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Cluster consensus in discrete-time networks of
multi-agents with inter-cluster nonidentical inputs
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Abstract—In this paper, cluster consensus of multi-agent sys-
tems is studied via inter-cluster nonidentical inputs. Here, we
consider general graph topologies, which might be time-varying.
The cluster consensus is defined by two aspects: the intra-
cluster synchronization, that the state differences between each
pair of agents in the same cluster converge to zero, and inter-
cluster separation, that the states of the agents in different
clusters are separated. For intra-cluster synchronization, the
concepts and theories of consensus including the spanning trees,
scramblingness, infinite stochastic matrix product and Hajnal
inequality, are extended. With them, it is proved that if the
graph has cluster spanning trees and all vertices self-linked, then
static linear system can realize intra-cluster synchronization. For
the time-varying coupling cases, it is proved that if there exists
T > 0 such that the union graph across anyT -length time
interval has cluster spanning trees and all graphs has all vertices
self-linked, then the time-varying linear system can also realize
intra-cluster synchronization. Under the assumption of common
inter-cluster influence, a sort of inter-cluster nonidentical inputs
are utilized to realize inter-cluster separation, that each agent in
the same cluster receives the same inputs and agents in different
clusters have different inputs. In addition, the boundedness of
the infinite sum of the inputs can guarantee the boundedness
of the trajectory. As an application, we employ a modified non-
Bayesian social learning model to illustrate the effectiveness of
our results.

Index Terms—Cluster Consensus, Multi-agent System, Coop-
erative Control, Linear System, Non-Bayesian Social Learning

I. I NTRODUCTION

In recent years, the multi-agent systems have broad appli-
cations [1], [2], [3]. In particular, the consensus problems of
multi-agent systems have attracted increasing interests from
many fields, such as physics, control engineering, and biology
[4], [5], [6]. In network of agents,consensusmeans that all
agents will converge to some common state. A consensus
algorithm is an interaction rule how agents update their
states. Recently, the consensus algorithm has also been used
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in social learning models. Social learning focuses on the
opinion dynamics in the society, which has attached a growing
interests. In social learning models, individuals engage in
communication with their neighbors in order to learn from
their experiences. For more details, we refer readers to see[7]-
[9]. A large amount of papers concerning consensus algorithms
have been published [10], [11], [12], [13], [14], most of which
focused on the average principle,i.e., the current state ofeach
agent is an average of the previous states of its own and its
neighbors, which is implemented by communication between
agents and can be described by the following difference
equations for the discrete-time cases:

xi(t+ 1) =
n
∑

j=1

Aijxj(t), i = 1, · · · , n, (1)

wherexi(t) denotes the state of agenti andA = [Aij ]
n
i,j=1

is a stochastic matrix. For a survey, we refer readers to [15]
and the references therein.

To realize consensus, the stability of the underlying dynam-
ical system is curial. Since the network can be regarded as
a graph, the issues can be depicted by the graph theory. In
the most existing literature, the concept of spanning tree is
widely use to describe the communicability between agents in
networks that can guarantee the consensus of (1). See [16],
[17], [18].

It is widely known that the movement or/and defaults of the
agents may lead the graph topology changing through time. So,
it is inevitable to study the stability of the consensus algorithm
in a time-varying environment, which can be described by the
following time-varying linear system:

xi(t+ 1) =

n
∑

j=1

Aij(t)xj(t), i = 1, · · · , n, (2)

where eachA(t) = [Aij(t)]
n
i,j=1 is a stochastic matrix. There

were a lot of literature, in which the stability analysis of
(2) are investigated. Most of their results can be derived
from the theories of infinite nonnegative matrix product and
ergodicity of inhomogeneous Markov chain. Among them, the
followings should be highlighted. In [19], [20], the celebrated
Hajnal’s inequality was introduced and its generalized form
was proposed in [21], to describe the compression of the
differences among rows in a stochastic matrix when multiplied
by another stochastic matrix that is scrambling. In [22], itwas
proved that a scrambling stochastic matrix could be obtained
if a certain number of stochastic matrices that have spanning
trees for their corresponding graphs were multiplied. So, in
most of the papers involving stability analysis of (2), the
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sufficient conditions were expressed in terms of spanning trees
in the union graph across time intervals of a given length. See
[11], [18] and the references therein. Besides, communication
delays were also widely investigated [17], [23], [24] and
nonlinear consensus algorithms were proposed [25].

All of the papers mentioned above concerns the complete
consensus that the states of all agents converge to a common
consistent state. However, this paper considered a more general
phenomenon, cluster consensus. This phenomenon is observed
when the agents in networks are divided into several groups,
called clustersin this paper by the way that synchronization
among the same cluster but the agents in different cluster have
different state trajectories. Cluster consensus (synchronization)
is considered to be more momentous in brain science [26],
engineering control [27], ecological science [28], communi-
cation, engineering [29], social science [30], and distributed
computation [31].

In this paper, we define the cluster consensus as follows.
Firstly, we divide the set of agents, denoted byV , into disjoint
clusters,C = {C1, · · · , CK}, with the properties:

1) Cp
⋂

Cq = ∅ for eachp 6= q;
2)

⋃K
p=1 Cp = V .

Secondly, lettingx(t) = [x1(t), · · · , xn(t)]
⊤ ∈ Rn denote the

state trajectory of all agents, of whichxi(t) represents the
state ofi ∈ V , we definecluster consensusvia the following
aspects:

1) x(t) is bounded;
2) We say that x(t) intra-cluster synchronizes if

limt→∞ |xi(t) − xi′ (t)| = 0 for all i, i′ ∈ Cp and
p = 1, · · · ,K;

3) We say that x(t) inter-cluster separates if
lim supt→∞ |xi(t) − xj(t)| > 0 holds for each
pair of i ∈ Ck andj ∈ Cl with k 6= l.

We say that a system reachescluster consensusif each solution
x(t) is bounded and satisfies the intra-cluster synchronization
and inter-cluster separation, i.e., the items 1-3 are satisfied.

For this purpose, we introduce the following linear discrete-
time system with external inter-cluster nonidentical inputs:

xi(t+ 1) =

n
∑

j=1

Aijxj(t) + Ii(t), i ∈ Cp, p = 1, · · · ,K, (3)

whereA = [Aij ]
n
i,j=1 is a n × n stochastic matrix,Ii(t) are

external scalar inputs and they are different with respect to
clusters, which is used to realize inter-cluster separation. Also,
we consider time-varying couplings that lead the following
time-varying linear system with inputs:

xi(t+ 1) =
n
∑

j=1

Aij(t)xj(t) + Ii(t), i ∈ Cp,

p = 1, · · · ,K. (4)

Related Works. Up till now, most papers in the literature
mainly concern the global consensus. For instance, in [15],
[18], the (global) conseus was studied, especially for multi-
agent system with time-varying topologies. There are essential
differences between global consensus and the cluster consen-
sus conidered the current paper, which means synchronization

among the same cluster but the agents in different cluster
have different state trajectories. In some recent papers [32]-
[35], the authors addressed the cluster (group) consensus in
networks with multi-agents and [32] showed that (2) can
reach cluster consensus if the graph topology is fixed and
strongly connected and the number of clusters is equal to
the period of agents. For continuous-time network with fixed
topology, [33] proved that under certain protocol, the multi-
agent network can achieve group consensus by discussing
the eigenvalues and eigenvectors of the Laplacian matrix.
[34] investigated group consensus in continuous-time network
with switching topologies. However, all of these papers had
a strong restriction in graph topologies and one important
insight of cluster consensus: inter-cluster separation, has not
been deeply investigated yet. Closely relating to this paper, the
authors’ previous work [35] studied cluster synchronization
of coupled nonlinear dynamical system and proposed several
ideas, like intra-cluster synchronization and configuration of
graph topologies that cause cluster synchronization, which are
shared in the current paper.

Our Contributions. In this paper, we derive sufficient
conditions for cluster consensus in the sense of both (3) and
(4). Different from the Lyapunov approach used in [35], in
the current paper, we used the algebraic theory of product
of infinite matrices and graph theory to derive the main
results. The enhancements in this paper, in comparison with
the literature involved with (global) consensus like [15],[18]
as well as the literature involved with cluster synchronization,
like [35], are as follows. (1). We extended the concept of
consensus to the cluster consensus as we mentioned above and
the core concept of the algebraic graph theory, spanning tree,
that means all nodes in the graph has a common root (a node
can access all other nodes in the graph), to the cluster spanning
tree, as defined in Definition 1. (2). The main approach Hajnal
inequality is extended to a cluster Hajnal inequality as Lemma
4. Accordingly, the concept of scramblingness is extended to
cluster scramblingness as described in Definition 2. (3). We
make efforts to prove inter-cluster separation, that the agents
in different cluster do not converge to the same states, which
is out of the scopes of the existing literature, like either [15],
[18] or [35].

This paper is organized as follows. In section 2, we present
some graph definitions and give some notations required in this
paper. In section 3, we firstly investigate the cluster consensus
problem in discrete-time system with fixed topologies and
present the cluster consensus criterion. Then we promote the
criterion to the discrete-time system with switching topologies
in section 4. An application is given in section 5 to verify the
theoretical results. We conclude this paper in section 6.

II. PRELIMINARIES

In this section, we firstly recall some necessary notations
and definitions that are related to graph and matrix theoriesand
then generalize them into the cluster sense. We also present
several lemmas which will be used later. For more details
about the definitions, notations and propositions about the
graph and matrix, we refer readers to textbooks [36], [37].
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For a matrixA, denoteAij the elements ofA on the ith
row andjth column. If the matrixA is denoted as the result
of an expression, then we denote it by[A]ij . A⊤ denotes the
transpose ofA. For a setS with finite elements,#S denotes
the number of elements inS. E denotes the identity matrix
with a proper dimension.1 denotes the column vector with all
components equal to1 with a proper dimension.ρ(A) denotes
the set of eigenvalues of a square matrixA. ‖z‖ denotes a
vector norm of a vectorz and‖A‖ denotes the matrix norm
of A induced by the vector norm‖ · ‖.

An n×n matrix A is called astochastic matrixif Aij ≥ 0
for all i, j, and

∑n
j=1 Aij = 1 for i = 1, · · · , n. A stochastic

matrix A is calledscramblingif for any i and j, there exists
k such that bothAik andAjk are positive.

A directed graphG consists of a vertex setV = {1, · · · , n}
and a directed edge setE ⊆ V ×V , i.e., an edge is an ordered
pair of vertices inV . Ni denotes the neighborhood of the
vertexvi, i.e.Ni = {j ∈ V : (j, i) ∈ E}. A (directed)pathof
lengthl from vertexvi to vj , denoted by(vr1 , vr2 , · · · , vrl+1

),
is a sequence ofl+1 distinct verticesvr1 , · · · , vrl+1

with vr1 =
vi andvrl+1

= vj such that(vrk , vrk+1
) ∈ E(G). The graphG

contains aspanning (directed) treeif there exists a vertexvi
such that for all the other verticesvj there’s a directed path
from vi to vj , andvi is called theroot vertex. Corresponding
to the matrix scramblingness, we say thatG is scrambling if
for any pair of verticesvi andvj there exists a common vertex
vk such that(vk, vi) ∈ E and(vk, vj) ∈ E . We say thatG has
self-links if (vi, vi) ∈ E for all vi ∈ V .

Ergodicity coefficient, µ(·), was proposed to measure the
scramblingness of a stochastic matrix. In [19], [20], theHajnal
diameter∆(·) was introduced to measure the difference of
the rows in a stochastic matrix, and established his celebrated
Hajnal’s inequality∆(AB) ≤ (1 − µ(A))∆(B), which indi-
cated that the Hajnal diameter of stochastic matrix productAB
strictly decreases w.r.t.B, if A is scrambling, i.e.,µ(A) < 1.
The definitions ofµ(·) and∆(·) can be found in [19], [21].

An n × n nonnegative matrixA can be associated with a
directed graphG(A) = {V , E} in such a way that(vj , vi) ∈ E
if and only if Aij > 0. With this correspondence, we also say
A contains a spanning tree ifG(A) contains a spanning tree.
On the other hand, for a given graphG1, we denoteA(G1) =
{A|G(A) = G1} the subset of stochastic matricesA such that
G(A) = G1.

For an infinite stochastic matrix sequence{A(t)}∞t=1 with
the same dimension, we use the following simplified symbol
for a successive matrix product fromt to s with s > t:

As
t , A(s)A(s− 1) · · ·A(t).

For a constant matrixA, we denote itst-th power byAt. [22]
proved that if each stochastic matrixA(t) has spanning trees
and self-links, thenAs

t is scrambling ifs− t > n− 1, where
n is the dimension of the matrixA(t) [38].

In this paper, we consider cluster dynamics of networks.
First of all, for a graphG = (V , E), we define aclustering, C,
as a disjoint division of the vertex set, namely, a sequence of
subsets ofV , C = {C1, · · · , CK}, that satisfies: (i)

⋃K
p=1 Cp =

V ; (ii) Ck
⋂

Cl = ∅, k 6= l. Thus, we are able to extend the

concepts of graph and matrix mentioned above to those in the
cluster case.

Definition 1: For a given clusteringC = {C1, · · · , CK}, we
say that the graphG hascluster-spanning-treeswith respect
to (w.r.t.) C if for each clusterCp, p = 1, · · · ,K, there exists
a vertexvp ∈ V such that there exist paths inG from vp to
all vertices inCp. We denoted this vertexvp as the root of the
clusterCp.

It should be emphasized that the root vertex ofCp and the
vertices of the paths from the root to the vertices inCp do not
necessarily belong toCp. It can be seen that the root vertex
of a cluster does not necessarily same with the roots of other
clusters. Therefore, the definition of the cluster-spanning-tree
can be regarded as a generalization of that of spanning tree
we mentioned above.

Definition 2: For a given clusteringC = {C1, · · · , CK}, we
say thatG is cluster-scrambling(w.r.t. C) if for any pair of
verticesvp1

, vp2
∈ Cp, there exists a vertexvk ∈ V , such that

both (vk, vp1
) and (vk, vp2

) belong toE .
Similarly, one can see that Definition 2 is a generalization
of that of scramblingness we mentioned above. For a pair
of vertices that are located in different clusters, they arenot
necessary to have a common linked vertex.

To measure the spanning-scramblingness, as a generaliza-
tion from those in Hanjnal [19], [20], we define the cluster
ergodicity coefficient (w.r.t the clusteringC) of a stochastic
matrix A as

µC(A) = min
p=1,··· ,K

min
i,j∈Cp

n
∑

k=1

min(Aik, Ajk).

It can be seen thatµC(A) ∈ [0, 1] andA is cluster-scrambling
(w.r.t. C) if and only if µC(A) > 0.

According to the definition of cluster consensus, we extend
the definition of Hajnal diameter [19], [20], [21] to the cluster
case:

Definition 3: For a matrix A, which has row vectors
A1, A2, · · · , An and a given clusteringC, we define the cluster
Hajnal diameter as

∆C(A) = max
p=1,··· ,K

max
i,j∈Cp

‖Ai −Aj‖

for some norm‖ · ‖.
It can be seen that∆C(x) → 0 is equivalent to the intra-cluster
synchronization.

Similar to the results and the proof of Theorem 5.1 in
[38], we can prove that the product ofn− 1 n−dimensional
stochastic matrices, all with cluster-spanning-trees, iscluster-
scrambling.

Lemma 1:Suppose that eachA(t), t = 1, · · · , n− 1 is an
n-dimensional stochastic matrix and has cluster-spanning-trees
(w.r.t. C) and self-links. Then the productAn−1

1 is cluster-
scrambling (w.r.t.C), i.e., µC(A) > 0.

See the proof in Appendices.
In [15], it has been proved that if a stochastic matrixA

has spanning trees and all nodes self-linked, then the power
matrixAn converges to1α for some row vectorα ∈ Rn. Here,
we conclude that the convergence can hold even without the
spanning tree condition as a direct consequence from [37].
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Lemma 2: If a stochastic matrixA has positive diagonal
elements, thenAn is convergent exponentially.

III. C LUSTER CONSENSUS ANALYSIS OF DISCRETE-TIME

NETWORK WITH STATIC COUPLING MATRIX

A. Invariance of the cluster consensus subspace

To seek sufficient conditions for cluster consensus, we
firstly consider the situation that if the initial datax(0) =
[x1(0), · · · , xn(0)]

⊤ has already had the cluster synchronizing
structure, namely,xi(0) = xj(0) for all i, j ∈ Cp with
p = 1, · · · ,K, then the cluster synchronization should be kept
,i.e., xi(t) = xj(t) for all i, j ∈ Cp with p = 1, · · · ,K and
t ≥ 0. In other words, the following subspace inRn w.r.t. the
clusteringC:

SC =

{

x = [x1, · · · , xn]
⊤ ∈ R

n : xi = xj

for all i, j ∈ Cp with p = 1, · · · ,K

}

,

namedcluster-consensus subspace, is invariant through (3).
It should be emphasized thatIi(t) are different with respect

to clusters, which is used to realize inter-cluster separation.
Definition 4: We say that the inputI(t) is intra-cluster

identical if Ii(t) = Ij(t) for all i, j ∈ Cp and allp = 1, · · · ,K
and the stochastic matrixA hasinter-cluster common influence
if for each pair ofp andp′,

∑

j∈Cp′
aij is identical w.r.t. all

i ∈ Cp, in other words,
∑

j∈Cp′
aij only depends on the cluster

indicesp andp′ but is independent of the vertexi ∈ Cp.
One can see that if two stochastic matricesA andB which

have inter-cluster common influence w.r.t. the same clustering
C, so does the productAB. In the following, similar to what
we did in [35], we have

Lemma 3: If the input is intra-cluster identical and the
matrixA has inter-cluster common influence, then the cluster-
consensus subspace is invariant through (3).
Proof. From the condition, we define

βp,p′ ,
∑

j∈Cp′

aij

for any i ∈ Cp andIp(t) , Ii(t) for any i ∈ Cp.
Assuming thatx(t) ∈ SC , we are to provex(t + 1) ∈ SC ,

too. For this purpose, letxp(t) be the identical state of the
clusterp at time t. Thus, for eachCp and an arbitrary vertex
i ∈ Cp,

xi(t+ 1) =
K
∑

p′=1

∑

j∈Cp′

aijxj(t) + Ii(t)

=

K
∑

p=1

βp,p′xp′(t) + Ip(t),

which is identical w.r.t. alli ∈ Cp. By induction, this completes
the proof.

B. Intra-cluster synchronization

We assume a special sort of intra-cluster identical input as
follows:

Ii(t) = αpu(t) (5)

whereu(t) is a scalar function andα1, · · · , αp are different
constants.

Similar to the Hanjnal inequality given in [19], [20], [21],
we can prove

Lemma 4:Suppose that stochastic matricesA andB having
the same dimension and inter-cluster common influence, then

∆C(AB) ≤ (1− µC(A))∆C(B).

Proof. The idea of the proof is similar to that of the main
result in [21]. Let

B =







B1

...
Bn






, H = AB =







H1

...
Hn







with Bi = [Bi1, · · · , Bin] andHi =
∑

k aikBk, denoted by
[Hi1, · · · , Hin], for all i = 1, · · · , n.

For any pair of indicesi andj belonging to the same cluster
Cp0

, we have

Hi =

K
∑

p=1

∑

k∈Cp

aikBk, Hj =

K
∑

p=1

∑

k∈Cp

ajkBk.

Let dk = min{aik, ajk}. Define a set of index vector:

W = {w = [w1, · · · , wK ] : wp ∈ Cp, p = 1, · · · ,K}.

For eachw ∈ W , we define following convex combinations
of B1, · · · , Bn:

Gw =

K
∑

p=1

[

∑

k∈Cp, k 6=wp

dkBk + (βp,p0
−

∑

k∈Cp, k 6=wp

dk)Bwp

]

.

It can be seen that bothHi andHj are in the convex hull of
Gw for all w ∈ W . Therefore,

‖Hi −Hj‖ ≤ max
w,w′∈W

‖Gw −Gw′‖.

Combining with

‖Gw −Gw′‖ ≤
K
∑

p=1

(βp,p0
−

∑

k∈Cp

dk)‖Bwp
−Bw′

p
‖

≤ (1− µC(A))∆(B).

we have

‖Hi −Hj‖ ≤ (1 − µC(A))∆C(B).

Therefore,∆C(H) ≤ (1−µC(A))∆C(B), which completes the
proof due to the arbitrariness of(i, j) ∈ Cp andp = 1, · · · ,K.

Remark 1:Lemma 4 indicates that ifA has inter-cluster
common influence, then the cluster-Hajnal diameter ofAx
decreases. In addition, ifA is cluster-scrambling,∆C(Ax) is
strictly less than∆C(x).
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Based on the previous lemmas, we give the following result
concerning intra-cluster synchronization of (3).

Theorem 1:Suppose that bothu(t) and
∑t

k=1 u(k) are
bounded,I(t) is defined by (5), andA is a stochastic matrix
with inter-cluster common influence,A has cluster-spanning
trees and all positive diagonal elements. Then for any initial
conditionx(0), (3) is bounded and can intra-cluster synchro-
nize.

Proof. Let x(k) = [x1(k), · · · , xn(k)]
⊤ be the solution of

(3), then

x(t+ 1) = At+1x(0) +

t
∑

k=0

At−kI(k) (6)

whereI(t) = ςu(t) with ς = [ς1, · · · , ςn]⊤ and

ςi = αp, i ∈ Cp. (7)

There is someY > 0 such that|u(t)| ≤ Y , |
∑t

k=0 u(k)| ≤ Y
hold for all t ≥ 0.

By Lemma 2, we haveAt = A∞ + ǫ(t), where‖ǫ(t)‖∞ ≤
Mλt for someM > 0 andλ ∈ (0, 1). Therefore,

‖x(t+ 1)‖ ≤ ‖At+1x(0)‖∞ + ‖
t

∑

k=0

At−kςu(k)‖

≤ ‖x(0)‖+ ‖A∞ς‖|
t

∑

k=0

u(k)|+M

t
∑

k=0

λt−k|u(k)|

≤ ‖x(0)‖+ ‖A∞ς‖Y +MY
1

1− λ
.

which implies the solution of system (3) is bounded.
By Lemma 1, we can find an integerN1 such that for all

m ≥ N1, Am are cluster-scrambling. Denoteη = 1−µ(AN1).
For anyt, let t = pN1 + l with some0 ≤ l < p. We have

∆C(A
t+1) ≤ ηp∆C(En)

which converges to zero ast → ∞. In addition, sinceAl

has inter-cluster common influence and∆C(ς) = 0, then
∆C(A

lς) = 0 for all l ≥ 0 can be concluded. Therefore,
we have∆C(x(t+1)) ≤ ∆C(A

t+1x(0)) converges to zero as
t → ∞. This completes the proof.

C. Inter-cluster separation

Under the conditions of Theorem 1, the system can intra-
cluster synchronize, namely, the states within the same cluster
approach together. However, it is not known if the states in dif-
ferent clusters will approach together, too. A simple counter-
example is that the matrixA with the inter-cluster common in-
fluence has (global) spanning trees with all diagonal elements
positive and the inputsςu(t) satisfies

∑∞
k=1 |u(k)| converges.

In this case,u(t) converges to zero and the influence of the
input to the system disappears. One can see thatx(t) reaches
a global consensus, i.e.,limt→∞ x(t) = 1α for some scalar
α.

In this section, we investigate this problem by assuming that
u(t) is periodic with a periodT and

∑T
k=1 I(k) = 0, which

guarantees that the sum ofu(t) is bounded. Construct a new
matrix: B = [βp,q]

K
p,q=1, where

βp,q =
∑

j∈Cq

aij , i ∈ Cp (8)

It can be seen thatβp,q is independent of the selection of
i ∈ Cp.

Furthermore, we use the concept of “genericality” from
the structural control theory [39], [40], [41] to investigate
the inter-cluster separation. We define a setT (C,G) w.r.t. a
clusteringC and a graphG, of which each element has form:
{B, ς̃, [u1, · · · , uT−1]}, whereB is defined in (8) correspond-
ing to the graph topologyG, ς̃ ∈ RK is the vector to identify
each cluster and defined as:

ς̃p = αp, p = 1, · · · ,K, (9)

and [u1, u2, · · · , uT−1] ∈ RT−1 such that

u(θ + kT ) = uθ, θ = 1, · · · , T − 1,

and u(kT ) = −
T−1
∑

j=1

uj, ∀ k ≥ 0. (10)

We can rewrite the system (3) as the following compact form:

x(t+ 1) = Ax(t) + ςu(t), (11)

Definition 5: We say that for a given setT (C,G) as defined
above, (11) isgenerically inter-cluster separative (or cluster
consensus) if for almost every triple{B, ς̃, [u1, · · · , uT−1]} ∈
T (C,G) and almost all initialx(0) ∈ Rn, (11) can inter-cluster
separate (or cluster consensus).

Before presenting a sufficient condition for generical inter-
cluster separation, we give the following simple lemma.

Lemma 5:Suppose that the stochastic matrixA has the
inter-cluster common influence. Then, for any pair of cluster
C1 andC2, either there are no links fromC2 to C1; or for each
vertexv ∈ C1, there is at least one link fromC2 to v.

Theorem 2:Suppose that

1) every vertex inG has a self-link;
2) G satisfies the condition in Lemma 5 w.r.tC;
3) G has cluster-spanning-trees.

Then (11) reaches cluster consensus generically with respect to
the setT (C,G). In addition, the limiting consensus trajectories
are periodic, that is, there exist some scalar periodic trajecto-
riesvp(t) with the periodT for each clusterCp, p = 1, · · · ,K,
such thatlimt→∞ |xj(t)− vp(t)| = 0 if j ∈ Cp.

Proof. We firstly prove the asymptotic periodicity. Recall

x(t+ 1) = At+1x(0) +
t

∑

k=0

Akςu(t− k). (12)

By Lemma 2, one can see thatAn exponentially converges
to A∞. Thus, we can findM > 0 and λ ∈ (0, 1) such that
‖At − A∞‖ ≤ Mλt. Let Y = maxk=1,··· ,T |u(k)|. Thus, we



6

have

‖x(t+ lT + 1)− x(t+ 1)‖ ≤ ‖(At+lT+1 −At+1)x(0)‖

+‖
t

∑

k=0

Akς [u(t+ lT − k)− u(t− k)]‖

+‖
t+lT
∑

k=t+1

Akςu(t+ lT − k)‖

= ‖(At+lT+1 −At+1)x(0)‖+ ‖
t+lT
∑

k=t+1

A∞ςu(t− k)‖

+‖
t+lT
∑

k=t+1

[Ak −A∞]ςu(t− k)‖

≤ 2Mλt‖x(0)‖+MY ‖ς‖
t+lT
∑

k=t

λk

=

[

2M‖x(0)‖+MY ‖ς‖
1

1− λ

]

λt

for all l. Letting t = mT + θ − 1 for any m ∈ N and θ =
1, · · · , T , we have

‖x((m+ l)T + θ)− x(mT + θ)‖ ≤ M1λ
mT

for someM1 > 0. According to the Cauchy convergence
principle, eachx(θ + kT ), θ = 1, · · · , T , converges to some
value ask → ∞ exponentially, which implies that there
exist T-periodic functionsvp(t), p = 1, · · · ,K, such that
|xj(t)− vp(t)| → 0 exponentially, ifj ∈ Cp.

Now, we will prove the consensus states in different clusters
are different generically.

Since each cluster synchronizes, we can pick a single vertex
state from each cluster to represent the whole state of this
cluster. We can divide the spaceRn into the direct sum of
two subspaces:Rn = V1 ⊕ V2, whereV1 denotes the right
eigenspace ofA corresponding to the eigenvalue1 and V2

denotes the right eigenspace ofA corresponding to all other
eigenvalues. Since all diagonal elements ofA are positive,
then the direct sum works andAVi ⊂ Vi holds for i = 1, 2.
In addition, since the column vectors inA∞ belong toSC ,
V1 ⊂ SC . So,Rn = SC + V2.

For any initial datax(0) ∈ Rn, we can findy0 ∈ SC with the
decompositionx(0) = y0+x(0)−y0 such thatx(0)−y0 ∈ V .
Consider the following system restricted toSC :

y(t+ 1) = Ay(t) + I(t), y(0) = y0.

wherey(t) ∈ SC for all t.
Let δx(0) = x(0)− y0 ∈ V2. We have

δx(t+ 1) = Aδx(t), δx(0) = x(0)− y0,

which implies thatlimt→∞ δx(t) = 0, that is,limt→∞ x(t) =
limt→∞ y(t). Therefore, we only need to discussy(t) ∈ SC .

Since each component ofy(t) in the same cluster is iden-
tical, we can pick a single component from each cluster to
lower-dimensional column vector̃y ∈ RK with ỹp = yi for
somei ∈ Cp. Because of the inter-cluster common influence
condition, we have

ỹ(t+ 1) = Bỹ(t) + ς̃u(t) (13)

whereB is defined in (8) and̃ς = [α1, · · · , αK ]⊤. The inter-
cluster separation is equivalent to investigate the separation
among components of̃y(t). One can see that for almost every
B, B has K distinguishing left eigenvectors, denoted by
φ1, · · · , φK , corresponding to eigenvaluesν1, · · · , νK (pos-
sibly overlapping). So, for almost everyB with K left
eigenvectors, let us write down the solution (13) at timenT
as follows:

ỹ(nT + 1) = BnT+1ỹ(0) +

nT
∑

k=0

BnT−k ς̃u(k)

→ Z1ỹ(0) + Z2ς̃ , as n → ∞,

where

Z1 = lim
n→∞

BnT+1, Z2 = lim
n→∞

[ nT
∑

k=0

BnT−ku(k)

]

.

From Lemma 2,Z1 does exist. Combined with
∑nT−1

k=0 u(k) =
0, we can conclude thatZ2 exists, too.

For an arbitrary fixed pair of(p, q), with p, q = 1, · · · ,K
andp 6= q, we are to showZ2 can generically have different
p-th andq-th components. In fact, for eachk1 with |νk1

| < 1,
noting that its associated left eigenvector isφk1

, we have

φk1

nT
∑

k=0

BnT−ku(k)

= φk1

T−1
∑

k=0

u(k)

n−1
∑

z=0

νzT+k
k1

+ φk1
νnTk1

u(0)

→ φk1

∑T−1
k=0 u(k)νkk1

1− νTk1

, as n → ∞.

For each k2 with |νk2
| = 1, noting its associated left-

eigenvector isφk2
, according to the fact that all diagonal

elements inB are positive, from [37], we haveνk2
= 1 indeed.

Then, we have

φk2

nT
∑

k=0

BnT−ku(k) = φk2

nT
∑

k=0

u(k) = φk2
u(0) = φk2

uT .

So, for almost[u1, · · · , uT−1] ∈ RT−1, the eigenvectors ofZ2

are the same withB and the corresponding eigenvalues areuT

and
∑T−1

k=0 u(k)νkp/(1 − νTp ). For almost every realization of
[ui]

T−1
i=1 andB, none of them is zero, which implies thatZ2

is nonsingular. That means it is impossible for each pair of
its rows to be identical. So, for almost allς̃ , thep-th andq-th
component ofZ2 are not identical. Equivalently, for almost
every ζ̃, Z2ζ̃ has no pair of components identical. Therefore,
we conclude that for almost everyx0, associated with almost
every ỹ(0), each pair of components inZ1ỹ(0)+Z2ζ̃ are not
identical.

We can arbitrarily select the cluster pair(p, q) and the
exception cases of the statements above are within a set of
T (G, C) with Lebesgue measure zero. Since any finite union of
sets with Lebesgue measure zeros still has Lebesgue measure
zero, we conclude thatlimn→∞ ỹ(nT + 1) has no identical
components generically, which implies that the states of any
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two clusters inlimn→∞ y(nT+1) are not identical generically.
This completes the proof.

Remark 2: In the current paper, we make efforts to prove
the inter-cluster separation rigoroursly; however, in [35], the
inter-cluster separation was not touched (but only assumed).
We argue that for general nonlinear coupled system (models
in [35]), proving the inter-cluster separation is very difficult ,
if it was not impossible.

IV. CLUSTER-CONSENSUS IN DISCRETE-TIME NETWORK

WITH SWITCHING TOPOLOGIES

In this section, we study the cluster-consensus in network
with switching topologies described as the following time-
varying linear system:

xi(t+ 1) =

N
∑

j=1

Aij(t)xj(t) + Ii(t) ∀i ∈ Cp,

p = 1, · · · ,K, (14)

whereA(t) is associated with a graph from the graph setΥ =
{G1, · · · ,Gm} w.r.t. a given clusteringC, each of which satisfy
the propertyA: for each pairp andq of cluster indices,

1) there are no links fromCq to Cp in each graphGl, l =
1, · · · ,m,

2) or for each vertexv ∈ Cp and each graphGl, l =
1, · · · ,m, there is at least one link fromCq to it.

For the matrix sequenceA(t), we have the following assump-
tions:

• B1: There is a positive constante > 0 such that for each
pair i, j andt, eitherAij(t) = 0 or Aij ≥ e holds;

• B2: Aii(t) ≥ e holds for all i = 1, · · · , n and t ≥ 0;
• B3 (inter-cluster common influence): There exists aRn,n

stochastic matrixB(t) = [bp,q(t)]
K
p,q=1, possibly depend-

ing on time, such that
∑

j∈Cq

Aij(t) = bp,q(t) (15)

holds for all i ∈ Cp and eachp, q = 1, · · · ,K;
• B∗

3 (static inter-cluster common influence): There exists
a constantRn,n stochastic matrixB = [bp,q]

K
p,q=1, such

that
∑

j∈Cq

Aij(t) = bp,q (16)

holds for all i ∈ Cp and eachp, q = 1, · · · ,K.

In other words, we define a graph set containing all possible
graph induced by the matrix sequenceA(t). The graph set
satisfies the property in Lemma 5 uniformly and each graph in
the set either never occurs in the corresponding graph sequence
induced byA(t) or occurs frequently.

Then, we are in the position to give a sufficient condition
for the cluster synchronization.

Theorem 3:Suppose thatA, B1, B2 andB3 hold. If there
exists an integerL > 0 such that for anyL-length time
interval[t, t+L), the union graphG[

∑t+L−1
i=t A(i)] has cluster-

spanning-trees, then the system (14) cluster synchronizes.

Proof. The solution of (14) is

x(t+ 1) = A(t)x(t) + ςu(t) = Ak
0x(0) +

t
∑

k=0

At
k+1u(t)ς.

Noting that the diagonal elements of eachA(t) are positive,
we can see that the graphG(At+L−1

t ) contains all links in
the union graphG(

∑t+L−1
k=t A(k)) and hence has cluster-

spanning-trees and positive diagonal elements for allt. By
Lemma 1, we can conclude that there is an integerN such that
the graphG(At+NL−1

t ) is scrambling for allt ≥ 0. Since the
nonzero elements in eachA(t) is greater than some constant
e > 0, there is someδ > 0 such that

inf
t
µC(A

t+NL−1
t ) ≥ δ.

Hence, for eacht, we have

∆C(A
t
0x(0)) ≤ (1− δ)⌊

t
NL

⌋∆C(x(0)),

which converges to zero ast → ∞. Here⌊·⌋ denotes the floor
function. Therefore,limt→∞ ∆C(A

t
0x(0)) = 0.

Combining with the fact that∆C(A
s
t ς) = 0 holds for all

s ≥ t andς , we can conclude that the system (14) intra-cluster
synchronizes.

Remark 3:Due to the difference of the techniques used
in [35] and the current paper, the result of Theorem 3 is
impossible to extend to general coupled nonlinear system, as
the models in [35], because a Lyapunov function for time-
varying coupled systems is in general unable to be found.

The inter-cluster separation can be derived by the same
fashion of Theorem 2.

Theorem 4:Suppose thatA, B1, B2 andB∗
3 hold. If there

exists an integerL > 0 such that for anyL-length time
interval[t, t+L), the union graphG[

∑t+L−1
i=t A(t)] has cluster

spanning trees. If the inputu(t) and
∑t

k=0 u(k) are both
bounded, then for any initial datax(0), the solution of (14)
is bounded. In addition, if the inputu(t) is periodic with a
periodT and satisfies

∑T−1
k=1 u(k) = 0, (14) reaches cluster

consensus generically and each trajectory converges to aT -
periodic one.
Proof. To prove the boundedness, we are to find a solution of
(14) that stays atSC and is the limiting ofx(t). Similar to the
proof of Theorem 2, we can represent the limiting trajectory
by a lower-dimensional linear system (13). TheB∗

3 implies that
this linear lower-dimensional system is static. So, we can prove
its boundedness by the same way of the proof of Theorem 1.

Define the Lyapunov exponent of the matrix sequenceA(t)
as follows:

λ(v) = limt→∞
1

t
log

(

‖At
0v‖

)

.

From the Pesin’s theory [42], the Lyapunov exponents can
only pick finite values and provide a splitting ofRn. Namely,
there is a subspace direct-sum division:

R
n = ⊕J

j=1Vj ,

andλ1 > · · · > λJ , possiblyJ < n, such that for eachv ∈ Vj ,
λ(v) = λj . It can be seen thatλ1 = 0 sinceA(t), t ≥ 0, are
all stochastic matrices. LetV = ⊕j>1Vj . We claim
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Claim 1: Rn = SC + V .
We prove this claim in appendix. Therefore, for anyx(0) ∈

Rn, we can find a vectory0 ∈ SC such thatx(0) − y0 ∈ V .
Define a linear system:

y(t+ 1) = A(t)y(t) + ςu(t), y(0) = y0. (17)

Then, lettingδx(t) = x(t) − y(t), it should satisfy:

δx(t + 1) = A(t)δx(t), δx(0) = y(0)− x(0) ∈ V.

Since δx(0) ∈ V , λ(δx(0)) < 0. This implies
limt→∞ δx(t) = 0. So, limt→∞[x(t) − y(t)] = 0. We can
rewrite the equation (17) as a lower-dimensional linear system:

ỹ(t+ 1) = Bỹ(t) + ς̃u(t), (18)

which is same with (13). TheB∗
3 guarantees that the matrix

B is static. So, the proof of boundedness ofỹ(t) is an overlap
of that of Theorem 1.

In addition, sinceB is static, then the inter-cluster separation
can be proved as an overlap of that of Theorem 1. Therefore,
we can conclude thatx(t) is bounded, too. This completes the
proof.

Remark 4: In [32], the sufficient condition to guarantee
cluster consensus is that the number of clusters is equal to the
period of agents. The period of agenti is the greatest common
divisor of the lengths of paths starting form agenti to itself.
To apply the results in [32], the period of all agents should
be no less than 2. In our paper, we assume the existence of
self-links, which means the period of every agent is 1. So, the
results in [32] cannot be employed in our situation.

V. NUMERICAL EXAMPLES

Cluster consensus is a new issue in the coordination control.
Despite that a huge number of papers were concerned with
complete consensus, there are a small amount of papers
involved with cluster consensus. Moreover, all of them cannot
handle the scenario in the paper. For example, [33] and [34]
investigated group consensus in continuous-time network with
fixed and switching topologies respectively. Instead, in our
paper, we study the discrete-time network. Even though [32]
investigated the cluster consensus in discrete-time network,
it was concluded that cluster consensus can be achieved if
the graph topology is fixed and strongly connected and the
number of clusters equals to the period of agents. Hence, the
period of agents should be larger than 1. But in our paper, the
assumption that each agent has self-link means that the period
of agents in our algorithm is 1. For these reasons, their results
can hardly be applied to our case.

In this section, we provide an application example by a
modified non-Bayesian social learning model. Social learning
can be described as the process by which individuals infer
information about some alternative by observing the choices
of others. In [8], a new social learning model was proposed,
by which an individual updates his/her belief as a convex
combination of the Bayesian posterior beliefs based on its
private signal and the beliefs of its neighbors at the previ-
ous time. In details, letΘ = {θ1, · · · , θm} denote a finite
set of possible states of the world andµi,t(θ) denote the

probability (belief in their terminology) of individuali about
stateθ ∈ Θ at time t. Conditional on the stateθ, a signal
vectorωt = (ω1,t, · · · , ωn,t) ∈ S1 × · · · × Sn is generated by
the likelihood functionl(·|θ), where signalωi,t is the signal
privately observed by agenti at periodt andSi denotes the
signal space of agenti. li(·|θ) is thei-th marginal ofl(·|θ). It
is assumed that every agenti knows this conditional likelihood
function. The one-step-ahead forecast of agenti at time t
is given bymi,t(ωi,t+1) =

∑

θ∈Θ li(ωi,t+1|θ)µi,t(θ). The k-
step-ahead forecast of agenti at time t is similarly given by
mi,t(ωi,t+1, · · · , ωi,t+k) =

∑

θ∈Θ(
∏k

r=1 li(ωi,t+r|θ))µi,t(θ)
Then, the belief updating rule can be written as

µi,t+1(θ) = aiiµi,t(θ)
li(ωi,t+1|θ)

mi,t(ωi,t+1)
+

∑

j∈Ni

aijµj,t(θ) (19)

[8] considered the case that each agent may face an iden-
tification problem in the sense that agent may not be able to
distinguish between two states. Observationally equivalence
is used to reflect the identification problem. Two states are
observationally equivalent from the point of view of agenti,
if the conditional distributions of agenti’s signals under the
two states coincide. As proved in [8], all briefs asymptotically
coincide by this algorithm. This confirms the facts that the in-
teraction among individuals can eliminate the initial difference
among them and converge to an agreement.

For any stateθ, (19) can be rewritten in matrix form:

µt+1(θ) = Aµt(θ) + et(θ) (20)

here et(θ) = (e1,t(θ), · · · , en,t(θ))
⊤ and ei,t(θ) =

aiiµi,t(θ)(
li(ωi,t+1|θ)
mi,t(ωi,t+1)

− 1). For stateθ̂ that is observationally
equivalent toθ∗, the one-step-ahead forecasts andk-step-ahead
forecasts respectively satisfy

mi,t(ωi,t+1) → li(ωi,t+1|θ̂), t → ∞

and

mi,t(ωi,t+1, · · · , ωi,t+k) →
k
∏

r=1

li(ωi,t+r|θ̂), t → ∞ (21)

Therefore,ei,t(θ̂) converges to zero almost surely as time
goes on. Then from matrix and probability theories, the
existence oflimt→∞ µi,t(θ̂) can be obtained. For stateθ that
is not observationally equivalent toθ∗, there exist a positive
integerk̂i, a sequence of signals(ŝi,1, · · · , ŝi,k̂i

) and constant

δi ∈ (0, 1) such that
∏k̂i

r=1
li(ŝi,r |θ)
li(ŝi,r |θ∗) ≤ δi, combining with the

k-step-ahead forecast (21),µi,t(θ) → 0 a.s. can be obtained.
Here, we assume that all statesθj ∈ Θ are observation-

ally equivalent for all individuals. Under this assumption,
li(ωi,t+1|θj)
mi,t(ωi,t+1)

= 1 always are true. This implies that the signals
observed have no effect in this situation, thus we remove the
conditional likelihood term in (19). In addition, we consider
that the belief of each individual is affected by different
religious beliefs or cultural backgrounds. This affectionflags
the sub-group that each individual belong to. Consider the
group with 9 individuals that are divided into three groups:
C1 = {1, 2, 3}, C2 = {4, 5, 6} andC3 = {7, 8, 9}. We denote
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auxiliary terms,Ii(t), as the external inputs to the learning
model (19), in order to denote the influence of the religious
beliefs and/or cultural backgrounds and they are differentwith
respect to sub-groups (cluster). These terms are regarded as
the flags that distinguish the different sub-groups (clusters).
Hence, the dynamic model (19) becomes:

µi,t+1(θ) = aiiµi,t(θ) +
∑

j∈Ni

aijµj,t(θ) + Ii(t) (22)

with the cultural/religious terms:

Ii(t) = cu(t)σk(θ), i ∈ Ck, k = 1, 2, 3,

wherec denotes the influence strength. To guaranteeµi,t(θ) ∈
[0, 1], we assume the inter-cluster nonidentical inputu(t) is
periodic with a periodT = 2 anduk + uk+1 = 0. For every
i and t, to guaranteeµi,t(θ1) + µi,t(θ2) = 1, we demand
σi(θ1) + σi(θ2) = 0. It can be seen that the modified social
learning model (22) is a special case of the model (3).

To illustrate the availability of our results, we consider the
state space has two states:Θ = {θ1, θ2}. The coupling matrix
A = [aij ] satisfies the inter-cluster influence condition, and
suppose{k|Ni∩Ck 6= ∅} is identical to alli ∈ Cp, p = 1, 2, 3.
Denotediq the number of agents in setNi ∩ Cq and for q ∈
{k|Ni ∩ Ck 6= ∅}, j ∈ Ni ∩ Cq, takeaij =

βpq

diq
. For anyp and

any q ∈ {k|Ni ∩ Ck 6= ∅},
∑

j∈Cq

βp,q

diq
=

∑

j∈Cq

βp,q

di′q
= βp,q

always holds for∀i, i′ ∈ Cp, i.e. the coupling matrix in (22) has
the common inter-cluster influence. We useB = [βpq]

3
p,q=1 to

inflect the inter-cluster influence among clusters, and choose
u(2l) = −u(2l+ 1) = 1, for all l ∈ N.

A. Static topology
In this example, the graph is depicted in Fig 1 (a). We take

the matrixB as:

B =





1 0 0
0 1/2 1/2
0 1/2 1/2





and can see that the graph has cluster spanning trees and the
roots of groupsC1,2,3 are 3, 7 and7 respectively. Therefore,
all conditions in Theorem 1 hold. Then (22) reaches cluster
consensus generically. The dynamical behaviors of the beliefs
µi,t(θj), i = 1, · · · , 9, j = 1, 2 are shown in Fig 2 (a) and
(b). It is clear that they are asymptotically convergent, which
means different groups of individuals can realize intra-cluster
synchronization. In Fig 2 (c), the dynamical behaviors of
ζ(θj) = |µC2

(θj) − µC3
(θj)|, j = 1 is plotted and it does not

converge to zero, which means that although groupsC2 and
C3 are strongly connected, the influence of different religious
beliefs or cultural backgrounds still cannot be ignored.

B. Switching topologies
In this example, the graph topology is switching among the
topologies given in Fig 1 (b), (c) and (d) periodically. Noting
that none of these graphs has cluster spanning trees, i.e. the
condition in Theorem 1 does not hold. However, the union
graph of those in Fig 1 (b), (c) and (d) has cluster spanning
trees and the roots of groupsC1,2,3 are agents3, 7 and 7
respectively. We pick an identical matrixB w.r.t. the clustering
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Fig. 2. The dynamical behavior of beliefsµ(θ1), µ(θ2) and ζ(θ) with
respect to example A with randomly picked initial values. In(a) and (b),
blue, red and black curves show the dynamical behaviors of individuals in
groupC1, C2, C3 respectively.

for the three graphs as

B =





1 0 0
0 1/2 1/2
0 1/2 1/2



 .

Hence, all assumptions in Theorem 4 hold. Therefore, (22)
with switching topologies can achieve cluster consensus. The
dynamical behaviors of beliefsµi,t(θj), 1 ≤ i ≤ 9 are shown
in Fig 3 (a) and (b), the dynamics ofζ(θj) = |µC2

(θj) −
µC3

(θj)|, j = 1 is plotted in Fig 3(c) respectively. All of
them show that the cluster consensus is perfectly reached and
µi,t(θj), 1 ≤ i ≤ 9 is convergent.

Now, to better illustrate the role of the inter-cluster noniden-
tical inputs, we give a simulation based on (22) without inputs,
see Fig 4. The dynamical behaviors of beliefsµi,t(θj), i =
1, · · · , 9, j = 1, 2 are shown in Fig 4 (a) and (b). In Fig 4
(c), the dynamical behavior ofζ(θj) = |µC2

(θj)− µC3
(θj)| is

plotted, which means the groupsC2 and C2 cannot separate.
Compare with Fig 2(c), we can see that the inter-cluster non-
identical inputs play key roles in separating different groups.

VI. CONCLUSIONS

The idea for studying consensus of multi-agent systems
sheds light on cluster consensus analysis. In this paper, we
study cluster consensus of multi-agent systems via inter-cluster
nonidentical inputs. We derive the criteria for cluster consensus
in both discrete-time systems with fixed or switching graph
topologies. The difference between clustered states are guar-
anteed by the different inputs to different clusters. We present
if every cluster in the graph corresponding to the system has
a spanning tree, then the multi-agent system reaches cluster
consensus. The analysis is presented rigorously based on
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Fig. 1. All of these graphs have self -links. Example A simulate the network with fixed topology (a) and example B simulate the network with topologies
switching in (b),(c),(d).

algebraic graph theory and matrix theory. We use a modified
non-Bayesian social learning model to illustrate our theoretical
results. In this model, the briefs of individuals are described
as the probability for the states and updated by an interacted
algorithms. We add an auxiliary term to flag the difference
of culture and/or region of different group of individuals.The
numerical results show that the social learning algorithm can
guarantee that the briefs of individuals in the same cluster
converge but the difference between any pair of groups, owing
to the auxiliary external input terms, permanently exists that
cannot be eliminated by the interactions.

APPENDIX

Proof of Lemma 1: For each clusterCp and each pair of
verticesvp1

, vp2
∈ Cp, let Vt

1 andVt
2 be the neighborhoods to

vp1
andvp2

respectively in the graphG(At
1). The fact that each

A(t) has all nodes self-linked implies thatVt
i ⊂ Vt+1

i , i =
1, 2 respectively. In the following, we are going to prove that
Vt
1

⋂

Vt
2 6= ∅ holds for at least somet ≤ n.

If t < n, Vt
1

⋂

Vt
2 = ∅, then#[Vt

1

⋃

Vt
2] ≥ t+ 1.

We will prove it by induction. By the assumptions, there is
a cluster root inG(A(1)) that has paths towards the vertices
vp1

andvp2
, bothV1

1 andV1
2 are not empty. IfV1

1

⋂

V1
2 = ∅,

then#[V1
1

⋃

V1
2 ] ≥ 2.

SupposeVt
1

⋂

Vt
2 = ∅ and #[Vt

1

⋃

Vt
2] ≥ t + 1. We will

prove#

(

Vt+1
1

⋃

Vt+1
2

)

≥ t+ 2.

In fact, let v1 be the root vertex in the graphG(A(t + 1))
having paths towardsvp1

and vp2
. We select their shortest

paths:(vk1
, vk2

, · · · , vkP
) and (vl1 , vl2 , · · · , vlQ), from v1 to

vp1
andvp2

respectively, withvk1
= vl1 = v1, vkP

= vp1
and

vlQ = vp2
. If one of the paths has one vertex not belonging

to the correspondingVt
1 or Vt

2. Without loss of generality, we
assume that(vk1

, vk2
, · · · , vkP

) has vertices not belonging to
Vt
1 and letvkr0

be the index such that

• for eachr > r0, vkr
∈ Vt

1;
• vkr0

/∈ Vt
1.

This implies that

[At+1
1 ]vkr0 ,vkP ≥ [A(t+ 1)]kr0

,kr0+1
[At

1]vkr0+1
,vkP

> 0

holds. This implies thatvkr0
∈ Vt+1

1 . Hence,

#

(

Vt+1
1

⋃

Vt+1
2

)

≥ #

(

Vt
1

⋃

Vt
2

)

+ 1 ≥ t+ 2.

Thus, either for somet < n, Vt
1

⋂

Vt
2 6= ∅ or

#

(

Vn
1

⋃

Vn
2

)

≥ n+ 1
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Fig. 3. The dynamical behavior of statesµ(θ1), µ(θ2) andζ(θ) with respect
to example B with randomly picked initial values. In (a) and (b), blue, red and
black curves show the dynamical behaviors of individuals ingroupC1, C2, C3
respectively.
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Fig. 4. The dynamical behavior of statesµ(θ1), µ(θ2) andζ(θ) with respect
to example A with randomly picked initial values. In (a) and (b), blue, red and
black curves show the dynamical behaviors of individuals ingroupC1, C2, C3
respectively.

which implies V n
1

⋂

Vn
2 6= ∅. Therefore, there exists some

t ≤ n such thatVt
1

⋂

Vt
2 6= ∅. Proof of the lemma is completed.

Proof of Claim 1:

R
n = SC + V.

For this purpose, we define a nonsingular matrixP =

[P1, · · · , Pn] ∈ Rn,n such that the firstK column vectors
compose a basis ofSC . In particular, we chose eachPk,
k = 1, · · · ,K, as

[Pk]i =

{

1 i ∈ Ck

0 otherwise.

Define

Â(t) , P−1A(t)P =

[

Â1,1 Â1,2(t)

0 Â2,2(t)

]

,

where the bottom-left block equals to zero since the subspace
SC is invariant byA(t) and the top-left blockÂ1,1 is a static
matrix due toB∗

3 . Furthermore, since all eigenvalues ofB,
defined in (15), of which the modules equal to1 should equal
to 1, owing to the fact that all matricesA(t) have all diagonal
elements positive, we can selectQ1 with the first several
columns composing of the basis of the eigenspace of the static
sub-matrix Â1,1 corresponding to eigenvalue1 and all last
n − K columns was chosen to guaranteeQ1 is nonsingular.
Construct a new linear transformationQ has the form as:

Q =

[

Q1 0
0 In−K

]

.

Then, we further make linear transformation withQ overÂ(t)
resulting in:

Ã(t) , Q−1Â(t)Q =

[

Ã1,1 Ã1,2(t)

0 Ã2,2(t)

]

,

whereÃ1,1 has the following block form:

Ã1,1 =

[

Ã1,1
1,1 0

0 Ã2,2
1,1

]

.

with all eigenvalues ofÃ1,1
1,1 equal to 1 and ρ(Ã2,2

1,1) < 1.
Accordingly, we write

Ã1,2(t) =

[

Ã1
1,2(t)

Ã2
1,2(t)

]

.

Thus, we define

Ãt
0 =

[

(Ã1,1)
t+1 Ã

(t)
1,2

0 (Ã2,2)
t
0

]

where (·)t0 denotes the left matrix product from0 to t, as
defined before.

We define theprojection radius(w.r.t. C) of A(t) as follows:

ρC(A(·)) = limt→∞

{

‖(Ã2,2)
t−1
0 ‖

}1/t

and thecluster Hajnal diameter(w.r.t. C) of A(t) as follows:

∆C(A(·)) = limt→∞

{

‖∆C(A
t−1
0 )‖

}1/t

for some norm‖ · ‖ that is induced by vector norm. It can be
seen that the projection radius and cluster Hajnal diameterare
independent of the selection of the matrix norm and the matrix
P . First, we shall prove that the projection radius equals to
the Hajnal diameter.
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Lemma 6:ρC(A(·)) = ∆C(A(·)).
Proof. The proof is quite similar to that in [43] and can be
regarded as a generalization of Lemma 2.4 in [43]. For any
d > ρC(A(·)), there existsT > 0 such that the inequality

‖(Ã2,2)
t−1
0 ‖ < dt

for all t > T . Then
∥

∥

∥

∥

Ãt−1
0 −

[

EK

0

]

[

(Ã1,1)
t−1, Ã

(t−1)
1,2

]

∥

∥

∥

∥

=

∥

∥

∥

∥

[

0 0

0 (Ã2,2)
t−1
0

] ∥

∥

∥

∥

≤ Cdt

for someC > 0 and all t > T . Thus,
∥

∥

∥

∥

At−1
0 − P

[

EK

0

]

[

(Ã1,1)
t−1, Ã

(t−1)
1,2

]

P−1

∥

∥

∥

∥

≤ C1d
t,

for someC1 > 0 and all t > T . Let

G = P

[

EK

0

]

= [P1, · · · , PK ],

H =
[

(Ã1,1)
t−1, Ã

(t−1)
1,2

]

P−1.

Since eachPk ∈ SC for all k = 1, · · · ,K, each column vector
in the matrixG · H should belong toSC , too. So, according
to the definition of Hajnal diameter, we have

∆C(A
t−1
0 ) ≤ 2C1d

t

for all t ≥ T . This implies that∆C(A(·)) ≤ d. According to
the arbitrariness ofd, we have∆C(A(·)) ≤ ρC(A(·)).

On the other hand, for anyd > ∆C(A(·)), there existsT >
0 such that∆C(A

t−1
0 ) < dt holds for all t > T . Without loss

of generality, we suppose that the clusteringC is successive,
i.e., C1 = {1, 2, · · · , n1}, C2 = {n1 + 1, n1 + 2, · · · , n2},· · · ,
CK = {nk−1 + 1, nk−1 + 2, · · · , nK} with nK = n. Select
one single row inAt−1

0 from each cluster and compose them
into a matrix, denoted byH . LetG = [P1, · · · , PK ]. Then the
rows ofG ·H corresponding to the same cluster is identical.
So,

‖At−1
0 −G ·H‖ ≤ C2d

t

for someC2 > 0 and t > T . Then,

‖P−1At−1
0 P − P−1G ·HP‖ ≤ C3d

t

i.e.,

‖

[

(Â1,1)
t−1 Â

(t−1)
1,2

0 (Â2,2)
t−1
0

]

−

[

Y Z
0 0

]

‖ ≤ C3d
t

for some matricesY and Z, C3 > 0 and all t > T . This
implies that‖(Â2,2)

t−1
0 ‖ ≤ C4d

t holds for someC4 > 0
and all t > T . It can be seen that(Â2,2)

t−1
0 = (Ã2,2)

t−1
0 .

Therefore,ρC(A(·)) ≤ d. The arbitrariness ofd can guarantee
∆C(A(·)) ≥ ρC(A(·)). From both sides, we have∆C(A(·)) =
ρC(A(·)). This completes the proof of this lemma.

From Theorem 3, we can conclude∆C(A(·)) < 1. Thus,
ρC(A(·)) < 1. For anyn-dimensional vectorw0, we can write
it as:

w0 =





z0
u0

v0





wherez0 corresponds to the sub-matrix̃A1,1
1,1, u0 corresponds

to the sub-matrixÃ2,2
1,1 and v0 ∈ Rn−K . We rewritew0 as a

sum ofw1
0 + w2

0 with

w1
0 =





z10
0
0



 , w2
0 =





z20
u0

v0





wherez10 + z20 = z0 that will be determined in the following.
It is clear thatPQw1

0 corresponds a vector inSC . So, if we
could pick a suitablez20 such thatlimt→∞(Ã)t0w

2
0 = 0, that

is, PQw2
0 corresponds a vector inV . Therefore, for anyn-

dimensional vectorx0, we can find somew0, such thatx0 =
PQw0 = PQw1

0+PQw2
0 ∈ SC +V . This could complete the

proof of the claim.
For this purpose, we consider the following linear system:

w̃(t+ 1) = Ã(t)w̃(t), w̃(0) = w2
0,

which can be rewritten as the following component-wise form:










w̃1(t+ 1) = Ã1,1
1,1w̃1(t) + Ã1

1,2(t)w̃3(t)

w̃2(t+ 1) = Ã2,2
1,1w̃2(t) + Ã2

1,2(t)w̃3(t)

w̃3(t+ 1) = Ã2,2(t)w̃3(t)

with w̃1(0) = z20 , w̃2(0) = u0, w̃3(0) = v0.

It can be seen thatlimt→∞ w̃3(t) = 0 exponentially because
of ρC(A(·)) < 1 andlimt→∞ w̃2(t) = 0 exponentially because
of ρ(Ã2,2

1,1) < 1 and the boundedness of̃A2
1,2(t). Without

loss of generality, sinceρC(A) < 1 and all eigenvalues of
(Ã1,1

1,1)
−1 equal to 1, for any ǫ0 ∈ (0, |λ2|/2), we have

‖(Ã2,2)
t
0‖ ≤ M2 exp[−(|λ2| − ǫ0)t], ‖(Ã

1,1
1,1)

−1‖ < exp(ǫ0)

and‖Ã1
1,2(t)‖ ≤ M0 for someM0 > 0, λ0 > 0, all t ≥ 0 and

some norm‖ · ‖. Note that

w̃1(t) = (Ã1,1
1,1)

tz20 +

t
∑

k=0

(Ã1,1
1,1)

t−kÃ1
1,2(k)(Ã2,2)

k
0v0.

Since

‖(Ã1,1
1,1)

−k‖ · ‖Ã1
1,2(k)‖ · ‖(Ã2,2)

k
0‖

≤ exp(ǫ0k − [|λ2| − ǫ0]k)M
2
2

≤ exp(−[|λ2|+ 2ǫ0]k)M
2
2 ,

we let

R =

∞
∑

k=0

(Ã1,1
1,1)

−kÃ1
1,2(k)(Ã2,2)

k
0

of which the limit exists in the norm sense and the operator
R is well-defined. Let us consider a subspace ofRn:

Ṽ =

{

[z⊤, u⊤, v⊤]⊤ ∈ R
n : z = −Rv

}

.

If we pick z20 such thatw2
0 ∈ Ṽ , then we have

(Ã1,1
1,1)

−tw̃1(t) = z20 +

t
∑

k=0

(Ã1,1
1,1)

−kÃ1
1,2(k)(Ã2,2)

k
0v0

→ z20 +Rv0 = 0

exponentially ast → ∞. So, (Ã)t0w
2
0 converges to zero

exponentially. This completes the proof.
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