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Abstract—The effective integration of knowledge representa-
tion, reasoning and learning in a robust computational model
is one of the key challenges of Computer Science and Artificial
Intelligence. In particular, temporal knowledge and models have
been fundamental in describing the behaviour of Computational
Systems. However, knowledge acquisition of correct descriptions
of a system’s desired behaviour is a complex task. In this
paper, we present a novel neural-computation model capable
of representing and learning temporal knowledge in recurrent
networks. The model works in integrated fashion. It enables the
effective representation of temporal knowledge, the adaptation
of temporal models given a set of desirable system properties
and effective learning from examples, which in turn can lead to
temporal knowledge extraction from the corresponding trained
networks. The model is sound, from a theoretical standpoint,
but it has also been tested on a case study in the area of model
verification and adaptation. The results contained in this paper
indicate that model verification and learning can be integrated
within the neural computation paradigm, contributing to the
development of predictive temporal knowledge-based systems,
and offering interpretable results that allow system researchers
and engineers to improve their models and specifications. The
model has been implemented and is available as part of a neural-
symbolic computational toolkit.

Index Terms—Neural-symbolic computation, Integrating do-
main knowledge into non-linear models, Temporal knowledge
learning, Recurrent neural networks, Model verification, Knowl-
edge extraction, Temporal logic reasoning.

I. I

ALTHOUGH non-linear methods such as neural networks
and support vector machines will often provide the

most accurate predictions, they are generally unsuitable in
domains where validation is required because of their black-
box nature. This also complicates maintenance and model
integration with existing legacy systems. As a result, the use
of neural networks has remained restricted in a number of
important application areas. White-box models seek to solve
this problem in different ways; neural-symbolic computation
[1] offers one way of implementing white-box non-linear
prediction. In particular, neural-symbolic systems seek to open
the black-box by integrating non-linear modelling with domain
knowledge and rule extraction, thus providing insight into the
reasoning made by the non-linear prediction. The construction
of such principled, integrated models can provide an enriched
understanding of the techniques and tools used in Neural
Computation, Cognitive Science and Artificial Intelligence
(AI). Specifically, temporal models have been fundamental in

these areas. In addition, the problem of knowledge acquisition
of sound descriptions of a system’s desired behaviour is a
complex and important task in Computer Science [2], [3].

In this paper, we present a neural-computation model ca-
pable of (i) representing temporal knowledge operators in
recurrent neural networks, (ii) adapting temporal knowledge
models given a set of desirable system properties, (iii) training
the networks from examples of system behaviours and (iv)
extracting a revised temporal knowledge from the trained
networks. In the proposed model, symbolic background knowl-
edge described by a temporal logic formalism is translated
into a recurrent neural network. Modified gradient-descent
methods are proposed for learning both from examples and
system properties, and the trained network can be translated
back into a temporal symbolic representation incorporating the
initial knowledge revised by the examples and properties. This
process is known as the neural-symbolic cycle [1], [4], [5].

We have implemented the proposed model as part of a
neural-symbolic toolkit and performed experiments on bench-
mark case studies in the area of model verification and adapta-
tion. The results illustrate how model verification and learning
can be integrated within a neural computation paradigm, and
indicate that the integration of methodologies from symbolic
AI and connectionism is relevant for building robust and sound
intelligent systems [1], [3], [6].

Temporal logic has found a large number of applications
in Computer Science [7], [8], [9]. The importance of adding
learning mechanisms to temporal models has been high-
lighted in several applications, including model discovery and
requirements acquisition in software engineering [7], [10],
[11]. In what follows, we formally define a correspondence
between recurrent networks and temporal logic. We consider
the Nonlinear Auto-Regressive Exogenous NARX model [12],
[13] and define a one-to-one correspondence between NARX
and a fragment of temporal logic. We also propose a simple
method for the extraction of temporal knowledge from trained
NARX networks. As a case study, we consider the problem
of software model verification and adaptation, a successful
application area of symbolic temporal logic. We have applied
our model to the problem of verifying and evolving a spec-
ification of a water pump system [11]. The results indicate
that neural-symbolic NARX networks can be used for both
verification and learning, reducing the efforts involved in the
modelling process and helping produce verifiable and sound
system specifications.
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More specifically, we present a translation algorithm that
takes temporal knowledge as input (in the form of temporal
logic rules) to produce a NARX network. The fragment of
temporal logic used is an extension of the logic used in
[14] with a richer language containing both future and past
operators. Following the neural-symbolic methodology [1],
[15], [16], [17], [18], [19], we then prove that this translation
is correct with respect to well-established temporal logic-
programming semantics. We then apply a simple pedagogical
method [20] for temporal knowledge extraction from trained
NARX networks to validate the application. The extraction
method is also sufficient for the extraction of trained partial
models. This closes the neural-symbolic cycle allowing the
encoding of temporal background knowledge into networks,
learning from examples and sequence learning by the net-
works, and the decoding of the learned models into a re-
vised temporal knowledge for understanding and validation
of system properties. The application of the neural-symbolic
model to the problems of software model verification and
adaptation allows the integration of different dimensions of
temporal knowledge, including temporal learning and rea-
soning about time. The networks are capable of evolving
incomplete software specifications from observed examples
of system behaviour. Furthermore, information about certain
desired properties of the system can be verified against the
networks by combining the abstract syntax and the verification
capacities of a model checking tool with our learning model.

The remainder of the paper is organised as follows. Section
II introduces the basics of temporal reasoning, recurrent net-
works and neural-symbolic computation. Section III presents a
language for temporal knowledge representation by recurrent
networks, and show correspondence between the symbolic
language and the NARX recurrent networks. Section IV shows
how the approach is used for learning from sequences of
examples and temporal domain knowledge. In Section V, we
apply the approach to a relevant case study showing how
the approach can be used for software model verification and
adaptation. Finally, we discuss the results, conclude and point
out directions for further research.

II. B  RW

A. Temporal Reasoning

Temporal logics have been highly successful for represent-
ing temporal knowledge about computing systems [8]. For
example, Linear Temporal Logics (LTL) and Computation
Tree Logics (CTL) are broadly used in Computer Science to
analyse models and properties of a system [7], [8]. While LTL
uses a linear deterministic approach to the flow of time, CTL
allows for the representation of different possible successors
for each time point. For simplicity, in this work we focus
on the linear approach; more specifically we use a specific
logic programming language, taking as reference several works
that use temporal logics [8], [21]. We shall consider several
past and future temporal operators. The past operators include
the representation of the previous time point (denoted by �),
always in the past (�), sometime in the past (�), and the
weak and strong variations (Z and S, respectively) of since.

Their complementary future operators are, respectively, the
next time point operator (denoted by �), always in the future
(�), sometime in the future (♦), unless (W) and until (U),
formally defined in the next section.

Model Checking is one of the most successful applications
of temporal logic. It offers a set of automated tools to perform
the formal verification of a system’s properties. The system is
described as a temporal model so that the satisfiability of a
property can be verified automatically. While model checking
presents all the advantages of a formal static verification (when
compared to the dynamic process of testing), it reduces the
need for human intervention [7]. Our experiments include a
model checking application as detailed in the sequel. Adding
a temporal dimension to the knowledge model imposes some
challenges to the task of learning. Symbolic learning systems
such as Inductive Logic Programming (ILP) [22] can in
principle be adapted for application in temporal domains,
but will typically require the use of a correct background
knowledge (which may not be possible when dealing, for
example, with evolving system specifications). ILP may also
turn out to be too brittle for modelling dynamic systems and
the task of temporal learning, where a large number of very
small adjustments may be required to guarantee robustness,
rather than concept-level learning [23].

B. Recurrent Networks

Recurrent networks extend the simple feedforward models
by allowing activation propagation to neurons in previous
layers, thus adding a loop to the network. As a result, such
activation values are considered in future computations of
the network. A typical recurrent network used for temporal
learning is the Elman network [24] which adds neurons in the
input layer called context units to recurrently receive the output
values of hidden neurons. Another way of propagating values
through time in neural networks is through delay units. Such
units output the result of a function applied to the last values
received by the input. The most elementary delay unit outputs
the value applied to the input at the previous time point. The
Nonlinear Auto-Regressive eXogenous model (NARX) has a
feedforward core with delay units before the input layer, and
delayed recurrent links from the output to the input layer. They
have been proven equivalent to Turing machines [12].

Definition 1 Let xi(t) denote the value of the i-th input neuron
at time t. Let y j(t) denote the value of the j-th output neuron
at time t. NARX allows the use of xi(t) and y j(t) as input at the
next time points t + 1, t + 2, etc. If xi is connected to a delay
unit z−1, it will be available at t +1. A chain of such units can
get the value shifted through time and available at t + 2, etc.
It is this variable-size chain that makes NARX convenient for
temporal reasoning.

We will use the NARX architecture for both reasoning and
gradient-descent learning. Figure 1 illustrates the model. In
the figure, MLP denotes the feedforward multilayer-perceptron
core. In order to train these networks, we use a variation
of backpropagation [25] whereby the error is propagated
back also through the recurrent connections. In other words,
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Fig. 1. The NARX architecture

the error component at the input is propagated through the
recurrent links to the output neurons in order to be processed
by the next backpropagation and weight change step.

C. Neural-Symbolic Computation

Recent studies in artificial intelligence and evolutionary
psychology have produced a number of cognitive models
of reasoning, learning and language that are underpinned
by neural computation [26], [27], [28]. In addition, recent
efforts in computer science have led to the development of
computational models, called neural-symbolic systems, inte-
grating learning, reasoning and action [4], [1], [29], [30],
including first-order logic systems [31], [32]. Such systems
have shown promise in a range of applications, including
computational biology, fault diagnosis, fraud prevention [16]
and other applications such as, more recently, assessment
and training in simulators [33]. The connectionist inductive
learning and logic programming (CILP) system [16] is a
neural-symbolic system showing a one-to-one correspondence
between logic programming and neural networks that are
trainable by backpropagation [25].

Definition 2 A logic program is a set of rules of the form
A ← L1, L2, ..., Ln, where A is known as an atom and Li(1 ≤
i ≤ n) are called literals. A literal is either an atom (A) or its
negation (∼ A). A rule like A ← L1, L2, ..., Ln states that A is
true if L1 and L2 and, ..., and Ln are true. When n = 0 we have
simply A←, and A is said to be a fact1

The CILP translation from logic programs to neural networks
produces single-hidden layer feedforward networks that map
each of L1, L2, ..., Ln to input neurons and A to an output
neuron. The networks use a bipolar activation function so that
an interval (−1,−Amin] represents truth-value false, interval
[Amin, 1) represents truth-value true, and (−Amin, Amin) denotes
unknown. Positive weights are used to represent positive liter-
als, while negative weights represent negative literals. Hidden
neurons implement a logical and of the input, and output
neurons implement a logical or of the hidden neurons. The
CILP translation algorithm (described in Fig. 2) sets weights
and biases in the network so that the network can be proved
equivalent to the original logic program [16]. In other words,
the network becomes a computational model for symbolic
logic programming. In the algorithm, we have the following
parameters:

1As is usual, we consider the ground instances of a (first-order) logic
program and assume it is finite.

k(l) denotes the number of literals in the body of a clause Cl;
µ(l) is the number of clauses with the same head as Cl.
Maxkµ is the maximum among the values of k(l) and µ(l), and
among every clause Cl ∈ P.
Amin is defined in such a way that 1−Maxkµ

1+Maxkµ
< Amin < 1.

φ(x) is the bipolar sigmoid function 2
1+e−βx − 1, where β is the

parameter that defines the slope of the function; ψ(x) is a linear
function (identity).
W is the weight of the positive connections, −W is the weight
of negative connections. W is defined as a value greater than
ln(1+Amin)−ln(1−Amin)
Maxkµ(Amin−1)+Amin+1 ·

2
β

to guarantee equivalence (see [16] for the
proofs). Figure 3 shows a CILP network that represents the

CILP Translation(P)
foreach Cl ∈ Clauses(P) do

InsertHiddenNeuron(N , hl);
foreach A ∈ Body(Cl) do

if inA < Neurons(N) then
InsertInputNeuron(N , inA);
Activation(inA)← ψ(x);

Connect(N , inA, hl,W);
end
foreach ∼ A ∈ Body(Cl) do

if inA < Neurons(N) then
InsertInputNeuron(N , inA);
Activation(inA)← ψ(x);

Connect(N , inA, hl,−W);
end
if outHead(Cl) < Neurons(N) then

InsertOutputNeuron(N , outHead(Cl));
Connect(N , hl, outHead(Cl),W);
Bias(hl)← −

(1+Amin)(k(l)−1)
2 W;

Bias(outHead(Cl))← −
(1+Amin)(1−µl)

2 W;
Activation(hl)← φ(x);
Activation(outHead(Cl))← φ(x);

end
foreach A ∈ Atoms(P) do

if (inA ∈ Neurons(N)) ∧ (outA ∈ Atoms(N)) then
Connect(N , outA, inA, 1)

end
return N ;

end

Fig. 2. CILP translation algorithm

logic program A ← B,C; B ← D,∼ E; C ← F; C ← G.
The CILP system uses the translation to add background
knowledge (provided in the form of the logic-program rules) to
the neural network. This network can be trained by examples
in the usual way. The training examples can change or extend
the background knowledge. An extraction algorithm then
closes the learning cycle, deriving a revised logic program
from the trained network. This process of knowledge revision
using neural networks and background knowledge is the main

C : A B, C1 

C : B D, ~E2 

C : C F3 

C : C G4 

C1
C2 C3

C4

A B C

B C D E F G

W W W W

WW-WWWW

Fig. 3. A CILP Network
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application of the CILP system.

III. T K  R N

A. The Sequential Connectionist Temporal Logic (SCTL)

To allow the representation of temporal knowledge in an
integrated reasoning and learning system, we consider the
use of a language both simple, to allow the integration with
a neural-symbolic engine, and powerful enough to describe
sequences of events and the temporal behaviour of systems.
Thus, we extend the usual logic programming syntax with the
modal operators of linear temporal logic (LTL), as follows.

Definition 3 An expression α is defined as a temporal formula
if and only if one of the following holds:
(i) α = A, where A is a propositional variable;
(ii) α = �β, α = �β, α = �β, α = βSγ or α = βZγ (to represent
the past), where β and γ are also temporal formulas;
(iii) α = �β, α = �β, α = ♦β, α = βUγ or α = βWγ (to
represent the future), where β and γ are temporal formulas.

The operators considered above represent the traditional set of
LTL operators, where �α (known as the yesterday operator)
means that α is true at the previous time point, �α (known
as the tomorrow operator) means that α is true at the next
time point, �α means that α is always true in the past and ♦α
means that α will eventually be true in some future point. The
Z andW binary operators are the weak version of the S and U
operators, i.e. while αSβ represents that α has been true since
the last occurrence of β, αZβ will also be true if α has always
been true, even if β never occurred. U (until) and W (unless)
are the future operators corresponding to S and Z.

Definition 4 A temporal clause is an expression αi ←

λ1, λ2, ..., λn, where α is a temporal formula, and λi(1 ≤ i ≤ n)
are literals. A literal λ can be either a temporal formula (α)
or the negation of a formula (∼ α). A temporal logic program
P is a set of temporal clauses.

We will consider that temporal knowledge is defined by a
temporal logic program P. In order to define the semantics
of the program, we define the operator TP and use the usual
fixed-point approach [34]. The semantics of P is given by an
interpretation F t

P
, which assigns a truth-value to each temporal

formula α at each individual time point t. We consider a
sequential approach whereby information about the past F t−1

P

is defined before the current values of F t
P

are calculated. By
definition, F t

P
is a least fixed-point of the meaning operator

TP (known as the immediate consequence operator).

B. Formalizing the Temporal Language and Semantics

The iTP operator below defines a consequence relation
between the body and the head of the clauses, and the
semantics of the � (previous time) and � (next time) operators.

Definition 5 The immediate consequence operator iTP of a
temporal program P is a mapping from interpretations to
interpretations of P. The application of iTP over an inter-
pretation It

P
at a time point t results in a new interpretation

at t (iTP(It
P

)) that assigns true to an atom α if any of the

conditions below hold:
(1) α is head of a clause in the form α ← λ1, λ2, ..., λn and
It
P

(λ1 ∧ λ2 ∧ ... ∧ λn) is true.
(2) α is an atom in the form �β, and β is true in F t−1

P
.

(3) �α is true in F t−1
P

.

In order to derive some properties of this consequence opera-
tor, we will need sometimes to restrict P to programs that ad-
mit a single supported model, so that the consequence operator
will provably converge to this unique model. Examples of such
programs are acyclic programs, as defined below, although the
class of such useful programs is more general. The reader is
referred to [34] for more details.

Definition 6 The consequence graph GP of a program P is a
directed graph defined by a different vertex to represent each
different temporal expression α in P. If an expression β (or
∼ β) is in the body of a clause α ← ..., β, ... then GP will
contain an edge from the vertex representing β to the vertex
representing α (the head of the clause). A program P is said
to be acyclic if GP is an acyclic graph.

If P is acyclic, the recurrent network representing P will
converge in a specific time point t to a fixed-point that contains
all of the logical consequences of P.

Theorem 7 Given any acyclic temporal program P, iTP
converges to a fixed point iT ν

P
= iT ν−1

P
with νP given by the

maximum length amongst all of the paths in the graph GP.

Proof: Let G0 denote the set of vertices in GP that are
not a target of any edge, i.e. the set of vertices representing
expressions not appearing as head of any clause in P. Every
expression represented by nodes in G0 will have a constant
value assigned throughout the executions of iTP at t. This
value is either given by an input assignment or it is false by
default. Let G1 denote the set of vertices in GP that are targets
of edges with sources exclusively in G0. For the expressions
represented by the vertices in G1, a single execution of iTP is
sufficient for convergence. This is because the interpretations
of the body of these expressions will not change after the first
execution. An inductive application of this idea to G2 (i.e.
nodes with edges departing from G1 and G0 only), G3, and so
on, is sufficient to prove that the interpretations will converge
for every expression, and that the maximum path within GP
gives the number of executions of iTP that is sufficient to
reach such a fixed point.
Recall that we use F t

P
to denote the fixed point of iTP at

each time point t. In order to calculate iTP at a time point t,
we assume that νP executions of iTP were performed at the
previous time point t − 1. We assume a time flow starting at
t = 1 and a virtual time point t = 0 where α is true in F 0

P

only if α is an expression of the form �α or αZγ. Otherwise,
α is false in F 0

P
. Let us now define the full set of temporal

operators under a consequence operator TP. We continue to
adopt the sequential approach adopted before.

Definition 8 The immediate consequence operator TP of a
temporal program P is a mapping from interpretations to
interpretations of P. The application of TP over an interpre-
tation It

P
results in a new interpretation (TP(It

P
)) that assigns
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true to any atom α when one of the following conditions hold
(the definitions below follow the intuitive definitions of the past
and future operators as discussed informally earlier, including
the variations taking into account the current time point):

1) iTP(It
P

)(α) is true;
2) α = �β and both F t−1

P
(�β) and It

P
(β) are true;

3) α = �β and either F t−1
P

(�β) or It
P

(β) are true;
4) α = βSγ and either It

P
(γ) is true or both F t−1

P
(βSγ) and

It
P

(β) are true;
5) α = βZγ and either It

P
(γ) is true or both F t−1

P
(βZγ) and

It
P

(β) are true;
6) It

P
(�α) is true;

7) α = �β and F t−1
P

(�β) is true;
8) α = ♦β, F t−1

P
(♦β) is true and F t−1

P
β is false;

9) There exists some formula β such that It
P

(βUα) is true
and It

P
(β) is false;

10) α = βUγ, F t−1
P

(βUγ) is true and It
P

(γ) is false;
11) There exists some formula β such that It

P
(αWβ) is true

and It
P

(β) is false;
12) α = βWγ, F t−1

P
(βUγ) is true and It

P
(γ) is false.

C. Representing SCTL in NARX Networks

To incorporate the above extended semantics into SCTL we
make use of a useful symbolic manipulation. More specifically,
we extend the original logic program P with clauses that can
represent the different temporal operators through the use of
the � operator. Basically, we use a recursive definition w.r.t.
the prior and present time points. In this way, a formula �α
is true at t = 1 if α is true at t = 0. �α is true at time points
t > 1 if α is true at t and �α is true at t − 1. The complete
list of definitions is given in the algorithm of Fig. 4. This will
allow the representation of any of the temporal operators in
the NARX model.

We turn now to showing that the translation obtained from
the algorithm of Fig. 4 is logically sound. This result will be
needed later to show soundness of the NARX model.

Lemma 9 Let P and P1 be temporal logic programs. Let P1
be the output of the algorithm in Fig. 4 given input P. For
every formula α in P, α is true in TP(It) if and only if α is
also true in iTP1(It).

Proof: The algorithm adds clauses to the program re-
specting the semantic definitions of the operators. We can
verify this by analysing each case. Take the case of the
S operator. The first clause inserted (βSγ ← γ) represents
exactly the first option in item 5 of Definition 8. Since �α
represents information about α at time point t − 1, the clause
βSγ ← β,�(βSγ) represents the second option in the definition
of S. The remaining of the proof is as follows: (→) Assuming
that TP(It)(α) is true, we have two possibilities: if iTP(It)(α)
is true then clearly the clauses inserted do not change α’s
truth-value and iTP1(It)(α) will be true. If not, a clause will
be inserted by the algorithm, and the interpretation of the
conjunction of the literals in the body of this clause will be
true; thus iTP1(It)(α) will be true. (←) If TP(It)(α) is false
then none of the clauses inserted by the algorithm will change
the interpretation of α, and iTP1(It)(α) will also be false.

Logic Processing(P)
foreach α ∈ atoms(P) do

if α = �β then
/* In what follows, AddClause(P, x, y, z) denotes: add
clauses x,y and z to program P*/
AddClause(P,�β← β,�β);

end
if α = �β then

AddClause(P, �β← β);
AddClause(P, �β← ��β);

end
if α = βSγ then

AddClause(P, βSγ ← γ);
AddClause(P, βSγ ← β,�(βSγ));

end
if α = βZγ then

AddClause(P, βZγ ← γ);
AddClause(P, βZγ ← β,�(βZγ));

end
if α = �β then

AddClause(P, β← � � β);
end
if α = �β then

AddClause(P, β← �β);
AddClause(P,�β← ��β);

end
if α = ♦β then

AddClause(P, β← �♦β,∼ �β);
end
if α = βUγ then

AddClause(P, βUγ ← �(βUγ),∼ �(γ));
AddClause(P, γ ← βUγ,∼ β);

end
if α = βWγ then

AddClause(P, βWγ ← �(βWγ),∼ �(γ));
AddClause(P, β← βWγ,∼ γ);

end
end

end

Fig. 4. Logic processing of different temporal operators

In what follows, we will use the CILP translation to define
the feedforward core of the NARX model. We will then make
use of the NARX recurrent connections and delay units to
implement the temporal operators on top of the feedforward
core. As mentioned above, we use a temporal representation
based on a sequential approach, where the knowledge about
the past is used in the inference of new information about
the future. Following this approach, our strategy to represent
temporal knowledge is based on the propagation of values
through a time flow, from a time point t − 1 to its subsequent
time point t. The semantics adopted for our temporal logic
programs follows strictly this idea. Our next step is to see
how to implement the delayed propagation of information in
the neural-network model.

We have chosen the NARX model because it has (i) a feed-
forward core that can be implemented by a CILP translation
and (ii) delay units in the input and recurrent connections that
can implement the delayed propagation of information needed
for temporal reasoning. At each time point t, a new input
vector is applied to the network, and all the computations
until the network finds a stable state and returns an output
are carried out (corresponding to the fixed point of the logic
program at that time point). At the next time point t + 1,
another input vector is applied until the network reaches a
stable state producing a new output, and so on. This dynamics
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of the network is a key difference between SCTL and CILP,
where there are no delays or sequence of inputs. In SCTL, the
delay units cater for the representation of value propagations
over time. For example, this allows a neuron representing a
formula �α to receive as input the value of α computed at the
previous time point by the network, and produce the correct
output. In the same way, an input neuron representing α can
receive at t the value of �α computed at t− 1. In this section,
we present an algorithm to translate SCTL into NARX and
show that the translation is correct w.r.t. the semantics of the
temporal operators.

We have considered different ways of representing SCTL
in a neural network. The first idea was to use only (delayed)
recurrent links to carry the value of an output neuron rep-
resenting a formula α into an input neuron representing �α.
When α appears in the head of a clause, the CILP translation
generates an output neuron representing α. When α does not
appear in the head of a clause, CILP will not have α in the
output, and, in the temporal case, it would not be possible to
link α to �α and respect the semantics of the � operator. One
solution to this is to add clauses of the form α ← α every
time a formula �α appears in a program P and α is not in
the head of any clause in P. In this case, the value of νP is
incremented by one due to the insertion of a new clause.

Another approach makes a better use of the available
resources of NARX and produces a smaller network. This
approach is to use the delay units before the input units to
compute the value of �α before computing the value of α in
the input. In this case, α does not appear in the output because
it is not in the head of any clause. In this way, we avoid having
to add clauses to the program and produce a smaller network
as a result. For each formula of the form �nα, we insert the
delay units as follows (below, we use the notation operatornα
to denote n applications of an operator over α, for example,
�3α denotes � � �α):
• If a formula �iα appears as head of a clause in P where

0 ≤ i < n, create a recurrent link from the output neuron
representing �max(i)α to the input neuron representing �nα
and set n − max(i) as the number of delay units.

• If no formula �iα appears as head in P, add n delay
units before the input neuron representing �nα (so that
this neuron will receive the value of α at time point t−n).

• If a formula �nα appears as head of a clause in P
(n > 0), create a recurrent link from the output neuron
representing �nα to the input neuron representing the
formula �iα with max(i) < n and set n − i as the number
of delay units.

The algorithm of Fig. 5 takes a temporal logic program as
input and produces a NARX model. It is an adaptation of the
CILP algorithm and it produces networks with an appropriate
set-up of the delay units to implement the temporal constraints.

Theorem 10 Given a temporal logic program P, a NARX
neural network N can be built such that N computes TP.

Proof: For the first time point t = 1, given arbitrary initial
values for the •α formulas, we have that the computation of
TP is the same as in CILP networks, and it converges to a least
fixed point [16]. Inductive step: at a time point t′, either N is

�-based Translation(P)
N ← CILP Translation(P);
foreach inα ∈ Neurons(N) do

if (α = �nβ) then
if ∃i < n(out�iβ ∈ neurons(N)) then

j← maximum(i);
AddDelayLink(N , n − j, out� jβ, inα);

else
AddDelayInput(N , n, inα);

end
return N ;

end

Fig. 5. Translation of temporal logic programs into NARX networks

stable with α in F t′
P

(I) or the value of α is given as an input.
For any formula •nα, if the value of •iα (i < n) is represented
in the output of the network, the recurrent link with n− i delay
units will apply the correct value to the input of •nα. If •iα is
not represented in the output for any i < n, the input value of
the neuron •nα is given by the chain of n delay units in the
input. This completes the proof.
A corollary of the above theorem is that for acyclic programs,
and more generally for any program P admitting a single
supported model the corresponding recurrent NARX network
N converges to a least fixed point of TP denoting the intended
meaning of P. We say that N computes P; in other words, the
neural and symbolic representations become interchangeable.
In what follows, we exploit this result to allow learning of
symbolic temporal knowledge in NARX networks.

IV. L   T K D

Suppose that, in a given application domain, partial sym-
bolic knowledge is available in the form of temporal rules
(known as a model description). The algorithm of Fig. 5
offers a simple and efficient way of adding knowledge to a
NARX model. Suppose, further, that examples are available
for training (we call those observed examples). In this section,
we describe how the NARX model can be trained with such
examples. We also consider a third source of information:
system properties, i.e. properties to be satisfied by the model
description.

Let us consider the above three sources of information in
the context of an example. In a water pump system (this is our
case study to be discussed in more detail in the next section),
an engineer seeks to produce a model description of the system
so that it can be implemented and formally verified for errors
(since it is a safety-critical system). The engineer starts by
defining certain rules, for example, at any time, if the engine
temperature is too high, the pump should be turned off no more
than five time steps later. This is part of the partial model
description that can be directly translated into the NARX
model by the algorithm of Fig. 5. Producing a sound and
complete description is a difficult task, but our engineer might
have access to input-output examples that might help (e.g. at
time t1 the temperature was registered as too high, at time t2
the pump was turned off, at time t3, the pump was turned on
again, etc.). The sequence of examples may come from the
observation of a similar existing system or even from execution
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logs of the current partial model description itself. These
are our observed examples to be trained by backpropagation
in the NARX model after the partial description has been
translated into it. Finally, the engineer may need to verify
certain properties (e.g. it must never be the case that the water
level is high and the level of methane is high and yet the pump
is on), and indeed train the NARX model further to try and
satisfy these properties when they have not been verified.

In what follows, the temporal logic programs P will form
part of the model description. A model description consists,
in addition to the temporal program, of a number of input
variables and state variables. Input variables are those whose
values are set externally to the model, while state variables
have their values defined according to the model’s behaviour.
In the NARX networks, the state variables are represented
by the neurons that are recurrently connected. Given observed
examples and system properties, sets of input-output examples
will be produced for the training of the NARX network.
The resulting network is expected to encode a revised model
description, be capable of sequence learning and property
verification, and produce a final model description that can
satisfy the system properties. The learning process will consist
of the application of examples to the network in a supervised
way. Each training example will be defined as a vector of
input values and desired output values in the usual way. An
error between desired and obtained network outputs will be
minimised through gradient-descent in a backpropagation-like
learning process. Below, we give a general definition that
includes the case where information about an output is absent.

Definition 11 A model description is a tuple M = 〈S t, In,P〉,
where S t is a set of state variables α, In is a set of input
variables β, and P is a set of temporal clauses of the form
�α← α1, ..., αn, β1, ..., βm.

Each observed example should assign values to all the input
variables and to a subset of the state variables. In other words,
the model allows partial observation of state variables. The
examples are, thus, defined as follows.

Definition 12 An observed example E at time point t is a
tuple Et = 〈It,Dt+1〉, where the mapping It : In → {−1, 1}
assigns values to the input variables and Dt+1 : S t → {−1, 0, 1}
makes an assignment of desired values to the state variables
at the next time point, where 0 denotes that no information is
available about the corresponding variable.

As mentioned above, we use gradient-descent on the set of
tuples {Et}, 0 ≤ t ≤ n. First, background knowledge P can
be added to the network using the translation algorithm from
the previous section. Then, for observed examples, standard
backpropagation applies since each tuple relates ti with ti+1.
For each time point t, the usual two-stage computation takes
place. In the forward step, the network computes the next state
S t+1 given the values of the input vector It and the current
state S t (which may be unknown, as defined above). In the
backpropagation step, the error is calculated as the difference
between S t+1 and Dt+1, and the weights are adjusted in the
usual way [25]. In the case of system properties, the learning
above needs to be modified to account for gaps in the sequence

of examples, as detailed below. System properties express
the expected behaviour of a system after an entire sequence
of inputs and associated states are presented to the system.
Formally:

Definition 13 A system property X is defined by a tuple X =

{S 0, I,Dn}, where S 0 is a initial state, Dn is a desired final
state, and I is a sequence of input variables I0, ..., In−1 with
S k : S t → {−1, 0, 1} and Ik : In→ {−1, 0, 1}.

Definition 14 A value assignment to the state variables S t is
said to correspond to a state condition S k if for every α ∈ S t,
S t(α) = S k(α) or S k(α) = 0. The definition is analogous for
input variables.

A property, thus, defines that if the current state of the system
at time point t corresponds to S 0, the input applied to the
system corresponds to I0, and thereafter each input applied
to the system at time point t + k corresponds to Ik until k is
equal to a predefined size n, then the new state of the system
S n must correspond to the desired state Dn. When a value of
zero is assigned by a state (or input) condition to a variable
α ∈ S t (or β ∈ In) then that condition should not impose any
constraint on the value of α (or β).

Property learning requires the propagation of errors through
the recurrent connections as described in Section II-B. In the
forward step, the network computes state S 1 given the values
of the input vector I0 and the current state S 0, but also S 2
given I1 and S 1 and so on, up to S n. In the backpropagation
step, the error is calculated as the difference between S n and
Dn and propagated back through the network and its recurrent
connections n times before the weights are updated in batch
mode in the usual way.

A. System Implementation

We have implemented the above algorithms as part of
a unified neural-symbolic system. The system allows the
translation of SCTL knowledge into NARX networks, learning
from examples and properties, and knowledge extraction from
trained NARX networks (discussed in the sequel). Among
the several functionalities, it allows the creation of NARX
networks from temporal logic programs, as well as the creation
of arbitrary architectures of feedforward and NARX networks
without background knowledge. The networks can then be
subject to learning, with a functionality for evaluating training
and test-set performances using cross-validation. The system
allows the combination of different sources of information,
notably, learning from observed examples and properties. It
can also handle learning from multiple properties. Moreover, it
includes a tool for automated pedagogical extraction of revised
SCTL knowledge from trained NARX networks, rule simpli-
fication and visualization through state-transition diagrams.

When both examples and multiple properties are to be
learned simultaneously, the system keeps a record of active
properties (initially empty) and an index k for each active
property. At each time point t, if the current state corresponds
to the initial state condition S 0 of a property X then X becomes
active and k is set to 0. When an input is applied to the net-
work, the system verifies if the input corresponds to the current
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position Ink of each active property X, eliminating from the
list of active properties all the properties not satisfying this
condition. When a property becomes inactive, the assignments
to the state variables given by the final state condition S n

are used to define the desired output values then used as part
of the learning process. The above mechanism is also used
when no examples, but only properties are available. In this
case, the properties provide the desired output of the network
and the inputs to be applied at each time step. At each time-
point, a property is selected from the list of active properties
randomly. When no information is provided about the desired
value of a state variable α, the system uses the value obtained
by the network as desired value, i.e. Dt+1 = S t+1. This
implements a form of expectation maximization. In this way,
the error will be null for that neuron and it will not affect the
weight correction in the network. Finally, when there is an
inconsistency between the values of properties (or between a
property and an example), the system adds up the values into
a variable sum, and takes Dt+1 = 1 if sum > 0, Dt+1 = −1
if sum < 0 and Dt+1 = 0 otherwise. Other alternatives are
possible here, and might be considered as part of future work.
For example, one could assign priorities to properties and rank
them in order to mitigate conflicts. The system implementation
and the results from our experiments with water pump case
study (described below) are available in

http://vega.soi.city.ac.uk/˜abct616/?cont=2

B. Towards Validating the Model Using Knowledge Extraction

Several approaches to knowledge extraction have been
proposed in the literature [35], [36], [37], [5]. In our work,
extraction is used as a was of validating our model. Below, we
sketch the implementation of the extraction tool, which takes
a trained NARX network as input and produces temporal logic
programs. The implementation is based on pedagogical strate-
gies [20], whereby examples are presented to the network,
and the obtained outputs are used to define symbolic rules. In
pedagogical extraction, one needs to generate a set of examples
(input vectors) to be applied to the network. This set must be
large enough to offer a good representation of the domain,
but not so large that the extraction becomes computationally
intractable. Different approaches trying to strike this balance
can be found in the literature. In [35], for example, a partial
ordering is imposed on the set of input vectors according
to the structure of the network so that certain input vectors
become preferred over others for querying the network and
rule creation. Although not optimized for efficiency, the simple
pedagogical approach user here turned out to be sufficient for
our purposes of validating the case study, as detailed later.

Consider, first, NARX networks where input information
is applied directly to the neurons without delay units, and
the temporal recurrent links are delayed only by one time
point. With these restrictions, at each time point we can
associate the input vector I applied to the network to the
temporal formulas represented by input neurons. We then run
the network once to obtain activation values for the output
neurons and, through the recurrent connections, new values
for some of the input neurons. Such input neurons that receive
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Fig. 6. Example of extraction procedure

information from the output are known as context units. It is
useful to distinguish input units (those associated with input
vector I) and context units (the values of which define a new
state given I). Our system implementation extracts symbolic
knowledge from NARX networks by creating a state transition
diagram mapping the state of the context units to a new state
given the input, according to the following definition. Notice
that the state diagram is created for visualization purposes,
each transition corresponding directly to a temporal rule that
can be extracted from the network.

Definition 15 A transition T is a tuple
{
S 0, I, S f ,w, count

}
containing a source state S 0 and a target state S f given input
I. Variables w and count are auxiliary information represent-
ing a weight and the number of occurrences, respectively.

For each time point, a new transition T is stored: I represents
the input vector applied to the network, S 0 contains the values
of the context units and S f contains the values of the output
units. We assign truth-value true (value 1) to positive values
in S f and false (value -1) otherwise, but we use the auxiliary
weight w, calculated as a function of the absolute values
obtained in the network’s output, to calculate a confidence
interval on the assignment of truth-values. After a set of inputs
is applied to the network, all the occurrences of transition T
with the same S 0, I and S f are grouped into a single transition
T ′, where wT

′

is the sum of the individual weights and countT
′

is the number of transitions grouped. This information is then
used to generate a transition diagram that will visually indicate
the behaviour of the network.

As an example, consider a simple case where an input (Inc)
is used to increment the value of a counter, an input (Dec)
is used to decrement this value, and the output identifies if
the value is greater than zero. Assume that this counter is
capable of counting from 0 to 2, and therefore a state variable
is needed to record if the value is greater than 1. Figure 6
shows a network that represents this example on the left hand
side, and a state transition diagram extracted from the network
on the right hand side. Table I shows a number of extracted
state transitions. When grouping the transitions, those in time-
points t = 3 and t = 8 will be grouped in a transition T ,
while the others remain the same (cf. Fig. 6, right hand side).
Besides generating the diagrams, our system implementation
also represents the extracted knowledge as temporal logic
programs. To do so efficiently, the most important transitions
are identified with the use of the auxiliary weight and count
variables. Transitions below a certain number of occurrences
or below a desired confidence are removed from the diagram.
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TABLE I
T E   E  F. 6

Each remaining transition T ′ is rewritten as a set of clauses -
one clause for each output variable. The body of each clause
will contain all the input and state variables either in positive
or negative form according to the assignments of values to
S 0 and I. The head of each clause will be one of the output
variables: either �α, if S f (α) = 1, or �¬α, if S T

′

f (α) = −1. To
allow a better understanding of the rule set, rules obtained from
different transitions can also be simplified. A technique based
on Karnaugh maps is used, whereby complementary literals
can be removed from the body of rules with otherwise the
same body and the same head, e.g.: �a← b, c and �a← b,∼ c
can be simplified into a single rule �a← b.

The extraction method can be extended to deal with more
delays in the network. For delay units inserted in the input,
the rule containing that input neuron will have a � operator
for each delay unit in the network. If, for example, literal α is
associated with an input neuron with two delay units, �2α will
be used in the rule. The same process can be used for extra
delays in recurrent links: if � � α is associated with output
neuron out, and this neuron is connected through two delay
units to an input neuron in then α is added to the rule.

V. C S: I SCTL   V T

The intended application of SCTL is in model verification
and adaptation. The integration of learning and verification
has been considered an important research endeavour [10].
We combine the abstract syntax and the verification capacities
of a model checking tool [38] with SCTL/NARX as a repre-
sentation language and learning system. Model checking tools
have three main components: a description language used to
represent the model, a specification language used to represent
the properties that should be satisfied by the model and the
verification engine that will perform the actual verification. If
the model does not satisfy the given properties, the engine
will generate a set of counter-examples, i.e. sequences of
events where a violation of the property occurs. Below, we
integrate all these different sources of information into the
SCTL learning system, and show how an iterative process
of learning and verification can be used in the revision of
temporal models.

In order to illustrate the different steps of the approach, we
consider the pump system testbed used by [11]. The pump
system monitors and controls the levels of water in a mine
to avoid the risk of overflow. There are three state variables:
CrMeth indicating that the level of methane is critical,

HiWater indicating a high level of water, and PumpOn
indicating that the pump is turned on. In order to turn on and
off such indicators, six different input signals are considered:
sCMOn (switch CrMeth on), sCMO f f (switch CrMeth
off), sHiW (switch HiWater on), sLoW (switch HiWater
off), TurnPOn (switch PumpOn on) and TurnPO f f (switch
PumpOn off). Some of the rules of the system are listed
below, where e.g. if at any time the critical methane switch
is turned on then, at the next time, the level of methane
indicator will be at critical (first rule). Similarly, if the level
of methane indicator is at critical at time t and it is not
the case that the pump switch is turned off then the pump
indicator will be on at time t+1 (last rule). Below, ∼ stands
for (logic programming) negation.
�CrMeth← sCMOn
�CrMeth← CrMeth,∼ sCMO f f
�HiWat ← sHiW
�HiWat ← CrMeth,∼ sLoW
�PumpOn← TurnPOn
�PumpOn← CrMeth,∼ TurnPO f f

A. The Description Language Used for Verification
Within the logic programming representation, we will con-

sider a fragment of SCTL, allowing the representation of the
main aspects of a model checking tool [38]. This fragment
satisfies all the properties of the original SCTL language w.r.t.
its semantics and translation into NARX. In addition, all the
programs in this fragment have the property of being acyclic
with νP = 1. For simplicity, we restrict the types of variables
allowed and we assume that the pump system is deterministic
(although it should not be too difficult to handle nondetermin-
istic problems given our treatment of unobserved states). An
input or state variable can be either boolean or scalar (i.e. may
assume one value from an enumerated set). From now on, it
will be useful having a clear distinction between input and
state variables. The following slight variation of our temporal
logic programs definition captures this formally.

Definition 16 A temporal logic program description P is a
tuple P =

{
S tP, InP, InitP,CP,GrP

}
, where S tP is the set of

state variables α, InP is the set of input variables β, InitP

is the initial state, defined by a mapping from InP ∪ S tP

to {true, f alse} and CP is a set of clauses in the form
�α ← α1, ..., αn, β1, ..., βm, denoting that α is true at time t
if α1, ..., αn, β1, ..., βm is true at time t − 1. GrP is defined as a
set of elements in 2InP ∪ 2S tP .

Our neural-symbolic system implementation contains a mod-
ule that automatically translates model descriptions provided
in the language of a model checker into temporal logic
program descriptions. This allows a direct integration of a
model checker and SCTL. Given a model description (for
completeness we include a description of the pump system
in Table II), our goal is to use the model checker to verify
system properties and, if a property is violated, use SCTL to
revise the description by learning from examples (from Table
II, the translation produces temporal rules like the ones above
for the pump system).



10

MODULE PumpSystem
IVAR
s : {sCMOn, sCMOff, sHiW, sLoW, , TurnPOff};
VAR
CrMeth : boolean;
HiWat : boolean;
PumpOn : boolean;
ASSIGN
init(CrMeth) := FALSE;
init(HiWat) := FALSE;
init(PumpOn):= FALSE;
next(CrMeth) :=
case
s = sCMOn : TRUE;
s = sCMOff : FALSE;
esac;
next(HiWat) :=
case
s = sHiW : TRUE;
s = sLoW : FALSE;
esac;
next(PumpOn) :=
case
s = TurnPOn : TRUE;
s = TurnPOff : FALSE;
esac;

TABLE II
M    P S

B. Learning from Counter-examples and Properties

If all the properties specified are satisfied by the model
description, the model checker returns a positive answer and
the process can stop. Otherwise, the checker returns what
is known as counter-examples. These are traces that show
why a property has been violated, as formally defined below.
In our case study, these examples will be turned into the
training examples used so far to help SCTL learn a new
model description. The expectation is that, after a number of
iterations, all the properties will eventually be satisfied.

Definition 17 A counter-example X is defined as a tuple
X =
{
S X0 , I

X, S Xn
}
, where S X0 is the initial state condition, S Xn

is the final state condition, and IX consists of a sequence
of input conditions (IX0 , ..., I

X
n−1). Each condition assigns a

boolean value to a subset of variables.

A specific state st is said to match a condition S Xi if, for every
variable α with values assigned by S Xi , S Xi (α) = st(α). The
same idea will be used for inputs. Using this idea, counter-
examples can produce a large set of sequences to be used for
training in SCTL/NARX. Counter-example X represents that
if the current state of the system at time point t matches S X0 ,
the applied input matches IX0 , and the following inputs at time
point t + k match IXk (until k is equal to n), the state of the
system must not match S Xn (notice that each counter-example
is a sequence of inputs and states that lead to a violation of
a property). In order to train the SCTL/NARX, we negate the
final state of X and use the new sequence ending in ∼ S Xn as
a training example in the usual way.

To exemplify this idea, consider the model description
of Table II and a safety property expressed in LTL as
G¬(CrMeth ∧ HiWat ∧ PumpOn), meaning that the pump
should not be on when the level of methane is critical and the
water is high. Table III shows the counter-example produced
by the checker. From the counter-example, we obtain a new

system property X′, such that:
S X

′

0 = {¬CrMeth,¬HiWat,¬PumpOn}, IX
′

0 = {sCMon}, IX
′

1 =

{sHiW}, IX
′

1 = {turnPOn} and S X
′

n = {¬PumpOn}, with n = 2.
Notice that X′ keeps all the information of the initial state and
the sequence of inputs and alters the final state in order to relax
the constraint on the variable that regulates the actual state of
the pump, in this case. Alternative, more sophisticated methods
of generating positive examples from counter-examples exist
[39], and may be considered as part of future work. The
SCTL/NARX learning process could be greatly facilitated,
if, for example, the intervention of an expert was possible
at this stage. An expert could identify undesirable states in
the middle of a counter-example sequence and propose better
positive examples than the above, or reduce the specificity of
the counter-example to the right level in one fell swoop by
identifying a number of undesired cases in one goal.

t State Input
1 ∅ sCMon
2 {CrMeth} sHiW
3 {CrMeth,HiWater} turnPon
4 {CrMeth,HiWater, PumpOn}

TABLE III
I  -     

Let us now use the pump system to illustrate the complete
iterative process of verification and learning. A sequence of
1000 input-output patterns were used in our experiments. All
the state variables were observable and the examples were
generated from the model description in Table II. A NARX
network was created without any background knowledge and
was subject to the successive presentation of these examples.
Figure 7 shows a state transition diagram representing the
knowledge extracted from the network before (Fig. 7(a))
and after (Fig. 7(b)) the network was trained. In Fig. 7, M
represents critical methane (CrMeth), W represents high water
(HiWat) and P represents that the pump is on (PumpOn).
As can be observed in Fig. 7, the NARX starts with a

M

MW MP

MWP

WP

W P

O

M

MW MP

MWP

WP

W P

O

a b

Fig. 7. Transition diagrams: the effects of learning from examples

set of random transitions with low weight, represented in
lighter shades. As learning progresses, it adapts to represent
stronger, more robust transitions. If we convert this transition
diagram into a temporal logic program representation, we
obtain a similar description as the original one provided above,
indicating that the network manages to learn the rules from
examples. Notice that, if the rules are available, they can
be translated directly into the network, without the need for
training those 1000 examples.
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Fig. 8. Transition diagrams representing effects of adapting to properties

t State Input
1 ∼ CrMeth,∼ HighWater ∼ PumpOn sCMon
2 {CrMeth,∼ HighWater,∼ PumpOn} turnPon
3 {CrMeth,∼ HighWater, PumpOn} sHiW
4 {CrMeth,HighWater, PumpOn} −

TABLE IV
N C-

Next, let us add to the training the new system property
obtained from the counter-example of Table III. In this part
of the experiment, we compare the network trained from the
examples and the new property with a network created by
translating the original rules above and then trained with the
new property. Figure 8 shows the transition diagrams extracted
in either cases. Notice that in diagram a, the only situation
where the pump switches from o f f to on is when both CrMeth
and HiWat are false. In diagram b, the only change is in
the case where both variables CrMeth and HiWat are true.
Considering case b to continue our analysis, one can represent
the trained network (with extracted rules) in the form of a
new model description. As can be seen from the figure, the
new description includes a new condition when turning the
pump on. This learned condition does not include the input
telling the pump to turn on when the water is high and the
methane is at a critical level. It is therefore general enough
to deal with different sequences than the one provided in the
counter-example. However, the system still does not deal with
the case where the pump needs to be turned off because a
new input leads to an undesired state. In other words, the new
model description still does not satisfy the safety property; this
can be verified by a second running of the model checker, as
described below.

C. Iterating Verification and Learning

Early work on the integration of verification and learning
indicates that a cycle of analysis and revision might converge
to a correct specification that satisfies system properties [40].
Our proposal in this paper follows this idea. Therefore, we
apply the model checking tool to verify the same property,
now on the revised model description. A new counter-example
is obtained (Table IV). From the new counter-example, we
define a new sequence for training: {} → sCMOn → sHiW
→ TurnPOn → {∼ PumpOn}. After this, the diagram shown
in Fig. 9(a) was extracted. One can see that the original LTL
property is still not satisfied. After verification again, this time
we obtain a final counter-example (below). After adapting
to this final counter-example, we finally obtain the diagram
shown in Fig. 9(b). When applying the model checker to this

t State Input
1 ∼ CrMeth,∼ HighWater ∼ PumpOn sHiW
2 {∼ CrMeth,HighWater,∼ PumpOn} turnPon
3 {∼ CrMeth,HighWater, PumpOn} sCrMeth
4 {CrMeth,HighWater, PumpOn} −

TABLE V
F C-

M

MW MP
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W P

O

M

MW MP
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a b

Fig. 9. Transition diagrams representing effects of iterating properties

new description, the property is finally satisfied (as should be
already clear from the diagram).

VI. C  FW

We have presented a novel neural-computational model
capable of representing and learning temporal knowledge in
different domains. The white box methodology presented here
is based on solid ideas from AI, Cognitive Science and
Neural Computation. The use of a neural-symbolic approach
enables the integration of temporal domain knowledge into a
non-linear recurrent network model, learning from sequences,
counter-examples and system properties, and temporal logic
rule extraction from the trained models. The extracted rules
can also be visualised through the use of a state diagram
tool, and a cycle of learning and verification was implemented
through the translation of the model checker into the model.
The use of the neural-symbolic methodology enables the use
of recurrent networks in domains where traditionally only
symbolic methods were used. We seek to promote a robust
and effective learning of temporal representations through the
use of a connectionist model of computation, yet maintaining
sound temporal reasoning and transparency as required by the
application. The mains results presented in this paper are:
(1) A formal approach that allows the integration of tempo-
ral knowledge representation, learning and reasoning into a
unified model, making use of a robust connectionist approach
for learning, but also providing tools to integrate background
information and extracting the learned knowledge. Therefore
the proposed methodology overcomes some of the strongest
criticisms to neural networks found in literature.
(2) The use of rich testbeds as a clear demonstration of the
different steps involved in the proposed framework. The results
obtained with the learning (and extraction) steps are empirical
evidence of the learning capabilities of SCTL. In particular,
the results corroborate the importance of adding background
knowledge (when available) into neural networks learning.
(3) The novel application of our methodology in the verifica-
tion and revision of software models, providing an automated
tool for the different processes as highlighted by [11], [41],
[40], [42]; in addition, the integration with an existing model
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checking tool with several functionalities has led to results
clearly useful in relevant application domains [38].
Limitations of the approach include, as discussed and analysed
throughout the paper the difficulty in fully-automating the
entire process, in particular the process of converting counter-
examples into useful training sequences for learning. Extrac-
tion is generally perceived as the bottleneck of the neural-
symbolic methodology and this is no exception in this paper.
Perhaps it is even more so in the case of recurrent networks.
Nevertheless, the extraction and validation of partial models
has been possible. This opens up a number of research avenues
in the area of rule extraction from recurrent networks, which
may lead to a range of new applications, as suggested in
[39]. In summary, we believe that this paper has described
a rich methodology for temporal knowledge representation,
learning and verification, shedding new light on predictive
temporal models not only from a theoretical standpoint, but
also with respect to a potentially large number of applications
in Computational Intelligence, Software Engineering, Neural
Computation and Cognitive Science.
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