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Reduced-Size Kernel Models
for Nonlinear Hybrid System ldentification

Van Luong Le, Gérard Bloch and Fabien Lauer

Abstract—The paper focuses on the identification of nonlin- {f; 7_, is active at time step, ande; is an additive noise
ear hybrid dynamical systems, i.e., systems switching beeen term.
multiple nonlinear dynamical behaviors. Thus the aim is 0 | inear hybrid systems, for which all subsystems are linear,
learn an ensemble of submodels from a single set of input- . : - ] . .
output data in a regression setting with no prior knowledge @ 7€ usually categorized in two main glasses. Switched llinea
the grouping of the data points into similar behaviors. To be ARX (SARX) systems, where the switches between subsys-
able to approximate arbitrary nonlinearities, kernel submodels tems are arbitrary and independent of the regression vegtor
are considered. However, in order to maintain efficiency whe  and PieceWise Affine (PWA) systems, where the discrete state
applying the method to large data sets, a preprocessing step ) - antirely depends om; thus partitioning the regression space
is required in order to fix the submodel sizes and limit the . . . - .
number of optimization variables. This paper proposes four Into dlﬁergn_t operating mode.s. No_nllnear. hybrid sy_stems
approaches’ respective|y inspired by the fixed-size |easquares fO”OW a S|m||a.r nomenclature |nC|Ud|ng SW|tChed Non“mea
support vector machines, the feature vector selection metid, the ARX (SNARX) and PieceWise Smooth (PWS) systems.
kernel .principal component regregsion and amodification ofthe In this paper, we aim at finding a nonlinear one-step-
latter, in order to deal with this issue and build sparse kerrel 5054 predictorf = {f;}"_, in the hybrid form (1) from
submodels. These are compared in numerical experiments, udh . IN -
show that the proposed approach achieves the simultaneous'npu,t'ompu'[ data{ («;, i) };=,- Though the me.thod_v.wll .be
classification of data points and approximation of the nonlear ~applicable to PWS systems, we focus on the identification of
behaviors in an efficient and accurate manner. SNARX systems and on the approximation of the response

Index Terms—Hybrid dynamical systems, kernel methods, surfaces of_the _subsystems which Iead_to the_classifigf_;\ﬂon 0
system identification, sparse models, switched regression the data points into modes. On the basis of this classificatio

any nonlinear estimator can then be used to recover better
submodels independently. We further assume that the number

. INTRODUCTION of submodelsn and their regressors are known. Note that

Hybrid dynamical systems have been extensively studied #yese assumptions do not alleviate the major difficulty ef th
the control community over the recent years as a potengiascl problem stemming from the fact that it naturally includes tw
of dynamical models to approximate the behavior of compléxtertwined subproblems: classification of the data poimtis
cyber-physical systems. Despite this significant amount @feir corresponding modes and regression of a submodel for
work, the major issue of obtaining a model of the systegach mode. In case the number of submodeis unknown,
from experimental data remains open. Formally, this proble this parameter acts on the trade-off between the fit to the dat
known as hybrid system identification [1], takes the form dg@nd the overall model complexity.
a nonconvex optimization problem involving a large numbédrelated work. Most of the approaches proposed to solve
of integer variables that depends on the number of dathe hybrid system identification problem, of which a good
Consequently, most proposed methods do not apply to la@¢erview can be found in [1], consider only hybrid sys-
data sets. tems switching between linear dynamics. Even though, these

More specifically, hybrid (dynamical) systems are a claggethods face a nonconvex problem and either implement a
of discrete-time AutoRegressive with eXternal input (ARX}ocal optimization approach, resulting in algorithms tlaae

systems of the form (in the single-input single-output yase rather sensitive to their initialization, or rely on comatarial
optimization, becoming prohibitively time consuming een
Yi = a (@) + e, (1)  moderate-size data sets. Another line of research is feliow

by the algebraic approach [2], [3], which circumvents the
aforementioned computational issues by proposing a closed
form solution to an approximation of the identification prob
lem for SARX systems. However, this approach can be sen-
sitive to noise. Partly building on ideas from this apprgach
a continuous optimization framework was recently proposed

VL Le and G. Bloch are with the Centre de Recherchdn [4]. In addition to being robust to noise and outliers,
en Automatique de Nancy (CRAN), Nancy-University, CNRSthis last approach also significantly alleviates the comiple
France | och@sl_gtoinr?tr?_-vr?gr%nsferm inpl-nancy.fr, pottleneck when compared to previous methods.
g . LR Y To the best of our knowledge, the first approach to deal

F. Lauer is with the LORIA, Universite Henri Poincaré Ngnt, France ) ) . . =S X )
fabien.lauer@oria.fr with nonlinear hybrid system identification without prior

wherez; = [yi—l coe Yimngs Wi—ny - - ui_nk_nc+1]T is
the continuous statgor regression vector) of dimensign
containing the lagged,, outputsy;_; andn. inputswu;_, —x,
where n; is the pure delay. Thealiscrete state(or mode)
Ai € {1,...,n} determines which one of the subsystems
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knowledge of the nonlinearities was proposed in [5] as & Kernel Models for Nonlinear Hybrid Systems

extension to the support vector regression-based mettiod [6rq|iowing the nonlinear black-box modeling approach of
which is limited to small data sets. Further extending thefﬂ, each submodel of a nonlinear hybrid model is expressed

works in the framework of [4] resulted in the first algorithmyg 4 kernel expansion built from the set of training inputdat
for nonlinear hybrid system identification for large datasseg — (.1~ je. of the form

as described in [7]. Note that the crucial issue in this apgino

in order to deal with large data sets is to fix the submodel size N

and thus to limit the number of optimization variables. The filz) = Zakiki(mk’m) +bj, @)
only other reference directly dealing with a similar prable k=1

is [8], where a sparse optimization based method is proposeldere a; = [a1j, ..., an;]? andb; are the parameters

to iteratively estimate the submodels one by one. Howevef, the submodelf; and k;(-,-) is a kernel function satis-
it relies on the assumption that the difference between théng Mercer's condition. Typical kernel functions are the
outputs of the nonlinear subsystems is larger than a bouiear (:(z,z) = xix), Gaussian Radial Basis Function
on the noise for all input, which is unrealistic as soon as t{&BF) (i(zx,x) = exp(—|z, — z||3/20%) and polynomial
subsystems are defined by intersecting functifns (k(zy, ) = (xFz +1)9) kernels. The remainder of the paper
Building reduced-size kernel models has been previoudill focus on Gaussian RBF kernels.
studied for the particular case of Least-Squares Suppatove A kernel function implicitly computes inner products,
Machines (LS-SVM) in [9], where the number of Suppork;(Tk, ) = (¢;(xk), ¢;(x)), between points in a higher-
Vectors (SVs) can be fixed to a predefined number. Anothdimensionafeature space’ obtained by an hidden nonlinear
approach for LS-SVM has been considered in [10], [11], [12happing
where a minimal set of training vectors is selected suchithat ¢j x> @;(T), 3)
induces a basis for the subspace containing the data mapglefhe pointsz in the original input space.

in feature space. Sparse kernel models can also be built W'”Note that different kernel functions; can be used in (2)
the Kernel Principal Component Regression (KPCR) approaﬁj’ll the different submodelg;. Thus |Jt is possible to take

propos_ed in [13] and based on kernel principal compone[g‘.tior knowledge into account such as modes governed by
analysis [14]. All these approaches can be used to bulides. gynamics or information on the type of a particular

reduced-size kernel hybrid models, since they are Only(ba%nlinearity, if available. Note, however, that this is ret
on the input data and do not use the target output, WhiChrg’quirement for the proposed method

undetermined in this context due to the unknown switches of
the hybrid system. ] ]
Paper contribution. This paper extends the works of [7]B' Nonlinear Product-of-Errors Estimator

and proposes efficient identification methods fwnlinear ~ The PE estimator of linear hybrid systems proposed in
hybrid systems. In particular, four different approaches al4] relies on an optimization problem involving a product
considered to build sparse kernel submodels, which are @feerror terms, also considered in the algebraic approach
key to efficiency in this context. More specifically, these arl3]. Introducing submodels in the kernel form (2) in this
inspired by the fixed-size LS-SVM [9], the Feature Vector Sétamework leads to the nonlinear PE estimator for nonlinear
lection (FVS) [10], [11], the KPCR [13] and a modification ofhybrid systems expressed as the solution to

the latter, Reduced KPCR (RKPCR) by Incomplete Cholesky 1

Decomposition [15], respectively. These approaches alteany min = — ZR(aj) + 4)
number of optimization variables to remain small even when loghotbs} 15

applied to large data sets, and thus to use global optiroizati oM. N
solvers to estimate the model. N Z H Oy — Z agjkj(xr, ) —bj |,
Paper organization. Section Il introduces the nonlinear i=1j=1 k=1

hybrid system identification framework. Then the reduceghere? is a smooth loss function anl(c;) is the regularizer

size kernel models for large-scale problems are presentechtting on the parametees; of the submodef;. For instance,

gl with the four proposed methods: Entropy maximizatiothe model complexity can be measured by thenorm of

in §lll-A, FVS in §llI-B, KPCR in §llI-C and RKPCR the parameter vector, i.eR(c;) = || ]|;. This regularizer

in §lI-D. Numerical experiments are given gV and con- penalizes non-smooth functions and ensures sparsity as a

clusions ingV. certain number of parameters;; will tend towards zero.
Regularization over thé&,-norm of the parameter vectors, i.e.,
R(eyj) = ||;|3 is also possible, but may result in less sparse

II. NONLINEAR HYBRID SYSTEM IDENTIFICATION models.
FRAMEWORK
I1l. REDUCED-SIZE KERNEL MODELS FOR LARGE-SCALE
This section reviews th@roduct-of-Errors(PE) identifica- PROBLEMS
tion framework proposed in [7], where kernel submodels are As in Support Vector Machines (SVMs) [16], we refer to the
used to approximate arbitrary nonlinearities in hybrideys. vectorsz; for which the associateflo;; }j=1,... . parameters
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are nonzero as th8upport VectorgSVs), since these are the After the classification of the data in Step 3, the submodels
only data points kept in the final model. For submodels ican be re-estimated in Step 4 by considerinindependent
kernel form (2), the optimization program (4) involves aglar problems withn distinct data sets, to which any classical
number of variables associated to the numbgraiéntialSVs. nonlinear estimation method can be applied. The sparsily an
Since the kernel submodels consider all the data paints accuracy of the final model thus depends on the properties
i =1,...,N, as potential SVs, the number of variables of this particular method. For instance, the experiments of
andb; is n(NN + 1). Thus solving this problem for largd” Section IV will use SVMs.
with a global optimization solver may become prohibitively In the following, K; will denote the kernel matrix of
time consuming. modej with component K ;). = k;(x;, xx) and K, its

In this section, we propose four methods to reduce the nusubmatrix built from the rows and columns corresponding to
ber of parameters; in (2) beforestarting the optimization. the SVs inS;, i.e.,
Let

L P (5) kj(zij,ziy) oo ki@, Tgj)

J

denote the set of/; SVs retained for theith reduced-size
submodel kj(@arj 1) . kj(Targ, T, 5)

- M; Also note that in the four proposed procedures, a data pgint
fi(@) = Z Briki(wrj, ) + b (6) originally generated by a particular mode can be considased
k=1 a SV for another mode. The main idea here is to capture only
The (M; + 1) parameters of submodg} are now given by the general distribution of the data in the feature spacie
B; = [Bij,- - ,BM].J-]T andb;. order to ensure sufficient support for the model. However, fo
With these notations, the complete identification procedupiecewise models, where a particular submodel is only activ
is as follows. in a given region of input space, the procedures also select
1) Find the structure of each submoq‘?;(:n) as in (6) by SVs outside of this region. In this case, how to obtain sparse
applying one of the methods presented below. representations should be investigated.
2) Train the hybrid model by solving

Ly~ 5, +%2N2ﬁf(yi —fj(wi))-

A. Entropy Maximization
min — 7
BAbsy noa= M ==

The fixed-size Least Squares SVM (LS-SVM) [9] is based
(7) on the maximization of an entropy criterion to ensure a
3) Estimate the modg; for each data point by sufficient coverage of the feature space by the SVs. Then
the selected SVs are used to build an approximation of the
nonlinear mappings; (3) hidden in the kernel function,

.....

and classify the data inta subsets accordingly. which is in turn used to recast the problem into a linear
4) Re-estimate the submodels with a nonlinear estimaf@m in the approximated feature space. However, in our
applied independently to each data subset. experiments, this method was rather sensitive to the nusnber

O(Iﬂ?elected SVs. Therefore, we will apply a similar but more
téaightforward method for Gaussian RBF kernels, where we
0 not build an approximation of the nonlinear mapping, but

dimensional parameter vectofk in (7). instead use the SVs as RBF centers directly. This leads to

The final optimization program (7) involves onlyrEduced S‘meo‘?'e's (6). _ )
Z?:l(Mj + 1) variables instead ofi(N + 1) as in (4). As_ in fixed-size LS_—SVI\’/I [_9], the selegnon algo_r_lthm
This allows the complexity of the algorithm (7) to scaldn@ximizes the quadratic Rényi entrop, which quantifies
only linearly with respect to the number of training data the .d|ver5|ty, uncertalnty or_randomness of a system. For a
(through the summation term), as experimentally verifid@rticular modej, we approximate/ by
in [4].

In this procedure, the first step may be interpreted as select
ing a subset of the columns of the kernel matrix. In particula
the nature of the hybrid system identification problem and ¥fhere Ks, is given by (9), and the procedure to select the
the global optimization program (4) calls for feature stter SVS is as follows.
methods that can applyithoutknowledge of the target values 1) Randomly select a subsét with M; SVs from the
y; (which cannot be assigned to a submodel ahead of Step 3) training setS, and initializeS = S\ S;.
andbeforeoptimizing the parameters (which are too numerous 2) Randomly select an SV irb;, «*, and one of the

Note that the reduced-size submodels (6) are based on
intrinsically sparse representation of the data, hence
choice of the smooth..-norm regularization over the low-

1
H; ~ —logmlTKsjl, (10)
j

otherwise). These constraints motivated the choice ofdhe f remaining training samples;’ € S.
methods described in the following subsections and the fact3) If the criterion (10) increases via replaciag by_ccT,
that, for feature selection, we do not consider regulaonat retainz’ as an SV inS; and replacer’ by z* in S.

based methods and other approaches requiring to solve ad) Repeat from 2 until the increase of the criterion is too
instance of the optimization problem (4) with the full model small or a maximum number of iterations is reached.
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In this procedure, the numbers of SY{9/,},-1,.. , are The setS; (5) induces a basis vector set in feature space by
hyperparameters that must be fixadpriori. FoIIowmg [7], the mappingy; (3), which can then be used to approximate
for Gaussian RBF kernels with bandwidth parametgrthe ¢;(x) for anyz in input space. The Feature Vector Selection
numbers)M; can be set according to the heuristic proposed in [10] searches for the sgt that minimizes the

reconstruction error between this approximation and the tr
)J (11) mapping of the points over the entire training data.$eAs
detailed in [10] this is equivalent to finding the sgt which
where |-] denotes the integer part of its argument apglis maximizes the following criterion
the kth component ofc;. N Wl Re-lp

This heuristic is not optimal in the sense of minimizing J(S;) = 1 Sji Tt 5; St
the generalization error, but it ensures sufficient supfurt ! N =t kj(wi,z;)
the model over the whole input space. The numbeisin . ’
(11) strongly depend on the bandwidths since more SVs whereks,; = [k;(x1;, @), ... kj (@, 5, @)
are needed to cover the whole input space with a smallerThough the method proposed in [10] to maximize (15) can
bandwidth. In practice, the values of, can influence the be improved for efficiency as in [12], it remains rather time
quality of the model as they control the smoothness of tleensuming for large data sets. In order to maintain as low
submodels. Proper tuning of these values may require naultigs possible the computational cost of the overall estimatio
trials or prior knowledge on the relative smoothness of thgrocedure, in which the basis selection is only the first,step
subsystems in the model. However, suboptimal numiéys we instead propose the following randomized algorithm
are sufficient to obtain rough mode estimafesand a data 1) Initialize S; =0, S = S, k = 1 and define/ () =
classification to re-estimate the submodels in Step 4. Bghe 2) Append toS a randomly selected vectaty; from
refined submodels are learned by SVM techniques for instance  the setS of remaining training input data and compute

1 .
M; = | — max max T — min T
0jk=1,..,p \i=1,...,.N i=1,...,N

(15)

then the final number of SVs is automatically determined. J(S;).
3) If J(S;) increases, retaimy; in S; and updateS =
B. Feature Vector Selection S\ {my;}, otherwise removery; from S5

. ) 4) Loop from Step 2 untilKs; is no Ionger invertible
Following the Feature Vector Selection (FVS) method of (det(Ks,) < ).

[10], [11], the selection of support vectors aims at finding a
suitable set of basis vectors in the feature spAdiat spans
the data subspace.
If we let w; = Zk L OkjD; (z), then the kernel expan-
sion (2) can be rewritten in terms of inner products in featufc. Kernel Principal Component Regression
space to yield a linear form with respect4e; as Following the KPCR method in [13], the number of opti-
mization variables in (4) can be reduced by using only sévera
z) = Z (0 (1), d;(x)) + by = (wj, () +b;. principal components of the kernel matrix which are sufficie
to account for most of the structure in the data.
(12) Formally, for a particular modg, we are interested in
The vectorw; is represented by means of a set df finding the kernel principal components that can represknt a
vectors{¢;(xx)};_, and there areV parametersy,; to be data points associated to this mode. However, as the discret
determined. In practice, the dimension of the subspacetwhistate \; (determining to which mode belongs a data point) is
contains the whole nonlinearly-mapped data set in featuwiaknown for the training data, we have to compute the kernel
space is significantly lower thaN and equal to the numerical principal components from the whole data setfor each
rank of the kernel matrix ;. mode. Note nevertheless that these principal components ca
Thus, in order to reduce the number of parameters, one ¢andifferent from one mode to another if the kernel functions
expresaw; from a reduced set of basis vectdnﬁj(wkj)},i\ijl k; are different.

Then the number of basis vecta¥$; to use in (14) is given
by M; = |S;].

as " Let ®; be the(L x V') matrix whoseith column is the vector
! ¢;(x;) of the observatior; mapped into the -dimensional
w; = Zﬂki@(mki)’ (13)  feature spacer. We assume that the mapped data is centered
k=1

in feature space, |ezZ L ¢j(x;) = 0. If not, the kernel
wherezy; € S;, with typically M; < N. This leads to the matrix K; must be substituted by
jth reduced-size submodel in the form (6) as

1 1
M, K; = <IN—N1N><N) K; <IN—N1NxN>7 (16)
as proposed in [14].

Zﬂkj .’Bk] +b _Zﬂkj wkj?
(14)  Let A; = diag{\i,..., \t}, Vj = [v1,...,v.] be the
In comparison to the previous methadl}; is not fixeda eigenvalue diagonal matrix and the corresponding normal-
priori, but simply corresponds to the dimension of the smalleigied orthogonal eigenvector matrix of the covariance matri
subspace containing the data in feature space. %‘I)j@f. As in the PCA method, a feature vectr(x) is
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transformed to new coordinates by the eigenvectarsi.e., issues, the kernel matrix can be approximated by a low rank

the projection ofp;(x) onto the eigenvectorsy, matrix K ; via the Nystrom method [17].
new T Most of the computations for the low rank approximation
¢;" (x) =V d;(). (17) K ; of a kernel matrixk ; involve only a subset of the training
The KPCR model can be written as data. In the original Nystrom method, the subset selection

. is random with the subset size fixed beforehand. Such a
fix) =B 7 (@) +b; =B V] ¢;(@)+b;, (18) selection influences the accuracy of the solution and leads t
a more complex implementation. Thus, the Nystrom method
based on an incomplete Cholesky decomposition is proposed

{¢_(w1) ¢_(mN)} To avoid an explicit mapping of the in [15]. The incomplete Cholesky decomposition of matrix
) oo @) .

data, the eigenvectots, are computed thanks to an equivalengj provides automatically arfz; x N-dimensonal matrix

. ) : .= [L; N;] such thatK; = C*C; and a corresponding
eigenvalue problem proposed by Scholkepfal. in [14]: i = L N; J J
genvaiue p prop Y pal.in [14] data subset’ of size R; (R; < N) such thatK s, = LJTLJ-.

where 3, is a coefficient vector in the feature spage Note
that all v, with A, # 0 lie in the span of N mappings

K v = g (19) Then, theR; eigenvalues of th&k; x R; correlation matrix
A, = PE (20) Q;, = CjCJT are identical to the largest ones d ;.
TN According to this method, the model (22) is rewritten with
v, = ®; 7’{ , k=1,...,N, (21) matrix A; replaced by one of dimensioR; x R; as
vV Ny
where ;1 and v, (¢ = 1,...,N) are eigenvalues and Ajr, =E]L;", (24)

elgﬁnvectors O.f theh matrik,. ith th i whereE; is the eigenvector matrix af ; and its columns are
. ter arrangmgt N e|ge_nvectc % with the correspon Ing arranged in decreasing order of the related eigenvalues.
eigenvaluesy; in decreasing order, one only uses the first As before, only the firsi/; < R; first eigenvector columns

M; nonlinear principal components ap;“"(z) which is of E; are selected accord'ing to the criterion (23) to form a

computed by (17) and (21). This reduces the size of tl?@duced model as in (22):
coefficient vector3, to be estimated and leads to '

N - -
- (x)=06; Aimki(-,x) + b, 25
fi(@) = B Ajk;(-,x) + b, (22) 5(2) = B; A kil =) b )

- where 3, is the M;-dimensional parameter vectod ;,;;, =
where A; — {L,..., Yy € RMXN andk;(-, @) = EfMjL;T is an M; x R; matrix and the reduced vector

(1, 2) k‘/g :c)]VTﬂeMﬁ%N ki(-,x) = [k(x1;,®),....k;(xr,;, z)]T is calculated for an

J\LL L)y eees B (LN : x with x;;, i = 1,..., R;, in the selected subsét.

The procedure to build the reduced-size kernel form for a
particular modej is as follows.

1) Compute the kernel matri¥(; from the training data
sets.
2) Compute thell; largest eigenvalues and corresponding

eigenvectors of; and calculateA ;. Cholesky decomposition ok ;.

3) Apply the form_(22) in _(7)_' 3) Compute thel; largest eigenvalues and corresponding
The number of nonlinear principal components must be eigenvectors ofY; and calculateA ;..
sufficient to describe the structure of the data. For a given  4) Apply the form (é5) in (7). ’

[0, 1], the cumulative energy content can be used to estimate
M; as the smallest numbet such that

The procedure to build the reduced-size kernel form for a
particular modej is as follows.

1) Compute the kernel matri¥; from the training data
sets.
2) Obtain the matrixC'; and the subsef’; by an incomplete

IV. NUMERICAL EXPERIMENTS

m
Diy Mi > ) (23 This section presents numerical results on two examples.
Zf\;l wi The first one involves the estimation of a function switching
where i, i = 1 N, are the eigenvalues arranged irl‘)etween two unknown nonlinear functions in Sect. IV-A, whil
(2 - LIRS 1

the second one considers the identification of a switched
nonlinear dynamical system in Section IV-B.

As proposed in [4], all optimization programs are solved
o ) with the Multilevel Coordinate Search (MCS) algorithm [18]
D. Reduced Kernel Principal Component Regression Though the MCS algorithm can deal with unbounded vari-

In the method above, one obtains a reduced-size kerables, box constraints are used to limit the search space and
submodel form (22) with only//; + 1 parameters that need torestrain the variables to the interyat100, 100] (which is not
be estimated. However, the resulting model needs to retain very restrictive). All experiments are performed usingyonl
N original data points instead @f; as in the form (6). Indeed Matlab code on a standard desktop computer.
computing its output for a new input involves the vector  This section compares the four proposed methods for build-
k;(-,z) € RY. Moreover, the eigenvalue decomposition of ing reduced-size kernel submodels: Entropy maximization
too large kernel matri¥ ; can be prohibitive. To avoid these(Sect. IlI-A), FVS (Sect. ll-B), KPCR (Sect. llI-C) and

decreasing order antzf\il w; = TracdK;). Note that
Trac€ K ;) = N in case of a Gaussian RBF kernel matrix.
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RKPCR (Sect. 11I-D). In the following Tables of results, thehe two nonlinear functions. Thus they do not incur significa
size of the SV sets for mode 1M;) and mode 2 {/;) errors in the re-estimation step, which, according to thEaFI

is given by (11) for the Entropy maximization while beindeads to accurately refined models, especially for the RKPCR
automatically determined for the other methods. For the RPGnethod.

and RKPCR methodg; in (23) is set t00.9. The quality of

the models is evaluated on an independent and noise-free tes .
set of N = 2000 data points by the following performance

indexes: the normalized criterion FEE 100 (1 — Hlf_ﬂnzg, af
wherey contains the target outputg, their mean andy the

predicted outputs using either the estimated discrete stat ar

(8) (FITa) or the true\; (FITb) and the classification error rate
on the test set (Test Classif. err.). The classificationreate

on the training set (Train. Classif. err.) is also given ider

to analyze the ability of the methods to separate between the
modes. The computing times of the methods are reported by
distinguishing between the time required by the SV selactio
in Step 1 of the complete procedure (Selection Time) and the ‘ ‘ ‘ ‘ ‘ ‘ ‘
time required by the MCS solver for Step 2 (Optimization 25 s 0 s s 2

Time). The re-estimation tables correspond to the refinémen

of the Su_bquels in Step 4 by standard SVM for regress_l,o_@. 1. Estimation of a switched nonlinear function from Q0foisy data
[16] applied independently to each group of data accordipgints (black dots). The red and blue curves show the estin@tduced-size

to the classification given by, (8). This step uses the samesubmodels based on the KPCR method.

kernel hyperparameters and regularization trade=oft 100

as all the compared methods. The loss functiosn) = e

is used in (7). Note that all numbers in the Tables belo®. Switched Nonlinear Dynamical System

account for averages and standard deviations over 108 trial The next example considers the identification of a dynamical
with different random noise sequences. system arbitrarily switching between two modes as

1t

. 0.9y;_1 + 0.2y, 2, it A\ =1,
A. lllustrative Example Yi—1 +0.2yi—2

2 . _
Consider the function arbitrarily switching between two y; = (0.8 = 0.5exp(—y;_1))yi—1

nonlinear behaviors as (0.3+0.9exp(—y7 1))yi—2 + if A =2.
( {xQ’ if A =1, 6) 0.4sin(27y;—1) + 0.4 sin(27wy;—2), o
Yy = . .
sin(3z) +2, if A=2. A training set of N = 2000 points is generated by (27) with a

A training set of N = 2000 points is generated by (26)uniformly distributed random sequence kf € {1,2} and an

with additive zero-mean Gaussian noise (standard dewiatiddditive zero-mean Gaussian noise (standard deviatios

. = 0.3) for uniformly distributed randomx; € [-3,3] and 0-1) from the initial conditiony, =y, = 0.1, whereas the

uniformly distributed random; € {1,2}. The data are shown Noise-free test set usgg = 0.4, y—1 = —0.3. Note that

in Figure 1 as black dots. The difficulty of this toy exampléhe noise is added tg; during the data generation process,

lies in the crossing of the submodels, which results in gfiypn resulting in colored noise.

mixed data at particular locations (e.g., fel < = < —0.2 For the identification, the submodg¢| uses a linear kernel

in Fig. 1). In particular, these crossings potentially gare With an arbitrary number of SVé/, = 5 for the entropy

undesired switches between the submodels and violate fA@ximization method (this is a fictive number, as the two

assumption required by the method in [8]. linear parameters can be recovered from linear combirgtion
In this experiment, the training data are normalized to zefR$ the SVs), whilef; uses a Gaussian RBF kernel £ 0.3).

mean and unit variance. The optimization program (7) fsorresponding results are reported in Table Il. For a com-

solved with two reduced-size submodels of the form (6) usir;barison, the FIT of the reference model with known mode is

Gaussian RBF kernels of width; = 0.8 and oy = 0.2, 92.79 & 2.67. In these experiments, the PCA-based methods

respectively. Representative examples of the resultibgisa- (KPCR and RKPCR) yield better FITs and fewer classification

els are shown in Figure 1. Table | shows the results. F8frors for a low computing time.

a comparison, the FIT of the reference model obtained by

applying the re-estimation step from the true classificat® V. CONCLUSIONS

93.50 + 2.91. This paper focused on the switched regression problem at
The classification error rates on the training set as low #w core of hybrid system identification in the particulasea

10% show that the algorithm is able to correctly separaf systems switching between unknown nonlinear dynamics.

between the two modes. Remaining classification errors drke proposed approach relies on the ability to express each

mostly due to indistinguishable points at the intersecttdn submodel in a sparse kernel form, which allows a global
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TABLE |
COMPARISON OF THE FOUR PROPOSED METHODS TO BUILD AND ESTIMATREDUCED-SIZE KERNEL HYBRID MODELS.
Method | Entropy max. | FVS | KPCR | RKPCR
Estimation
M | My 4717 7.0+£0.7/149£18 | 3£0/10£0 | 3£0/10%+0
FITa%) 87.06 + 2.03 87.95 4+ 3.83 88.33 + 3.89 86.20 4+ 2.17
FITb(%) 81.51 4+ 21.04 78.25 £ 26.48 88.21 + 3.97 82.35 4+ 21.43
Test Classif. err.%) 5.22+9.94 7.71 +10.63 2.14 +1.08 4.32 +5.35
Train. Classif. err. %) 8.47 + 9.65 10.80 £+ 9.92 5.25 + 0.58 7.30 +4.80
Selection Time (s) 0.94 +0.01 7.274+1.13 8.80 + 0.80 0.06 £+ 0.04
Optimization Time (s) 3.1£0.7 3.3£1.1 1.9+0.5 1.3+04
Re-estimation
FiTa(%) 91.51 + 3.50 92.36 + 2.44 80.81 £4.26 | 92.75 F 2.70
FITb(%) 85.77 + 22.33 82.00 * 27.4 89.60 £ 4.340 | 88.92 F 22.20
Test Classif. err.%) 4.75 + 10.26 6.65 + 10.70 2.13+1.10 3.05 £ 5.45
TABLE 1l
ESTIMATION OF AN ARBITRARILY SWITCHED NONLINEAR ARX SYSTEM.
Method | Entropy max. | FVS | KPCR | RKPCR
Estimation
My | My 5/30 20+£0/28.1£38 [ 20+0/36.8+2.4 [ 20+£0/37.0+2.7
FITa%) 71.22 £2.75 69.57 4+ 4.01 80.76 + 3.44 81.67 + 3.24
FITb(%) 53.86 4+ 8.59 56.77 4+ 8.50 73.17 £ 5.31 75.81 £ 4.75
Test Classif. err.%) 20.16 +4.37 17.26 + 4.84 8.85 + 2.61 7.74 +2.31
Train. Classif. err. %) | 21.69 £ 3.60 19.34 +£4.18 12.67 £ 2.28 11.94 + 2.00
Selection Time (s) 1.07 £ 0.06 18.21 +£4.15 1.85+0.13 1.93 £0.15
Optimization Time (s) 6.5+ 2.0 4.94+2.0 6.60 £+ 2.90 7.42 + 3.07
Re-estimation
FITa%) 86.03 + 2.36 85.17 +4.39 89.05 + 4.63 90.03 + 3.69
FITb(%) 77.19 +£7.95 77.05 £ 8.95 83.88 +£4.99 84.71 + 4.08
Test Classif. err. %) 12.29 £4.45 9.19 £5.16 4.40 £ 1.73 3.86 £ 1.18
optimization solver to efficiently estimate the parametefrs ACKNOWLEDGEMENTS

the model. Four methods were proposed and compared fofye 4re grateful to the reviewers for their comments and
which such reduced-size models can be built. The entropy
maximization approach requires to fix the model size anbitra
ily or through the heuristic (11) for Gaussian RBF kernels.
On the other hand, the other approaches can determine thg S. Paoletti, A. Juloski, G. Ferrari-Trecate, and R. Vididentification
model size either as a byproduct of the procedure or through gfahyb“d Systems: gggto”a"fumpea“ Journal of Controbol. 13, no.
. . . -3, pp. 242— s 7.
a high-level parameter such as the ratio of cumulative gnergy; g "vidal, S. Soatto, Y. Ma, and S. Sastry, “An algebraicometric
content. Experiments showed that these latter methods can approach to the identification of a class of linear hybridteys,” in

sufficiently reduce the model size to allow the overall pevbl Proc. of the 42nd IEEE Conf. on Decision and Control (CDC),uia
to be solved Hawai, USA 2003, pp. 167-172.

[3] Y. Ma and R. Vidal, “Identification of deterministic swited ARX
systems via identification of algebraic varieties,”Rroc. of the 8th Int.
Conf. on Hybrid Systems: Computation and Control (HSCQixic,
Switzerland ser. LNCS, vol. 3414, 2005, pp. 449-465.

[4] F. Lauer, G. Bloch, and R. Vidal, “A continuous optimiiat framework

.. . . . for hybrid system identification,Automatica vol. 47, no. 3, pp. 608—
Determining the number of submodels is an important issue 613’)/2011_ y a PP
for all hybrid system identification methods (linear and non([5] F.Lauerand G. Bloch, “Switched and piecewise nonlirtegrid system

i i i identification,” in Proc. of the 11th Int. Conf. on Hybrid Systems:
lmear)' The paper chused on .the est|mat!on .Of the.' S.meOdel Computation and Control (HSCC), St. Louis, MO, US&r. LNCS,
under the assumption that this number is fixaedriori, as vol. 4981, 2008, pp. 330-343.
is the case with many other methods, and provided the firgt] —, “A new hybrid system identification algorithm with mmatic
and most central building block for a complete nonlinear tuning,” in Proc. of the 17th IFAC World Congress, Seoul, South Korea
hvbrid tom identificati q Further invedi 2008, pp. 10207-10212. _ _ -

Y rna system ident IC<.':1 Ion proceaure. rFurtner 'n.VG t@a [7] F. Lauer, G. Bloch, and R. Vidal, “Nonlinear hybrid systédentification
will focus on automatic procedures for the tuning of the  with kerel models,” in49th IEEE Int. Conf. on Decision and Control
number of submodels. In addition, one of the remaining (CDC). Atlanta, GA, USA2010, pp. 696-701.

. ith th d hod | d ?g L. Bako, K. Boukharouba, and S. Lecoeuche, “Ag-¢; norm based
Oan |§sue_s wit t e propose _met_ 0 Concems_ colored nofse gptimization procedure for the identification of switchednlinear
which implies a bias in the estimation of dynamical systems. systems,” in49th IEEE Int. Conf. on Decision and Control (CDC),
Future work will also aim at specializing the algorithm foet
piecewise smooth regression setting, where the differecias

Atlanta, GA, USA2010, pp. 4467—4472.
and nonlinear behaviors are separated in the input space.
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