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Reduced-Size Kernel Models
for Nonlinear Hybrid System Identification

Van Luong Le, Gérard Bloch and Fabien Lauer

Abstract—The paper focuses on the identification of nonlin-
ear hybrid dynamical systems, i.e., systems switching between
multiple nonlinear dynamical behaviors. Thus the aim is to
learn an ensemble of submodels from a single set of input-
output data in a regression setting with no prior knowledge on
the grouping of the data points into similar behaviors. To be
able to approximate arbitrary nonlinearities, kernel submodels
are considered. However, in order to maintain efficiency when
applying the method to large data sets, a preprocessing step
is required in order to fix the submodel sizes and limit the
number of optimization variables. This paper proposes four
approaches, respectively inspired by the fixed-size least-squares
support vector machines, the feature vector selection method, the
kernel principal component regression and a modification ofthe
latter, in order to deal with this issue and build sparse kernel
submodels. These are compared in numerical experiments, which
show that the proposed approach achieves the simultaneous
classification of data points and approximation of the nonlinear
behaviors in an efficient and accurate manner.

Index Terms—Hybrid dynamical systems, kernel methods,
system identification, sparse models, switched regression

I. I NTRODUCTION

Hybrid dynamical systems have been extensively studied by
the control community over the recent years as a potential class
of dynamical models to approximate the behavior of complex
cyber-physical systems. Despite this significant amount of
work, the major issue of obtaining a model of the system
from experimental data remains open. Formally, this problem,
known as hybrid system identification [1], takes the form of
a nonconvex optimization problem involving a large number
of integer variables that depends on the number of data.
Consequently, most proposed methods do not apply to large
data sets.

More specifically, hybrid (dynamical) systems are a class
of discrete-time AutoRegressive with eXternal input (ARX)
systems of the form (in the single-input single-output case)

yi = fλi
(xi) + ei, (1)

wherexi = [yi−1 . . . yi−na
, ui−nk

. . . ui−nk−nc+1]
T is

the continuous state(or regression vector) of dimensionp
containing the laggedna outputsyi−k andnc inputsui−nk−k,
where nk is the pure delay. Thediscrete state(or mode)
λi ∈ {1, . . . , n} determines which one of then subsystems
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{fj}nj=1 is active at time stepi, and ei is an additive noise
term.

Linear hybrid systems, for which all subsystems are linear,
are usually categorized in two main classes: Switched linear
ARX (SARX) systems, where the switches between subsys-
tems are arbitrary and independent of the regression vectorxi,
and PieceWise Affine (PWA) systems, where the discrete state
λi entirely depends onxi thus partitioning the regression space
into different operating modes. Nonlinear hybrid systems
follow a similar nomenclature including Switched Nonlinear
ARX (SNARX) and PieceWise Smooth (PWS) systems.

In this paper, we aim at finding a nonlinear one-step-
ahead predictorf = {fj}nj=1 in the hybrid form (1) from
input-output data{(xi, yi)}Ni=1. Though the method will be
applicable to PWS systems, we focus on the identification of
SNARX systems and on the approximation of the response
surfaces of the subsystems which lead to the classification of
the data points into modes. On the basis of this classification,
any nonlinear estimator can then be used to recover better
submodels independently. We further assume that the number
of submodelsn and their regressors are known. Note that
these assumptions do not alleviate the major difficulty of the
problem stemming from the fact that it naturally includes two
intertwined subproblems: classification of the data pointsinto
their corresponding modes and regression of a submodel for
each mode. In case the number of submodelsn is unknown,
this parameter acts on the trade-off between the fit to the data
and the overall model complexity.
Related work. Most of the approaches proposed to solve
the hybrid system identification problem, of which a good
overview can be found in [1], consider only hybrid sys-
tems switching between linear dynamics. Even though, these
methods face a nonconvex problem and either implement a
local optimization approach, resulting in algorithms thatare
rather sensitive to their initialization, or rely on combinatorial
optimization, becoming prohibitively time consuming evenfor
moderate-size data sets. Another line of research is followed
by the algebraic approach [2], [3], which circumvents the
aforementioned computational issues by proposing a closed
form solution to an approximation of the identification prob-
lem for SARX systems. However, this approach can be sen-
sitive to noise. Partly building on ideas from this approach,
a continuous optimization framework was recently proposed
in [4]. In addition to being robust to noise and outliers,
this last approach also significantly alleviates the complexity
bottleneck when compared to previous methods.

To the best of our knowledge, the first approach to deal
with nonlinear hybrid system identification without prior
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knowledge of the nonlinearities was proposed in [5] as an
extension to the support vector regression-based method [6]
which is limited to small data sets. Further extending these
works in the framework of [4] resulted in the first algorithm
for nonlinear hybrid system identification for large data sets
as described in [7]. Note that the crucial issue in this approach
in order to deal with large data sets is to fix the submodel size
and thus to limit the number of optimization variables. The
only other reference directly dealing with a similar problem
is [8], where a sparse optimization based method is proposed
to iteratively estimate the submodels one by one. However,
it relies on the assumption that the difference between the
outputs of the nonlinear subsystems is larger than a bound
on the noise for all input, which is unrealistic as soon as the
subsystems are defined by intersecting functionsfj.

Building reduced-size kernel models has been previously
studied for the particular case of Least-Squares Support Vector
Machines (LS-SVM) in [9], where the number of Support
Vectors (SVs) can be fixed to a predefined number. Another
approach for LS-SVM has been considered in [10], [11], [12],
where a minimal set of training vectors is selected such thatit
induces a basis for the subspace containing the data mapped
in feature space. Sparse kernel models can also be built with
the Kernel Principal Component Regression (KPCR) approach
proposed in [13] and based on kernel principal component
analysis [14]. All these approaches can be used to build
reduced-size kernel hybrid models, since they are only based
on the input data and do not use the target output, which is
undetermined in this context due to the unknown switches of
the hybrid system.
Paper contribution. This paper extends the works of [7]
and proposes efficient identification methods fornonlinear
hybrid systems. In particular, four different approaches are
considered to build sparse kernel submodels, which are the
key to efficiency in this context. More specifically, these are
inspired by the fixed-size LS-SVM [9], the Feature Vector Se-
lection (FVS) [10], [11], the KPCR [13] and a modification of
the latter, Reduced KPCR (RKPCR) by Incomplete Cholesky
Decomposition [15], respectively. These approaches allowthe
number of optimization variables to remain small even when
applied to large data sets, and thus to use global optimization
solvers to estimate the model.
Paper organization. Section II introduces the nonlinear
hybrid system identification framework. Then the reduced-
size kernel models for large-scale problems are presented in
§III with the four proposed methods: Entropy maximization
in §III-A, FVS in §III-B, KPCR in §III-C and RKPCR
in §III-D. Numerical experiments are given in§IV and con-
clusions in§V.

II. N ONLINEAR HYBRID SYSTEM IDENTIFICATION

FRAMEWORK

This section reviews theProduct-of-Errors(PE) identifica-
tion framework proposed in [7], where kernel submodels are
used to approximate arbitrary nonlinearities in hybrid systems.

A. Kernel Models for Nonlinear Hybrid Systems

Following the nonlinear black-box modeling approach of
[7], each submodel of a nonlinear hybrid model is expressed
as a kernel expansion built from the set of training input data
S = {xi}Ni=1, i.e., of the form

fj(x) =

N
∑

k=1

αkjkj(xk,x) + bj , (2)

where αj = [α1j , . . . , αNj ]
T and bj are the parameters

of the submodelfj and kj(·, ·) is a kernel function satis-
fying Mercer’s condition. Typical kernel functions are the
linear (k(xk,x) = xT

k x), Gaussian Radial Basis Function
(RBF) (k(xk,x) = exp(−‖xk − x‖22/2σ2) and polynomial
(k(xk,x) = (xT

k x+1)d) kernels. The remainder of the paper
will focus on Gaussian RBF kernels.

A kernel function implicitly computes inner products,
kj(xk,x) = 〈φj(xk),φj(x)〉, between points in a higher-
dimensionalfeature spaceF obtained by an hidden nonlinear
mapping

φj : x 7→ φj(x), (3)

of the pointsx in the original input space.
Note that different kernel functionskj can be used in (2)

for the different submodelsfj. Thus it is possible to take
prior knowledge into account such as modes governed by
linear dynamics or information on the type of a particular
nonlinearity, if available. Note, however, that this is nota
requirement for the proposed method.

B. Nonlinear Product-of-Errors Estimator

The PE estimator of linear hybrid systems proposed in
[4] relies on an optimization problem involving a product
of error terms, also considered in the algebraic approach
[3]. Introducing submodels in the kernel form (2) in this
framework leads to the nonlinear PE estimator for nonlinear
hybrid systems expressed as the solution to

min
{αj},{bj}

1

n

n
∑

j=1

R(αj) + (4)

C

N

N
∑

i=1

n
∏

j=1

ℓ

(

yi −
N
∑

k=1

αkjkj(xk,xi)− bj

)

,

whereℓ is a smooth loss function andR(αj) is the regularizer
acting on the parametersαj of the submodelfj. For instance,
the model complexity can be measured by theL1-norm of
the parameter vector, i.e.,R(αj) = ‖αj‖1. This regularizer
penalizes non-smooth functions and ensures sparsity as a
certain number of parametersαij will tend towards zero.
Regularization over theL2-norm of the parameter vectors, i.e.,
R(αj) = ‖αj‖22 is also possible, but may result in less sparse
models.

III. R EDUCED-SIZE KERNEL MODELS FOR LARGE-SCALE

PROBLEMS

As in Support Vector Machines (SVMs) [16], we refer to the
vectorsxi for which the associated{αij}j=1,...,n parameters
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are nonzero as theSupport Vectors(SVs), since these are the
only data points kept in the final model. For submodels in
kernel form (2), the optimization program (4) involves a large
number of variables associated to the number ofpotentialSVs.
Since the kernel submodels consider all the data pointsxi,
i = 1, . . . , N , as potential SVs, the number of variablesαij

and bj is n(N + 1). Thus solving this problem for largeN
with a global optimization solver may become prohibitively
time consuming.

In this section, we propose four methods to reduce the num-
ber of parametersαkj in (2) beforestarting the optimization.
Let

Sj = {xkj}Mj

k=1
(5)

denote the set ofMj SVs retained for thejth reduced-size
submodel

f̃j(x) =

Mj
∑

k=1

βkjkj(xkj ,x) + bj. (6)

The (Mj + 1) parameters of submodel̃fj are now given by
βj = [β1j , . . . , βMjj ]

T andbj .
With these notations, the complete identification procedure

is as follows.
1) Find the structure of each submodelf̃j(x) as in (6) by

applying one of the methods presented below.
2) Train the hybrid model by solving

min
{βj},{bj}

1

n

n
∑

j=1

βT
j βj

Mj

+
C

N

N
∑

i=1

n
∏

j=1

ℓ
(

yi − f̃j(xi)
)

.

(7)
3) Estimate the modêλi for each data point by

λ̂i = arg min
j=1,...,n

ℓ(yi − f̃j(xi)), i = 1, . . . , N, (8)

and classify the data inton subsets accordingly.
4) Re-estimate the submodels with a nonlinear estimator

applied independently to each data subset.
Note that the reduced-size submodels (6) are based on an
intrinsically sparse representation of the data, hence the
choice of the smoothL2-norm regularization over the low-
dimensional parameter vectorsβj in (7).

The final optimization program (7) involves only
∑n

j=1
(Mj + 1) variables instead ofn(N + 1) as in (4).

This allows the complexity of the algorithm (7) to scale
only linearly with respect to the number of training dataN
(through the summation term), as experimentally verified
in [4].

In this procedure, the first step may be interpreted as select-
ing a subset of the columns of the kernel matrix. In particular,
the nature of the hybrid system identification problem and of
the global optimization program (4) calls for feature selection
methods that can applywithoutknowledge of the target values
yi (which cannot be assigned to a submodel ahead of Step 3)
andbeforeoptimizing the parameters (which are too numerous
otherwise). These constraints motivated the choice of the four
methods described in the following subsections and the fact
that, for feature selection, we do not consider regularization-
based methods and other approaches requiring to solve an
instance of the optimization problem (4) with the full model.

After the classification of the data in Step 3, the submodels
can be re-estimated in Step 4 by consideringn independent
problems withn distinct data sets, to which any classical
nonlinear estimation method can be applied. The sparsity and
accuracy of the final model thus depends on the properties
of this particular method. For instance, the experiments of
Section IV will use SVMs.

In the following, Kj will denote the kernel matrix of
modej with components(Kj)ik = kj(xi,xk) andKSj

its
submatrix built from the rows and columns corresponding to
the SVs inSj , i.e.,

KSj
=







kj(x1j ,x1j) . . . kj(x1j ,xMjj)
...

. . .
kj(xMjj,x1j) . . . kj(xMjj ,xMjj)






. (9)

Also note that in the four proposed procedures, a data pointxi

originally generated by a particular mode can be consideredas
a SV for another mode. The main idea here is to capture only
the general distribution of the data in the feature spaceF in
order to ensure sufficient support for the model. However, for
piecewise models, where a particular submodel is only active
in a given region of input space, the procedures also select
SVs outside of this region. In this case, how to obtain sparser
representations should be investigated.

A. Entropy Maximization

The fixed-size Least Squares SVM (LS-SVM) [9] is based
on the maximization of an entropy criterion to ensure a
sufficient coverage of the feature space by the SVs. Then
the selected SVs are used to build an approximation of the
nonlinear mappingφj (3) hidden in the kernel function,
which is in turn used to recast the problem into a linear
form in the approximated feature space. However, in our
experiments, this method was rather sensitive to the numbers
of selected SVs. Therefore, we will apply a similar but more
straightforward method for Gaussian RBF kernels, where we
do not build an approximation of the nonlinear mapping, but
instead use the SVs as RBF centers directly. This leads to
reduced submodels (6).

As in fixed-size LS-SVM [9], the selection algorithm
maximizes the quadratic Rényi entropyH , which quantifies
the diversity, uncertainty or randomness of a system. For a
particular modej, we approximateH by

Hj ≈ − log
1

M2
j

1
TKSj

1, (10)

whereKSj
is given by (9), and the procedure to select the

SVs is as follows.

1) Randomly select a subsetSj with Mj SVs from the
training setS, and initializeS = S \ Sj .

2) Randomly select an SV inSj, x⋆, and one of the
remaining training samples,x† ∈ S.

3) If the criterion (10) increases via replacingx⋆ by x†,
retainx† as an SV inSj and replacex† by x⋆ in S.

4) Repeat from 2 until the increase of the criterion is too
small or a maximum number of iterations is reached.
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In this procedure, the numbers of SVs{Mj}j=1,...,n are
hyperparameters that must be fixeda priori. Following [7],
for Gaussian RBF kernels with bandwidth parameterσj , the
numbersMj can be set according to the heuristic

Mj =

⌊

1

σj

max
k=1,...,p

(

max
i=1,...,N

xik − min
i=1,...,N

xik

)⌋

, (11)

where⌊·⌋ denotes the integer part of its argument andxik is
the kth component ofxi.

This heuristic is not optimal in the sense of minimizing
the generalization error, but it ensures sufficient supportfor
the model over the whole input space. The numbersMj in
(11) strongly depend on the bandwidthsσj , since more SVs
are needed to cover the whole input space with a smaller
bandwidth. In practice, the values ofσj can influence the
quality of the model as they control the smoothness of the
submodels. Proper tuning of these values may require multiple
trials or prior knowledge on the relative smoothness of the
subsystems in the model. However, suboptimal numbersMj

are sufficient to obtain rough mode estimatesλ̂i and a data
classification to re-estimate the submodels in Step 4. If these
refined submodels are learned by SVM techniques for instance,
then the final number of SVs is automatically determined.

B. Feature Vector Selection

Following the Feature Vector Selection (FVS) method of
[10], [11], the selection of support vectors aims at finding a
suitable set of basis vectors in the feature spaceF that spans
the data subspace.

If we let wj =
∑N

k=1
αkjφj(xk), then the kernel expan-

sion (2) can be rewritten in terms of inner products in feature
space to yield a linear form with respect towj as

fj(x) =
N
∑

k=1

αkj〈φj(xk),φj(x)〉+ bj = 〈wj ,φj(x)〉+ bj .

(12)
The vector wj is represented by means of a set ofN
vectors{φj(xk)}Nk=1

and there areN parametersαkj to be
determined. In practice, the dimension of the subspace which
contains the whole nonlinearly-mapped data set in feature
space is significantly lower thanN and equal to the numerical
rank of the kernel matrixKj .

Thus, in order to reduce the number of parameters, one can
expresswj from a reduced set of basis vectors{φj(xkj)}Mj

k=1

as

wj =

Mj
∑

k=1

βkjφj(xkj), (13)

wherexkj ∈ Sj , with typically Mj ≪ N . This leads to the
jth reduced-size submodel in the form (6) as

f̃j(x) =

Mj
∑

k=1

βkj〈φj(xkj),φj(x)〉+bj =

Mj
∑

k=1

βkjkj(xkj ,x)+bj.

(14)
In comparison to the previous method,Mj is not fixeda

priori , but simply corresponds to the dimension of the smallest
subspace containing the data in feature space.

The setSj (5) induces a basis vector set in feature space by
the mappingφj (3), which can then be used to approximate
φj(x) for anyx in input space. The Feature Vector Selection
proposed in [10] searches for the setSj that minimizes the
reconstruction error between this approximation and the true
mapping of the points over the entire training data setS. As
detailed in [10] this is equivalent to finding the setSj which
maximizes the following criterion

J(Sj) =
1

N

N
∑

i=1

kT
Sji

K−1

Sj
kSji

kj(xi, xi)
, (15)

wherekSji =
[

kj(x1j ,xi), ..., kj(xMjj ,xi)
]T

.
Though the method proposed in [10] to maximize (15) can

be improved for efficiency as in [12], it remains rather time
consuming for large data sets. In order to maintain as low
as possible the computational cost of the overall estimation
procedure, in which the basis selection is only the first step,
we instead propose the following randomized algorithm.

1) Initialize Sj = ∅, S = S, k = 1 and defineJ(∅) = 0.
2) Append toSj a randomly selected vectorxkj from

the setS of remaining training input data and compute
J(Sj).

3) If J(Sj) increases, retainxkj in Sj and updateS =
S \ {xkj}, otherwise removexkj from Sj .

4) Loop from Step 2 untilKSj
is no longer invertible

(

det(KSj
) < ǫ

)

.

Then the number of basis vectorsMj to use in (14) is given
by Mj = |Sj |.

C. Kernel Principal Component Regression

Following the KPCR method in [13], the number of opti-
mization variables in (4) can be reduced by using only several
principal components of the kernel matrix which are sufficient
to account for most of the structure in the data.

Formally, for a particular modej, we are interested in
finding the kernel principal components that can represent all
data points associated to this mode. However, as the discrete
stateλi (determining to which mode belongs a data point) is
unknown for the training data, we have to compute the kernel
principal components from the whole data setS for each
mode. Note nevertheless that these principal components can
be different from one mode to another if the kernel functions
kj are different.

LetΦj be the(L×N) matrix whoseith column is the vector
φj(xi) of the observationxi mapped into theL-dimensional
feature spaceF . We assume that the mapped data is centered
in feature space, i.e.,

∑N

i=1
φj(xi) = 0. If not, the kernel

matrix Kj must be substituted by

K̂j =

(

IN − 1

N
1N×N

)

Kj

(

IN − 1

N
1N×N

)

, (16)

as proposed in [14].
Let Λj = diag{λ̃1, . . . , λ̃L}, V j = [v1, . . . ,vL] be the

eigenvalue diagonal matrix and the corresponding normal-
ized orthogonal eigenvector matrix of the covariance matrix
1

N
ΦjΦ

T
j . As in the PCA method, a feature vectorφj(x) is
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transformed to new coordinates by the eigenvectorsvk, i.e.,
the projection ofφj(x) onto the eigenvectorsvk,

φnew
j (x) = V T

j φj(x). (17)

The KPCR model can be written as

f̃j(x) = βT
j φ

new
j (x) + bj = βT

j V
T
j φj(x) + bj, (18)

whereβj is a coefficient vector in the feature spaceF . Note
that all vk with λ̃k 6= 0 lie in the span ofN mappings
{

φj(x1), . . . ,φj(xN )
}

. To avoid an explicit mapping of the
data, the eigenvectorsvk are computed thanks to an equivalent
eigenvalue problem proposed by Schölkopfet al. in [14]:

Kjγk = µkγk, (19)

λ̃k =
µk

N
, (20)

vk = Φj

γk
√

Nλ̃k

, k = 1, . . . , N, (21)

where µk and γk (k = 1, . . . , N ) are eigenvalues and
eigenvectors of the matrixKj .

After arranging the eigenvectorsγk with the corresponding
eigenvaluesµk in decreasing order, one only uses the first
Mj nonlinear principal components ofφnew

j (x) which is
computed by (17) and (21). This reduces the size of the
coefficient vectorβj to be estimated and leads to

f̃j(x) = βT
j Ajkj(·,x) + bj , (22)

whereAj =

[

γ
1√
µ1

, . . . ,
γMj√
µMj

]T

∈ R
Mj×N andkj(·,x) =

[kj(x1,x), ..., kj(xN ,x)]T ∈ R
N .

The procedure to build the reduced-size kernel form for a
particular modej is as follows.

1) Compute the kernel matrixKj from the training data
setS.

2) Compute theMj largest eigenvalues and corresponding
eigenvectors ofKj and calculateAj .

3) Apply the form (22) in (7).

The number of nonlinear principal componentsMj must be
sufficient to describe the structure of the data. For a givenρ ∈
[0, 1], the cumulative energy content can be used to estimate
Mj as the smallest numberm such that

∑m
i=1

µi
∑N

i=1
µi

≥ ρ, (23)

where µi, i = 1, ..., N , are the eigenvalues arranged in
decreasing order and

∑N

i=1
µi = Trace(Kj). Note that

Trace(Kj) = N in case of a Gaussian RBF kernel matrix.

D. Reduced Kernel Principal Component Regression

In the method above, one obtains a reduced-size kernel
submodel form (22) with onlyMj+1 parameters that need to
be estimated. However, the resulting model needs to retain the
N original data points instead ofMj as in the form (6). Indeed
computing its output for a new inputx involves the vector
kj(·,x) ∈ R

N . Moreover, the eigenvalue decomposition of a
too large kernel matrixKj can be prohibitive. To avoid these

issues, the kernel matrix can be approximated by a low rank
matrix K̃j via the Nyström method [17].

Most of the computations for the low rank approximation
K̃j of a kernel matrixKj involve only a subset of the training
data. In the original Nyström method, the subset selection
is random with the subset size fixed beforehand. Such a
selection influences the accuracy of the solution and leads to
a more complex implementation. Thus, the Nyström method
based on an incomplete Cholesky decomposition is proposed
in [15]. The incomplete Cholesky decomposition of matrix
Kj provides automatically anRj × N -dimensonal matrix
Cj = [Lj N j ] such thatK̃j = CT

j Cj and a corresponding
data subsetS′

j of sizeRj (Rj < N ) such thatKS′

j
= LT

j Lj .
Then, theRj eigenvalues of theRj × Rj correlation matrix
Qj = CjC

T
j are identical to the largest ones of̃Kj .

According to this method, the model (22) is rewritten with
matrix Aj replaced by one of dimensionRj ×Rj as

AjRj
= ET

j L
−T
j , (24)

whereEj is the eigenvector matrix ofQj and its columns are
arranged in decreasing order of the related eigenvalues.

As before, only the firstMj ≤ Rj first eigenvector columns
of Ej are selected according to the criterion (23) to form a
reduced model as in (22):

f̃j(x) = βT
j AjMj

k̃j(·,x) + bj , (25)

whereβj is theMj-dimensional parameter vector,AjMj
=

ET
jMj

L−T
j is an Mj × Rj matrix and the reduced vector

k̃j(·,x) = [k(x1j ,x), ..., kj(xRjj ,x)]
T is calculated for an

x with xij , i = 1, . . . , Rj , in the selected subsetS′
j.

The procedure to build the reduced-size kernel form for a
particular modej is as follows.

1) Compute the kernel matrixKj from the training data
setS.

2) Obtain the matrixCj and the subsetS′
j by an incomplete

Cholesky decomposition ofKj .
3) Compute theMj largest eigenvalues and corresponding

eigenvectors ofQj and calculateAjMj
.

4) Apply the form (25) in (7).

IV. N UMERICAL EXPERIMENTS

This section presents numerical results on two examples.
The first one involves the estimation of a function switching
between two unknown nonlinear functions in Sect. IV-A, while
the second one considers the identification of a switched
nonlinear dynamical system in Section IV-B.

As proposed in [4], all optimization programs are solved
with the Multilevel Coordinate Search (MCS) algorithm [18].
Though the MCS algorithm can deal with unbounded vari-
ables, box constraints are used to limit the search space and
restrain the variables to the interval[−100, 100] (which is not
very restrictive). All experiments are performed using only
Matlab code on a standard desktop computer.

This section compares the four proposed methods for build-
ing reduced-size kernel submodels: Entropy maximization
(Sect. III-A), FVS (Sect. III-B), KPCR (Sect. III-C) and
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RKPCR (Sect. III-D). In the following Tables of results, the
size of the SV sets for mode 1 (M1) and mode 2 (M2)
is given by (11) for the Entropy maximization while being
automatically determined for the other methods. For the KPCR
and RKPCR methods,ρ in (23) is set to0.9. The quality of
the models is evaluated on an independent and noise-free test
set ofNt = 2000 data points by the following performance
indexes: the normalized criterion FIT= 100

(

1− ‖ŷ−y‖2

‖y−ȳ1‖2

)

,
wherey contains the target outputs,ȳ their mean and̂y the
predicted outputs using either the estimated discrete state λ̂i

(8) (FITa) or the trueλi (FITb) and the classification error rate
on the test set (Test Classif. err.). The classification error rate
on the training set (Train. Classif. err.) is also given in order
to analyze the ability of the methods to separate between the
modes. The computing times of the methods are reported by
distinguishing between the time required by the SV selection
in Step 1 of the complete procedure (Selection Time) and the
time required by the MCS solver for Step 2 (Optimization
Time). The re-estimation tables correspond to the refinement
of the submodels in Step 4 by standard SVM for regression
[16] applied independently to each group of data according
to the classification given bŷλi (8). This step uses the same
kernel hyperparameters and regularization trade-offC = 100
as all the compared methods. The loss functionℓ(e) = e2

is used in (7). Note that all numbers in the Tables below
account for averages and standard deviations over 100 trials
with different random noise sequences.

A. Illustrative Example

Consider the function arbitrarily switching between two
nonlinear behaviors as

y(x) =

{

x2, if λ = 1,

sin(3x) + 2, if λ = 2.
(26)

A training set of N = 2000 points is generated by (26)
with additive zero-mean Gaussian noise (standard deviation
σe = 0.3) for uniformly distributed randomxi ∈ [−3, 3] and
uniformly distributed randomλi ∈ {1, 2}. The data are shown
in Figure 1 as black dots. The difficulty of this toy example
lies in the crossing of the submodels, which results in strongly
mixed data at particular locations (e.g., for−1 < x < −0.2
in Fig. 1). In particular, these crossings potentially generate
undesired switches between the submodels and violate the
assumption required by the method in [8].

In this experiment, the training data are normalized to zero
mean and unit variance. The optimization program (7) is
solved with two reduced-size submodels of the form (6) using
Gaussian RBF kernels of widthσ1 = 0.8 and σ2 = 0.2,
respectively. Representative examples of the resulting submod-
els are shown in Figure 1. Table I shows the results. For
a comparison, the FIT of the reference model obtained by
applying the re-estimation step from the true classification is
93.50± 2.91.

The classification error rates on the training set as low as
10% show that the algorithm is able to correctly separate
between the two modes. Remaining classification errors are
mostly due to indistinguishable points at the intersectionof

the two nonlinear functions. Thus they do not incur significant
errors in the re-estimation step, which, according to the FITa,
leads to accurately refined models, especially for the RKPCR
method.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

Fig. 1. Estimation of a switched nonlinear function from 2000 noisy data
points (black dots). The red and blue curves show the estimated reduced-size
submodels based on the KPCR method.

B. Switched Nonlinear Dynamical System

The next example considers the identification of a dynamical
system arbitrarily switching between two modes as

yi =























0.9yi−1 + 0.2yi−2, if λi = 1,

(0.8− 0.5 exp(−y2i−1))yi−1 −
(0.3 + 0.9 exp(−y2i−1))yi−2 + if λi = 2.

0.4 sin(2πyi−1) + 0.4 sin(2πyi−2),
(27)

A training set ofN = 2000 points is generated by (27) with a
uniformly distributed random sequence ofλi ∈ {1, 2} and an
additive zero-mean Gaussian noise (standard deviationσe =
0.1) from the initial conditiony0 = y−1 = 0.1, whereas the
noise-free test set usesy0 = 0.4, y−1 = −0.3. Note that
the noise is added toyi during the data generation process,
resulting in colored noise.

For the identification, the submodelf1 uses a linear kernel
with an arbitrary number of SVsM1 = 5 for the entropy
maximization method (this is a fictive number, as the two
linear parameters can be recovered from linear combinations
of the SVs), whilef2 uses a Gaussian RBF kernel (σ = 0.3).
Corresponding results are reported in Table II. For a com-
parison, the FIT of the reference model with known mode is
92.79 ± 2.67. In these experiments, the PCA-based methods
(KPCR and RKPCR) yield better FITs and fewer classification
errors for a low computing time.

V. CONCLUSIONS

This paper focused on the switched regression problem at
the core of hybrid system identification in the particular case
of systems switching between unknown nonlinear dynamics.
The proposed approach relies on the ability to express each
submodel in a sparse kernel form, which allows a global
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TABLE I
COMPARISON OF THE FOUR PROPOSED METHODS TO BUILD AND ESTIMATEREDUCED-SIZE KERNEL HYBRID MODELS.

Method Entropy max. FVS KPCR RKPCR
Estimation

M1 / M2 4 / 17 7.0± 0.7 / 14.9± 1.8 3± 0 / 10± 0 3± 0 / 10± 0

FITa(%) 87.06± 2.03 87.95± 3.83 88.33± 3.89 86.20± 2.17

FITb(%) 81.51± 21.04 78.25 ± 26.48 88.21± 3.97 82.35± 21.43

Test Classif. err. (%) 5.22± 9.94 7.71± 10.63 2.14± 1.08 4.32± 5.35

Train. Classif. err. (%) 8.47± 9.65 10.80± 9.92 5.25± 0.58 7.30± 4.80

Selection Time (s) 0.94± 0.01 7.27± 1.13 8.80± 0.80 0.06± 0.04

Optimization Time (s) 3.1± 0.7 3.3± 1.1 1.9± 0.5 1.3± 0.4

Re-estimation
FITa(%) 91.51± 3.50 92.36± 2.44 89.81± 4.26 92.75± 2.70

FITb(%) 85.77± 22.33 82.00± 27.4 89.69± 4.340 88.92± 22.20

Test Classif. err. (%) 4.75± 10.26 6.65± 10.70 2.13± 1.10 3.05± 5.45

TABLE II
ESTIMATION OF AN ARBITRARILY SWITCHED NONLINEAR ARX SYSTEM.

Method Entropy max. FVS KPCR RKPCR
Estimation

M1 / M2 5 / 30 2.0± 0 / 28.1 ± 3.8 2.0± 0 / 36.8± 2.4 2.0± 0 / 37.0 ± 2.7

FITa(%) 71.22 ± 2.75 69.57± 4.01 80.76 ± 3.44 81.67± 3.24

FITb(%) 53.86 ± 8.59 56.77± 8.50 73.17 ± 5.31 75.81± 4.75

Test Classif. err. (%) 20.16 ± 4.37 17.26± 4.84 8.85± 2.61 7.74 ± 2.31

Train. Classif. err. (%) 21.69 ± 3.60 19.34± 4.18 12.67 ± 2.28 11.94± 2.00

Selection Time (s) 1.07± 0.06 18.21± 4.15 1.85± 0.13 1.93 ± 0.15

Optimization Time (s) 6.5± 2.0 4.9± 2.0 6.60± 2.90 7.42 ± 3.07

Re-estimation
FITa(%) 86.03 ± 2.36 85.17± 4.39 89.05 ± 4.63 90.03± 3.69

FITb(%) 77.19 ± 7.95 77.05± 8.95 83.88 ± 4.99 84.71± 4.08

Test Classif. err. (%) 12.29 ± 4.45 9.19 ± 5.16 4.40± 1.73 3.86 ± 1.18

optimization solver to efficiently estimate the parametersof
the model. Four methods were proposed and compared for
the selection of a subset of the training data on the basis of
which such reduced-size models can be built. The entropy
maximization approach requires to fix the model size arbitrar-
ily or through the heuristic (11) for Gaussian RBF kernels.
On the other hand, the other approaches can determine the
model size either as a byproduct of the procedure or through
a high-level parameter such as the ratio of cumulative energy
content. Experiments showed that these latter methods can
sufficiently reduce the model size to allow the overall problem
to be solved.

Determining the number of submodels is an important issue
for all hybrid system identification methods (linear and non-
linear). The paper focused on the estimation of the submodels
under the assumption that this number is fixeda priori, as
is the case with many other methods, and provided the first
and most central building block for a complete nonlinear
hybrid system identification procedure. Further investigation
will focus on automatic procedures for the tuning of the
number of submodels. In addition, one of the remaining
open issues with the proposed method concerns colored noise
which implies a bias in the estimation of dynamical systems.
Future work will also aim at specializing the algorithm for the
piecewise smooth regression setting, where the different modes
and nonlinear behaviors are separated in the input space.
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