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Cluster consensus in discrete-time networks of
multi-agents with inter-cluster nonidentical inputs
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Abstract—In this paper, cluster consensus of multi-agent sys- in social learning models. Social learning focuses on the

tems is studied via inter-cluster nonidentical inputs. Hee, we opinion dynamics in the society, which has attached a grgwin
consider general graph topologies, which might be time-vaing. jntarests. In social learning models, individuals engage i

The cluster consensus is defined by two aspects: the intra- icati ith thei iahb . der 1o | f
cluster synchronization, that the state differences betwen each communication wi €ir neighbors in oraer o fearn trom

pair of agents in the same cluster converge to zero, and inter their experiences. For more details, we refer readers tm?e
cluster separation, that the states of the agents in differe  [9]. A large amount of papers concerning consensus algosith

clusters are separated. For intra-cluster synchronizatia, the
concepts and theories of consensus including the spanningeés,
scramblingness, infinite stochastic matrix product and Hanal
inequality, are extended. With them, it is proved that if the
graph has cluster spanning trees and all vertices self-linkd, then
static linear system can realize intra-cluster synchroniation. For
the time-varying coupling cases, it is proved that if there gists
T > 0 such that the union graph across anyT-length time
interval has cluster spanning trees and all graphs has all \iéices
self-linked, then the time-varying linear system can also ealize
intra-cluster synchronization. Under the assumption of conmon
inter-cluster influence, a sort of inter-cluster nonidentical inputs
are utilized to realize inter-cluster separation, that eab agent in
the same cluster receives the same inputs and agents in diféat
clusters have different inputs. In addition, the boundednss of

the infinite sum of the inputs can guarantee the boundedness

of the trajectory. As an application, we employ a modified non
Bayesian social learning model to illustrate the effectivieess of
our results.

Index Terms—Cluster Consensus, Multi-agent System, Coop-
erative Control, Linear System, Non-Bayesian Social Learimg

I. INTRODUCTION

have been published 1O, [11[, T12], [13], ]14], most of whi
focused on the average principle,i.e., the current stataoh

agent is an average of the previous states of its own and its
neighbors, which is implemented by communication between
agents and can be described by the following difference
equations for the discrete-time cases:

xz(t—l-l):Zwaj(t), Z:L , N, (1)

j=1

wherez;(t) denotes the state of agenand A = [A;]7;_,
is a stochastic matrix For a survey, we refer readers {0 [15]
and the references therein.

To realize consensus, the stability of the underlying dynam
ical system is curial. Since the network can be regarded as
a graph, the issues can be depicted by the graph theory. In
the most existing literature, the concept of spanning teee i
widely use to describe the communicability between agents i
networks that can guarantee the consensug]of (1).[Sée [16],
[17), [18].

It is widely known that the movement or/and defaults of the
agents may lead the graph topology changing through time. So

In recent years, the multi-agent systems have broad applis inevitable to study the stability of the consensus &thm

cations [[1], [2], [3]. In particular, the consensus probéeai

in a time-varying environment, which can be described by the

multi-agent systems have attracted increasing interesta f following time-varying linear system:
many fields, such as physics, control engineering, and dpolo

[4], [B], [6]. In network of agentsconsensusneans that all

agents will converge to some common state. A consensus
algorithm is an interaction rule how agents update their

Il(t—Fl): A”(t):zrj(t), ’L:1, , N,

1

)

n

J

states. Recently, the consensus algorithm has also been yéaere eachd(t) = [4;;(¢)]};—, is a stochastic matrix. There
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were a lot of literature, in which the stability analysis of
(@) are investigated. Most of their results can be derived
from the theories of infinite nonnegative matrix product and
ergodicity of inhomogeneous Markov chain. Among them, the
followings should be highlighted. In [19],[20], the celekzd
Hajnal's inequality was introduced and its generalizedrfor
was proposed in[]21], to describe the compression of the
differences among rows in a stochastic matrix when muépli
by another stochastic matrix that is scrambling [In [22}ydts
proved that a scrambling stochastic matrix could be obthine
if a certain number of stochastic matrices that have spannin
trees for their corresponding graphs were multiplied. $o, i
most of the papers involving stability analysis @ff (2), the
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sufficient conditions were expressed in terms of spannegstr among the same cluster but the agents in different cluster
in the union graph across time intervals of a given lengtle. Skave different state trajectories. In some recent pap&p [3
[11], [18] and the references therein. Besides, commuinicat [35], the authors addressed the cluster (group) consensus i
delays were also widely investigated [17[, [23],_[[24] andietworks with multi-agents and [32] showed thht (2) can
nonlinear consensus algorithms were propoket [25]. reach cluster consensus if the graph topology is fixed and
All of the papers mentioned above concerns the completgongly connected and the number of clusters is equal to
consensus that the states of all agents converge to a comrienperiod of agents. For continuous-time network with fixed
consistent state. However, this paper considered a moszaentopology, [33] proved that under certain protocol, the mult
phenomenon, cluster consensus. This phenomenon is obdseagent network can achieve group consensus by discussing
when the agents in networks are divided into several groupise eigenvalues and eigenvectors of the Laplacian matrix.
called clustersin this paper by the way that synchronizatioiii34] investigated group consensus in continuous-time agtw
among the same cluster but the agents in different clustexr havith switching topologies. However, all of these papers had
different state trajectories. Cluster consensus (symibation) a strong restriction in graph topologies and one important
is considered to be more momentous in brain sciehce [26]sight of cluster consensus: inter-cluster separati@as, ot
engineering control [27], ecological scien¢e][28], comimunbeen deeply investigated yet. Closely relating to this pape
cation, engineering [29], social scien¢e][30], and disttitdl authors’ previous work[[35] studied cluster synchronizati
computation[[3L]. of coupled nonlinear dynamical system and proposed several
In this paper, we define the cluster consensus as follovideas, like intra-cluster synchronization and configratof
Firstly, we divide the set of agents, denotedhyinto disjoint graph topologies that cause cluster synchronization, waie

clustersC = {C1,--- ,Ck}, with the properties: shared in the current paper.
1) C,NC, = 0 for eachp # q; Our Contributions. In this paper, we derive sufficient
2) Uf){l C,=V. conditions for cluster consensus in the sense of Hdth (3) and

(@). Different from the Lyapunov approach used [in][35], in
the current paper, we used the algebraic theory of product
of infinite matrices and graph theory to derive the main
results. The enhancements in this paper, in comparison with
the literature involved with (global) consensus likel[1H18]
as well as the literature involved with cluster synchrotiag
like [35], are as follows. (1). We extended the concept of
consensus to the cluster consensus as we mentioned above and
the core concept of the algebraic graph theory, spannimg tre
) that means all nodes in the graph has a common root (a node
h“% SUDt 00 i (2) ~ (t)_| > 0 holds for each can access all other nodes in the graph), to the cluster sgann
pair of i € G, andj € C; with k 7 1. tree, as defined in Definitidd 1. (2). The main approach Hajnal
We say that a system reacleisster consenstieach solution  jnequality is extended to a cluster Hajnal inequality as em
x(t) is bounded and satisfies the intra-cluster synchronizatiQnAccordingW’ the concept of scramblingness is extended t
and inter-cluster separation, i.e., the items 1-3 arefeatis  cjyster scramblingness as described in Definifibn 2. (3). We
For this purpose, we introduce the following linear diseret \gke efforts to prove inter-cluster separation, that thentsy
time system with external inter-cluster nonidentical itsou i different cluster do not converge to the same states, lwhic
n is out of the scopes of the existing literature, like eithEs][
x;(t + 1) = ZAijxj(t) +Ii(t), 1€ Cpyp=1,--- K, 3) [18] or [35].
j=1 This paper is organized as follows. In section 2, we present
where A = [A;;]7,_, is an x n stochastic matrix/;(t) are SOMe graph dgfinitions a_nd giye some notations requiredsn th
external scalar inputs and they are different with respect Raper. In section 3, we firstly investigate the cluster cosss
clusters, which is used to realize inter-cluster sepamatitso, Problem in discrete-time system with fixed topologies and
we consider time-varying couplings that lead the followingresent the cluster consensus criterion. Then we promete th

Secondly, lettinge(t) = [x1(t), - ,z,(t)]T € R™ denote the
state trajectory of all agents, of which;(¢) represents the
state ofi € V, we definecluster consensugia the following
aspects:
1) «(¢t) is bounded;
2) We say that z(¢) intra-cluster synchronizesif
limy o0 2:(t) — 24 (t)] = 0 for all i,s’ € C, and
p= 1’ A ’K,
3) We say that x(¢t) inter-cluster separates if

time-varying linear system with inputs: criterion to the discrete-time system with switching taypes
N in section 4. An application is given in section 5 to verifgth
zi(t+1) = ZAij(t)«Tj( )+ I,(t), i€Cp, theoretical results. We conclude this paper in section 6.
Jj=1
p=1-- K (4) Il. PRELIMINARIES

Related Works. Up till now, most papers in the literature In this section, we firstly recall some necessary notations
mainly concern the global consensus. For instancel_ih [18}d definitions that are related to graph and matrix theanés
[18], the (global) conseus was studied, especially for imulthen generalize them into the cluster sense. We also present
agent system with time-varying topologies. There are digdenseveral lemmas which will be used later. For more details
differences between global consensus and the cluster wonsbout the definitions, notations and propositions about the
sus conidered the current paper, which means synchramizaijraph and matrix, we refer readers to textbooks [36], [37].



For a matrixA, denoteA;; the elements ofd on theith concepts of graph and matrix mentioned above to those in the
row andjth column. If the matrixA is denoted as the resultcluster case.

of an expression, then we denote it pyj;;. AT denotes the  Definition 1: For a given clustering = {Cy,--- ,Cx}, we
transpose ofd. For a setS with finite elements#S denotes say that the graply hascluster-spanning-treewith respect
the number of elements if. £ denotes the identity matrix to (w.r.t.) C if for each clusteriC,, p =1,--- , K, there exists

with a proper dimensiori denotes the column vector with alla vertexv, € V such that there exist paths & from v, to
components equal tbwith a proper dimensiorp(A) denotes all vertices inC,. We denoted this vertex, as the root of the
the set of eigenvalues of a square matdx ||z|| denotes a clusterC,.

vector norm of a vector and || A|| denotes the matrix norm It should be emphasized that the root vertexCpfand the

of A induced by the vector norr- ||. vertices of the paths from the root to the verticeg’jndo not
An n x n matrix A is called astochastic matrixf 4;; > 0 necessarily belong t@,. It can be seen that the root vertex
for all i, 7, andzg?:1 A;j=1fori=1,---,n. A stochastic of a cluster does not necessarily same with the roots of other
matrix A is calledscramblingif for any i and j, there exists clusters. Therefore, the definition of the cluster-spagiiee
k such that both4;, and A, are positive. can be regarded as a generalization of that of spanning tree
A directed graplg consists of a vertex sét = {1,--- ,n} We mentioned above.
and a directed edge sétC V x V, i.e., an edge is an ordered Definition 2: For a given clustering = {Cy,--- ,Cx}, we

pair of vertices inV. A; denotes the neighborhood of thesay thatG is cluster-scramblingw.r.t. C) if for any pair of
vertexuv;, i.e. N; = {j € V: (j,i) € £}. A (directed)pathof verticesv,,,v,, € Cp, there exists a vertex, € V, such that
lengthi from vertexv; to v;, denoted by(v,,, vy, ,vy,,,), BOth(vr, vy, ) and (v, vy,,) belong tof.
is a sequence df-1 distinct verticess,, - - - ,v,,,, withv,, = Similarly, one can see that Definitidd 2 is a generalization
v; andw,,, = v; such that(v,, , v, ,) € £(G). The graphg  of that of scramblingness we mentioned above. For a pair
contains aspanning (directed) tred there exists a vertex; Of vertices that are located in different clusters, they raoe
such that for all the other vertices there’s a directed path necessary to have a common linked vertex.
from v; to v;, andv; is called theroot vertex. Corresponding  To measure the spanning-scramblingness, as a generaliza-
to the matrix scramblingness, we say tidats scrambling if tion from those in Hanjnal [19]/[]20], we define the cluster
for any pair of vertices; andv; there exists a common vertexergodicity coefficient (w.r.t the clustering) of a stochastic
vy, such that(vy, v;) € € and (vg, v;) € £. We say thaty has matrix A as
self-links if (v;,v;) € € for all v; € V. n

Ergodicity coefficientu(-), was proposed to measure the pie(A) = p:flr}.lfl_’m_’l;ﬂelgp min(Agx, Ajg).
scramblingness of a stochastic matrix.[In/[1B].![20], Hegnal k=1
diameter A(-) was introduced to measure the difference af can be seen thatc(A) € [0,1] and A is cluster-scrambling
the rows in a stochastic matrix, and established his cetetbra(w.r.t. C) if and only if e (A) > 0.
Hajnal's inequalityA(AB) < (1 — u(A))A(B), which indi- According to the definition of cluster consensus, we extend
cated that the Hajnal diameter of stochastic matrix produgt the definition of Hajnal diameter [19], [20], [21] to the ctas
strictly decreases w.r.i3, if A is scrambling, i.e.u(4) < 1. case:
The definitions ofu(-) and A(-) can be found in[[19],[121]. Definition 3;: For a matrix A, which has row vectors

An n x n nonnegative matrixA can be associated with aA;, As,---, A, and a given clustering, we define the cluster
directed grapl§(A4) = {V, £} in such a way thatv;,v;) € £ Hajnal diameter as
if and only if 4;; > 0. With this correspondence, we also say
A contains a spanning tree ¢f(A) contains a spanning tree.
On the other hand, for a given gragh, we denoted(G,) =
{A|G(A) = G, } the subset of stochastic matricdssuch that
G(A) = G;.

For an infinite stochastic matrix sequené(¢)}:2, with
the same dimension, we use the following simplified symb
for a successive matrix product frofrto s with s > ¢:

Ac(d) = max, max [[Ai — Ajll

for some norm| - ||.
It can be seen thak.(z) — 0 is equivalent to the intra-cluster
synchronization.

Similar to the results and the proof of Theorem 5.1 in

, We can prove that the product af— 1 n—dimensional
stochastic matrices, all with cluster-spanning-trees|uster-
A5 2 A(s)A(s — 1) -+ A(). scrambling. _
Lemma 1:Suppose that eacA(t), t =1,---,n—1is an
For a constant matrix, we denote itg-th power byAt. [22] n-dimensional stochastic matrix and has cluster-spantiees
proved that if each stochastic mattik(t) has spanning trees (W.r.t. C) and self-links. Then the product} ' is cluster-
and self-links, them? is scrambling ifs — t > n — 1, where scrambling (w.rtC), i.e., uc(A) > 0.
n is the dimension of the matriX(t) [38]. See the proof in Appendices.

In this paper, we consider cluster dynamics of networks. In [15], it has been proved that if a stochastic matrix
First of all, for a graphg = (V, £), we define alustering C, has spanning trees and all nodes self-linked, then the power
as a disjoint division of the vertex set, namely, a sequerice®atrix A™ converges td.« for some row vectox € R". Here,
subsets o, C = {Cy,--- ,Ck}, that satisfies: (iUK:1 c,= Wwe conclude that the convergence can hold even without the

V; (i) C,NC = 0, k # 1. Thus, we are able topextend thespanning tree condition as a direct consequence from [37].



Lemma 2:If a stochastic matrixA has positive diagonal B. Intra-cluster synchronization

elements, them” is convergent exponentially. We assume a special sort of intra-cluster identical input as
follows:
IIl. CLUSTER CONSENSUS ANALYSIS OF DISCRETHIME L(t) = apult) (5)
NETWORK WITH STATIC COUPLING MATRIX
wherew(t) is a scalar function and, - - - , o, are different
A. Invariance of the cluster consensus subspace constants.

To seek sufficient conditions for cluster consensus, WeSlmllar to the Hanjnal inequality given il [L9L [P0L. [P1],

i i L ) S we can prove
firstly consider the situation that if the initial datg0) = ) . . .
[21(0),-+- 2, (0)]T has already had the cluster synchronlzmﬁ_l Lemma 4: Suppose that stochastic matricésind B having

e same dimension and inter-cluster common influence, then
structure, namelyx;(0) = =z,(0) for all i, € C, with

p=1,---, K, then the cluster synchronization should be kept Ac(AB) < (1 — pc(A))Ac(B).
J.e., z;(t) = z;(t) forall i,j € C, with p=1,---, K and . o )
¢ > 0. In other words, the following subspace w.r.t. the Proof. The idea of the proof is similar to that of the main

clusteringC: result in [21]. Let
Bl Hl
SC:{ x:[xla"',fﬂn]TERanEi:xj B = ,H:AB:
B, H,
foralli,jEprithpzl,---,K}, .
with B; = [Bil, .-+, By,] and Hl- = >, aix By, denoted by
[Hir, -+ ,Hyp), forali=1,--- n.

namedcluster-consensus subspage invariant throughl{3). For any palr of indices and] belonglng to the same cluster
It should be emphasized thatt) are different with respect C,,. We have
to clusters, which is used to realize inter-cluster separat p
Definition 4: We say that the input/(¢) is intra-cluster
identicalif I, (t) = Ij(t)yfor alli,j e cz argd)allp =1, K H; = Z > anBr, Hi=)_ > ajBs.
and the stochastic matri hasinter-cluster common influence p=1keC, p=1keC,
if for each pair ofp andp’, 3.  ai; is identical w.rt. all et dy = min{a,, a;,.}. Define a set of index vector:
i € Cp, in other words _, cc,, Gij only depends on the cluster
indicesp andp’ but is mdependent of the vertéxc C,,.
One can see that if two stochastic matriceand B which  For eachw € W, we define following convex combinations

W={w=[w, - ,wg]: wp,€Cp, p=1,--- K}

have inter-cluster common influence w.r.t. the same clumger of By, --- , B,:
C, so does the productB. In the following, similar to what ©
we did in [35], we have G — [ d.B
’ . .. . . w — kDE + ﬂ po dk Bw .
Lemma 3:If the input is intra-cluster identical and the ; keCka;éwp Bopo keCka;éwp VB,

matrix A has inter-cluster common influence, then the cluster- _
consensus subspace is invariant throdgh (3). It can be seen that botH; and H; are in the convex hull of

Proof. From the condition, we define G, for all w & W. Therefore,

A
Bppr = Z Qij

JEC, Combining with

|Hi = Hyll < max Gy — Gul]

for anyi € C, andI,(t) £ I;(t) for anyi € C,.
Assuming thatx(t) € S¢, we are to prover(t + 1) € S,
too. For this purpose, let,(t) be the identical state of the

K
IGw =Gyl < D (Bowo — D di)llBu, — By
=1

keCyp

clusterp at timet. Thus, for eaclC, and an arbitrary vertex < (1= pc(A)A(B).
i €Cp, we have
K [Hi = Hj|| < (1= pe(A)Ac(B).
zit+1) = >3 aix(t) + L) .
p=1jeC, Therefore A¢c(H) < (1—puc(A))Ac(B), which completes the

K proof due to the arbitrariness ¢f, j) € C, andp =1, --- | K.

Z By Ty (t) + Ip(t),
p=1

Remark 1:Lemmal4 indicates that ifd has inter-cluster
common influence, then the cluster-Hajnal diameterAof
which is identical w.r.t. ali € C,,. By induction, this completes decreases. In addition, i is cluster-scramblingA¢ (Az) is
the proof. strictly less thamA¢(z).



Based on the previous lemmas, we give the following resigtiarantees that the sum oft) is bounded. Construct a new

concerning intra-cluster synchronization pf (3). matrix: B = [ﬁp_,q]ff’q:l, where

Theorem 1:Suppose that bothi(t) and Zzzlu(k) are
bounded,/(t) is defined by[(b), and! is a stochastic matrix Bp.g = Z aij, 1€Cp (8)
with inter-cluster common influencel has cluster-spanning jec,

trees and all positive diagonal elements. Then for anyainiti o _
conditionz(0), (3) is bounded and can intra-cluster synchrdt can be seen tha, , is independent of the selection of

nize. i € Cp.
Proof. Let z(k) = [x1(k),--- ,z,(k)]T be the solution of  Furthermore, we use the concept of “genericality” from
@), then the structural control theory [39][[40][[41] to investiga
. the inter-cluster separation. We define a $€t,G) w.r.t. a
a1 t—k clusteringC and a graphg, of which each element has form:
2t +1) = AT 2(0) + ];)A I(k) ©) {B,<, [u1,- - ,ur—1]}, whereB is defined in[(B) correspond-
B ing to the graph topology, ¢ € R¥ is the vector to identify
whereI(t) = su(t) with ¢ = [¢1,--- ,5,] " and each cluster and defined as:
G =, 1 €Cp. (7) G=ap p=1,---, K, (9)

There is som@ > 0 such thatu(t)| <Y, |5 _, u(k)] <Y
hold for all ¢ > 0.

By Lemmal2, we havel! = A + ¢(t), wherelle(t)]| o < W@+ kT) =ug, O =1,---, T —1
MM for someM > 0 and\ € (0,1). Therefore, ’ T ’

and[uy, us, - - ,ur_1] € RT=1 such that

T-1
¢ and u(kT) = — Y uj, V k> 0. (10)
lz(t + DI < A+ 2(0) oo + | D A Fu(k)] =1
k=0

" " We can rewrite the systerl(3) as the following compact form:
< [lz(O)] + [|A®G[I Y ulk)| + M Y N Flu(k)|
k=0

P x(t+1) = Ax(t) + cul(t), (11)
oo 1
< 2O + [1A%<Y + MY -—.. Definition 5: We say that for a given sét(C, G) as defined
N ) i above, [(I1) isgenericallyinter-cluster separative (or cluster
which implies the solution of systeril(3) is bounded. consensus) if for almost every triple3, ¢, [u1, -, ur_1]} €

By Lemmall, we can find an integé¥; such that f(])vr all (¢, g) and almost all initiat:(0) € R", (IJ) can inter-cluster
m > Ny, A™ are cIuster—scrambllng. Denote= 1— u(AMN). separate (or cluster consensus).
For anyt, lett = pNy + [ with some0 < [ < p. We have Before presenting a sufficient condition for generical iinte

Ac(AF) < 1P Ac(Ey) cluster separation, we give the foIIowmgl S|mplel lemma.
Lemma 5:Suppose that the stochastic matrik has the

which converges to zero as — oo. In addition, sinceA’! inter-cluster common influence. Then, for any pair of cluste
has inter-cluster common influence adk:(c) = 0, then C; andCs, either there are no links froi, to C;; or for each
Ac(Als) = 0 for all I > 0 can be concluded. Thereforevertexv € Cy, there is at least one link froid, to v.
we haveAc(z(t +1)) < Ac(A*12(0)) converges to zero as  Theorem 2:Suppose that

t — oc. This completes the proof. 1) every vertex inG has a self-link;

2) G satisfies the condition in Lemnid 5 w.€t
C. Inter-cluster separation 3) G has cluster-spanning-trees.

Under the conditions of Theoref 1, the system can intran€" [11) reaches cluster consensus generically with cetipe
cluster synchronize, namely, the states within the samstesiu 1€ S€t7 (C. G). In addition, the limiting consensus trajectories
approach together. However, it is not known if the statesfin g€ per|0d|F:, that is, _there exist some scalar periodiecta;
ferent clusters will approach together, too. A simple ceunt riesu, (1) W'th the periodI” for each c!us'teC p=1-K,
example is that the matrid with the inter-cluster common in- such thaﬂlmt?w |2;(t) —vp(t)] = O if JE€C
fluence has (global) spanning trees with all diagonal elesnen Proof. We firstly prove the asymptotic periodicity. Recall
positive and the inputsu(t) satisfies) -, |u(k)| converges. .

In this case,u(t) converges to zero and the influence of the a(t+1) = AT1z(0) + ZAkgu(t — k). (12)
input to the system disappears. One can seeatttatreaches P

a global consensus, i.dim; ;- x(t) = 1a for some scalar

a. By Lemmal2, one can see thdt exponentially converges

In this section, we investigate this problem by assuming th@ A*°. Thus, we can find\/ > 0 and A € (0,1) such that
u(t) is periodic with a period and >"1_, I(k) = 0, which [|A* — A®| < MA!. Let Y = maxy—, ... 7 [u(k)|. Thus, we



have where B is defined in[(8) and = [y, --- ,ax]". The inter-

luster separation is equivalent to investigate the séipara
- < tHIT+1  pgt+1 c
(2 + IT+1) -2+ D] < i(4 AT among components gf(¢). One can see that for almost every

| ZAk (1T — k) — ult — )] B, B has K distinguishing left eigenvectors, denoted by
¢1,--- , K, corresponding to eigenvalues, - - - ,vx (pos-
t+lT sibly overlapping). So, for almost every with K left
¥ Z Akcu(t +1T — k)| eigenvectors, let us write down the solutignl(13) at tinie
Pt as follows:
t41T
_ H(At-ﬁ-lT-ﬁ-l _ At-l—l)I(O)H + ” Z Aoogu(t _ k)” g(nT—l- 1) _ BnT+1 _|_ ZBnT k=~
k=t+1
LT —  Z19(0) + Zgg, as n — 0o,
+ — A%)cu(t — k
| kztil =kl where
t-HIT nT
< 2M M| 2(0)| + MY ||s]| kz AF Zy = lim BT+ 7, = lim {ZB"T k (k)].
=t
1
= [2M||:z:(0)| + MY|[s]| — )\] A From Lemm4RZ; does exist. Combined with " " u(k) =
. 0, we can conclude thaf, exists, too.
for all [. Lettingt = mT 4+ 6 — 1 foranym € N and§ = For an arbitrary fixed pair ofp, q), with p,¢g = 1,--- , K
1,---,T, we have andp # ¢, we are to showZ, can generically have different
|z((m + 0T + 6) — 2(mT + 6)| < MuA™T p-th andg-th components. In fact, for eadh with |v, | < 1,

noting that its associated left eigenvectokis, we have
for some M; > 0. According to the Cauchy convergence

principle, eachz(0 + kT'), 0 = 1,--- , T, converges to some P

value ask — oo exponentially, which implies that there Py ZB

exist T-periodic functionsv,(t), p = 1,---, K, such that o

2;(t) — v,(t)| — 0 exponentially, ifj € C,. STk nT

| JI\(lo)w, wfe(vailll prove tF;]e consezsué states in different clister = Ok Z Z Vig T dwa vy u(0)

are different generically. "= 0
Since each cluster synchronizes, we can pick a single vertex

state from each cluster to represent the whole state of this 1— Vi,

cluster. We can divide the spa@®® into the direct sum of

two subspacesR™ = Vi @ V,, whereV; denotes the right

eigenspace ofd corresponding to the eigenvalueand V5

denotes the right eigenspace 4fcorresponding to all other

eigenvalues. Since all diagonal elementsbfare positive,

For eachky, with |vg,| = 1, noting its associated left-
eigenvector is¢y,, according to the fact that all diagonal
elements inB are positive, from[37], we have,, = 1 indeed.
Then, we have

then the direct sum works andV; C V; holds fori = 1, 2. nT nT
In addition, since the column vectors > belong toSe, @k, »_ B"" Fu(k) = dr, Y u(k) = dp,u(0) = b, ur.
Vi CSe. SO,R" =S¢ + Vs k=0 k=0

For any initial datar(0) € R", we can findy® € S¢ with the So, for almostus, - - ,ur—1] € R, the eigenvectors of.

decomposition(0) = y°+x(0) —y" such thate(0) =y € V. ;g the same wittfs and the corresponding eigenvalues ase
Consider the following system restricted $o: and Zk ! u( Wk /(1 — VE). For almost every realization of
y(t+1) = Ay(t) + I(t), y(0) = yo. [u;]Z' and B, none of them is zero, which implies thab
is nonsingular. That means it is impossible for each pair of
its rows to be identical. So, for almost &ll the p-th andg-th
component ofZ, are not identical. Equivalently, for almost
Sx(t + 1) = Adz(t), 0z(0) = 2(0) — y°, every(, Z>¢ has no pair of components identical. Therefore,
we conclude that for almost eveny, associated with almost
every7(0), each pair of components ifi,(0) + Z»C are not
identical.
We can arbitrarily select the cluster pdip,q) and the

wherey(t) € S¢ for all ¢.
Let §z(0) = z(0) — y¥ € Vo. We have

which implies thafim;_,, dz(t) = 0, that is,lim;_,~ z(t) =
lim;_, o y(t). Therefore, we only need to discug&) € Sc.
Since each component g{¢) in the same cluster is iden-

tical, we can pick a single component from each cluster to
K xceptlon cases of the statements above are within a set of
lower-dimensional column vectgy € R* with g, = y; for

(G,C) with Lebesgue measure zero. Since any finite union of
somei € C,. Because of the inter-cluster common influenc
Sets with Lebesgue measure zeros still has Lebesgue measure
condition, we have
zero, we conclude thdim, ., g(nT + 1) has no identical
gt +1) = By(t) + Su(t) (13) components generically, which implies that the states gf an



two clusters ilim,,_, ., y(nT+1) are not identical generically. Proof. The solution of [(IH) is
This completes the proof. ‘

R_emark 2:In the current paper, we make efforts to prove t 1 1) = A(t)z(t) + cu(t) = Akz(0) + ZAZHUU)Q
the inter-cluster separation rigoroursly; however,[in][36e =0
inter-cluster separation was nof[ touched (but only assim oting that the diagonal elements of eadft) are positive,
We argue that for general nonlinear coupled system (modsvg can see that the gragh(A'™2 1) contains all links in
in [35]), proving the inter-cluster separation is very diffit , g ¢

i it was not impossible. the union graphG(>:""~" A(k)) and hence has cluster-

spanning-trees and positive diagonal elements fort.aBy

Lemmd, we can conclude that there is an intégesuch that
V. CLUSTER-CONSENSUS IN DISCRETETIME NETWORK  the graphG(At+NL=1y is scrambling for allt > 0. Since the

WITH SWITCHING TOPOLOGIES nonzero elements in each(t) is greater than some constant
In this section, we study the cluster-consensus in netwotk> 0, there is somé > 0 such that

W|th_sw¢ch|ng topologies described as the following time- inf e (A1) > 6.
varying linear system: t

N Hence, for eaclt, we have

l‘i(t + 1) = ZlAU(t)x7(t) + Il(t) Vi € Cp, AC(AtOx(O)) < (1 _ 6)LﬁJAc($(O)),
=
p=1,--- K, (14) which converges to zero @s— cc. Here|-| denotes the floor

_ _ _ function. Thereforelim;_, o, Ac(A5x(0)) = 0.
whereA(t) is associated with a graph from the graph¥et Combining with the fact that\¢(A3¢) = 0 holds for all

{G1,---,Gn} W.r.t. @ given clustering, each of which satisfy ;> 4 ands, we can conclude that the systel(14) intra-cluster
the propertyA: for each pairp andq of cluster indices, synchronizes.
1) there are no links frong, to C, in each graplg;, [ = Remark 3:Due to the difference of the techniques used
1,---,m, in [35] and the current paper, the result of Theorem 3 is
2) or for each vertexww € C, and each grapl;, [ = impossible to extend to general coupled nonlinear system, a
1,---,m, there is at least one link from, to it. the models in[[35], because a Lyapunov function for time-
For the matrix sequencé(t), we have the following assump-Vvarying coupled systems is in general unable to be found.
tions: The inter-cluster separation can be derived by the same
o Bi: There is a positive constant> 0 such that for each fashion of Th'eorerEIZ. .
pair i, j andt, either A;;(t) = 0 or A;; > e holds; Theorem 4:Suppose tha#d, B, B, and B3 hold. If th.ere
e Ba: Ay(t) > e holds for alli = 1,--- ,n andt > 0; exists an integer. > 0 such that for anyL-length time

. . t+L—1
« B; (inter-cluster common influenkeThere exists & intervallt,z-+L), the union graplg[y_;~," ~ A(t)] has cluster

. . t
stochastic matrixB(t) = [b,.4(£)]% possibly depend- SPanning trees. If the input(t) and >, ,u(k) are both

ing on time, such that pa=t bounded, then for any initial data(0), the solution of [(T4)
is bounded. In addition, if the inpui(¢) is periodic with a
Z A (t) = bpq(t) (15) periodT and satisfiesZZ;l1 u(k) = 0, (I4) reaches cluster
JE€C, consensus generically and each trajectory convergesiio a
periodic one.

holds for alli € C, and eaclp,q=1,--- | K;

. B: (static inter-cluster common influericeThere exists Proof. To prove the boundedness, we are to find a solution of

(I4) that stays af- and is the limiting ofz(¢). Similar to the

n,n 7 H _ K
?h;:?nstanm stochastic matrix3 = [bp gl g=1, such proof of Theoreni 2, we can represent the limiting trajectory
by a lower-dimensional linear system113). Theimplies that
Z Aij(t) =Dbpy (16) this linear lower-dimensional system is static. So, we cane
jec, its boundedness by the same way of the proof of Theddem 1.
. Define the Lyapunov exponent of the matrix sequeA¢e
holds for alli € C, and eactp,¢=1,--- | K. as follows:

In other words, we define a graph set containing all possible o 1

graph induced by the matrix sequendét). The graph set Av) = limt_,ooglog (||A6v||).

satisfies the property in Lemrhh 5 uniformly and each graph in

the set either never occurs in the corresponding graph sequeFrom the Pesin’s theory [42], the Lyapunov exponents can
induced byA(t) or occurs frequently. only pick finite values and provide a splitting &*. Namely,

Then, we are in the position to give a sufficient conditiothere is a subspace direct-sum division:
for the cluster synchronization. R® — @) .V,

Theorem 3:Suppose thatd, B;, B2 and B3 hold. If there J=1777
exists an integer, > 0 such that for anyL-length time andA; > --- > A, possiblyJ < n, such that for each € V;,
interval[t, t+L), the union grap@[Zf;Lfl A(i)] has cluster- A(v) = A;. It can be seen that; = 0 since A(t), ¢t > 0, are
spanning-trees, then the systdml(14) cluster synchranizes all stochastic matrices. Lét = ®;~1V;. We claim



Claim L R® =S¢ + V.

We prove this claim in appendix. Therefore, for any))
R™, we can find a vectog, € S¢ such thatz(0) — yo € V.
Define a linear system:

probability (belief in their terminology) of individual about
statefd € O at time ¢. Conditional on the staté, a signal
vectorw, = (wy ¢, -+ ,wnt) € S1 X -+ x S, IS generated by
the likelihood functioni(-|#), where signalv; , is the signal

privately observed by ageritat periodt and S; denotes the

y(t+1) = At)y(t) + cu(t), y(0) = yo. (17) " signal space of agent I;(-|9) is thei-th marginal of(-0). It
Then, lettingdz(t) = x(t) — y(t), it should satisfy: is assumed that every agerknows this conditional likelihood
function. The one-step-ahead forecast of agemtt time ¢
dx(t +1) = A(t)dx(t), 6x(0) =y(0) —z(0) € V. is given bym; (wie+1) = Yo pee li(wit+1]0)pie(0). The k-
Since 6z(0) € V, A(©6z(0)) < 0. This implies step-ahead forecast of agenat timet is similarly given by

mi,t(wi,t+1, ce 7wi,t+k) = ZQG@(HL li(Wi,t+r|9))Mi,t(9)

li = 0x(t) = 0. So, li lz(t) — y(t)] = 0. We can ; ) \
iy o0 02(1) o[z (t) = y(t)] Then, the belief updating rule can be written as

rewrite the equatioi (17) as a lower-dimensional lineatesys
gt +1) = By(t) + Su(?), (18)

which is same with[(13). Thé; guarantees that the matrix

B is static. So, the proof of boundednesg;¢f) is an overlap _ _
of that of Theorenf]1. [8] considered the case that each agent may face an iden-

In addition, sinceB is static, then the inter-cluster separatiofffication problem in the sense that agent may not be able to
can be proved as an overlap of that of Theof@m 1. TherefofiStinguish between two states. Observationally equige
we can conclude that(t) is bounded, too. This completes theS used to reflect the identification problem. Two states are
proof. observationally equivalent from the point of view of agent

Remark 4:In [32], the sufficient condition to guaranteeif the conditional distributions of agerits signals under the
cluster consensus is that the number of clusters is equagto tVO states coincide. As proved inl [8], all briefs asymptallic -
period of agents. The period of agens the greatest common coincide by this algorithm. This confirms the facts that tie i
divisor of the lengths of paths starting form agerio itselr. teraction among individuals can eliminate the initial effince
To apply the results in[32], the period of all agents shouf§Mong them and converge to an agreement. - _
be no less than 2. In our paper, we assume the existence dfof any stated, (19) can be rewritten in matrix form:
self—hnk;, which means the period of every ggen_t is 1. Se, th L1 (0) = Ape(0) + e0(0) (20)
results in [32] cannot be employed in our situation.

here e, (6) = (e1.4(0), - ,ens(0)" and e; () =
aiiuiyt(e)(% —1). For statef that is observationally
r(;)qwivalent td*, the one-step-ahead forecasts arstep-ahead
ecasts respectively satisfy

li(wit41]0)
mz‘,t(wi,t+1)

+ > aip(0)  (19)

JEN;

it+1(0) = aiipi e (0)

V. NUMERICAL EXAMPLES

Cluster consensus is a new issue in the coordination cont
Despite that a huge number of papers were concerned V\fﬁ’ﬁ
complete consensus, there are a small amount of papers

) . mi_,t(wiyprl) — li(wi7t+1|9), t— 00

involved with cluster consensus. Moreover, all of them @dnn

handle the scenario in the paper. For example, [33] [znd

investigated group consensus in continuous-time netwatk w k

fixed and switching topologies respectively. Instead, im oum; ¢(w;¢41,- " ,Wittrk) — Hli(wi,t+r|é), t— oo (21)

paper, we study the discrete-time network. Even tholgh [32] r=1
investigated the cluster consensus in discrete-time mkiwo A .
. . -Therefore,e; . (6) converges to zero almost surely as time
it was concluded that cluster consensus can be achieved J ' : . .

L oes on. Then from matrix and probability theories, the
the graph topology is fixed and strongly connected and t & .stence ofim . (é) can be obtained. For staethat
number of clusters equals to the period of agents. Hence, fRe 100 Mt '

period of agents should be larger than 1. But in our paper, tﬁ?mt observationally equ!valerlt w, theAre exist a positive
Infegerk;, a sequence of signaf$; 1, - - - )8, ,;i) and constant

assumption that each agent has self-link means that thedperi ! t
of agents in our algorithm is 1. For these reasons, theilteesyi € (0,1) such thaf " | ll((f‘be)) < d;, combining with the
can hardly be applied to our case. k-step-ahead forecasi23); :(6) — 0 a.s. can be obtained.

In this section, we provide an application example by a Here, we assume that all statés ¢ O are observation-
modified non-Bayesian social learning model. Social leayni ally equivalent for all individuals. Under this assumption
can be described as the process by which individuals infl%% = 1 always are true. This implies that the signals
information about some alternative by observing the ctmicebserved have no effect in this situation, thus we remove the
of others. In[[8], a new social learning model was proposedpnditional likelihood term in[(19). In addition, we consid
by which an individual updates his/her belief as a convdkat the belief of each individual is affected by different
combination of the Bayesian posterior beliefs based on iligious beliefs or cultural backgrounds. This affectitags
private signal and the beliefs of its neighbors at the prewhe sub-group that each individual belong to. Consider the
ous time. In detalls, le® = {64, ---,6,,} denote a finite group with 9 individuals that are divided into three groups:
set of possible states of the world and,(f) denote the C; = {1,2,3}, C2 = {4,5,6} andC3 = {7,8,9}. We denote




auxiliary terms,I;(t), as the external inputs to the learning
model [19), in order to denote the influence of the religiot
beliefs and/or cultural backgrounds and they are diffevdtit
respect to sub-groups (cluster). These terms are regasie(
the flags that distinguish the different sub-groups (chsjte
Hence, the dynamic moddl {19) becomes:

tit+1(0) = aiipie(0) + Z aijpi(60) + I;(¢)
JEN;

1

0.8
0.6

~
<
=

04

(22)

with the cultural/religious terms:

Ii(t) = cu(t)or(0), i € Cr, k=1,2,3,

wherec denotes the influence strength. To guaraptggd) €
[0,1], we assume the inter-cluster nonidentical inp(t) is
periodic with a periodl’ = 2 anduy, + ur+1 = 0. For every
i and t, to guaranteeu; (61) + pi¢(f2) = 1, we demand
0;(01) + 0;(62) = 0. It can be seen that the modified socia
learning model[(22) is a special case of the modEl (3).

To illustrate the availability of our results, we considket
state space has two stat€s= {6;,6-}. The coupling matrix
A = [a;] satisfies the inter-cluster influence condition, anff9: 2. The dynamical behavior of beliefs(01), 1.(02) and ¢(0) with

<G}

. . . .
20 25 30 35
time

(©

L L
10 15 40

.. . . respect to example A with randomly picked initial values. (&) and (b),
suppose(k|N; NCy, # 0} is identical to alli € C,,p = 1,2,3. blue, red and black curves show the dynamical behaviors difiduals in

Denoted;, the number of agents in s@&f; N C, and forq € groupCi,C2,Cs respectively.

{EIN:NC # 0}, 5 € NinC,, takea;; = 2. For anyp and
anyq € {kIN; NC # 0}, > B — Zjecq 5:;,’;1 = Bpyg

JECG dig
always holds foki, i’ € C,, i.e. the coupling matrix irf{22) has

the common inter-cluster influence. We use= [3,,4]3 ,_; t0

_ Brg
iq

inflect the inter-cluster influence among clusters, and sboo

u(2l) = —u(2l+1) =1, forall [ € N.
A. Static topology

for the three graphs as

1 0 0
0 1/2 1/2
0 1/2 1/2

Hence, all assumptions in Theorem 4 hold. Therefdard, (22)

B =

In this example, the graph is depicted in Eig 1 (a). We takeith switching topologies can achieve cluster consenshs. T

the matrixB as:

dynamical behaviors of beliefs; .(¢;),1 < i < 9 are shown

in Fig[@ (a) and (b), the dynamics @f(6;) = |uc,(0;) —

1 0 0 ; . 2 ;
B=|o0 1/2 1,2 tes(05)],7 = 1 is plotted in FlgEB(c).respectlvely. All of
0 1/2 1/2 them show that the cluster consensus is perfectly reachad an

wit(6),1 <7 <9is convergent.

and can see that the graph has cluster spanning trees and thEow, to better illustrate the role of the inter-cluster roem-

roots of group<’; » 5 are3, 7 and 7 respectively. Therefore, tical inputs, we give a simulation based 0nl(22) without iispu

all conditions in Theorem 1 hold. Thefi{22) reaches clustéfe Figl#. The dynamical behaviors of beligfs(6;),i =

consensus generically. The dynamical behaviors of thefselil; -+ ;9,j = 1,2 are shown in Fig4 (a) and (b). In Fig 4

pis(6),i = 1,---,9,5 = 1,2 are shown in Figl2 (a) and (€), the dynamical behavior af(0;) = |uc,(0;) — pc; (05)] is

(b). It is clear that they are asymptotically convergentioith Plotted, which means the grougs andC, cannot separate.

means different groups of individuals can realize intnastér Compare with FigR(c), we can see that the inter-cluster non-

synchronization. In Fig]2 (c), the dynamical behaviors dflentical inputs play key roles in separating differentups.

C(8;) = |1es (85) — 1es(65)],7 =1 is plotted and it does not

converge to zero, which means that although gra€ipsind VI. CONCLUSIONS

Cs are strongly connected, the influence of different religiou The idea for studying consensus of multi-agent systems

beliefs or cultural backgrounds still cannot be ignored. sheds light on cluster consensus analysis. In this paper, we
B. Switching topologies study cluster consensus of multi-agent systems via intester

In this example, the graph topology is switching among theonidentical inputs. We derive the criteria for cluster semsus

topologies given in Figll (b), (c) and (d) periodically. Nmi in both discrete-time systems with fixed or switching graph

that none of these graphs has cluster spanning trees, é.e.ttipologies. The difference between clustered states aae gu

condition in Theoreni]l does not hold. However, the unicanteed by the different inputs to different clusters. Wespng

graph of those in Figl1 (b), (c) and (d) has cluster spanniifgevery cluster in the graph corresponding to the system has

trees and the roots of groug§ 23 are agents3, 7 and 7 a spanning tree, then the multi-agent system reaches rcluste

respectively. We pick an identical matrix w.r.t. the clustering consensus. The analysis is presented rigorously based on
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fe R
@W\ ) @ ©
©) ©)

(@) (b)

@)@ 0)0)

(©) (d)

Fig. 1. All of these graphs have self -links. Example A sintellthe network with fixed topology (a) and example B simuléte network with topologies
switching in (b),(c),(d)

algebraic graph theory and matrix theory. We use a modifiedSupposeV! N\ Vi = 0 and #[Vi U Vi > t + 1. We will
non-Bayesian social learning model to illustrate our théoal 1 1

results. In this model, the briefs of individuals are desed provesH{ Vi UV ) 2 8+ 2.

as the probability for the states and updated by an intedacte In fact, letv; be the root vertex in the grapfi(A(t + 1))
algorithms. We add an auxiliary term to flag the differenceaving paths towards,, andv,,. We select their shortest
of culture and/or region of different group of individuakhe paths:(v,, vk,, -, vkp) and (vi,, vy, -+, v, ), fromv; to
numerical results show that the social learning algorittam cv,, andw,, respectively, withvy, = v, = v1, vg, = vp, and
guarantee that the briefs of individuals in the same cluster, = vy,. If one of the paths has one vertex not belonging
converge but the difference between any pair of groups, gwitp the correspondiny} or V5. Without loss of generality, we

to the auxiliary external input terms, permanently existatt assume thatuy, , vy, - - , vi,») has vertices not belonging to
cannot be eliminated by the interactions. Vi and letvy,, be the index such that
o for eachr > rg, vp, € VY;
t
APPENDIX * Uk, E VI

This implies that
Proof of Lemma[1: For each cluste€, and each pair of

verticesv,, , vy, € Cp, let V! and Vi be the neighborhoods to [AT™ o, o, = [A(E+ )]k, ke 1 [Allon, oe, >0
vy, andu,, respectively in the grapfi(A}). The fact that each ’
A(t) has all nodes self-linked implies that c V*' i = holds. This implies that,,, € V{*'. Hence,
1,2 respectively. In the following, we are going to prove that
Vi V5 # 0 holds for at least some< n. #<Vf+1 UV§+1> > #<Vf UV;) F1>t42
If t <n, VIOVS =0, then#[VIUVi] >t+1.

We will prove it by induction. By the assumptions, there i, ;s either for some < n, VIV # 0 or
a cluster root inG(A(1)) that has paths towards the vertices ISR
vp, andw,,, both V! andV} are not empty. I\V{ V3 = 0, n n
then#Vi UVi] > 2. # v Jvs ) 2n+1
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[Py, -+, P,] € R™" such that the firstX' column vectors
compose a basis ofc. In particular, we chose eachy,
k=1,--- K, as

s = {1 i €Cy

0 otherwise.

I I I I I I I
0 5 10 15 20 25 30 35 40

@ Define

At 2 PrA@wP = { Aig Ara(t) ] |

0 Ago(t)
: where the bottom-left block equals to zero since the sulespac
5 P n 5 2 2‘5 - = 0 Sc is invariant by A(t) and the top-left block4, ; is a static
S matrix due toB3;. Furthermore, since all eigenvalues Bf
o ‘ ‘ ‘ ] defined in [[I), of which the modules equalltshould equal
ool —\ /\ g/\ A AN to 1, owing to the fact that all matrice4(t) have all diagonal
Soall N [VARYA R VAR VAR VARY/ elements positive, we can sele€; with the first several
002} \\/\/" 1 columns composing of the basis of the eigenspace of the stati
o . m v > P P pra—— sub-matrix A; ; corresponding to eigenvaluke and all last
s n — K columns was chosen to guarant@e is nonsingular.
Construct a new linear transformatigh has the form as:
- . . . _ | @ 0
ig. 3. The dynamical behavior of state§d: ), 1(62) and( () with respect Q= I .
to example B with randomly picked initial values. In (a) am, Glue, red and 0 n—K
black curves show the dynamical behaviors of individualgroupC , C2, Cs . . .
respectively. Then, we further make linear transformation wighover A(t)
resulting in:
i “1; Aig Aip(t) }
1 T T T T T T T A t é 1A t = ’ ~ 5
08 B ( ) Q ( )Q [ 0 AQ-,?(t)
< ij Where/ll_; has the following block form:
0.2 | | | | | | | ~ ~}’i 0
00 5 10 15 20 25 30 35 40 Al,l = ’ A2,2
tipng 0 1,1
1 T T T T T T T
08 ] with all eigenvalues ofd}’} equal tol and p(A}7) < 1.
%) 1 Accordingly, we write
ESNYING 4
_ : . Al ,(t
0.2 | | | | | ‘ ‘ A172(t) _ [ ~é,2( ) ] )
% 5 10 15 20 25 30 35 40 A1_2 (t)
time !
006 o Thus, we define
g || | Al = (A1) Ag
Y oo o // \\ 1 0 (A272)6
Vo
o5 \'g' —5 = 2 P = - o where (-)§ denotes the left matrix product from to ¢, as
"(mc)e defined before.
We define theprojection radiug(w.r.t. C) of A(¢) as follows:
1/t
Fig. 4. The dynamical behavior of state&9: ), 1.(02) and((6) with respect M — T Ao \t—1
to example A with randomly picked initial values. In (a) ar, (blue, red and pC(A( )) lim; o0 H (AQ"Q)O H

black curves show the dynamical behaviors of individualgrioupC , C2, Cs ) )
respectively. and thecluster Hajnal diametefw.r.t. C) of A(t¢) as follows:

1/t
Ac(A(+) = im0 AAtl}

which implies Vi* (V& # (. Therefore, there exists some c(A()) = limi—, {' el

t < n such that’f "V # 0. Proof of the lemma is completed.¢,, some norm| -

. || that is induced by vector norm. It can be
Proof of Claim 1:

seen that the projection radius and cluster Hajnal dianzeter
R" = S + V. independent of the selection of the matrix norm and the matri

P. First, we shall prove that the projection radius equals to
For this purpose, we define a nonsingular matfix = the Hajnal diameter.
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Lemma 6:pc(A(+)) = Ac(A()). wherez corresponds to the sub- matrA} 1» Uo corresponds

Proof. The proof is quite similar to that il [43] and can bag the sub- matnxA T andv, € R" X, We rewritew, as a
regarded as a generalization of Lemma 2.4[in [43]. For agyim ofwd + w3 W|th

d > pc(A()), there exists” > 0 such that the inequality . )
- 20 20
[(A2,2)6 " < d' wy=1 0 |, wd=| uo
forallt > T. Then 0 Yo
i1 Ex A1 40D wherez} + 28 = 2 that will be determined in the following.
- 0 {( )7 1,2 } It is clear thatPQu} corresponds a vector ific. So, if we
could pick a suitable? such thatlim; . (A){w? = 0, that
H [ (A2t } <cd is, PQuw? corresponds a vector iiv. Therefore, for anyn-
22) dimensional vector, we can find somevy, such thaty, =
for someC > 0 and allt > T- Thus, PQuy = PQuw{ + PQuwi € Sc+ V. This could complete the
1 Fx T o1 (=17 po1 " proof of the claim.
Ay =P [ 0 ] [(Au) Al } P < Chd, For this purpose, we consider the following linear system:
for someC;, >0 and allt > T'. Let wt+1) = [l(t)w(t), w(0) = wj,
G=P [ EOK } =[Py, -, Pxl, which can be rewritten as the following component-wise form
i (- Dy (t+1) = Al L () + AL, (8)ads(
H— [(Aljl)t_leth 1)} p-1 1?1( )= N%% ! 1(t) ( )3 (t)
’ wy(t+1) = Ay 1w2()+A12() 3(t)
Since eachP, € S¢ forall k=1, --- , K, each column vector ws(t+1) = AQ 2(t)ws(t )
in the matrixG - H should belong taS¢, too. So, according with @1(0) = 22, W2(0) = 5(0) = v,

to the definition of Hajnal diameter, we have
-1y < " It can be seen thdim;_, ., wg(t) =0 exponentially because
Ac(4y ) = 2C1d of pe(A(+)) < 1 andlimy_, w2(t) = 0 exponentially because
for all t > T'. This implies thatA¢(A(-)) < d. According to of p(A 1’%) < 1 and the boundedness off ,(t). Without
the arbitrariness o, we haveAc(A(+)) < pc(A(Y)). _ loss of generallty, sincgc(A) < 1 and all eigenvalues of
On the other hand, for any > A¢(A(-)), there exists” > (AH) ! equal to1, for any ¢ € (0,|\2|/2), we have
0 such thatA¢(A5™) < d* holds for allt > 7. Without loss [|(As, 2) | < Myexp[—(|Aa| — €0)t], (A1)~ < exp(eo)
of generality, we suppose that the clusterﬂhgjs successive, and||A L(t)|| < My for someM, > 0, Ao S0 alt>0and
e, Cr={12,-,m} C={n+1nm+2- n} . gome norm|| -||. Note that
Cx = {ng—1+ 1,ng_1+2,-- ,ng} with nxg = n. Select
one single row inAg*1 from each cluster and compose them _ 1, 1 1,1 ) ki1 -k
into a matrix, denoted byi. LetG = [P}, - - - , Px]. Then the @i(t) = (Arn)*z + Z (A1) AL (k) (A.2)gv0.

rows of G - H corresponding to the same cluster is identical.. h=0
So Since

JASY = G- H|| < Cad AT - 1AL 2R 1 (Az2)5
< exp(eok — [|Ao| — eolk) M3

for someCy > 0 andt > T'. Then,
< exp(—[|A2| + 2e0]k) M3,

|P~rAS P — PTG - HP|| < Cad!

. we let
ie.

| R = ZAH TEAL(F)(A22)5

(Ay )t AlY ]_[Y z

0 (Az2)”" 0
i of which the I|m|t exists in the norm sense and the operator
for some matrices’ and Z, Cs > 0 and allt > T. Th's R is well-defined. Let us consider a subspacerRdt

implies that [|(Ag2)5 || < Cud' holds for someC; >
and allt > T. It can be seen thatds )5 = (A22)5" 1. V= {[ TuT 0T TERY: 2= —Rv}.
Therefore,pc(A(+)) < d. The arbitrariness of can guarantee
Ac(A(Y) > pe(A(+)). From both sides, we haviq(A(-)) =
pc(A(+)). This completes the proof of this lemma.

From Theoreni]3, we can concluds:(A(-)) < 1. Thus, 11yt~ 1.1 ~ -
pe(A()) < 1. For anyn-dimensional vect(ow(o?)we can write (Ap) "o (6) = 26 + kZO(Alxl FAL 2 (k) (Az2)500
it as:

} | < Csdt

If we pick 22 such thatw? € V, then we have

— 25 +Rvg =0
20 B
wy = [ Ug ] exponentially ast — oo. So, (A)jw? converges to zero

Ug exponentially. This completes the proof.
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