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EFFICIENT MULTI-TEMPLATE LEARNING FOR STRUCTURED

PREDICTION

QI MAO AND IVOR W. TSANG

Abstract. Conditional random field (CRF) and Structural Support Vector
Machine (Structural SVM) are two state-of-the-art methods for structured
prediction which captures the interdependencies among output variables. The
success of these methods is attributed to the fact that their discriminative
models are able to account for overlapping features on the whole input ob-
servations. These features are usually generated by applying a given set of

templates on labeled data, but improper templates may lead to degraded per-
formance. To alleviate this issue, in this paper, we propose a novel multiple
template learning paradigm to learn structured prediction and the importance
of each template simultaneously, so that hundreds of arbitrary templates could
be added into the learning model without caution. This paradigm can be for-
mulated as a special multiple kernel learning problem with exponential number
of constraints. Then we introduce an efficient cutting plane algorithm to solve
this problem in the primal, and its convergence is presented. We also evaluate
the proposed learning paradigm on two widely-studied structured prediction
tasks, i.e. sequence labeling and dependency parsing. Extensive experimen-
tal results show that the proposed method outperforms CRFs and Structural
SVMs due to exploiting the importance of each template. Our complexity
analysis and empirical results also show that our proposed method is more ef-
ficient than OnlineMKL on very sparse and high-dimensional data. We further
extend this paradigm for structured prediction using generalized p-block norm
regularization with p > 1, and experiments show competitive performances
when p ∈ [1, 2).

Structured prediction [18, 29, 33] has been successfully applied to the problems
with strong interdependencies among the output variables. In the realm of Natural
Language Processing (NLP), various tasks are formulated into structured prediction
problems. A typical example is part-of-speech tagging which assigns a specific part-
of-speech tag to each token of an input sentence. The tag of one token is strongly
correlated with the tags of its neighbors under the linear chain dependencies [18, 33].
More complicated structured output dependencies could be trees or graphs, such as
Context-Free Grammar (CFG) [33], dependency parsing tree [23, 24], noun phrase
coreference [13], and factor graph for relation extraction [40]. Note that there exist
exact inference methods for sequences and trees. For the tasks with general output
structures (eg., the pairwise fully connected undirected graph) the exact inference
problem is intractable. In such cases, approximate inference is usually pursued to
obtain an approximate solution [14].

The major advantage of structured prediction models such as Conditional Ran-
dom Fields (CRFs) [18] and Structural Support Vector Machines (Structural SVMs)
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[29, 33] is that their learning models can easily integrate prior knowledge of a spe-
cific domain by feature engineering. For example, the discriminative models of
CRFs can account for overlapping features (eg., first-order or even higher-order
linear chain) on the whole observation sequence [18]. On the other hand, Struc-
tural SVMs [33, 16] relies on joint feature maps over the input-output pairs, where
features can be represented equivalently as that of CRFs.

During last decade, structured prediction algorithms take more effort on how to
model the interdependencies among the output variables, but less consideration is
taken on the feature engineering which is a non-trivial and tedious task for general
users. We observe that different kinds of rules are used to extract features from in-
put sentences in both sequence learning [25, 22] and dependency parsing [23]. The
arbitrary non-independent features are usually extracted from a given input-output
pair using a set of predefined templates (rules or feature functions). Templates can
be arbitrarily defined according to specific applications by exploring any internal or
external knowledge as much as possible, and then features extracted from different
templates are concatenated into the learning models so as to boost prediction per-
formance. However, features generated from arbitrary templates may be redundant
or non-informative. Structured prediction models, such as CRFs and Structural
SVMs, only treat the features generated from each template equally without ex-
ploiting the importance of each template or its generated features. Therefore, some
improper templates may generate conflicting or noisy features which degrade these
structured prediction models.

In order to prune noisy or non-informative features for improved generalization
and fast prediction, feature selection strategy can be incorporated into the struc-
tural prediction models in two directions. One way is to treat each instantiated
feature from each template independently. For example, CRFs with ℓ1 regular-
ization has been explored for activity recognition by [34]. However, progressively
reducing the features by ℓ1 regularization methods may degrade the performance
vastly due to the interdependencies among features in the same group. Another
way is to consider that features are naturally grouped together by templates [21],
and each group of features forms a base kernel in the framework of Multiple Kernel
Learning (MKL) [19]. As discussed in [3, 2], group lasso and MKL can be used
to obtain the group sparsity via the ℓ2,1 mixed norm and its square, respectively.
More general groups sparsity regularizer such as ℓp-ℓq has also been explored [27]
where 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2. There is a plethora of note worthy research
progress made in group lasso and MKL. Many works [28, 26, 2, 37, 32, 15, 39] focus
on convergence and scalability issues on their optimization. Zien and Ong [41] for-
mulated MKL for multiple classification problem in terms of structural prediction,
but only focused on multiple class classification. Although SVM-based wrapped
methods [28, 26, 37] with SMO solver [20] can efficiently solve some specific formu-
lations of MKLs, it is intractable for these MKL and group lasso methods to deal
with structured prediction due to the exponential number of constraints. Instead
of the natural groups formed over features, we also notice that the training data
can also be naturally separated into groups, known as “Learning from structured
data” [5]. However, groups in the feature level is the focus of this paper.

Recently, Martins et al. [21] proposed an online multi-kernel learning strategy,
namely OnlineMKL, to cater for the constraints of structure prediction. Recall that,
due to the arbitrary design of templates in NLP, the extracted features are usually



EFFICIENT MULTI-TEMPLATE LEARNING FOR STRUCTURED PREDICTION 3

very high-dimensional and very sparse. Though the gradient descent step in each
round of OnlineMKL training is efficient, the subsequent proximal projection step
on the dense and very high dimensional weight vector of the learning model is very
time-consuming (see Section 1.5). Apart from these computational issues, Dekel
and Singer [9] stated that there is no notion of statistical generalization in the online
learning setting, so additional online-to-batch strategy is required to convert online
classifiers for the batch-mode learning setting which fits most real-world problems
more naturally [8, 9]. Even worse, it is nontrivial to determinate the termination
condition for online methods in order to achieve the optimal batch-mode prediction
performance.

To overcome above problems, in this paper, we propose a Multiple Template
Learning (MTLstruct) paradigm to learn the weight of each template and the struc-
tured prediction model in the batch mode, simultaneously. As noticed that MTL
is also the abbreviation of Multi-Task Learning [6]. In what follows, MTL only
stands for Multiple Template learning. Following the group sparsity, to capture the
dependency among a group of features instantiated from one template, learning
the weighting of these groups is formulated as a Multiple Kernel Learning (MKL)
problem. This specific MKL problem usually involves the exponential number of
constraints due to the interdependencies among output variables. We propose to
solve this MKL problem in the primal by an efficient cutting plane algorithm. More-
over, its convergence is presented. The main contributions of this paper are listed
as follows,

• Following the idea of group feature selection (template selection), we pro-
pose to learn the large margin based structured prediction model in the
batch mode. Hence, the generalization performance can be guaranteed. As
opposed to OnlineMKL, the empirical risk is naturally considered as the
criterion of termination condition for our proposed MTLstruct.

• An adapted cutting plane algorithm is proposed to tackle the MKL prob-
lem with exponential number of constraints, and the convergence is guar-
anteed. This also leads to very sparse solution of the learned weights of
templates, which is effective to prune noisy or non-informative templates
for performance improvement, faster prediction and enhancing semantic
interpretation.

• Detailed time complexities of state-of-the-art structured prediction methods
are presented. These reveal that the proposed MTLstruct, which avoids the
proximal projection on the dense weight vector, is much more efficient than
OnlineMKL in the case of very sparse and high-dimensional data, which is
common in NLP applications when hundreds of templates are used. And
the training efficiency of the proposed MTLstruct is also very comparable
with Structural SVM. Moreover, since MTLstruct can automatically remove
redundant templates, the testing efficiency of MTLstruct is much improved
over structured SVM and various CRFs without performance reduction.

• Two well-known structured prediction tasks, i,e. sequence labeling and
dependency parsing, are showcased in this paper. Extensive experimen-
tal results demonstrate that the proposed paradigm is more effective than
OnlineMKL to learn the importance of each template for the structured pre-
diction tasks. The learned weights have the ability to avoid the degraded
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performance which is caused by adding poorly designed or even conflict-
ing templates into the learning model. This phenomenon is demonstrated
in the experiments, so our proposed MTLstruct can tackle the challenge of
choosing and weighting the informative templates for the optimal prediction
performances.

• We further extend the proposed learning paradigm to solve structured out-
put problems with p-block norm regularization. Experimental results on
sequence labeling tasks show competitive results when p ∈ [1, 2); other-
wise, the overall performance may degrade vastly.

The rest of this paper is organized as follows. The proposed MTLstruct frame-
work for structured prediction is presented in Section 1 and its extension to p-block
norm regularization is given in Section 2. Section 3 presents the experimental re-
sults of two showcases, i.e, sequence labeling and dependency parsing. Conclusive
remarks are given in Section 4.

1. Multiple Template Learning

CRFs and Structural SVMs have already been used to model many structured
prediction problems, such as sequence labeling with a first-order or even higher-
order linear chain, and syntactic parsing with a directed tree. More general struc-
tures are possible if a feasible inference method exists. CRFs are graphical models
by defining conditional probability density function over the given graph structure;
while Structural SVMs incorporate the structural information by defining joint fea-
ture mapping under large margin theory. Even though two models are derived under
different principles, they all confront the same challenge: how to extract features
from structured input-output pairs so as to obtain better prediction performance.
While our MTLstruct framework mainly focuses on how to efficiently and effectively
manage the given set of templates and learn a better structured prediction model,
simultaneously.

1.1. Feature v.s. Template. For the problems with structured inputs, features
are usually not explicitly defined. For instance, part-of-speech tagging in NLP
is to label each token with a specific tag in the given token sequence (sentence).
In addition to the current token, the neighbors and their associated tags can be
considered as the important features to determine the tag of the current token. All
these intuitive information can be represented by feature functions called templates
[25, 22, 23]. Hereby, we consider the templates as some predefined rules for feature
extraction.

Given a training dataset D = {(Xi,Yi)}
n
i=1 with n structured input-output pairs

(Xi,Yi) where Xi ∈ X and Yi ∈ Y can be any structural objects, for instance,
sequences, trees, or general graphs. Assume that there are m templates denoted
by the operator κj(.), ∀j = 1, . . . ,m over the domain of structural input-output
pairs to generate a list of features, e.g., the bigram rule in the part of speech
tagging. By applying κj(.) to all pairs of D, we can instantiate a set κj(D) =

{κ1
j , . . . , κ

dj

j } with dj different features. Therefore, the set of features over D are

κ(D) = {κ1(D), . . . , κm(D)}. The size of total features |κ(D)| may be smaller than∑m
j=1 |κj(D)| since one feature may be generated from more than one template.

The case of one feature in more than one group is not the concern of this paper,
so we augment the index of the applied templates to the instantiated feature such
that one feature belongs to only one group. Each input-output pair (Xi,Yi) now
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can be represented by a real value feature vector Φ(Xi,Yi) using the same set of
features in κ(D). Since κ(D) is extracted from D and a small subset of features
in Φ(Xi,Yi) could be activated, so each instance may have a very sparse feature
representation.

Previous methods for structured inputs and outputs did not consider the prop-
erties of features, and directly used κ(D) as the feature representation. Taking
part-of-speech tagging for example, CRFs use the concatenation of all the differ-
ent features instantiated from each template and the real-value of each feature is
the occurred frequency. Actually, the subset of features κj(D) applied by the jth
template can be naturally formulated as a group. Each group of features stands
for some specific meaning of the applied template, such as word, bi-gram, distance,
orientation, and position related to the current token. Moreover, templates can
be either defined arbitrarily by someone without any prior knowledge, or designed
specially by domain experts. It is easy to see that hundreds of templates are re-
quired for typical NLP tasks. Due to the diversity of features, the importance of
each template should be assigned differently. However, due to numerous predefined
templates, it is infeasible and tedious for users to select or weight the informative
templates for the optimal prediction performance.

It is imperative to have a unified way to properly interpret and manage the
diverse templates. In particular, a proper template weighting scheme can prune
away poorly designed or conflicting templates, and amplify the effective templates,
thereafter templates can be designed without cautions. In the next subsections, we
propose a novel structured prediction model with group sparsity, where features
generated from the same template naturally form a group, so as to interpret the
importance of templates. The proposed model can be essentially deemed as a
special MKL problem, where the base kernels are defined in accord with templates.
Then we solve this MKL in the primal by an efficient cutting plane algorithm.

1.2. Model Formulation. Given a training dataset D, the ith input-output pair
(Xi,Yi) can be represented by Φ(Xi,Yi) = [Φ1(Xi,Yi); . . . ; Φm(Xi,Yi)] using
the group representation of κ(D) where semicolon is used to concatenate column
vectors, for concise representation. The goal of structured prediction learning is to
learn the hypotheses f : X → Y. According to Structural SVMs, the compatibility
function F : X×Y → R over the input-output pairs are pursued and the prediction
function can be derived by maximizing F over the output space Y for a given input
X ∈ X. The general hypotheses f are the parameterized functions with parameter
vector w as

(1) f(X ;w)= argmax
Y∈Y

F (X ,Y;w)= argmax
Y∈Y

wTΦ(X ,Y).

For structural outputs, the standard zero-one cost function frequently used in clas-
sification is not appropriate. Most applications need task-specific cost function, so
we define a general cost function ∆(Y,Y ′) if the instance with the true output Y
is assigned to be Y ′ with the property ∆(Y,Y) = 0. The margin re-scaling with
general loss functions and linear penalty term can be formulated as a minimization
of the regularized empirical risk:

min
w,ξ≥0

1

2
||w||2 +

C

n

n∑

i=1

ξi(2)

s.t. ∀i,∀Y ′
i ∈ Y : wT

δΦi(Y ′
i) ≥ ∆(Yi,Y

′
i)− ξi
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where C is a trade-off parameter between training error minimization and mar-
gin maximization, and the difference of feature vectors is denoted by δΦi(Y ′

i) =
Φ(Xi,Yi)− Φ(Xi,Y

′
i).

As mentioned in Section 1.1, group sparsity could be applied to this problem
in terms of the naturally formed groups of features. According to Support Kernel
Machines (SKMs) [3], Problem (2) can be readily formulated with group feature
representation Φ(Xi,Yi) = [Φ1(Xi,Yi); . . . ; Φm(Xi,Yi)] as,

min
w,ξ≥0

Ω(w) +
C

n

n∑

i=1

ξi(3)

s.t. ∀i,∀Y ′
i ∈ Y :

m∑

j=1

w
T
j δΦ

i
j(Y

′
i) ≥ ∆(Yi,Y

′
i)− ξi,

where w = [w1; . . . ;wm], and the regularizer Ω(w) can be defined as Ω(w) =
1
2

(∑m
j=1 ||wj ||

)2
for SKM [3], Ω(w) = 1

2

∑m
j=1 ||wj || for group lasso [2], Ω(w) =

1
2

(∑m
j=1 ||wj ||

p
)2/p

or Ω(w) = 1
2

(∑m
j=1 ||wj ||

p
)2/p

+ 1
2

(∑m
j=1 ||wj ||

)2
where p ≥ 1

for generalized MKL [17]. The number of constraints in Problem (3) depends on the
specific structure in the space of Y. In this paper, we mainly focus on sequence or
tree structure which usually induces exponential number of constraints. Therefore,
the general SKMs, group lasso algorithms, as well as the state-of-the-art MKLs,
cannot be applied here. Recall that most algorithms focus on the dual problem of
MKLs, but we propose an efficient cutting plane algorithm to solve Problem (3) in
the primal form.

1.3. Multiple Kernel Learning Trained in the Primal. Problem (3) has ex-
ponential number of constraints, so the mixed norm regularizer Ω(w) makes it even
harder to solve. The following theorem states that Problem (3) can be equivalently
formulated as 1-slack formulation [16].

Theorem 1. Problem (3) is equivalent to the problem

min
w,ξ≥0

Ω(w) + Cξ(4)

s.t. ∀[Y ′
1, . . . ,Y

′
n] ∈ Y

n :

1

n

n∑

i=1

m∑

j=1

w
T
j δΦ

i
j(Y

′
i) ≥

1

n

n∑

i=1

∆(Yi,Y
′
i)− ξ.

Proof. The empirical risk can be derived as follows,

1

n

n∑

i=1

ξi =
1

n

n∑

i=1

max
Y′

i
∈Y

[
∆(Yi,Y

′
i)−

m∑

j=1

w
T
j δΦ

i
j(Y

′
i)

]

= max
[Y′

1,...,Y
′

n]∈Yn

1

n

n∑

i=1

[
∆(Yi,Y

′
i)−

m∑

j=1

w
T
j δΦ

i
j(Y

′
i)

]
=ξ

where the second equality holds since for any given w each Y ′
i can be optimized

independently due to the linearly decomposed property in Y ′
i [16]. This completes

the proof. �

Hereby, we propose Algorithm 1 to solve Problem (4). This algorithm constructs
a working set W iteratively. In each iteration, the most violated constraint is found,
and then added into the working set W . After that, a subproblem is solved over
W in order to obtain a new solution w.
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Assume that the most violated outputs (Ŷ1, . . . , Ŷn) can be accessed given w.
After s iterations, we can construct a set of most violated labelsWs, the subproblem
in Algorithm 1 is formulated as

min
w,ξ≥0

Ω(w) + Cξ(5)

s.t. ξ ≥ q
r +

m∑

j=1

w
T
j p

r
j ,∀r = 1, . . . , s

where pr
j = − 1

n

∑n
i=1 δΦ

i
j(Ŷ

r
i ) and qr = 1

n

∑n
i=1 ∆(Yi, Ŷ

r
i ). Note that subproblem

(5) has s constraints. For sake of simplicity, we use Ω(w) = 1
2

(∑m
j=1 ‖wj‖

)2
as the

showcase in this paper 1, the conic dual [3] of Problem (5) can be readily derived
as

max
α∈As

max
θ

−θ +

s∑

r=1

αrq
r(6)

s.t.
1

2
α
T
Q

j
α ≤ θ, ∀j = 1, . . . ,m

where As = {
∑s

r=1 αr ≤ C,αr ≥ 0, ∀r = 1, . . . , s}, and Qj
r,r′ = 〈pr

j ,p
r′

j 〉. For

completeness, we give the derivation in Appendix A. Problem (6) is in form of
a quadratically constrained quadratic programming (QCQP) problem, which is
similar to the multiple kernel learning problem with a small size of constraints.
Furthermore, the primal solutions can be recovered by

(7) wj = −µj

s∑

r=1

αrp
r
j ,∀j = 1, . . . ,m,

where µ is the Lagrangian multipliers, each of which corresponds to one constraint
in (6). Together with the sparsity of α and the sparsity of µ, the primal variable w
is sparse and so the recovery of w is also fast. The algorithm stops if no constraint
is found with the desired precision or the maximum number of iterations is reached.

Algorithm 1 Multiple Template Learning

1: Input: D = {(X1,Y1), . . . , (Xn,Yn)}, C, ǫ
2: w = 0, W = ∅,
3: repeat

4: Find the most violated (Ŷ1, . . . , Ŷn)

5: W := W ∪ {(Ŷ1, . . . , Ŷn)}
6: Obtain w by solving subproblem (6) over W according to (7)
7: until ǫ-optimal
8: return w

As will be shown in Section 1.4, when Ω(w) = 1
2

(∑m
j=1 ‖wj‖

)2
, Algorithm 1

can converge to an ǫ-optimality in a finite number of iterations. Empirically, the
number of iteration s needed for Algorithm 1 to reach ǫ-optimal convergence is
very small. Therefore, the QCQP problem in (6) with s + 1 variables and m + 1
constraints can be solved efficiently by a QCQP toolbox, such as Mosek [1]. Since
Mosek simultaneously solves the primal and its dual form, the weights µ for each
group of features can be obtained at the same time. Alternatively, one can apply

1The dual of other regularizers can be found in [17].
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other efficient MKL algorithms [37, 26, 28] to solve (6) when a sophisticated QCQP
solver is not available, but the solution may not be as accurate as that of Mosek.

It is worth mentioning that the proposed method obtainswj = −µj

∑s
r=1 αrp

r
j , ∀j =

1, . . . ,m; while Structural SVMs do not consider the weights µ, ie. a uniform

weighting for templates. Another good property is that, when Ω(w) = 1
2

(∑m
j=1 ||wj ||

)2
,

the sparsity of MTLstruct is not only on α but also on µ due to the feasible domain
As and quadratic constraints in Problem (6), but the cutting plane algorithm for
the uniform weighting does not enforce the sparsity on the feature groups.

Finding the most violated constraint with outputs (Ŷ1, . . . , Ŷn) is to solve the
following problem

(8) arg max
(Y′

1,...,Y
′

n)∈Yn

n∑

i=1

∆(Yi,Y
′
i)−

n∑

i=1

m∑

j=1

w
T
j δΦ

i
j(Y

′
i),

where the definition of cost ∆(Yi,Y
′
i) and the feature mapping Φ depend on the

specific tasks. The input-output pairs in D are generally considered i.i.d., so Prob-
lem (8) can be generally decomposed into n independent optimization problems
as

(9) Ŷi = arg max
Y′

i
∈Y

∆(Yi,Y
′
i)−

m∑

j=1

w
T
j δΦ

i
j(Y

′
i),∀i = 1, . . . , n.

In the following subsections, we present the convergence analysis and complexity
analysis of Algorithm 1. After that, we deal with specific tasks, namely sequence
labeling and dependency parsing. Once the parameter w is learned, we can do
prediction by solving an inference problem in (1) given an input X ∈ X.

1.4. Convergence Analysis. The termination condition of Algorithm 1 is defined
as Remp(ws) − Rs(ws) < ǫ where the risk of upper bound and lower bound of
Problem (4) are

Remp(w) = 1
n

∑n
i=1 maxY′

i
∈Y

(
∆(Yi,Y

′
i)−

∑m
j=1 w

T
j δΦ

i
j(Y

′
i)
)
,

Rs(w) = maxr=1,...,s

(∑m
j=1 w

T
j p

r
j + qr

)
.

The maximum number of iterations could also be used to terminate the algorithm
considering the time and space limitations.

Notice that the convergence proof for bundle method or cutting plane algorithm
in [31, 30] does not apply in our case as the Fenchel dual of mixed norm fails
to satisfy the strong convexity assumption if m > 1. As m = 1, Algorithm 1 is
exactly the bundle method [31]. When m > 1, Theorem 2 shows the convergence
of Algorithm 1 which can converge to ǫ-optimality in a finite number of iterations.
The proof is shown in Appendix B.

Theorem 2. For any 0 < C, 0 < ǫ ≤ 4R2C and any training example (X1,Y1), . . . , (Xn,Yn),
Algorithm 1 converges to the desired precision ǫ after at most,

⌈
log2

(
∆

4R2C

)⌉
+

⌈
16R2C

ǫ

⌉

iterations, where R2 = maxi,Y′ ‖Φ(Xi,Yi) − Φ(Xi,Y
′
i)‖

2, ∆ = maxi,Y′

i
∆(Y ′

i ,Yi)

and ⌈.⌉ is the integer ceiling function.
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1.5. Complexity Analysis. In the following applications, we only use the linear
kernel in the proposed algorithm. According to [19], given a QCQP problem with
s variables and m quadratic constraints, the optimization tools such as Mosek can
yield the worst-case complexity of O(ms3) by using interior-point method. At the
sth iteration, Algorithm 1 takes at most O(ms3) time for solving the reduced QCQP
problem (6), O(s2) for computing ξ, O(s|κ(D)|) for w, O(n) for qs, O(n|κ(D)|) for
ps and O(s|κj(D)|) for adding a row/column to Qj since Qj can be computed incre-
mentally, ∀j = 1, . . . ,m. Another major training cost is to find the most violated
constraint. For sequence labeling task, suppose the average length of sequences are
l and the number of classes are c, then it takes O(lc|κ(D)|) time to find the most
violated constraint. Similarly, for dependency parsing task, it takes O(l3|κ(D|) or
O(l2|κ(D|) time for projected and non-projected dependency tree structure, respec-
tively. Hence, the overall time complexity is O(ms3 + s|κ(D)| + nu|κ(D)|), where
u = {lc, l2, l3} for different inference problems.

For sparse and high dimensional data, Algorithm 1 can efficiently exploit the
sparsity of the feature vectors, so that computing of inner product for Q only
depends on the number of non-zeros z. So the overall time complexity is reduced
to O(ms3 + sz + nuz). According to Theorem 2, the algorithm converges to the
ǫ-optimal solution in O(Cǫ ). And empirical observations show that several hundreds
of iterations are enough for good performance. Moreover, we also employ the cut
pruning strategy in the implementation, which has been used in Structural SVM
[16], to speed up the learning process. So it is faster than the analysis in practice.
Comparing with Structural SVM with l2 norm, except Structural SVM needs to
solve a QP problem (takes O(s3) time) instead of solving a QCQP problem, the
complexity for other parts are the same. So the overall time complexity of our
proposed MTLstruct is very comparable with Structural SVM.

OnlineMKL [21] attempts to solve the similar problem by online learning where
two operations are needed at each iteration: the gradient descent step and proximal
step. By exploiting the sparsity of features, the gradient step takes O(z) time to
update w, O(uz) to find the most violated configuration for the randomly sampled
instance, and O(mz) for incremental update of ‖wj‖, ∀j = 1, . . . ,m. However, the
proximal step needs to scalew according to these norms, so it has to take O(|κ(D)|)
time where w is hard to exploit the sparsity. This is different from Algorithm 1
with both sparsity on α and µ. The overall time complexity for each epoch takes
O(n(uz +mz + |κ(D)|)) time in OnlineMKL. Generally, it takes tens of epochs to
gain a good performance. Hence, for high dimension but very sparse data, i.e. more
than 10 million, O(n|κ(D)|) will dominate the time complexity for OnlineMKL,
while Algorithm 1 is only dominated by the inference cost (O(nuz)). Taking the
sequence labeling task for example, suppose that 20 epochs for OnlineMKL, and 500
iterations for Algorithm 1 used in the following experiments, the time complexity
for OnlineMKL is O(20n|κ(D)|) while that of Algorithm 1 is O(500nlcz) only.
OnlineMKL is slower than Algorithm 1 since |κ(D)| ≫ 25lcz where l, c and z are
usually very small (around tens). In the following applications, we will empirically
demonstrate OnlineMKL is quite slow.

2. Extension to p-Block-Norm Regularization

In this section, we consider the generalized form of mixed norm regularizer

Ω(w)= 1
2

(∑m
j=1 ‖wj‖

p
)2/p

with p > 1 [17]. According to Theorem 1 and (5), we
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Table 1. Benchmark datasets for Chinese word segmentation.

Dataset
# Sentence #Features
Train Test TP1 TP2

AS 708,953 14,429 31,587,879 53,599,827
MSR 86,924 3,985 17,055,615 31,228,275
CityU 53,019 1,492 13,196,613 25,143,720
PKU 19,054 1,944 9,605,457 18,717,687

obtain the following subproblem

min
w,ξ≥0

1

2

( m∑

j=1

‖wj‖
p

)2/p

+ Cξ(10)

s.t. ξ ≥ q
r +

m∑

j=1

w
T
j p

r
j ,∀r = 1, . . . , s.

after s iterations in Algorithm 1. The following proposition gives the dual problem
of (10).

Proposition 1. The dual problem of (10) with p > 1 is

max
α∈As

−
1

2

( m∑

j=1

(√
αTQjα

)p∗ )2/p∗

+

s∑

r=1

αrq
r
,(11)

where p∗ = p
p−1 . The weights of kernels are recovered as

µj =

( m∑

j=1

(
√

αTQjα)
p

p−1

) p−2
p (√

αTQjα
) 2−p

p−1
,(12)

∀j = 1, . . . ,m, and primal variables can be recovered by

(13) wj = −µj

s∑

r=1

αrp
r
j ,∀j = 1, . . . ,m.

The detailed proof of Proposition 1 is shown in Appendix C.
Problem (11) is a smooth function with p > 1 and the feasible domain of α in a

simplex As. We can employ projected gradient descent to solve (11) where the pro-
jection step can be readily solved by efficient projections onto simplex method [10].
Since the inference process is the same as Algorithm 1, the only difference is to solve
the subproblem (11) instead of (6). Hence, Algorithm 1 can be easily extended to
solve MTLstruct with p-block norm regularization.

3. Experiments

As aforementioned, templates are employed widely in various applications. To
verify the proposed method, we explore it on three tasks: Chinese Word Segmen-
tation [38, 25], Named Entity Recognition [22], and Dependency Parsing [23]. The
first two tasks are popularly transformed into the structured prediction problem
with the output as a sequence structure [25, 22], while dependency parsing is cast
as the structured prediction problem with the output as a spanning tree [23]. In
what follows, we will first give the general setting of these tasks, and then the
task-specific settings and their experimental results are shown separately.
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Table 2. Two set of templates used for Chinese word segmenta-
tion task: TP1 and TP2. The symbol ’-’ means that this template
is not used in the setting.

Type
Index

Name Template
TP1 TP2

uni-gram 1 1 U00 %x[-2,0]
2 2 U01 %x[-1,0]
3 3 U02 %x[0,0]
4 4 U03 %x[1,0]
5 5 U04 %x[2,0]

bi-gram 9 1 U08 %x[-1,0]/%x[0,0]
10 10 U09 %x[0,0]/%x[1,0]
- 11 U10 %x[-2,0]/%x[-1,0]
- 12 U11 %x[1,0]/%x[2,0]
- 13 U12 %x[-2,0]/%x[0,0]
- 14 U13 %x[-1,0]/%x[1,0]
- 15 U14 %x[0,0]/%x[2,0]
- 16 U15 %x[-2,0]/%x[1,0]
- 17 U16 %x[-1,0]/%x[2,0]

tri-gram 6 6 U05 %x[-2,0]/%x[-1,0]/%x[0,0]
7 7 U06 %x[-1,0]/%x[0,0]/%x[1,0]
8 8 U07 %x[0,0]/%x[1,0]/%x[2,0]
11 18 B state transition
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Figure 1. The average CPU time on PKU dataset by varying C
on five randomly sample of training and testing datasets.

3.1. Experimental Setting. In the sequence learning, high-order dependence
among labels and state-state transition with observation in the linear chain could
be considered, but the state-state transition feature without observations are con-
sidered in this paper for two reasons. First, the inference problem (8) can be solved
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Table 3. The performance (TP1/TP2) of Chinese word segmen-
tation for comparing methods over five randomly sampled training
and testing datasets. For each method, the first row is the mean
and the second row is the corresponding standard deviation. The
best results across the compared methods are shown in bold on
TP1 and TP2, individually.

Dataset Algorithm Recall Prec F1 Riv

PKU

CRF (ℓ2)
96.4 / 96.0 96.7 / 96.0 96.6 / 96.0 97.2 / 96.8
0.10 / 0.10 0.10 / 0.10 0.12 / 0.10 0.06 / 0.06

CRF (ℓ1)
95.7 / 95.5 95.9 / 95.3 95.8 / 95.4 96.4 / 96.3
0.10 / 0.06 0.15 / 0.10 0.10 / 0.06 0.06 / 0.06

IRW-CRF
97.3 / 95.9 96.5 / 95.8 96.4 / 95.8 97.1 / 96.7
0.15 / 0.00 0.20 / 0.06 0.15 / 0.06 0.06 / 0.06

SVMhmm 96.6 / 96.5 96.7 / 96.5 96.6 / 96.5 97.4 / 97.2
0.12 / 0.10 0.12 / 0.06 0.10 / 0.06 0.12 / 0.06

OnlineMKL
95.9 / 96.2 95.9 / 96.3 95.9 / 96.3 96.6 / 97.0
0.06 / 0.15 0.20 / 0.15 0.10 / 0.15 0.06 / 0.17

MTLhmm 97.1 / 97.2 96.7 / 96.8 96.9 / 97.0 98.0 / 98.1

0.10 / 0.10 0.10 / 0.06 0.10 / 0.10 0.06 / 0.00

CityU

CRF (ℓ2)
96.3 / 95.9 96.6 / 95.8 96.4 / 95.9 96.9 / 96.6
0.06 / 0.06 0.06 / 0.06 0.06 / 0.10 0.06 / 0.06

CRF (ℓ1)
97.0 / 96.5 97.2 / 96.5 97.1 / 96.5 97.6 / 97.1
0.06 / 0.06 0.06 / 0.00 0.06 / 0.00 0.06 / 0.00

IRW-CRF
97.0 / 96.4 97.2 / 96.4 97.1 / 96.4 97.6 / 97.0
0.12 / 0.12 0.10 / 0.10 0.12 / 0.10 0.12 / 0.06

SVMhmm 97.0 / 96.9 97.1 / 96.8 97.0 / 96.8 97.6 / 97.4
0.00 / 0.12 0.06 / 0.00 0.06 / 0.06 0.06 / 0.06

MTLhmm 97.6 / 97.7 97.4 / 97.5 97.5 / 97.6 98.4 / 98.4

0.06/ 0.00 0.00 / 0.00 0.06 / 0.00 0.06 / 0.06

efficiently and effectively by the Viterbi algorithm [35] for Hamming loss [33]. Sec-
ond, there exist toolboxes with state-of-the-art methods for the fair comparison.
The methods for comparison are listed as follows:

• CRF(ℓ2) (CRF(ℓ1)) [18]: CRF with a Gaussian (Laplacian) prior defined
by CRF++ toolbox2 in terms of the command option “-a”.

• IRW-CRF: Solving weighted CRF(ℓ2) by iterative re-weighted least square
method with the update rule for weights as (||wj ||

2 + ǫ)−1 [36] and warm
start using CRF(ℓ2) solution. To avoid numerical instabilities, we fixed
ǫ = 0.001 and the maximum iteration as 10.

• SVMhmm [33]: Structural SVM for sequence learning by SVMhmm tool-
box3. The recommended termination condition “-e 0.5” is used in following
experiments.

• OnlineMKL [21]: Online MKL for structured prediction with C++ im-
plementation which is provided by the authors. The number of training
epochs is set to 20 following [21]4.

• MTLhmm: The instantiated method of the proposed MTLstruct framework
for sequence learning problem is implemented in C++. The termination
condition is the same as SVMhmm.

All above comparing methods have the tradeoff parameter, so we rescale them
into the grid of {10−2, 10−1, 100, 101, 102} such that the objectives of all methods

2http://crfpp.sourceforge.net/
3http://www.cs.cornell.edu/People/tj/svm light/svm hmm.html
4In the following experiments, we will show that the large number of epochs is infeasible for

the large scale high-dimensional data.
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Table 4. The Chinese word segmentation results (TP1/TP2) of
comparing methods on all the testing datasets. The best results
across the compared methods are shown in bold on TP1 and TP2,
individually.

Dataset Method Recall Prec F1 Riv

AS

CRF (ℓ2) 95.6 / 95.1 94.4 / 93.8 95.0 / 94.4 97.0 / 96.4
CRF (ℓ1) 95.4 / 95.0 94.1 / 93.4 94.8 / 94.2 96.7 / 96.4
IRW-CRF 95.6 / 95.1 94.3 / 93.8 94.9 / 94.5 97.0 / 96.5

SVMhmm 94.6 / 94.3 93.2 / 93.3 93.9 / 93.8 96.0 / 95.6

MTLhmm
95.6 / 95.8 93.9 / 93.9 94.7 / 94.8 97.2 /97.3

MSR

CRF (ℓ2) 96.5 / 95.7 96.7 / 96.0 96.6 / 95.8 97.3 / 96.5
CRF (ℓ1) 96.2 / 95.7 96.2 / 95.6 96.2 / 95.6 96.9 / 96.5
IRW-CRF 96.6 / 95.8 96.8 / 96.0 96.7 / 95.9 97.5 / 96.6

SVMhmm 96.7 / 96.1 96.5 / 96.5 96.6 / 96.3 97.6 / 96.7

MTLhmm
96.9 / 97.0 96.5 / 96.4 96.7 / 96.7 97.9 / 98.0

CityU

CRF (ℓ2) 94.1 / 92.8 94.3 / 92.6 94.2 / 92.7 96.3 / 95.1
CRF (ℓ1) 93.4 / 92.9 93.6 / 92.9 93.5 / 92.9 95.6 / 95.1
IRW-CRF 94.1 / 93.5 94.3 / 93.3 94.2 / 93.4 96.3 / 95.8

SVMhmm 94.3 / 94.1 94.1 / 93.5 94.2 / 93.8 96.4 / 96.4

MTLhmm
95.2 / 95.2 94.2 / 94.3 94.7 / 94.8 97.6 / 97.6

PKU

CRF (ℓ2) 92.7 / 92.2 94.2 / 93.3 93.4 / 92.7 94.7 / 94.2
CRF (ℓ1) 91.6 / 91.8 93.1 / 92.4 92.4 / 91.7 93.8 / 93.4
IRW-CRF 92.7 / 92.4 94.1 / 93.3 93.4 / 92.9 94.8 / 94.3

SVMhmm 92.6 / 93.0 93.7 / 93.4 93.2 / 93.2 94.9 / 95.0
OnlineMKL 89.9 / 91.0 89.2 / 90.5 89.6 / 90.7 91.7 / 92.7

MTLhmm
93.8 / 94.0 93.3 / 93.6 93.6 / 93.8 96.1 / 96.2

are scaled with a constant. In the following experiments, we set the C of MTLhmm

in the grid of n×{10−2, 10−1, 100, 101, 102}, while the parameters of other methods
are adjusted accordingly.

In the dependency parsing, we follow the structured prediction framework with
the loss defined as the number of words that have the incorrect parent [23]. Ac-
cording to [24], there are two algorithms which can solve Problem (8) in terms of
two types of dependency trees, respectively. For projective dependency tree, Eisner
algorithm [11] has a runtime of O(l3), while Chu-Liu-Edmonds [7] provides non-
projective parsing complexity O(l2) where l is the length of the input sentence.
Non-projective case is adopted according to the property of datasets used in the
following experiments. For fair comparison, we mainly focus on comparing the
following methods:

• MSTParser [23]: Online large margin method for dependency parsing
with the available toolbox5. We vary the number of epochs in the set of
{20, 30, 40}.

• MTLparse: The instantiated method of the proposed MTLstruct framework
for dependency parsing.

The setting of MTLparse is similar to the task of sequence learning, but with a
fixed C=n× 102. We notice that more epochs does not affect the performance of
MSTParser much.

The last experiments are conducted for the analysis of MTLstruct with p-block-
norm regularization (pMTLstruct) in the setting of sequence labeling problems
(pMTLhmm). We adopt the same setting as that of MTLhmm, as well as vary
the parameter p in the set of {4/3, 2, 4,∞} [17] to compare with MTLhmm such

5http://sourceforge.net/projects/mstparser/
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Figure 2. The learned template weights for Chinese word seg-
mentation in TP1 and TP2 on PKU.

that we can obtain the influence of the p-block-norm regularization in the sequence
labeling tasks.

For fair comparisons, all comparing methods have the same set of templates(features)
as the input, and the best results of each method are reported on the split datasets
by tuning the parameter in the given grid. In what follows, we will show the detailed
experiments individually.

3.2. Chinese Word Segmentation. Chinese word segmentation has been an ac-
tive area of research in computational linguistics for several decades. The second
International Chinese Word Segmentation Bakeoff task6 provides the platform to
evaluate different methods. It contains four corpora: Academia Sinica (AS), City
University of Hong Kong (CityU), Peking University (PKU) and Microsoft Re-
search (MSR). The detailed corpus information is referred to [12]. Table 1 shows
the benchmark splits of data and their associated features in terms of templates in
Table 2 following the definition of templates in CRF++. Results are reported by
the following measures: test recall (Recall), test precision (Prec), balanced F score
(F1), and recall on in-vocabulary words (Riv). We use three label notations such
as B, I, E (B is the beginning character of a word; I is the inner character of a
word; E is the end character of a word) to transform Chinese word segmentation
task into a label sequence learning problem. To examine whether or not improper
or redundant templates could affect sequence prediction performance, we divided
the set of templates into two categories: TP1 and TP2. TP1 is frequently used
in the literature [25]. In TP2, we deliberately enumerate all the possible bi-gram
templates in the window size [-2,+2]. This construction of templates has a high
probability to include redundant information.

3.2.1. Model Stability and Training Time. We empirically study the sensitivity of
performances and the time complexities of each algorithms on the two smallest
datasets PKU and CityU. By merging the training and testing data in Table 1,
we randomly generate 80% training and 20% testing splits five times. Results on
PKU and CityU in Table 3 show that the standard deviations are less than 0.2%.
The average CPU times on PKU dataset are shown in Figure 1. We can observe
that our proposed method MTLhmm is slower than CRFs and SVMhmm in the

6http://www.sighan.org/bakeoff2005/
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Figure 3. F1 measure by varying C in TP2 on the Chinese word
segmentation datasets.

range of large C values, but it is more than 10 times faster than OnlineMKL, and
comparable to IRW-CRF. This is consistent with the complexity analysis in Section
1.5. Moreover, the experiments of OnlineMKL cannot be finished in the reasonable
time for the other three large scale datasets.

3.2.2. Performance Analysis. The testing results on the standard split of the datasets
are reported in Table 4. In TP1, except OnlineMKL, the rest four algorithms have
similar F1 score with a difference at most 0.5%, but CRF(ℓ2) is 1% higher than

SVMhmm on AS. IRW-CRF slightly outperforms CRF(ℓ2) at most cases. How-

ever, MTLhmm always demonstrates the highest Riv, which means weighting strat-
egy is more useful to predict the known words correctly. Although MTLhmm and
SVMhmm use the same set of features, MTLhmm is better than SVMhmm according
to F1 score. This shows that the proposed weighting template strategy is helpful
to boost the performance. However, OnlineMKL performs the worst among all
algorithms. It may require some additional online-to-batch strategies [9, 8] for On-
lineMKL to achieve the optimal batch-mode structured prediction performance.
In TP2, the similar phenomena could be observed, but the difference of F1 score
among different methods are enlarged. For example, for CityU dataset, MTLhmm

is 2.1% higher than CRFs. MTLhmm consistently shows the best F1 score.
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By comparing the results between TP1 and TP2, we find that adding more
templates, such as templates U10-U16, degrades the performance of CRFs and
SVMhmm, but MTLhmm and OnlineMKL obtain slight improvements. Therefore,
the performance of weighting strategy in MTLhmm and OnlineMKL is not greatly
affected by the arbitrarily added templates. However, CRF(ℓ2) and SVMhmm do
not consider this information, and CRF(ℓ1) works poorly on CityU and PKU.

Moreover, OnlineMKL demonstrates worse performance than MTLhmm more than
3% with respect to F1 on PKU. This is due to the fact that MTLhmm can effectively
identify the important templates from a given set of templates, and can remove
unimportant templates simultaneously; while OnlineMKL may not be so effective
in this case.

3.2.3. Weighting on Templates. The above statements can be justified by the learned
template weights. Figure 2 shows an example of the learned weights of templates
on PKU in the setting of TP1 and TP2. We can observe that the weights learned
by MTLhmm has a higher standard deviation than that of OnlineMKL. The small
standard deviation means the weights are more likely to be average weights. Hence,
MTLhmm prefers sparser weights than OnlineMKL. Even using more epochs, On-
lineMKL still cannot improve the sparsity of weights and prediction performance
but takes more training time. Together with the better performance, this implies
that MTLhmm trained in batch mode is more effective than OnlineMKL in online
mode in this task.

3.2.4. Sensitivity of Parameter C. Figure 3 shows the variations of testing F1 mea-
sure over the range of C used in the experimental setting 7. MTLhmm obtain better
results than the rest of algorithms in the range with the large C, i.e. C ≥ 1. There-
fore, weighting groups of features can boost the F1 measure on all four Chinese
word segmentation datasets in the framework of MTLstruct, but OnlineMKL de-
grades the performance due to the online mode. CRF(ℓ1) varies greatly in terms
of different C’s, which implies that aggressively removing features could degrade
prediction performance 8.

3.3. Named Entity Recognition. We evaluate all methods on the CoNLL-2002
language-independent named entity recognition shared task9. The data consists
of three files per language: training, validation (testa), and testing (testb). Span-
ish (ESP) (8, 323/1, 915/1, 517) and Dutch (NED) (15, 806/2, 895/5, 159) with the
number of sentences in each file are used in this experiment. Similar to TP2 in
Table 2, we enumerate in the range of [−3, 3] the combination of uni-gram and
bi-gram templates in terms of words and part-of-speech (POS) respectively, the
combination of tri-gram on POS only, and a state-state transition template. There
are 134 templates in total, and the number of features are 5, 926, 876 and 4, 710, 332
for ESP and NED, respectively.

7Due to expensive training costs on large structured prediction tasks, we cannot afford a finer
grid of C parameter in our experiments.

8 A finer grid of C parameter for tuning may improve the prediction performance of CRF(ℓ1)
on these four datasets.

9http://www.cnts.ua.ac.be/conll2002/ner/
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Table 5. The overall performance of the comparing methods on
Spanish and Dutch for named entity recognition. The best results
across different methods are shown in bold.

Method
Validation set Test set

Prec Recall F1 Prec Recall F1

CRF (ℓ2) 74.38 55.97 63.88 78.16 60.72 68.34
CRF (ℓ1) 73.32 58.34 64.98 77.41 64.23 70.21
IRW-CRF 74.08 56.23 63.93 77.17 61.03 68.39

SVMhmm 72.23 57.01 63.72 74.83 61.23 67.35
OnlineMKL 72.64 62.64 67.27 75.06 65.52 69.97

MTLhmm 77.47 63.21 69.62 79.26 68.39 73.42

(a) Spanish (ESP)
CRF (ℓ2) 71.56 40.79 51.96 74.53 46.41 57.20
CRF (ℓ1) 72.64 43.85 54.68 74.93 51.10 60.76
IRW-CRF 71.62 41.09 52.22 73.68 46.54 57.05

SVMhmm 58.57 39.98 47.52 60.15 44.15 50.92
OnlineMKL 63.69 43.39 51.61 68.09 49.43 57.28

MTLhmm 82.72 48.32 61.00 85.63 56.08 67.77

(b) Dutch (NED)
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Figure 4. The CPU time on Spanish and Dutch dataset by vary-
ing C.

3.3.1. Performance Analysis on All Templates. Table 5 shows the overall perfor-
mance of different methods on Spanish and Dutch data, respectively. We observe
that CRF (ℓ2) and SVMhmm perform worse than other methods. This implies
that template (feature) selection improves performance by pruning the noisy or re-

dundancy templates (features). Another observation is that MTLhmm outperforms
CRF (ℓ1), IRW-CRF and OnlineMKL with more than 3% on ESP and 7% on NED
in terms of F1 on the testing data. Figure 4 shows the training times of each method
where MTLhmm is slower than CRFs and SVMhmm, but it is more than 10 times
faster than OnlineMKL. Figure 5 shows the weights learned by OnlineMKL and
MTLhmm on both datasets. If we consider the template with its weight less than
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Figure 5. The relative learned template weights for Named en-
tity recognition on Spanish and Dutch. The horizontal line with 1
stands for methods with the average weights.

a relative small value such as 10−5 is redundant, MTLhmm can remove 75 and 97
templates for ESP and NED, respectively, but OnlineMKL cannot remove any tem-
plate. On both datasets, MTLhmm obtains much sparser weights than OnlineMKL,
and also selects a quite different subset of templates for different language; while
OnlineMKL selects similar subset of templates due to the similar curves. All the
observations imply that MTLhmm is more promising than other methods.

Table 6. The overall performance of the comparing methods on
Spanish and Dutch for named entity recognition with the selected
subset of templates. The best results across different methods are
shown in bold.

Method
Validation set Test set

Prec Recall F1 Prec Recall F1

CRF (ℓ2) 78.00 61.03 68.48 81.76 67.52 73.96
CRF (ℓ1) 76.58 60.34 67.50 80.75 66.70 73.00
IRW-CRF 76.36 63.90 69.58 81.04 70.50 75.40

SVMhmm 74.39 62.82 68.12 78.17 68.50 73.02
OnlineMKL 73.17 63.60 68.05 75.58 68.19 71.70

MTLhmm 76.09 62.32 68.52 79.96 69.74 74.50
(a) Spanish (ESP)

CRF (ℓ2) 77.66 43.31 55.61 80.79 50.57 62.20
CRF (ℓ1) 77.53 43.92 56.08 80.05 51.31 62.53
IRW-CRF 79.22 48.09 59.85 82.19 54.78 65.74

SVMhmm 70.16 43.96 54.05 74.77 50.90 60.57
OnlineMKL 67.63 45.83 54.64 69.60 51.99 59.52

MTLhmm 80.64 47.94 60.13 85.06 55.34 67.06

(b) Dutch (NED)
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Table 7. The results (MSTParser / MTLparse) of the dependency
parsing on Danish and Swedish. The best results across the com-
pared methods are shown in bold.

ACC UASP UAS
Danish 31.06 / 32.61 86.93 / 87.08 88.80 / 88.80

Swedish 37.28 / 37.53 83.65 / 84.14 85.76 / 86.40

3.3.2. Performance on the Selected Templates by MTLhmm. To further justify the
effectiveness, we select a subset of 20 templates according to the learned weights
of MTLhmm for all methods. The overall performances are shown in Table 6. We
observe that the overall performances on the small subset of templates greatly
outperform that on the full set for both CRF (ℓ2) and SVMhmm by more than 5%
over both datasets. CRF (ℓ1) and OnlineMKL also have around 2-3% improvement.

MTLhmm on ESP has 1.02% improvement, while a reduction of 0.71% happens on
NED. IRW-CRF in this case show the best performance on ESP, but worse on
NED comparing with MTLhmm. However, IRW-CRF performs worse on the full
set of templates shown in Table 5 which implies that IRW-CRF cannot tackle well
the noisy templates. All these observations imply that MTLhmm is effective for
selecting templates and has a stable even improved performance in the case of
noisy or non-informative templates.

3.4. Dependency Parsing. We perform comparisons on CoNLL-X shared task10:
Multi-lingual Dependency Parsing, on Danish and Swedish where the number of
sentences in the given files (training / testing) are (5, 125/313) and (11, 092/389),
respectively. We use the templates in MSTParser including: (1) POS (including
CPOSTAG and POSTAG) trigrams: the POS of the head, that of the modifier
and that of a word in between, for all distinct POS tags for the words between the
head and the modifier. Each relative position from the head to the modifier can
be considered as a different type of template. (2) The form of POS 4-gram: the
POS of the head, modifier, word before/after head and word before/after modifier.
(3) Two items: each template consists of two observations, e.g. head word, head
POS/LEMMA, child word, and child POS/LEMMA. All templates are conjoined
with the direction of attachment as well as the distance between the two words
creating the dependency. For the distance between two words creating the depen-
dency is longer than 10, it is set to 10; If between 10 and 5, it is 5, otherwise
it does not change. There are 568 and 612 templates which generate 2, 137, 252
and 2, 292, 216 features for Danish and Swedish, respectively. Three measures are
employed to evaluate the performance of comparing methods: complete sentence
accuracy (ACC), unlabeled attachment score including punctuation (UASP), and
unlabeled attachment score excluding punctuation (UAS).

The experimental results of comparisons over Danish and Swedish are shown
in Table 7, and the corresponding learned weights of templates are presented in
Figure 6. If the same selection strategy is used in named entity recognition task,
MTLparse can remove 500 and 508 templates for Danish and Swedish, respectively.
It implies that the huge redundancy exists in the given set of templates. The similar
phenomena can be observed: MTLparse obtains comparable or even better results

10http://nextens.uvt.nl/˜conll/post task data.html
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Figure 6. The relative learned template weights for Depen-
dency Parsing on Danish and Swedish. The horizontal line with
100 stands for methods with the average weights.

Table 8. The overall results of pMTLhmm on PKU and ESP by
varying p. The best results across the different p are shown in bold.

p
PKU ESP (Test set)

Recall Prec F1 Riv Prec Recall F1

1 93.8 93.3 93.6 96.1 79.96 69.74 74.50
4/3 92.9 94.1 93.5 94.7 80.22 70.08 74.81

2 92.6 93.4 93.0 94.9 79.08 67.35 72.75
4 90.8 91.3 91.1 93.4 74.59 59.54 66.22
100 87.4 89.7 88.5 90.0 71.92 54.34 61.91

(a) small set of templates
1 94.0 93.6 93.8 96.2 79.26 68.39 73.42

4/3 93.5 94.0 93.8 95.3 78.29 64.65 70.82
2 92.6 93.7 93.1 94.3 75.52 61.11 67.56
4 90.0 92.5 91.3 92.2 72.74 53.93 61.58
100 89.7 91.7 90.7 91.9 65.08 54.51 59.33

(b) large set of templates

than MSTParser, and also achieves very sparse weights of templates. The weights of
patterns in some senses could be helpful for the interpretation of semantic meaning
of each language [21].

3.5. MTLstruct with p-Block-Norm Regularization. Experiments of pMTLhmm

are carried out on PKU and ESP (Test set), and their corresponding templates are
employed (see Section 3.2 and Section 3.3, respectively). The empirical results are
shown in Table 8, where p = 1 is MTLhmm trained by Algorithm 1, and p=100
is used to approximate infinity-block norm. We observe that F1 score decreases
when increasing p, except that p=3/4 obtains the best performance on ESP (Test
set). For large p, the performance degrades greatly. The corresponding weights on
the large set of templates are shown in Figure 7 where the weights are normalized
by l1 norm due to the scaling problem. From these observations, 1 ≤ p < 2 is
recommended for sequence learning tasks studied in this paper.
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Figure 7. The normalized weights of pMTLhmm on the large set
of templates by varying p values on PKU and ESP datasets, re-
spectively.

4. Conclusion

Structured prediction is an important modeling strategy for various real world
applications. Instead of modeling the structure of specific application, in this pa-
per, we explore the underlying feature structure over the input-output pairs which
contributes to the success of discriminative models, such as CRFs and Structural
SVMs. Structured prediction algorithms take more effort on how to model the in-
terdependence among the output variables, but less consideration is taken on the
feature engineering which is a non-trivial and tedious task for general users. To al-
leviate this issue, we propose a Multiple Template Learning (MTLstruct) paradigm
to learn both the weight of each template and the structured prediction model in
the batch mode, simultaneously. Learning the weights of these groups is formulated
as a Multiple Kernel Learning (MKL) problem. We proposed to solve this MKL
problem in the primal by an efficient cutting plane algorithm, and its convergence
is presented. We further extend it to the p-block norm regularization and the mod-
ified algorithm is readily obtained. Two special cases are explored in our proposed
MTLstruct framework, i.e. sequence labeling and dependency parsing. Extensive
experimental results demonstrate that learning structured prediction model with
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weighting template can automatically interpret the importance of each templates,
so users can arbitrarily define numerous templates without cautions. Both theo-
retical analysis and empirical results verified that our MTLstruct is more efficient
and performs much better than OnlineMKL. In future, we will extend the proposed
framework for structured prediction with regression outputs.

Appendices

A. The Conic Dual of Problem (5)

Proof. Without loss of generality, we denotew = [w1; . . . ;wm] and pr = [pr
1; . . . ;p

r
m].

Problem (5) becomes

min
w,ξ≥0

1

2

(
m∑

j=1

‖wj‖

)2

+ Cξ

s.t. ξ ≥ qr +wTpr, ∀r = 1, . . . , s

By introducing a new variable u ∈ R and moving out summation operator from
objective to be a constraint, we can obtain the equivalent optimization problem as

min
w,ξ≥0

1

2
u2 + Cξ

s.t. ξ ≥ qr +wTpr, ∀r = 1, . . . , s
m∑

j=1

‖wj‖ ≤ u.

We can further simplify the above problem by introducing another variables ρ ∈ R
m

such that ‖wj‖ ≤ ρj , ∀j = 1, . . . ,m+ 1 to be

min
w,ξ≥0

1

2
u2 + Cξ

s.t. ξ ≥ qr +wTpr, ∀r = 1, . . . , s
m∑

j=1

ρj ≤ u, ||wj || ≤ ρj , ∀j = 1, . . . ,m.

We know that ‖wj‖ ≤ ρj is a second-order cone constraint. Following the recipe
of [4], the self-dual cone ‖vj‖2 ≤ ηj , ∀j = 1, . . . ,m can be introduced to form
the Lagrangian function: L(w, ξ, u, ρ;α, τ, γ,v, η) = 1

2u
2 + Cξ −

∑s
r=1 αr(ξ −

qr −wTpr) − τξ + γ
(∑m

j=1 ρj − u
)
−
∑m

j=1(〈vj ,wj〉 + ηjρj), with dual variables
αr ∈ R+, τ ∈ R+, γ ∈ R+. The derivatives of the Lagrangian with respect
to the primal variables have to vanish which leads to the following KKT con-
ditions: vj =

∑s
r=1 αrp

r
j , ∀j = 1, . . . ,m, C −

∑s
r=1 αr − τ = 0, u = γ, and

γ = ηj , ∀j = 1, . . . ,m. By substituting all the primal variables with dual variables
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by above KKT conditions, we can obtain the following dual problem,

max
α,γ

−
1

2
γ2 +

s∑

r=1

αrq
r

s.t.
∥∥∥

s∑

r=1

αrp
r
j

∥∥∥ ≤ γ, ∀j = 1, . . . ,m

s∑

r=1

αr ≤ C,αr ≥ 0, ∀r = 1, . . . ,m

By setting θ = 1
2γ

2 and As = {
∑s

r=1 αr ≤ C,αr ≥ 0, ∀r = 1, . . . , s}, we can
reformulate the above problem as

max
θ,α∈As

−θ +

s∑

r=1

αrq
r :

1

2
αTQjα ≤ θ, ∀j = 1, . . . ,m

where Qj
r,r′ = 〈pr

j ,p
r′

j 〉. According to the property of self-dual cone, we can obtain

the primal solution from its dual as wj = −µjvj = −µj

∑s
r=1 αrp

r
j where µj is the

dual variable of the jth quadratic constraint such that
∑m

j=1 µj = 1, µj ∈ R+, ∀j =

1, . . . ,m [3]. �

B. Proof of the Theorem 2

Proof. Since there are m quadratic constraints, the dual objective of MTLstruct can
be reformulated as

max
α∈As

min
j=1,...,m

Θd(α) = −
1

2

s∑

r=1

s∑

r′=1

αrαr′Q
j
r,r′ +

s∑

r=1

αrq
r.

We consider each group of features at one time:

max
α∈As

Θj(α),

where Qj is positive semi-definite matrix, and derivative ∂Θj(α) = qj − Qjα.
The Lemma 2 in [16] states that a line search starting at α along an ascent
direction η with maximum step-size C > 0 improves the objective by at least

max0≤β≤C

{
Θj(α+βη)−Θj(α)

}
≥ 1

2 min
{
C,

∂Θj(α)
T η

ηTQjη

}
∂Θj(α)

T η. If we consider

subgradient descent method, the line search along the subgradient of objective is
∂Θj∗(α) where j∗ = argminj∈{1,...,m} Θj(α). Therefore, the maximum improve-
ment is

max
0≤β≤C

{Θj∗(α + βη)−Θj∗(α)}

≥
1

2
min

{
C,

∂Θj∗(α)
T η

ηTQj∗η

}
∂Θj∗(α)

T η

≥
1

2
min

j∈{1,...,m}

{
C,

∂Θj(α)
T η

ηTQjη

}
∂Θj(α)

T η.(14)

We can observe that it is a special case of [16] if there is only one template. Ac-

cording to Theorem 5 in [16], for a newly added constraint Ŷ ∈ W and some
γj > 0, we can obtain ∂Θj(α)

T η = γj by setting the ascent direction ηŶ = 1 for the

newly added Ŷ and ηr = − 1
Cαr for the others. Here, we set γ = minj∈{1,...,m} γj
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so as to be the lower bound of ∂Θj(α)
T η, ∀j = 1, . . . ,m. In addition, the upper

bound for ηTQjη ≤ 4R2, ∀j = 1, . . . ,m + 1 can also be obtained by the fact that
ηTQjη = Qj

Ŷ,Ŷ
− 2

C

∑s
r=1 αrQ

j

r,Ŷ
+ 1

C2

∑s
r=1

∑s
r′=1 αrαr′Q

j
r,r′ ≤ R2 + 2

CCR2 +
1
C2C

2R2 = 4R2, ∀j = 1, . . . ,m. By substituting them back to (14), the similar
result shows the increase of the objective is at least

min

{
Cγ

2
,
γ2

8R2

}
.

Moreover, the initial optimality gap is at most C∆ when w = 0. Following the
remaining derivation in [16], the overall bound results are obtained. �

C. Proof of Proposition 1

Proof. The Lagrangian dual problem of (10) is formulated with dual variables αr ≥
0, ∀r = 1, . . . , s, and τ ≥ 0 as

max
α≥0

min
w,ξ≥0

1

2
||w||22,p + Cξ −

s∑

r=1

αr(ξ − qr −
m∑

j=1

wT
j p

r
j)− τξ

where ||w||22,p =
(∑m

j=1 ||wj ||
p
)2/p

. Similar to the derivation of Appendix A, we
can obtain the following KKT conditions

wj = −||w||p−2
2,p ||wj ||

2−p
s∑

r=1

αrp
r
j , ∀j = 1, . . . ,m(15)

s∑

r=1

αr ≤ C,αr ≥ 0, ∀r = 1, . . . , s.

According to the Fenchel-Legendre conjugate function [17], we have the following
equality

max
w

−
1

2
‖w‖22,p +

m∑

j=1

wT
j

(
−

s∑

r=1

αrp
r
j

)
=

1

2

∥∥∥−
s∑

r=1

αrp
r
j

∥∥∥
2

2,p∗

such that 1
p∗

+ 1
p = 1. Substituting them back to the Lagrangian function, we

reformulate the dual problem as

max
α∈As

−
1

2

∣∣∣∣∣

∣∣∣∣∣

s∑

r=1

αrp
r
j

∣∣∣∣∣

∣∣∣∣∣

2

2,p∗

+

s∑

r=1

αrq
r

which is equivalent to the Problem (11).
According to (15), we can obtain the following equation

||wj || = ||w||
p−2
p−1

2,p

∣∣∣∣∣

∣∣∣∣∣

s∑

r=1

αrp
r
j

∣∣∣∣∣

∣∣∣∣∣

1
p−1

, ∀j = 1, . . . ,m.

We further substitute it back to (15), we obtain the primal solution

wj = −||w||
p−2
p−1

2,p

∣∣∣∣∣

∣∣∣∣∣

s∑

r=1

αrp
r
j

∣∣∣∣∣

∣∣∣∣∣

2−p
p−1 s∑

r=1

αrp
r
j ,∀j = 1, . . . ,m.
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Let µj = ||w||
p−2
p−1

2,p

∣∣∣∣∑s
r=1 αrp

r
j

∣∣∣∣ 2−p

p−1 , ∀j = 1, . . . ,m, so the primal solution can be

simplified as wj = −µj

∑s
r=1 αrp

r
j . According to the definition of the mixed norm,

we can have the following derivations,

||w||
p−2
p−1

2,p =

(
m∑

j=1

||wj ||
p

) p−2
p(p−1)

=




m∑

j=1



||w||
p−2
p−1

2,p

∣∣∣∣∣

∣∣∣∣∣

s∑

r=1

αrp
r
j

∣∣∣∣∣

∣∣∣∣∣

1
p−1




p



p−2
p(p−1)

=

(
||w||

p−2
p−1

2,p

) p−2
p−1




m∑

j=1

∣∣∣∣∣

∣∣∣∣∣

s∑

r=1

αrp
r
j

∣∣∣∣∣

∣∣∣∣∣

p
p−1





p−2
p(p−1)

.

Hence, we can obtain the representation of the mixed norm with respect to α as

||w||
p−2
p−1

2,p =




m∑

j=1

∣∣∣∣∣

∣∣∣∣∣

s∑

r=1

αrp
r
j

∣∣∣∣∣

∣∣∣∣∣

p
p−1





p−2
p

.

Substituting it to the µ and w, we obtain the solutions in Proposition 1. The proof
is complete. �
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