

k

)−α
. (16)

Equation (15) represents the basic form of the Pareto dis-
tribution [20]. It is defined only for t ≥ k, with k > 0
denoting the true time origin, and α identifying the scale
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Fig. 5. CCDF LogLogPlot when T follows (a) Pareto law with α = 1.1
and k = 1 and (b) exponential law with λ = 0.091. Parameters are chosen to
have the same mean.

of its logarithm. The main difference w.r.t. the exponential
distribution is highlighted by the LogLogPlots of FT in Fig. 5,
a line segment with a Pareto curve [see Fig. 5(a)] in contrast
to a more than linearly decreasing curve with the exponential
distribution [Fig. 5(b)]. A first operational consequence is that,
for a same mean value of the variable, we may expect its
occurrence in a more delayed time if we maintain memory of it
as a target to be achieved (getting a Pareto distribution), rather
than relying on chance (getting an exponential distribution).

To link space and time aspects, we may consider Figs. 3(b)
and 5(a) and (b) to be the time companions of Fig. 1(a)–(c)
as representatives of a Brownian motion, Lévy flights, and
our wait-and-chase process, respectively. In fact, it is well
known that at sufficiently low densities the distribution of
times between successive collisions of a molecule in a fluid
is approximately exponential, while its trajectory follows
a Brownian motion [21]. Analogously, experimental stud-
ies show a Pareto distribution reckoning the time intervals
between changes in Lévy flight direction we see in nature.
This occurs, for instance, with Oxyrrhis marina [22] or alba-
trosses [17] in search of food. In line with its space evolution,
the trajectory timing of our process denotes an intermediate
distribution between exponential and Pareto distribution. At a
first glance we may identify in Fig. 3(b), an initial nonlinear
plateau which we figure to have been drawn from the former
distribution, followed by a linear part (henceforth denoted
as the tail), referring to the Pareto distribution. This sharp
characterization of the picture evinces the main features of our
model. In Figs. 3(b) and 5(b), we enhance the contrast between
the linear course of the tail of this distribution with respect
to the more deeply decreasing course of the exponential
distribution’s by extending the ticks on the vertical axes toward
values approaching much closer to 0. In Section VII we check
the suitability of these features on experimental data, and
contrast them with other models’ considered in the literature.

C. Completing the Mobility Model

Two additional points we must take into account to model
the clash times are: 1) the interleaving of non intentional
encounters with intentional ones planned by the chaser, and
2) the focus on the difference between subsequent clash times
we are generally interested in as an instance of intercontact
times in the mobility models. Non intentional encounters may
be suitably framed into a Brownian process, so that both their
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Fig. 6. Recovering the intercontact ECCDF shape with different mobility
parameters through shifted-Pareto distributions with (a) a = 0.54, b =
11819, c = 1.27, and (b) a = 3.61, b = 7.55, c = 0.85. Gray curves:
experimental distributions. Black curves: their interpolations.

absolute timing and the intercontact times (the local times of
the process, see Section II-B) may be ruled by an exponential
distribution law. By contrast, we have no strict theoretical
results on the chaser intercontacts. However, relying on loose
reproducibility properties deriving from both Brownian and
Lévy processes, we use the same distribution law (9), with
proper parameters, also for these differences.

We recover the two points numerically. For instance, denot-
ing with F̂T (t) the empirical complementary CDF (ECCDF)
for a sample t = {t1, . . . , tm} drawn from T

F̂T (t) = 1 − 1

m

m∑
i=1

I(−∞,t ](ti ) (17)

in Fig. 6 we see two ECCDFs LogLogPlot referring to a
T sample obtained by drawing a trigger time uniform in
[1, 150] and reckoning intervals between subsequent clash
times whose ratio w.r.t. the former is simulated through (8).
To these elements of the sample, we add further ones coming
from an exponential distribution with a set parameter λ. In
both figures we see a plateau analogous to those in Fig. 4,
having the abscissa of its right end at around 100, followed
by a linear slope that may be recovered through the shifted-
Pareto distribution (9). The effect of the exponentially drawn
times is the small hump on the sloping part that variously
characterizes the experimental curves w.r.t. their interpolations
through the mentioned distribution. Thus from this and similar
graphs, we may recognize a general trait of the figures that
we will use henceforth, where: 1) the length of the plateau
plays the twofold role of order of magnitude of the mean
trigger time, as for the constructive model, and of b(1/a) in
(9), as for the interpolating law, and 2) the slope of the tail
is close to a. Continuing our broad characterization of the
ECCDF shape to sharpen our intuition, we will refer to the first
part of the curve as gathering the non intentional encounters
almost exclusively, while to the second as describing almost
entirely the intentional ones. On the contrary, the difference
in the graphs in Fig. 6 is related both to the number me

of exponentially drawn times w.r.t. the size of the sample
connected to distribution (9), and to the values of parameters
λ and α, respectively, in (8) and (13) . These additional times
have the dual effect of globally delaying the times within the
plateau and of incrementing their number after its end. While
in both cases α = 0.9, the former has (me/m) = 0.5 and
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λ = 0.1, the latter (me/m) = 0.4 and λ = 0.0001. The
corresponding interpolating parameters read as in the caption
of Fig. 6.

III. RELATED WORK

The model we introduced in the previous section has two
main benefits: 1) it is a constructive model, so that we may
discuss its main components from both physical and analytical
perspectives in a clean albeit elementary framework, and 2) it
is synthesized with a three-parameter formula, so that it allows
for a relatively simple statistical identification. Clearly, it is a
sharp schematization of a class of phenomena that usually
occur with more complex features. In our paper we make the
claim that this model is useful to synthesize mobility traits
of the agents involved in the three - biological, social, and
artificial - frameworks that we jointly consider in this paper.

As for the first, we distinguish two kinds of motion during
brain morphogenesis, a physical one to migrate from the
original neural cells production center (the neural plate) to
their final position, and a virtual one where the sole axons
and dendrites move to get efficient inter-neural connections. A
typical template of the former is the aforementioned formation
of the six layers of the brain cortex. The uniformity of the main
parameters of the tissue, such as the number and kind of cells
per volume unit, along the entire cortex may be referred to
the genetic code of the single cells. However, the connection
peculiarities of the various functional areas (such as vision,
motion, etc.,) in the cortex may be explained by epigenetic
phenomena. A paradigmatic example of these phenomena is
the growth cone dynamics through which axons of stably
positioned neurons develop while seeking their synaptic tar-
get [23].

If we project them into a higher-dimensional topological
space, both cell motion and axon growth are aimed at assessing
mutual functional distances between neurons according to
some efficiency criterion. De facto, we recognize the func-
tionalities of the brain cortex’s layered structure. Moreover,
after a waiting phase where random walk features prevail, we
physically observe the axon chase of the target cells, in spite
of random obstacles that the axon cone must bypass along
its trajectory. As for the specific rules of these dynamics,
we know many motion mechanisms in terms for instance
of chemotaxis [24], radial glia vehiculation [25], etc., [26].
However, their analytical synthesis in a unitary mathematical
model - possibly comprehensive of the various side phenom-
ena such as volume transmission, tunneling nano-tubes or
receptor mosaics [27] - is still far from being realized. With
our wait-and-chase model we operate the following trade-off.
On the one hand, we expect to reproduce some traits of the two
(random plus targeted) components of the neuron mobility in
the high dimensional space. On the other hand, we abandon the
idea of reproducing the specific mechanisms of the dynamics
in favor of their statistical integration.

Who talk to us about the suitability of this modeling? As
mentioned in the introduction, to gain a quantitative insight
into it, we refer to some social network instances that are
approachable in a metering space still preserving the main

features of the above biological framework. It is a common
model transfer attitude in these fields, such as in the study of
rat brain pharmacological reactions to infer analogous effects
in people. In sum, we envision these instances as macro-
scale instances of an improved connectionist paradigm deeply
inspired by brain mechanisms.

While from a static perspective the main emphasis in social
networks such as Facebook is placed on the relationship
graph between the agents (the role assignment problem [28]),
the time variability of these graphs is commonly dealt with
in terms of dynamic network analysis through multiagent
simulation techniques [29]. By contrast, we adopt a relatively
recent approach to mobility which is connected to empowered
telecommunication technologies, such as the mobile wireless
ad hoc networks [30], and fully agrees with our connectionist
framework. This approach to network evolution is rooted in
the individual behavior of the single communicating members,
having the network as a corollary rather than the reference gear
of the dynamics. Epidemic processes [31] and opportunistic
networks [32] are two instances of this focus which share with
our biological/artificial neurons the following features: 1) the
fact that the members of the network travel inside it; 2) they
have a limited infection radius, so to get interactions one agent
must come close to another; and 3) each member is primarily
entitled to manage its mobility on its own. As for point a),
we note that wired web communities [33] perform the virtual
way of realizing mobility through connection link variations.

We find paradigms comparable to ours within a large variety
of temporal dynamics having complex networks (in the recent
acceptation [34]) as the common keyword. Thus wait-and-
chase model represents an alternative approach with respect,
for instance, to: 1) rich gets richer i.e., the preferential attach-
ment [35] used both in economics [36] and in web consensus
phenomena [33]; 2) transmission entropy minimization [37]
for language analysis; 3) log returns in risk assessment for
exceptional events in nature such as earthquakes [38]; and
4) analytically tractable mathematical models like the Markov
chain of discrete sites for random waypoint processes [39]
or geometric Brownian motion (GBM) [40] for income earn-
ing phenomena. We remark that, on the one hand, these
approaches have theoretical roots which are totally different
from ours. On the other hand, all the involved processes share
the same intermediate position between random walk and
Lévy flights that we highlighted in ours, so that the emerging
distribution laws fall mostly within the generalized Pareto
family [41]. In particular, with respect to the three-parameter
formula proposed by Pareto himself over a century ago [42]

FT (t) =
(

1 + a(t − c)

b

)− 1
a

I[c,+∞)(t) (18)

we introduce in (9), starting from (15), further scale parameters
to render it adaptive to many experimental situations, but in
a slight different way than in (18). This relatively eases the
identification tasks required by our framework.

Wanting to formulate a connectionist model for the mobile
agents in the two (biological and social) contexts we specifi-
cally consider, we may feed suitable dynamics to the neurons
of an artificial neural network. This represents an additional
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TABLE I

DESCRIPTION OF REAL WORLD AND SYNTHETIC BENCHMARKS

Dataset Location Technology # Agents Mean Trace # Processed Beaconing
Length Agents Time (sec.)

Artificial Pentium IV Dual Core – 39 275 39 1

PTR Computer Science Dept. in Milan PTR 39 1876 39 1.5

Crawdad

CH1 Intel Research in Cambridge iMote 9 145 9 125

CH2 Cambridge Univ. Computer Laboratory iMote 12 342 12 125

CH3 IEEE INFOCOM 2005 Conf. in Miami iMote 41 510 41 125

HMTD

Orlando Disney World Garmin GPS 60CSx 37 68 18 30

NCSU Raleigh (North Carolina) Univ. Campus Garmin GPS 60CSx 30 34 15 30

NY New York City Garmin GPS 60CSx 35 25 18 30

KAIST Daejeon (Korea) Univ. Campus Garmin GPS 60CSx 91 308 12 30

Nokia
Helsinki Helsinki GPS equipped mobile 522 212 50 1

London London GPS equipped mobile 199 233 50 1

facility for exploring the parameter space, when we make
the wandering of the neurons in the Euclidean space, where
they physically lie, affect the search for the minima of the
questioned cost function in the parameter space (in a way anal-
ogous to the simulated annealing shaking). A first consequence
of this insertion is the relevance of the motion timing in the
whole process. Though the training aspect is mostly rewarding
for any theoretical or experimental effort, in this paper we opt
to deal exactly with the timing of the network as a necessary
preliminary step toward gaining the desired benefits. We are
comforted in our effort by the fact that this is a descriptive task
traversing many natural systems, from fluid dynamics [21] to
micro-organism [22], animal [17], and human mobility [16].
This allows us to directly compare analytical forms and results.

We escape timing aspects connected with the neuron firing
local mechanisms (see spiking neuron models [43]). Rather,
the key assumption is that an exchange of information (say,
forward propagation of the signal or backward propagation
of the error in a layered structure) occurs only when the
involved neurons are close enough to one another (i.e., are in
contact). This entails two factors determining the connection
strength between neurons: 1) the weight which accumulates
corrections along the entire training history, and 2) a distance
penalty factor which depends on the current position within
the neuron trajectory. Also the dependence on the topological
distance is not new per se. For instance, it is at the basis of the
neighboring functions of the winner neuron in self-organizing
maps [44]. However, here the penalty directly affects the
information passing functionality of the neurons, which in
turn determines the effective connection net. For the moment
we do not hypothesize any Lagrangian of motion. Rather,
we rely on the statistical rules described in Section II, which
are triggered when an artificial neuron has something to
exchange with others. Thus, in this case the wait phase of
the atomic motion lasts until the neuron has something to
transmit/receive and someone to/from which transmit/receive
it, and the chase phase until it succeeds in transferring the
message to the target companion. Plugging these motions
into stationary dynamics, we re-obtain the distribution law (9)
of the random variable reckoning the elapsed times between
contacts stated within the moving neurons.

Though the interest in this distribution dates quite far back,
our approach is innovative in that:

1) we explicitly deal with chaser intentionality in terms of a
point process with memory, which lies in an intermediate
position between random walks and Lévy flights;

2) we introduce a constructive model of a spatio-temporal
process which: a) shares features with many phenomena
in nature, and b) allows for bounded variance dynamics
and clean analytical forms as well;

3) we add a new paradigm for stochastic processes which
is quite different from those commonly supposed to root
the above phenomena;

4) we add a new distribution to the family of generalized
Pareto distribution laws which proves very suitable for
the identification tasks required by our connectionist
framework.

IV. REAL WORLD BENCHMARKS AND

ARTIFICIAL DATASETS

The above discussion left us with a strong statement on
a new family of connectionist paradigms, the efficacy of
connection between artificial moving neurons depends at any
given time on the topological distance between them, in
addition to the connection weight. We may consider biological
neurons to look for this efficiency during their reciprocal
positioning and the growth of their neurites in the brain
morphogenesis. Conversely, we might measure tracks of this
mobility within the motion of agents in social networks which
we assume to be looking for an analogous optimal positioning
in order to exchange messages with desired interlocutors. We
variously check these tracks for the suitability of our wait-
and-chase model, using the distribution of intercontact times
as our statistical touchstone for understanding the basics of
the neuron mobility - the cue for future works. Since this task
is not trivial, it will necessarily occupy most of the rest of this
paper. However, it entails the assessment of some statistical
tools of future use in our connectionist paradigm, as outlined
in the final section.

We have gathered a huge amount of data on these inter-
contacts. Some comes from public or proprietary repositories
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Fig. 7. Agent trajectories, wherever available, and tracks for some datasets, one per benchmark in Table I. Gray ECCDF curves: individual intercontact
times, black ECCDF curves: merge of the former ones. (a) Artificial. (b) PTR. (c) Crawdad �→ CH3. (d) HMTD �→ New York. (e) Nokia �→ Helsinki.

available on the web. We have also produced our own exper-
imental data to compare ours with the former’s features, in
addition we have simulated a huge dataset as an efficient trait-
d’union between probability model and truth. The essentials
of the benchmarks are reported in Table I, while a short
description of them is reported here below.

A. Benchmarks from the Web

We check our methods on two categories of benchmarks:
one expressly connected with opportunistic networks, the other
to virtual communities which could implement analogous
communication protocols thanks to contacts among members.

1) Cambridge/Haggle (CH) Datasets: They represent a
collection of benchmarks available on the web, stored in
the Crawdad database.1 We focus on the three datasets
(CH1, CH2, CH3) collected in the different research/academic
sites listed in Table I. The data concern contact times
between mobile agents endowed with an iMote platform [45]
- an embedded bluetooth device equipped with a short-range
antenna and limited battery (plus ARM processor and flash
RAM). During the experiments, very short messages (beacons)
are exchanged between the agents through the platform. Opti-
mized algorithms deduce both contact - the period when two
agents are in range of one another - and idle times - the period
between the contact times, when data are not directly trans-
ferrable between the two agents - through a beaconing strategy
where a 5 seconds “enabled inquiry mode” alternates with a
120 seconds “sleep mode” (which accounts for a beaconing
time of 125 seconds). We focus on pair-wise intercontact times,
where the usual basic inspection tool is the ECCDF of the
log of these times registered on a single individual getting
in contact with any other participating in the experiment. We
visualize the curves referring to the CH3 dataset in LogLog
scale in Fig. 7(c). Namely, the time logs constitute the traces
of the single agents in the time domain as a companion of their
trajectories in the space domain. The corresponding ECCDF

1Available at http://crawdad.cs.dartmouth.edu/cambridge/haggle.

LogLog representations are the agent tracks from a statistical
perspective. The trace length is measured in terms of number
of reckoned intercontacts. In the following we will consider
them both as a curve sheaf, one track for each agent (walker),
and through single representatives. While when we refer to
the interpolating parameters central values such as medians
will be suitable, the overall shape of the tracks seems better
preserved by the merge of the curves, i.e., the ECCDF of the
merged traces.

2) Global Positioning System Trajectories: In recent years
we have seen a wide proliferation of personal devices, mainly
smartphones, endowed with GPS facilities. This has made
plenty of mobility GPS trajectories available, as a result of
current activities where agents may have different meeting
modalities. To check extreme instances, we analyze two bench-
marks where in the former - the human mobility trace dataset
(HMTD) collected at the NC State University of Raleigh
(NC)2 encounters occur when people enter a relatively large
interaction neighborhood re topological distances yet at the
exact same time instant. We consider the complementary sit-
uation in the second benchmark, coming from Nokia’s Sports
Tracker project.3 It concerns people who virtually interact
with one another because they cross the same site although
at (possibly) different times.

The trajectories in the HMTD dataset were collected world-
wide on various cities/campuses through Garmin GPS devices.
From the original signals, after a preprocessing phase (for
instance isolating only the logs recorded within a radius
of 10 km from the center of each site), and focusing on
a single area where they were collected (e.g., New York
City) we obtain the Cartesian coordinates of the walkers, as
shown on the left in Fig. 7(d). Stating that a contact occurs
when two people are fewer than 250 meters from each other,
we obtain the companion intercontact times ECCDF as in
Fig. 7(d) on the right. In Table I we distinguish between the

2Available at http://research.csc.ncsu.edu/netsrv/?q=content/human-mobility
model-and-dtn-group.

3Available at http://sportstracker.nokia.com.
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TABLE II

SYNOPSIS OF THE PARAMETERS FITTING THE BENCHMARK TRACKS. CELL VALUES: SINGLE TRACK COLUMN �→ MEDIAN AND MAD (IN BRACKETS)

OF THE ESTIMATED PARAMETERS WITHIN THE DATASET, MERGE TRACK

COLUMN �→ PARAMETERS FITTING THIS TRACK

Single tracks Merge track

ă b̆ c̆ d̆ ă b̆ c̆ d̆

Artificial 1.834 (0.215) 30584.6 (28461.6) 1.177 (0.046) 1. (0.) 2.97367 4.46×108 1.02844 6

PTR 1.484 (0.115) 44920.6 (39575.6) 1.097 (0.042) 2.6 (0.6) 1.752 709781 0.959 4

HMTD

Orlando 1.018 (0.185) 31.881 (27.445) 1.261 (0.142) 0.2 (0.) 2.005 2.08×107 0.959 8.

NCSU 1.084 (0.262) 8336.36 (8334.31) 0.959 (0.388) 6. (2.) 1.329 151719. 1.531 6.6

NewYork 1.099 (0.304) 10048.3 (9611.62) 1.133 (0.183) 2.6 (0.) 1.305 244650. 1.337 5.8

KAIST 0.794 (0.17) 5.376 (4.204) 1.012 (0.21) 0.2 (0.) 1.819 1.73×107 0.798 11.

Nokia

Helsinkidense 1.318 (0.324) 2.118 (1.517) 0.71 (0.067) 0.4 (0.2) 1.092 1.738 0.63 0.6

Helsinkisparse 1.524 (0.334) 11.45 (10.881) 0.835 (0.094) 0.6 (0.4) 1.328 0.933 0.758 0.2

Londondense 1.883 (0.897) 32.886 (31.314) 0.863 (0.026) 1.2 (0.6) 1.646 1.985 0.829 0.2

Londonsparse 2.922 (0.217) 715.551 (318.767) 0.869 (0.014) 1.7 (0.1) 2.991 1441.7 0.858 2.4

Crawdad

CH1 0.934 (0.166) 118.228 (98.693) 0.939 (0.128) 0.2 (0.) 0.879 106.163 0.926 0.3

CH2 0.849 (0.122) 41.172 (26.771) 0.762 (0.111) 0.2 (0.) 0.977 530.91 0.724 0.8

CH3 0.872 (0.082) 54.245 (32.943) 1.68 (0.24) 0.2 (0.) 0.813 31.488 1.725 0.2

number of available agents for each location and the number
of them processed to get statistics. This denotes that some
trajectories have been discarded in that tangibly anomalous
(for instance, 2 or less intercontacts) w.r.t. the phenomenon
we are considering.

The second dataset is the follow out of the Nokia Sports
Tracker service (see Footnote 3) to which any person may
apply by running a specific software on his own GPS-equipped
smartphone. Now more than 125 000 trajectories are available,
collected at a rate of one beacon per second from many regions
around the globe. They drop to 9000 circa when we focus on
people walking (neither running nor cycling or anything else)
and to 522 and 199, respectively, in the cities of Helsinki and
London, after bugged trajectories have been discarded. With
reference to the pic on the left in Fig. 7(e), we isolated 236
trajectories spanning mainly at the bottom left corner. Then we
variously sampled 50 tracks. Each one corresponds to a walker
whom we jointly monitor with other (from 10 to 100) walkers
whose trajectories we consider to reckon contacts. We did the
same for the London tracks. In Table II we will distinguish
between less crowded (sparse: fewer than 60 crossing walkers)
and more crowded (dense) trajectories.

B. Ground Truth

In order to get a clearer perspective of the phenomenon, we
decided to essentially replicate the experiment with perfectly
known environmental conditions. We achieved this both by
developing portable radio devices (PTRs) and by deploying
the test-bed.

We adopted the consolidated beaconing strategy in order
to save batteries, with a beaconing time of 1.5 seconds.
Whenever a beacon is received from a given encounter, the
device creates a new entry in the local contact-log. The beacon
contains the following items: 1) the local ID and ID of the
encountered PTR; 2) the timestamp of the first contact; and
3) the timestamp of the contact closing. As for the latter,
an entry in the contact-log is closed whenever no beacons

are received from the encountered device for more than
60 seconds. We collected data in two experimental campaigns
performed between February and October 2008.4 A set of 39
PTRs were distributed to students and administrative/teaching
staff within the Computer Science Department of the Univer-
sity of Milano. At the conclusion of the campaign, their logs
were remodulated so as to remove artifacts. In particular, we
eliminated idle periods represented by the time intervals where
people were expected to be away from the campus (between
7 PM and 8 AM. on workdays and all during the weekend). We
also clamped to 0 the last 60 seconds of contacts artificially
generated by the above connection closing rule. Tracks for all
39 agents are shown in Fig. 7(b).

C. Artificial Dataset

We have numerically implemented the mobility model intro-
duced in Section II on a simulated field. Namely, replacing the
agents of the PTR campaign with dodgem cars, we consider a
field of 200×200 square meters with 39 individuals uniformly
located inside it as our initial configuration. Each agent has
two mobility modes, random waypoint [39] up to trigger time
w, and the mentioned pursuit strategy after it. In the first
mode, an agent randomly selects a direction that follows for a
time length θ uniformly drawn in [0, 2000] steps with a mean
velocity of v = 1.47 meters per second (mean pedestrian
velocity). This is simulated by tossing a positive random
number less than or equal to 2000, as for θ , a uniform value
between 0 and 2π , as for direction, and a random number
drawn from a Chi distribution with 2 degrees of freedom
scaled by 1.17t (to maintain the mentioned mean velocity),
to sample the distance D(t) covered by the agent at time t . At
the completion of time θ , it selects a new random direction and
so on. When the trigger time w expires, it shifts to the second
mode: the above Chi step is now coupled with a suitable
angle rotation directing the agent toward the chosen target.

4Available at http://nptlab.dico.unimi.it/index.php/cartoon.html.
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A match occurs when, for any reason, an agent gets closer
than 10 meters to another one. We remark that we do not
impose any constraint on the agent location (i.e., rebounds
handling, etc.,) since the chase features automatically maintain
an overall attractor within the original 200 × 200 square.
Fig. 7(a) reproduces a story of this model when the trigger
time is drawn, for a mere choice of convenience, according to
Pareto distribution (15) [see Fig. 4(a)]. In particular, dynamics
parameters α [the exponent in (8) modulating the agent mean
speed versus time in this phase] and ν [describing the rate of
the trigger time distribution - as an instance of the exponent α
in (15)] were set to 0.9 and 1.5, respectively, and suitable
values were chosen for ancillary parameters, such as k or
the chased target distribution. The contact times are gathered
along the entire experiment log corresponding to 18 days of
simulated time.

V. FITTING MOBILITY TRACES

The goal of the experimental part of our paper is to check
the adequacy of our mobility model for interpreting mobility
tracks observed in some agent communities. To this end,
denoting with t = {t1, . . . , tm} the sample of intercontact times
of a given trace, we solve two orders of inference problems:

1) fitting of t through form (9), by identifying statistical
parameters a, b, c (s-parameters, henceforth) for each
agent, with the aim of proving suitability of the proposed
model to describe mobility;

2) regression of the s-parameters versus mobility para-
meters (for short m-parameters), which accounts for
understanding the main traits of agent mobility. Here
we focus on the parameters α and ν considered in
Section IV-C, whose acquaintance allows us to better
appreciate the departure from random walks, as we will
show in the next section.

To be more convincing, we solve these problems in two
steps, in terms of: 1) a reconstruction problem, by working
with the artificial dataset introduced in Section IV-C, and
2) true inference problems over real world data described in
Sections IV-A and B.

A first concern is to have an efficient automatic procedure
to draw the interpolating curves. Actually, inferring a shifted-
Pareto distribution is not a standard task per se. In addition, we
must consider that, besides the hump discussed in Section II-C,
empirical data are affected by many artifacts, linked for
instance to seasonal phenomena such as user habits during a
particular week and/or on a particular day of the week, special
tasks shared exclusively by some pairs of users, etc., Thus,
rather than expect a perfect fitting, we look for tight confidence
regions where the experimental curves lie completely with
a good probability. The identification of these regions is a
favorite task of the Algorithmic inference paradigm [46] which
we exploit here as follows.

A. Statistical Bases

Looking at curves as in Fig. 7, we may consider our estima-
tion problem in terms of drawing a regression curve through
the set of pairs (ti , F̂T (ti )), coupling the observed intercontact

time with the ECCDF computed on it. According to our model,
the regression curve depends on three s-parameters: a, b, c.
In line with our stated goal, we look for a suitable region
containing this curve, which we consider in principle as a
realization of a random function. Thus, in analogy with the
usual notion of confidence interval [19], we may define a
confidence region as follows.

Definition 1: For sets X,Y and a random function C:
X �→ Y, denote by abuse c ⊆ D the inclusion of the set
{x, c(x); ∀x ∈ X} in D. We define a confidence region at
level γ to be a domain D ⊆ X×Y such that

P(C ⊆ D) = 1 − γ. (19)
We infer this region via a bootstrap procedure in a slightly
different version of the Efron paradigm [47]. The lead idea
is that, starting from the observed data {(ti , F̂T (ti ))}, we
generate a huge set of curves that could fit them. They
represent replicas of a random curve (i.e., a curve with random
parameters) at the basis of these data, where the bootstrap
generation method allows us to attribute a probability to each
curve whose reckoning identifies the confidence region. With
this perspective we devise a procedure running through the
following steps.

1) Sampling Mechanism: It consists of a pair 〈�, gθ 〉, where
the seed � is a random variable without unknown parameters,
while the explaining function gθ is a function mapping from
samples of � to samples of the random variable X we are
interested in [48]. Thanks to the probability integral trans-
formation theorem [19] we have that, by using the uniform
variable U in [0, 1] as a seed � , gθ coincides with the inverse
of the X CDF FX . In particular, the explaining function for T
distributed according to (9) is

t = F−1
T (u) = ga,b,c(u) = c

((
bu + 1

1 − u

) 1
a − 1

)
. (20)

2) Master Equations: The actual connection between the
model and the observed data is exploited in terms of a set of
relations between statistics on the data and unknown parame-
ters that come as a corollary of the sampling mechanism. With
these relations we may inspect the values of the parameters
that could have generated a sample with the observed statistic
from a particular setting of the seeds. Hence, if we draw seeds
according to their known distribution - uniform in our case
- we get a sample of compatible parameters in response. In
order to ensure this sample clean properties, it is enough to
involve sufficient statistics w.r.t. the parameters [19] in the
master equations. Unluckily, because of the shift terms, the
parameters are so embedded in the density function of T that
we cannot identify such statistics for them. Rather we may rely
on statistics that are well behaving (see [49] for their formal
definition) with analogous benefits.

Namely, denoting by t(i) the i -th element of the sorted
intercontact times and by m the quantity �(m + 1)/2�, we use
the well behaving statistics

s1 = t(m), s2 = 1

m

m∑
i=1

ti -s1, s3 =
m∑

i=m

log t(i). (21)
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Fig. 8. Curves fitting with compatible parameters. (a) Sample size: 30.
(b) Sample size: 500. Thick plain curves: sample ECCDF, gray curves: 200
population replicas, thick dashed curves: median of the replicas. Light gray
region: 0.90 confidence region.

Thanks to the sampling mechanism (20) relating a realization
of the uniform random variable U to a T ’s, we obtain the
master equations

s1 = ga,b,c(u(m)) (22)

s2 = 1

m

m∑
i=1

ga,b,c(ui )-ga,b,c(u(m)) (23)

s3 = ξm

2
log c + 1

a

m∑
i=m

log

(
bui + 1

1 − ui

)
. (24)

As usual, we solve these master equations in the s-
parameters in correspondence to a large set of randomly drawn
seeds {u1, . . . , um}. In this way, we obtain a sample of fitting
curves, as in Fig. 8, which we statistically interpret to be
compatible with the observed data. The two pictures differ
only in the size of the sample generated through (20), sharing
the same s-parameters a = 1.1, b = 1000, and c = 1.2. The
free parameter ξ is set to a value slightly greater than 1 in
order to compensate the bias coming both from computing
the last statistic only on a part of the observed sample, and,
in the case of simulated/real tracks, from the truncation at
the last intercontact, as a direct consequence of the finiteness
of the campaign duration. In the figure, we also report the
0.90 confidence regions for these curves. We obtain these
regions through a standard peeling method [50]. Namely, we
circularly visited the upper and lower borders of the region
made up of the envelope of the curves and erased the extremal
ones, i.e., those that at least partially trespass the envelope
of the remaining curves. We iterate the procedure until a
fraction 1 − γ of the original curves survives, where γ is
the confidence level. Also, the thick line represents the median
curve obtained with the same procedure, letting just one single
curve survive (using obvious expedients when all the surviving
curves, usually fewer than 5, lie on the border of the region).
The pictures highlight the strong influence of the sample size
on the width of the confidence region, which in any case
contains the whole ECCDF uniformly over its support in both
situations. We also note a sort of indeterminacy - to be read as
non univocity - in the triples fitting the observed ECCDF. We
may attribute this both to the high variance of the sample
data and to the intricate interrelations among the trend of
the curves and the s-parameters per se. Namely, though the
large sample allows us to infer s-parameters closer to the

original ones (ă = 1.14, b̆ = 1800, and c̆ = 1.05, with q̆
denoting the median estimate of parameter q using the above
extreme peeling procedure), with the smaller sample we have
acceptable interpolation as well, despite the great difference
between the inferred parameters and their true values (ă =
0.87, b̆ = 320, and c̆ = 0.87).

B. Testing the Inference Algorithm

First of all we tested the procedure on a controlled envi-
ronment represented by the artificial dataset introduced in
Section IV-C. Fig. 9(a) completes Fig. 7(a) by adding the
fitting curves obtained through our procedure. In greater detail,
from the tracks of the single agents we get the confidence
region at the top of the picture. Fitting intercontact times
obtained by merging individual trajectories, we get the dashed
curve at the bottom of the picture which proves very close to
the merge ECCDF curve.

We did not have the same success with real tracks. This
motivated us to do a deeper analysis of the data described in
Sections IV-A and IV-B, suggesting that the hypothesis of their
independence should be removed. While with intercontact
times derived from simulation this hypothesis is true (within
the limit of our pseudo-random number generation), with real
people we may expect non independent performances. So,
we may expect that with busy, sociable and/or even anxious
people, if a task required a quick contact with colleagues, a
subsequent one will do the same with a high probability, idem
for encounters that do not last very long. On the contrary,
a different attitude may induce a greater duration after a
rushed task and vice versa. In our context, this essentially calls
for, respectively, positive and negative autocorrelation among
intercontact times.

Inference methods from correlated data represent a big
issue in statistics, for which a vast variety of solutions has
been offered, with most depending on the features of the
random process that generates the data. Time series analysis
in econometrics processes is a well-assessed vein in this field,
having in [51] a groundbreaking text. Far from enunciating
a further general theory on non-independent samples, here
we simply consider an expedient to extend our procedure
to this kind of data. Namely, we reverberate the dependence
among times directly on the observation seeds ui s entering the
sample mechanism (20). We may look directly at a Markov
process on the seeds, so that their conditional distribution
depends on certain batches of previous seeds. If we are so
lucky to have some standard conditions satisfied [52], we may
rely on an equilibrium distribution from which to pick more
suitable seeds of the sampling mechanism of the observed non
independent intercontact times. Using the special typed symbol
U (resp. u) to distinguish the new seed from the uniform
variable U (or its realization u), we have a very preliminary
hypothesis on its CDF as follows:

FU(u) = u
1
d (25)

with d > 0. It is definitely a gross hypothesis, relying simply
on some similitude between the ECDF of samples generated
by the mechanism ui ≡ ud

i [hence from the random variable
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Fig. 9. Fitting agent tracks drawn from the dataset in Table I through our shifted-Pareto distribution. First row: 0.90 confidence region and median curve
for single agents, same notation as in Fig. 8. Second row: merge track of all agents from the same dataset (gray curve) and its fit (black dashed curve).
(a) Artificial. (b) PTR. (c) Crawdad �→ CH1. (d) HMTD �→ Orlando. (e) Nokia �→ London.

Ud having exactly the CDF (25)] and the sampling mechanism
ui ≡ u(ui−1/h)r

i (reproducing a Markovian dependence of
the current ui from the previous one ui−1), for suitable
d as a function of r and proper tuning parameter h (see
Fig. 10). As for the autocorrelation ρUi ,Ui+1 , the value d = 1
denotes independence between sample items, whereas d < 1
corresponds to r > 0 and ρUi ,Ui+1 > 0, and d > 1 to r < 0
and ρUi ,Ui+1 < 0.

On the one hand, with known d nothing changes on the
above statistical procedures, apart from the new seed genera-
tion, since the sampling mechanism now reads

t = c

⎛
⎝(

bud + 1

1 − ud

) 1
a

− 1

⎞
⎠ (26)

leading to the CDF

FT (t) =
(

1 − (b + 1)

b + ( t
c + 1

)a

) 1
d

. (27)

On the other hand, adding d within the set of s-parameters
would unbearably complicate the procedure. Thus we decide
to use d as an external parameter that we infer by inspection
by maximizing the correlation ρT ,T̃ between actually observed
times ti s and reconstructed times t̃i s. The latter are obtained by
inverting the inferred CDF FT̃ on the ECDF F̂T specifications
computed on ti s. Namely

t̃i = (
t : FT̃ (t) = F̂T̃ (ti )

)
. (28)

Hence we relate ti to the (i/m)-th quantile t̃i of FT̃ , with
i = 1, . . . , m.

We thus obtain the other pictures in Fig. 9, which complete
the analogous ones in Fig. 7, referring to different datasets
within the same benchmarks, so as to broaden our inspection
of the data. We note that the confidence regions satisfactorily
include the empirical curves, whereas the median of the
compatible curves absorbs the hump commonly occurring
over the tails. As discussed earlier, we may attribute this
to a superposition of casual encounters, which parallel the
intentional ones. While the bending of the ECCDF around the
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Fig. 10. ECDF of samples drawn according to the sampling mechanism ui ≡
u(ui−1/h)r

i (gray curves) and ui ≡ ud
i (black curves) when (a) r = −1, h =

1, d = 4, ρUi ,Ui+1 = −0.24 and (b) r = 1, h = 3, d = 0.25, ρUi ,Ui+1 =
0.37.

estimated median curve when using the Crawdad and HMTD
benchmarks hints at the presence of further local phenomena
that generate these balanced shifts, the more regular course
of the Nokia tracks may depend on its different method of
gathering intercontact data. With the former benchmarks we
reckon the time difference between one contact and the next
for one agent versus another specific one for each paired
peers, and subsequently gather the differences referring to the
same agent. With the latter benchmark, we reckon the time
difference between one given agent’s contacts with any other
agent. Regarding the merge curves, again we observe a good
fitting of the inferred median parameters.

C. Overall Evaluation

In Table II, we sum up the above inference on the bench-
marks listed in Table I. Our main statistic is the median of
the parameters of the compatible curves computed for each
agent. In turn, of these values we report in the first column the
median and the deviation around it in terms of median absolute
deviation (MAD) [53], to capture respectively the central trend
and the dispersion over the agents. In the second column, we
refer directly to the merge traces of the various benchmarks
for which we analogously report the compatible curve median
parameters. A first insight arising from an overall outlook
is that with our model we cover a vast variety of targeted
short-range walking situations, w.r.t. walking mode (relaxed,
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Fig. 11. Relation between s-parameters and m-parameters in the artificial dataset. Surfaces: best fitting curves, points: s- and m-parameters.

jogging), common goals (work, entertainment, sport, shopping,
etc.), geographic location (from Europe to U.S.A. or Asia),
and recording method (merge of specific pair contacts, one
trajectory crossing a variable number of other trajectories,
merge tracks). This reverberates in a parameter variety, albeit
with some structural commonalities.

From a modeling perspective, we note that the weak repro-
ducibility property of our shifted-Pareto distribution hypoth-
esized in Section II-C emerges in the parameters as well
(with some exceptions). Indeed, taking note that the plateau
parameter to be compared is b1/a, we find the parameters of
the merge track close enough to the medians of the single
agent parameters. The main exceptions occur for Orlando
and KAIST), while minor discrepancies arise on a restricted
number of parameters in three other sites. There is no clear
relationship between these discrepancies and the dispersion
of the parameters drawn from the single agents. Rather, we
note that they never occur alone, but on at least a couple of
parameters per benchmark. Re the variability of the solutions
of the inversion problem (22)–(24) we mentioned in Section V-
A and with the chimeric effects due to track mixing as well, the
above fact might suggest attributing discrepancies to numer-
ical artifacts rather than to statistical reasons. In this sense,
paradigmatic is the correlation described by parameter d . This
parameter takes values much greater than 1 in the merge
curve of the artificial benchmark, despite the true intercontact
independence (by construction) in the single agent traces.

As for the parameter dispersion, which we appreciate
through MAD, we actually do not expect moderate values
as an indicator of good estimates. Rather, on the one hand,
their high values are again a consequence of the different
experimental conditions each track refers to, where the near
coincidence with median for b denotes an exponential distribu-
tion law of this parameter. On the other hand, we cumulated a
set of approximately 300 traces for a total of 140 000 circa
observed intercontacts that we will exploit as a whole in
Section VII to have very meaningful fitness tests. For the
moment, we get rid of the experiment variations through the
structural coherence between data and use the different values
as a cue to characterize the experiments.

VI. UNDERSTANDING THE MOBILITY MODEL

In the previous section, we were left with a satisfactory
match between experimental data and their modelization. Now
we want to exploit this favorable condition to invert the model,
i.e., to deduce the m-parameters from the s-parameters. It
accounts for a regression problem that we solve using artificial

datasets like in Section IV-C as training set. Namely, we kept
α and ν exponents as free parameters in a range compliant
with the PTR setup. In detail, we let α vary in the range
[0.35, 1.05], so as to appreciate sensible deviations from the
Brownian motion setting (i.e., α = 0.5), and ν in [0.1, 20],
spanning a wide range of Pareto rates to cover both finite and
non finite moments of this distribution (see rightmost picture
in Fig. 11). Note that the d parameter is out of the question,
since it is constantly equal to 1 in the artificial setup. To learn
the regression function of the remaining s-parameters a, b, c
versus m-parameters α and ν, first we identify the median as a
template of the CCDF curves, then we regress its parameters
through a polynomial in the m-parameters.

In Fig. 11 we see the best fitting that we obtain separately
on a, b1/a, and c. The interpretation of these curves is far
from simple. Here we just venture some guesses, declaring in
advance that they are partial and need serious validation. We
note that the first graph shows a complex trend of a with α
that we interpret as follows. On the one hand, the analysis of
the course of log FT with t shows that an a increase (a↑) in
(9) has the effect of shifting the elbow between the non-Pareto
and Pareto parts back (as for turning time) and down (as for the
corresponding probability). This produces the twofold effect
of reducing both the distribution time scale (t↓) and the rate
of contact times (r↓) falling in the second part (call them the
intentional times according to our broad curve interpretation
in Section II-C). On the other hand, we see that a has a
parabolic trend with α having the top in the surrounding of
α ≈ 0.5, a value that calls for the Brownian motion as the basic
component of the model. Moving far from this value, we see
a decreasing of a that we alternatively relate to the two effects
t↓ and r↓. Namely, since α is a mobility speed-up factor, on
the left-hand side of the trend we relate the increase of a with
α to a decrease in the time scale (t↓). This effect is contrasted
by the rarefaction of the random encounters when α becomes
still higher, since the probability of crossing a same 10 meter
raw transmitting coverage diminishes with the velocity due
to the low agent density. Under these conditions, we have an
overwhelming amount of intentional contacts (belonging to the
Pareto part) (r↑).

We may similarly explain the second graph, where we
broadly relate the b1/a parameter to the scale of the non
intentional encounter times. In principle, this scale decreases
with ν - since the average of the related Pareto does so - and
increases with α - because of the aforementioned spreading
effects of this parameter. However, in this case too we have
a saturation effect, so that very small νs equalize the trigger
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Fig. 12. Mobility parameters emerging from smearing the s-parameters of our experimental benchmark tracks on the surfaces in Fig. 11. First three columns
→ gray points: same simulated parameters as in Fig. 11, black points: replicas compatible with the processed dataset, white points: median parameters among
the replicas (graphically hidden in general by the former ones). Last column → gray points: mobility parameters colored according to the cluster they belong
to, bullets: cluster centroids. (a) Crawdad. (b) HMTD.

times. As a consequence, the number of (now almost purely
intentional) contacts follows a Poisson distribution that is
analogous to the one of the almost purely non intentional
encounters reckoned in the opposite corner. Likewise, we have
seen that short as in correspondence to short αs may reduce the
number of non intentional encounters (since r↑) contributing
to the definition of the scale of the non Pareto part.

The third parameter, c, looks like a fine tuning factor
indirectly affected by the m-parameters.

Moving to the experimental datasets, we want to discover
through the above regression curves both the mean velocity
and the mean waiting time of the people who wear the bea-
coning device. Namely, having computed s-parameter replicas
compatible with the collected experimental datasets through
master equations (22)–(24), as in Section V, we look for the
corresponding m-parameters α and ν that minimize the relative
error between the computed a, b, c and the triple obtained
through the regression curves. We processed all benchmarks
in this way. However, in Fig. 12 we replicate Fig. 11 only on
two of them (merged re benchmark subsets) for space reasons,
claiming similar features for the unrepresented pictures.

We see that the first two columns denote a notable gen-
eralization of the regression curves. The clouds of points
refer to the union of around 30 000 curves (hence the triplets
of parameters specifying them) that are compatible with the
single agent tracks. For all these curves, on the one hand we
obtain values in line with the overall trend of both a and b
with α and ν, as modeled in the previous sections. On the other
hand, these values are compatible with the velocity and idle-
time features of the people running in the various experiments
and reflect the two polarizations of the dynamics (before and
after α = 0.5) discussed in the previous section.

With c things go worse. But this is to be expected given the
tuning role of this parameter. We note, however, that taking
into account its value in back-regressing α and ν (through
the minimizing procedure) diminishes the spread of these
parameters.

The fourth column in Fig. 12 highlights the great similar-
ity between the mobility parameters underlying the different
benchmarks. This comes through in the shape of the clouds
gathering them and even in the location of the centroids of
the clusters emerging from an elementary k-means algorithm
computed on the whitened data to take into account the
different dispersion of the mobility features [54].

VII. COMPARISONS WITH THE LITERATURE

The puzzling point of the analysis of the above data is that
a certain number of distribution laws have been considered in
the literature to this aim, all of which have found a tangible
number of promoters. Some distributions emerge as a corollary
of different theoretical approaches, like those mentioned in
Section III, others come simply from a clever assembling of
distribution features that fit the observed data. Coming to our
benchmarks, we realize that the common features emerging
from the various tracks include: a prominent elbow, which
separates the plateau from the slope, and a linearity of the
latter (the tail). Actually, the elbow is an artifact of the
CCDF LogLog representation of a vast variety of distribution
laws, from uniform distribution to Gaussian, and even to
the exponential one. Among them, the following distributions
are adopted in the literature as candidates for coping with a
prominence of this feature: exponential, lognormal, tapered
Pareto, and truncated Pareto. Thus, in this section we will
employ these as competitors of our shifted-Pareto distribution.
An exception w.r.t. this feature is precisely represented by the
Pareto distribution - in essence a power law - whose graph,
on the contrary, fully meets the second feature of our tracks
(Figs. 7 and 9).

In linear scales, we analytically describe the plateau with a
nearly exponential course and the tail with a definite power
law. Wanting to explicitly maintain the dichotomy, other
authors have given different readings of these traits. We might
distinguish two gross families of such distributions: 1) a double
Pareto curve (a lower power curve followed by a greater
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TABLE III

STATISTICAL COMPARISON BETWEEN COMPETITOR MODELS. ROWS: BENCHMARKS, COLUMN: MODELS, CELLS: CVM TEST

ACCEPTANCE RATE (UPPER LINE) AND AKAIKE CRITERION WINNING RATE (LOWER LINE)

Shifted-Pareto Best Shifted-Pareto Median Exponential Pareto LogNormal Tapered Pareto Truncated Pareto

PTR
0.154 0.077 0.821 0. 0.026 0. 0.077
0.949 0.923 0. 0. 0.026 0. 0.

Crawdad
0.508 0.169 0.067 0.051 0.034 0.017 0.068
0.441 0.101 0. 0. 0.288 0. 0.271

HMTD
0.593 0.468 0. 0.25 0.468 0.562 0.781
0.656 0.469 0. 0. 0. 0.062 0.281

Nokia
0.937 0.796 0. 0.312 0.641 0.437 0.328
0.531 0.281 0. 0.218 0.141 0. 0.109

power one) [40], [55], and 2) a temporal sequencing of a
Pareto course proceeding with an exponential distribution that
quickly nears 0 [56].

The former is analytically derived by the GBM model [40].
However, though extensively studied in growth phenom-
ena [36], [57], it has been adapted to mobility studies with
feeble results. In particular, it misses the real course of the
first part of the experimental curves. Vice versa, the tapered
Pareto distribution [58]

FT (t) = 1 −
(

k

t

)α

e
k−t

b I[k,+∞)(t) (29)

and similar ones (namely lognormal, truncated Pareto) [59],
[60] directly structured to fit in the second alternative, have
the exponential decrease of the function in the rightmost
part of the curve as their main drawback. This is somehow
explained in terms of nomadic motion [61], and finds a good
fitting only with specially devised traces [62]. As a matter
of fact, researchers working on Nokia datasets also [63] lean
toward an analytical description of these data through a tapered
Pareto distribution, though admit that other types of mobility
patterns, and consequent distributions, could equally serve
their purpose.

Other authors prefer concentrating their analysis on the most
populated part of the traces to gain simplicity. Thus they
bind the analysis near the plateau, lowering the relevance of
the remaining times with the twofold effect of shading times
that are exceedingly long and extremely costly to process
re parameter estimation [56], [64]. Then, they analyze the
surviving data according to the other candidate distributions
mentioned in this section, namely the exponential and the
Pareto distribution, with the benefit of relying on the deeper
theoretical roots discussed in Section II.

However, giving up theoretical arguments in favor of exper-
imental performances, whatever the approach, the ultimate
decision on model is commonly demanded by the authors
to various goodness-of-fit (GoF) tests. Aiming to show the
benefits of our model, we both repeat part of these tests and
make specific theoretical considerations as a further preference
argument. We use the same statistics as in [60] and [64], i.e.,
the Cramer-von-Mises (CvM) test and the Akaike criterion,
respectively. In very essential terms, CvM test bases the
acceptance of a given distribution law as the source of the
observed data (the null hypothesis) on the mean square differ-
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Fig. 13. Mobility tracks of successfully trained neurons. Curve coordinates
cartesian coordinates within one hidden layer, bullets: final positions.

ence between the data ECDF and the hypothesized distribution
CDF [65]. By contrast the Akaike criterion is a tool to compare
the acceptability of various distributions in the above role,
it consists of a balanced sum of the data likelihood, as a
witness of the questioned distribution fitness, and a second
term penalizing the distribution complexity [66]. Thus in
Table III, we index the rows with the experimental benchmarks
considered in this paper and head the columns with the
candidate distributions. In each cell we report: 1) the fraction
of traces not rejected by the CvM test having the column
distribution as null hypothesis, and 2) the fraction of traces
whose Akaike statistic computed on the column distribution
proves to be the best (numerically, the lowest in a reverse
scale) re the other candidates. To be compliant with analogous
tables in the cited papers, we used the maximum likelihood
estimators of the competitor distribution laws. As for the latter,
we mention that their computation deserves some numerical
instability when referred to the tapered distribution [58].

We remark the general superiority of our distribution, which
is partly due to the fact that for each trace we have concretely
available a huge set of compatible distributions from which the
one that minimizes the test statistic can be selected. While the
Akaike criterion is always in our favor, the CvM test promotes
the truncated Pareto distribution on the HMTD benchmark and
the exponential distribution on the PTR benchmark. Note that
on the other two benchmarks, we also beat the other candidates
on the basis of the median curves.

The difference between the two test targets mainly high-
lights the distinguishing features in favor of our approach
versus most alternative ones. Actually, the various artifices
to embed an elbow in the Pareto distribution, such as by
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multiplying it with an exponential distribution (the origin of
tapered distribution), or truncating the former to its maximum
observed value (the origin of the truncated Pareto), have the
main effect of canceling the heavy tailed feature. As a con-
sequence they miss the fitting of the tail observations, which
nevertheless constitute almost one third of the entire sample.
Thus, losing the CvM test in the mentioned benchmarks,
despite winning w.r.t. the Akaike criterion, may denote the
unsuitability of this test for our inference goal rather than
a failure of the inference. In any case, since these statistics
are distribution free, we may state that, over a sample of
288 elements, the GoF a general walker mobility through our
model passes the CvM test in 81.52% of the cases and beats
the competitor models on the basis of Akaike statistic 100%
of the time.

Summarizing this comparison with state-of-the-art models,
we can say that ours gives rise to an intercontact distribution
law which both has a strong rationale and meets different
fitting criteria. We often beat competitor models as for standard
GoF tests, with the additional ability to earn comparable scores
even under the unprecedented constraint of preserving the
heavy tailed feature of the observed data.

VIII. CONCLUSION

What was better than a neural network? A network of
mobile neurons. With this lead idea in mind, in this paper
we present some timing aspects concerning the additional
feature of this new kind of connectionist paradigm. We started
by highlighting the relevance of these aspects in various
(biological, social, and simulation) concerns of the paradigm.
Then we explored the modeling matter per se, first looking
for both theoretical and experimental validation of the wait-
and-chase model, and subsequently contrasting our results
with other stochastic processes’ devised to describe similar
operational fields. Herein we claim the original contribution
of our work, in terms both of the new connectionist paradigm
and of sound technical results in modeling and identification
of point processes with memory.

However, we have an efficient neural network training
procedure as the medium-term goal of our work, and the
premising framework of our paper as well. Thus we conclude
this paper with the screenshot shown in Fig. 13, along
with some related considerations aimed at indicating a
principled applicability of the above results to the asserted
framework. The figure reports the neuron mobility paths in
a 2-D Euclidean plane. They refer to the second out of a
four-layer neural network trained to learn the Pumadyn 8-nm
benchmark [67]. Omitting details on the neuron dynamics
- a matter requiring in any case an in-depth analysis - we
simply remark that the trajectories of the single neurons
were generally characterized by an initial random wandering
plus a path heavily biased toward a set point which they
approach with very contained oscillations. In these traits
we may recognize the wait-and-chase phases of our model.
As further details, we mention that during these trajectories
the neurons had the approach toward the most informative
(back-propagating the highest error terms) neurons of the

upper layer as their target, albeit disturbed by the repulsive
strength of similar neurons lying on the same layer. As for
the temporal dynamics, we have found that the reckoning
of the corresponding rendezvous times between neurons of
contiguous levels was well synthesized by the enunciated
shifted-Pareto distribution law. In regard to key features of
our statistical framework, we recognize the non independence
of the noise effects along the training process. We also used
the inversion methods of Section VI for the initialization
of the mobility parameters, whose refinement was carried
out as a side target of the overall training procedure. These
were nevertheless very preliminary, mainly prospective,
considerations, whereas a good assessment of the learning
rules in conjunction with a proper setting of the neural mobility
timing remains an open problem to be solved in a future work.
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