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Abstract

Echo state networks (ESNs) are a novel form of recurrent neural networks (RNNs) that provide an

efficient and powerful computational model approximating nonlinear dynamical systems. A

unique feature of an ESN is that a large number of neurons (the “reservoir”) are used, whose

synaptic connections are generated randomly, with only the connections from the reservoir to the

output modified by learning. Why a large randomly generated fixed RNN gives such excellent

performance in approximating nonlinear systems is still not well understood. In this brief, we

apply random matrix theory to examine the properties of random reservoirs in ESNs under

different topologies (sparse or fully connected) and connection weights (Bernoulli or Gaussian).

We quantify the asymptotic gap between the scaling factor bounds for the necessary and sufficient

conditions previously proposed for the echo state property. We then show that the state transition

mapping is contractive with high probability when only the necessary condition is satisfied, which

corroborates and thus analytically explains the observation that in practice one obtains echo states

when the spectral radius of the reservoir weight matrix is smaller than 1.

Index Terms

Circular law; concentration of measure; echo state networks; echo state property; random matrix
theory; recurrent neural networks

I. Introduction

Recurrent neural networks (RNNs) are widely used to model nonlinear dynamical systems.

Recently, a new framework for RNNs, namely echo state networks (ESNs), was proposed

by Jaeger et al. [1], [2]. ESNs (and closely related liquid state machines, independently

proposed by Maass et al. [3]) share some features characteristic of models for learning in

biological brains and they exhibit superior performance when used as “black-box” time-

NIH Public Access
Author Manuscript
IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2014 July 23.

Published in final edited form as:
IEEE Trans Neural Netw Learn Syst. 2012 January ; 23(1): 175–182. doi:10.1109/TNNLS.2011.2178562.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



series models. In an ESN, neurons in a fixed (non-trainable) recurrent layer, known as “the

reservoir,” are driven by the input signals, and the trainable output neurons combine the

output of the excited reservoir state to generate task-specific temporal patterns. This new

RNN paradigm is also known as “reservoir computing.”

ESNs have drawn great interest from the research community and have been successfully

applied to various tasks, e.g., chaotic time-series prediction [4], communication channel

equalization [1], dynamical pattern recognition [5], [6], and gene regulatory network

modeling [7]. Various ESN schemes have been explored, including a small-world recurrent

neural system with scale-free distribution [8], decoupled ESNs with lateral inhibition [9],

ESNs with uniformly distributed poles and adaptive bias [10], augmented complex ESNs

[11], and echo state Gaussian process [12]. Rodan and Piňo investigated the minimal

complexity of reservoir construction required to achieve good representation power for

ESNs, and proposed three simple deterministically constructed reservoir topologies [13].

Lukos̆evic̆ius and Jaeger presented a comprehensive review on the theoretical results and

applications of ESNs in [14].

The salient difference from traditional RNNs [15], [16] is that an ESN employs a large

number of randomly connected neurons (usually on the order of 50 to 1000), namely the

“reservoir,” i.e., unlike traditional RNNs, the connection weights between neurons in the

recurrent (reservoir) layer do not require any supervised training—only connection weights

to output neurons are optimized. Thus, training is greatly simplified compared to traditional

RNNs and well-known RNN training problems of slow convergence, even lack of

convergence, and local minima are avoided. In fact, if the ESN employs a linear activation

function in the output layer, ESN training reduces to a simple linear regression problem.

The working principle of an ESN derives from an important algebraic property of the

reservoir, namely the echo state property (ESP). A recurrent reservoir driven by an external

input signal has the ESP if the reservoir states are systematic variations of the input driving

signal. Essentially, satisfying the ESP means that the effect of both previous states and

previous inputs on a future state will gradually vanish (i.e., neither persist nor become

amplified) as time passes [2]. If the ESP holds, the reservoir network state will

asymptotically (in time) depend only on the input history and the nonlinear system will be

well-approximated through a linear combination of the reservoir’s “echo state” signals.

Metaphorically, under the ESP, the reservoir state signal can be thought of as an “echo” of

the input history.

Jaeger presented both a necessary condition (under the assumption that the input space

includes the zero sequence) and a sufficient condition for the ESP [2]. Buehner and Young

proposed a less restrictive sufficient condition based on minimizing the matrix operator D-

norm over the set of diagonal matrices [17]. However, these papers did not consider the

unique characteristic of the reservoir, i.e., that it is randomly generated. Here, by exploiting

this fact and applying results from random matrix theory, we will show that the sufficient

conditions in [2] and [17] are rather conservative.
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The topology of the reservoir in ESNs has been of great research interest, with the classical

form a randomly generated and sparsely connected network [1], [2]. Several attempts have

been made to search for a better topology—the small-world, scale-free, and biologically

inspired reservoir topologies. However, quoting [14], “none of the investigated network

topologies was able to perform significantly better than simple random networks, both in

terms of eigenvalue spread as well as testing error.” Also, we again note [13] which, while

not giving designs that outperform simple random reservoirs, sought the minimum

complexity topology needed to achieve good modeling power.

The novel contributions of this brief are threefold. First, motivated by the above quotation,

we analytically examine the essential characteristics of random reservoirs. We apply recent

results from random matrix theory to demonstrate the asymptotic distributions of

eigenvalues and singular values of reservoir weight matrices. We then show that randomly

generated reservoirs, either sparsely or fully connected, either with Bernoulli or Gaussian

connection weights (or, in fact, with weights distributed according to other density families),

are all expected to behave similarly. These results thus explain the above-quoted observation

from [14]. Second, we quantify the gap between the scaling factor bounds used to define the

ESP necessary and sufficient conditions proposed in previous works. We show that,

asymptotic in the size of the reservoir, this gap becomes quite large, with the necessary

condition bound twice as large as the sufficient condition bound. Finally, we show that,

when the spectral radius of the reservoir weight matrix is smaller than 1 (the necessary

condition for the ESP when the input space contains the zero sequence), the state transition

mapping is in fact contractive with high probability, given a sufficiently large reservoir. This

result corroborates the observation in [2] that the necessary condition for the ESP is often

good enough in practice, such that violations of the ESP are not practically observed. This

result, together with the factor of two asymptotic gap between the scaling factor bounds,

indicates the conservativeness of the sufficient conditions from [2] and [17]. The practical

implication of these results is that standard ESN design approaches, based on use of the

sufficient conditions, are suboptimal—use of a conservative scaling factor compromises the

amount of memory in the RNN, and thus the ability to accurately model a given target

dynamical system.

The remainder of this brief is organized as follows. In Section II, we revisit the ESN model,

random reservoirs, and the ESP. This is followed by detailed discussion in Section III on

relevant results from random matrix theory, the properties of random reservoirs, and the gap

between the sufficient and necessary conditions previously proposed for the ESP. In Section

IV, we prove that the necessary condition for the ESP ensures the state transition mapping is

contractive with high probability. We briefly conclude our work in Section V.

II. ESN Formulation

A. Basic ESN Formulation

A typical ESN is shown in Fig. 1. It can be represented by state update and output equations.

While enhanced representation power for an RNN may be achieved by the use of output

feedback, this can also introduce instability problems [14], [18]. To avoid these issues and

also to simplify the mathematical analysis, we will focus in this brief on ESNs without
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output feedback, as also adopted by others [2], [17]. Thus, the activation of internal units is

updated according to

(1)

where x is a N × 1 vector of the reservoir state, W is a N × N reservoir weight matrix, Win is

an N × Nin input weight matrix, u is a Nin × 1 vector of system inputs, y is a Nout × 1 vector

of system outputs, and f is the neuron activation function (usually a tanh sigmoid function),

applied component-wise.

For notational convenience, we denote the state transition equation by

(2)

and the output equation by

(3)

where Wout is the Nout × (N + Nin) output weight matrix, and g is usually a tanh sigmoid or

an identity function, applied component-wise.

B. Random Reservoirs in ESNs

A salient feature that distinguishes ESNs from conventional RNNs is the use of large fixed

random reservoirs. The classical ESN reservoir topology is a randomly generated and

sparsely connected network [1]. It was thought that “this condition lets the reservoir

decompose into many loosely coupled subsystems, establishing a richly structured reservoir

of excitable dynamics” [1]. Nevertheless, this is not generally true and it has in fact been

reported that fully connected reservoirs work just as well as sparsely connected ones [18].

Such observation leads to inquiry of the essential characteristics of random reservoirs and

their role in approximating nonlinear dynamical systems.

The types of random reservoirs are characterized by the structure of the reservoir weight

matrix. Assume the matrix W = αWN, where α is a properly chosen global scaling factor

(whose utility will be discussed later), and where the elements of the matrix WN are random

variables that are independent and identically distributed (i.i.d.). Here we consider the

following three types of reservoir weight matrices.

Sparse random reservoir—This is the most common type of random reservoir in ESNs

[1], [2]. The random variable w (which characterizes each element of WN) follows the

modified Bernoulli probability mass function (PMF)
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(4)

where Pr(·) denotes probability of an event and c ∈ [1/3, 1) is “the connectivity” of the

reservoir. Note that if WN [i, j] = 0, there is no connection from reservoir neuron i to

reservoir neuron j. Thus, using the modified Bernoulli PMF leads to a realization of W that

is sparsely connected.

Fully connected Gaussian random reservoir—w follows a standard normal

distribution

(5)

Fully connected Bernoulli random reservoir—w follows the Bernoulli distribution

(6)

These three types of reservoir weight matrices exhibit different network topologies, i.e.,

either sparsely connected or fully connected neurons in the reservoir, and different types of

weights, i.e., either continuous-valued or discrete-valued. All three types have been used as

random reservoirs in ESNs and have been successfully applied.

C. Definition of ESP

In order to work properly, an ESN should possess the ESP, as defined in [2].

Definition 1 (Jaeger [2])—Assume standard compactness conditions, i.e., inputs drawn

from a compact input space U and network states restricted to a compact set A. Assume that

the network has no output feedback connections. Then, the network has echo states if the

network state x(n) is uniquely determined by any left-infinite input sequence ū−∞. More

precisely, this means that for every input sequence, …, u(n − 1), u(n) ∈ , for all state

sequence pairs …, x(n − 1), x(n) ∈  and …, x′(n − 1), x′(n) ∈ , where x(k) = T (x(k −

1), u(k)), x′(k) = T (x′(k − 1), u(k)), and  is the set of natural numbers, it holds that x(n) = x
′(n).

The definition of the ESP implies that similar echo state sequences must represent similar

input histories. In [2], Jaeger also provided several equivalent characterizations of echo

states, e.g., the properties of being state contracting, state forgetting, and input forgetting.

However, the ESP definition is hard to check in practice. A known sufficient algebraic

condition for the ESP is that the largest singular value of W (defined as the square root of

the largest eigenvalue of WWT) is smaller than 1. On the other hand, the ESP is violated (for

input space containing the zero sequence) when the spectral radius of W (defined as its

largest magnitude eigenvalue) is greater than 1. Therefore, the spectral radius of W
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restricted to being less than or equal to 1 serves as a necessary condition for the ESP. The

following theorem formally presents these two conditions for the network to possess the

ESP.

Theorem 1 (Jaeger [2])—Assume a sigmoid network, i.e., with f = tanh, applied

component-wise: 1) let the weight matrix W satisfy σmax < 1, where σmax is its largest

singular value. Then d(T(x, u), T(x′, u)) < d(x, x′) for all inputs u ∈ U, for all states x, x′

[−1, 1]N, where d(·, ·) is any distance metric. This implies the ESP holds, and 2) let the

weight matrix have spectral radius |λmax| > 1, where λmax is the eigenvalue of W with the

largest absolute value. Then the network has an asymptotically unstable null state. This

implies that it does not satisfy the ESP for input space U containing 0 and admissible state

space A = [−1, 1]N.

As suggested in [2], a convenient strategy to obtain ESNs is to start with some weight matrix

WN and then select a global scaling factor α to suitably define W = αWN. Let σmax(WN)

and |λmax(WN)| denote the largest singular value and the spectral radius of WN, respectively.

Then, according to [2], for the ESP to hold, the sufficient condition is  and the

necessary condition is .

Furthermore, although the existence of the ESP for  has not

been theoretically proved, it has been observed, albeit without analytical justification, that

“one obtains echo states even when α is only marginally smaller than  ” and

“the sufficient condition is very restrictive” [2].

Buehner and Young proposed a tighter sufficient condition for the ESP. The main idea is to

minimize the matrix operator D-norm over the set of diagonal matrices [17]. The D-norm of

a vector x ∈ ℝN is defined to be ||x||D = ||Dx||, where D ∈ ℝN×N is nonsingular. Then, the

matrix operator D-norm (the induced D-norm) of a matrix W ∈ ℝN×N is given by

However, because the matrix D does not have full structure (and in fact was restricted to

being diagonal), the sufficient condition derived in [17] is still in general conservative.

Pertinent to the sequel, we observe that the derivations of the existing results on the

sufficient condition [2], [17] have not taken into account the primary unique characteristic of

an ESN, i.e., that the reservoir matrix is a random matrix.

III. Random Matrix Theory and Random Reservoirs

In this section, we first introduce some recent results in random matrix theory, and then

apply them in developing some relevant properties of random reservoirs in ESNs.

A. Empirical Spectral Distribution (ESD) of Random Matrices

Let
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(7)

be the ESD of WN ’s eigenvalues λi ∈ , i = 1, …, N, where |·| denotes the cardinality of the

set and Re(·) and Im(·) are the real and imaginary parts of the complex number, respectively.

A well-known conjecture is the circular law of random matrices, which states that

asymptotically, as N gets large, the eigenvalues of a properly normalized random matrix WN

are uniformly distributed on the unit disk in the complex plane. After many pioneering

efforts in proving the circular law for various scenarios, including sparse random matrices

[19]–[23], it was proved in full generality, in both weak and strong forms, quite recently

[24].

Theorem 2 (Circular Law [24])—Let WN be the N × N random matrix whose entries are

i.i.d. complex random variables with mean 0 and variance 1. Define .

Then the ESD of W converges (in both the strong and weak senses) to the uniform

distribution on the unit disk, as N → ∞.

Corollary 1—The ESDs of reservoir weight matrices W as defined in (4) with the scaling

factor , (5) with the scaling factor , and (6) with the scaling factor

 all have the same limit distribution and, more specifically, converge (in both the

strong and weak senses) to the uniform distribution on the unit disk.

The circular law implies that, when N is sufficiently large (as is typical for ESNs), the

eigenvalues of W spread out evenly over the unit disk in the complex plane, independent of

the specific distribution of w, as illustrated in Fig. 2. It is also important to note that, for the

circular law to hold for sparse matrices, the connectivity c of the sparse matrix must satisfy

the inequality c > N−1+ε1, where ε1 > 0 is a small positive constant, because otherwise, with

non-negligible probability, the sparse matrix would lose its rank-efficiency as N gets large

([23], Th. 1.3).

B. Singular Values of Random Matrices

Similarly, let σ1, σ2, …, σN be the singular values of W. The empirical distribution of the

squares of the singular values of W is defined by

(8)

It has been shown that νW is governed by the Marchenko–Pastur law [25]–[27].

Theorem 3 (Marchenko–Pastur Law)—Let WN be the N × N random matrix whose

entries are i.i.d. complex random variables with mean 0 and variance 1. Define

. Then the empirical distribution of the squares of the singular values of

W, νW(t), converges (both in the sense of probability and in the almost sure sense) to

, as N → +∞.
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Remark—Supported by rigorous mathematical proofs, the circular and Marchenko–Pastur

laws reveal an important fundamental property of random matrices, i.e., that both the

eigenvalues and the singular values of random reservoir weight matrices have unique limit

distributions, independent of the distribution and connectivity of w, as N → ∞.

C. Gap Between the Sufficient and Necessary Conditions in [2]

As discussed in [2] and as aforementioned in Section II-C, the global rescaling factor α must

be properly chosen to ensure the ESP for W = αWN. Specifically, when , the

system is stable, which serves as the necessary condition (assuming the input space contains

the zero sequence), when , the ESP is guaranteed, i.e., this serves as the

sufficient condition. However, the sufficient condition  is considered

conservative, with the practical implication being that the associated ESN design will be

suboptimal, with the amount of memory in the dynamical system compromised (the smaller

α, the shorter the system memory). In fact, it has been observed that one obtains echo states

even when α is only marginally smaller than  [2].

The discrepancy between the theoretical sufficient condition for the ESP and the empirical

observation that the necessary condition often works well in practice raises a natural

question: how big is the gap between  and  ]? Let the ratio r =

(σmax(WN)/|λmax(WN)|) quantify the gap between the sufficient and necessary condition

bounds. It turns out that this gap is quite large: the asymptotic value of r is 2 as N → ∞.

Before we give the proof of this result, we first introduce two theorems from the random

matrix theory literature.

Theorem 4 (Bai [28])—Let {wij : i = 1, 2, …, N, j = 1, 2, …, N} be i.i.d. random

variables, and WN be the N × N matrix (wij)N×N, i, j = 1, 2, …, N. Suppose: 1) E[w11] = 0; 2)

; and 3) E[|w11|4] < ∞. Then  a.s.

where , i = 1, 2, …, N, are eigenvalues of .

Theorem 5 (Yin [29])—Let {wij : i = 1, 2, …, N, j = 1, 2, …, N} be i.i.d. random

variables, and WN be the N × N matrix (wij)N×N, i, j = 1, 2, …, N. Suppose: 1) E[w11] = 0; 2)

; and 3) E[|w11|4] < ∞. Let  be the largest singular value of . Then

 a.s.

Theorem 6 (Gap Between the Sufficient and Necessary Conditions)—If the

random reservoir weight matrix is generated according to (4), (5), or (6), then , as N

→ +∞.

Proof: First, it is straightforward to verify that the three distributions specified by (4)–(6) all

have zero mean and finite fourth-moment, and their variances are c, 1, and 1, respectively.

We consider random reservoir weight matrices generated according to (5) and (6). From

Theorem 4, we have
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(9)

Then, combining (9) with the conclusion of the circular law, we have

(10)

Next, from Theorem 5, we have

(11)

Therefore, we have

(12)

For the case of random reservoir weight matrices generated according to (4), if we replace

 by  in the above equations, it is straightforward to show the same conclusion

stated in (12).

Fig. 3 illustrates the asymptotic trend of σmax(W), λmax(W), and ||W||D for Gaussian,

Bernoulli, and sparse reservoir weight matrices as N increases. Each point in Fig. 3 is the

average of 20 independent simulations, and ||W||D is calculated using MATLAB μ-analysis

Toolbox as suggested in [17]. First, we can see in Fig. 3 that, when N is large, Gaussian,

Bernoulli, and sparse reservoirs all have similar respective values for σmax(W), λmax(W),

and ||W||D. Second, as N increases, σmax(W) tends to 2, and λmax(W) tends to 1. Thus,

consistent with Theorem 4, the bound for the necessary condition is about twice the bound

for the sufficient condition for an ESN to possess the ESP as N gets large. Also, although we

do not have theoretical results suggesting this, we observe in Fig. 3 that λmax(W) is

approaching its asymptote from above, while σmax(W) approaches its asymptote from

below. That is, the gap, and thus the level of conservativeness (and the associated degree of

potential suboptimality in using the sufficient condition in ESN design, relative to a design

based on the necessary condition), is empirically observed to increase with N. Third, for the

sufficient bound proposed in [17], ||W||D is indeed tighter than σmax(W) when N is small, for

example, for N = 20, but ||W||D approaches very close to σmax(W) as N gets large. Thus,

empirically from Fig. 3, there appears to be little to gain in using the sufficient condition

from [17], rather than the sufficient condition from [2], as N gets large.
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IV. Why the Necessary Condition for Echo States is Often “Sufficient in

Practice”

To establish the sufficient condition for the ESP, Jaeger [2] and Buehner and Young [17]

showed that, with W scaled to have its largest singular value less than 1, the distance

between two states x(n) and x̃(n) shrinks at every time step, i.e., d(T (x(n), u(n + 1)), T (x̃(n),

u(n + 1))) < d(x(n), x̃(n)), regardless of the input. This Lipschitz condition results in echo

states.

In this section, alternatively, we will show that, asymptotically, as the size of the reservoir

grows, for a much less conservative scaling of W that is essentially equivalent to scaling W
just enough so that the necessary condition for the ESP is satisfied, the state transition

mapping T (·, ·) is contractive with high probability, regardless of the input. In essence, we

will thus show that the necessary condition is “sufficient in practice.” In order to make our

mathematical analysis tractable and, thus, to establish our results, we consider a slightly

unorthodox (albeit a still reasonable) procedure for scaling of the matrix W. Normally, and

as considered in [2], one first randomly generates the matrix WN and then sets W = αWN,

where α is specifically chosen to satisfy an ESP condition—choosing 

meets the necessary condition, while setting  ensures sufficiency. While

choosing α in this way strictly ensures one (or both) of these ESP conditions, it also makes α

a function of the random matrix, i.e., α is itself a random variable, with, moreover, a

distribution that is dependent on N. Choosing α in this way will complicate our analysis.

Alternatively, from (10), we know that, if we choose , the spectral radius

of W converges to ρ as N → ∞. That is, picking a constant scaling factor ρ < 1, independent

of both the dimension N and the particular realization of the random matrix ,

satisfies the necessary condition for the ESP almost surely as N gets large. From this

standpoint, choosing W in this “unconventional” way—one that is more amenable to

analysis—is reasonable. More significantly, in the following, we will show that, by choosing

W in this unconventional way, the state transition mapping T (·, ·) is contractive with high

probability, regardless of the input. More specifically, for x(n), x̃(n) ∈ [−1, 1]N and a

random reservoir weight matrix , ρ < 1, the inequality d(T (x(n), u(n + 1)),

T (x̃(n), u(n + 1))) < d(x(n), x̃(n)) holds with probability 1 − O(e−CρN), where the constant

Cρ depends on ρ. In this sense, we show that asymptotically, for large N, the necessary

condition is “sufficient in practice.” Finally, although our theoretical results will assume an

unconventional procedure for scaling W, we will subsequently demonstrate at least

empirically that “sufficiency of the necessary condition in practice” also applies if one uses

the more standard procedure for scaling W.

A key ingredient for establishing our results is the concentration of measure phenomenon

[30], i.e., the fact that, when projecting a state vector x onto the properly normalized random

reservoir weight matrix W, the ℓ2 norm of Wx is approximately equal to the ℓ2 norm of x,

when N is sufficiently large.
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Let WN = (wij)N×N, W = αWN, and x = [x1, x2, …, xN]T. Suppose WN follows (4)–(6), with

α set to ( ) under (4) or ( ) under (5) and (6). We have

(13)

For the ith-element, we have

(14)

(15)

where E[·] denotes expectation and V ar[·] denotes variance.

Thus, using (14) and (15), we have

(16)

where ||·||| denotes the ℓ2 norm, i.e., the expected squared length of Wx is the same as the

squared length of x. Now we need to investigate how the distribution of ||Wx|| concentrates

around ||x||. We first develop the following lemma.

Lemma 1

Assume the random matrix W follows (4), (5), or (6), with the scaling factor set to

( ) or ( ), as appropriate. Let x̂ ∈ ℝN be a unit vector, then, ||Wx̂|| converges to

1 in probability, as N → ∞.

Proof—[31, Lemmas 4 and 5] state that for W as in (5) (Lemma 4) and for W as in (4) and

(6) (Lemma 5), the following two inequalities hold for all N and for all 0 < ε2 < 1

(17)
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(18)

Then, for 0 < ε3 < 1

(19)

Therefore, as N → + ∞, Pr(|||Wx̂|| − 1| ≥ ε3) → 0.

Given the Lemma, we can now state and prove our contraction mapping main result.

Theorem 7

Assume the network defined in (2) and (3) with neuron activation function f = tanh, applied

componentwise. Suppose that x(n), x̃(n) ∈ [−1, 1]N, and W is a random reservoir weight

matrix defined by W = αWN, according to (4), (5), or (6), with  under (5), (6), and

 under (4), where 0 < ρ < 1. Then

(20)

where x(n + 1) = T (x(n), u(n + 1)) and x̃(n + 1) = T (x̃(n), u(n + 1)).

Proof—Let z(n) = x(n) − x̃(n). We start by writing

(21)

where the inequality four lines above follows because the tanh(·) function satisfies the

(element-wise) Lipschitz condition | tanh(υ) − tanh(z)| ≤ |υ − z|, ∀υ, z ∈ ℝ. Let ẑ(n) = z(n)/||

z(n)||. Then rewrite (21) as
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We have W = αWN, and WN generated according to (4), (5), or (6), with α equaling

( ), ( ), or ( ), respectively. From the circular law and Theorem 4, we

know that the spectral radius of W converges to ρ as N → ∞.

Applying Lemma 1, we thus have

Further, let us characterize the probability that ||z(n + 1)|| ≥ ||z(n)||, i.e., that the contractive

property is not satisfied, when N is finite. First, define ε = 1 − ρ. Then, we have

where the first inequality above follows from (21) and the final inequality follows from [31,

Lemmas 4 and 5], specified earlier.

We thus see that the probability that ||z(n + 1)|| > ||z(n)|| is exponentially decreasing with N.

Moreover, ||z(n + 1)|| ≤ ||z(n)|| with probability 1−O(e−CρN), where Cρ = (1/2)((1 − ρ)2/2 − (1

− ρ)3/2).

Theorem 7 shows that, when ρ < 1, for x(n), x̃(n) ∈ [−1, 1]N and a random reservoir weight

matrix W, T (·, ·) is contractive with probability 1−O(e−CρN). This result supports and

provides theoretical grounding for previous observations in ESN research: “extensive

experience with this scaling game indicates that one obtains echo states when α is only

marginally smaller than αmax” [2] ( ). To give a caveat on this result, we

also note that, while we have shown that there is a contractive property with high probability

for large N, Theorem 7 is not definitive on whether the strict ESP given in Definition 1

holds with high probability for large N. This remains an open question.

Finally, let us address the reader’s possible concern that, in Theorem 7, we have assumed an

unorthodox way of selecting the scaling factor on the weight matrix, in order to achieve our

proof result, i.e., the reader may think our result is not relevant to the more conventional

matrix scaling procedure. To address this concern, we next show that, from a practical

standpoint, the result and insights obtained from Theorem 7 also apply if one considers the
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more conventional scheme for scaling W. The logical argument goes as follows. There are

two choices for the scaling factor—the conventional choice , and our

unorthodox choice  (for simplicity of discussion, we only consider the Gaussian

and Bernoulli cases). Suppose that we could show that the spectral radius resulting from

conventional scaling (which is the constant value, ρ) is always (for every realization of WN )

less than or equal to the spectral radius resulting from our unorthodox scaling procedure. If

this were true, one can see (from inspection of the proof of Theorem 7) that the Theorem 7

statement would directly apply not only for our unorthodox scaling procedure, but also for

the more conventional scaling scheme. Likewise, if ρ is larger than the unorthodox scheme’s

spectral radius with vanishing probability as N gets large, we could say that Theorem 7

“practically applies” to conventional scaling, for large N. Let us consider two cases: 1)

asymptotically large N, and 2) relatively large finite (but increasing) N. For the asymptotic

case, we simply note that, from the proof steps of Theorem 6, we know that the spectral

radius obtained using these two different scaling methods converges to the same value (ρ) as

N → ∞. Thus, Theorem 7 is certainly relevant to the conventional scaling procedure in the

limit of large N. Second, let us consider the case of finite (but increasing) N. There are two

choices for the scaling factor—the conventional choice , and our

unorthodox choice . Now, it is not in fact true that ρ is strictly less (for all

realizations WN) than the spectral radius obtained based on our unorthodox scaling.

However, empirically, we will next demonstrate the following results: 1) For large but finite

N, the frequency with which conventional scaling leads to a larger spectral radius than

unorthodox scaling is quite small, moreover, the “spread” of the unorthodox scaling’s

spectral radius distribution (around ρ) is small, and 2) This frequency is observed to

decrease with increasing N.

We simulated 10 000 trials for each of the three types of reservoirs, for N = 500, 1000, and

1500. We set ρ = 0.91 and observed that, using unorthodox scaling, for N = 1000 and N =

1500, the necessary ESP condition was met in every trial (with a small number of violations

for N = 500). Our results, shown in Table I, demonstrate that, very infrequently, ρ is greater

than the spectral radius of the unconventional procedure. Furthermore, this frequency

decreases for increasing N. Fig. 4 shows the distribution of the unconventional procedure’s

spectral radius which, though skewed, is seen to have small spread about ρ. These

experimental results suggest that Theorem 7 “practically applies” to conventional scaling as

N gets large. The results also further corroborate our previous observation that, for finite N,

the mean of the spectral radius seems to converge from above to 1.

V. Conclusion

In this brief, we applied random matrix theory to examine the properties of the random

reservoirs used by ESNs, including different reservoir topologies (sparse or fully connected)

and different connection weights (Bernoulli or Gaussian). The asymptotic uniform

distribution of the eigenvalues of the reservoir weight matrix ensures diverse dynamical

patterns of the reservoir states. Moreover, this phenomenon does not depend on the topology

of the reservoir or on the distribution of the weights of the connections. We showed that,

asymptotic in the reservoir size, the bound for the necessary condition in [2] is about twice
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the bound for the sufficient condition in [2] for an ESN to possess the ESP. Finally, we

showed that, when the spectral radius ρ < 1, the state transition mapping T (·, ·) is

contractive with high probability, which explains why the necessary condition has been

found to be “sufficient in practice.”
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Fig. 1.
Illustration of an ESN.
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Fig. 2.
Empirical eigenvalue distributions of three types of random matrices (N = 1000). (a) Sparse

random matrix. (b) Gaussian random matrix. (c) Bernoulli random matrix.
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Fig. 3.
Simulation study on σmax(W), λmax(W), and ||W||D for Gaussian, Bernoulli, and sparse

reservoirs, respectively, as N increases.
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Fig. 4.
Histograms of the spectral radius of random matrices using the scaling factor in Theorem 7

with ρ = 0.91 and N = 1000. (a) Sparse random matrices. (b) Gaussian random matrices. (c)

Bernoulli random matrices.
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