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Abstract—In many applications, the mistakes made by
an automatic classifier are not equal, they have different
costs. These problems may be solved using a cost-sensitive
learning approach. The main idea is not to minimize
the number of errors, but the total cost produced by
such mistakes. This paper presents a new multiclass cost-
sensitive algorithm, in which each example has attached
its corresponding misclassification cost. Our proposal is
theoretically well-founded and is designed to optimize cost-
sensitive loss functions. This research was motivated by
a real-world problem, the biomass estimation of several
plankton taxonomic groups. In this particular application,
our method improves the performance of traditional mul-
ticlass classification approaches that optimize the accuracy.

Index Terms—Cost-sensitive learning, plankton recog-
nition, example-dependent costs, SVM, kernel methods.

I. INTRODUCTION

In supervised learning, the learner is given a set
of training examples, each one formed by a feature
vector and the desired output. The goal is to infer
a model, called classifier when the possible outputs
are a finite set of values, able to predict the output
of unseen examples. Usually, the quality of the
classifier is measured by the number of mistakes
made, the fewer the better. Despite being one of the
most useful learning paradigms, this approach does
not fit properly with several real applications. This
is the case, for instance, of those decision support
systems for approving bank loan applications or
predicting medical diseases. In these applications,
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Urrutia, are with the Oceanographic Centre of Gijón (IEO), Spain.

J.J. del Coz is the corresponding author (juanjo@aic.uniovi.es).
Manuscript received ; revised

the different types of mistakes are not equal, they
have a different cost. From the point of view of the
bank, the cost of mistakenly classifying a costumer
depends on the amount of money borrowed; incor-
rectly diagnosing a healthy person as being sick is
preferable to the opposite. Learning classifiers that
consider the actual costs of their decisions should
lead to improve the quality of these applications.

The techniques aimed to address this sort of prob-
lems are known under the name of cost-sensitive
(CS) learning [1]. The core idea is to induce models
that reduce the total cost. Turney defines a taxonomy
of the different types of costs [2] that can be con-
sidered. This paper focuses in the most important
one: the cost of classification errors. From that
point of view, two types of CS problems can be
distinguished: those that have class-dependent costs
[3] (for instance, medical diagnosis problems) and
others that have example-dependent costs [4] (e.g.
loan application approval). In this paper we present
an example-dependent cost method to deal with the
plankton biomass estimation problem.

The study of plankton is crucial because i) plank-
ton is the base of the food chain that sustains
life in oceans [5], and ii) its ecosystems play a
crucial role in many biogeochemical cycles, in-
cluding the oceans’ carbon cycle. Scientists study
plankton by means of surveys that employ nets
and other samplers to collect specimens. In the
past, such surveys were manually processed by
trained microscopists, limiting their temporal and
spatial resolution. For that reason, the Scientific
Committee recognized the importance of developing
automatic plankton identification systems creating a
working group (http://www.scor-wg130.net). Three
basic elements are needed to build these systems: i)
a plankton sampling device to automatically obtain
high resolution images from the plankton samples,
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ii) computer vision methods to process such images,
and iii) a classification algorithm able to identify the
species of each organism. The goal is to provide
answers to questions like: Which is the abundance
(number of individuals) of each taxonomic group?
What is the total amount of biomass of each group?
Interestingly, current systems [6] are better designed
for answering the first question, because they are
based on classifiers that maximizes the accuracy,
without considering the biomass of the individuals.

Our proposal is to use CS learning to accurately
estimate the total biomass of plankton species. Tak-
ing into account that sample devices give us an
approximation of organisms’ biomass, we can use
this information and reformulate our learning task
following a CS approach with example-dependent
costs. The misclassification cost of each individual
will be its biomass and our problem will consist
of minimizing the amount of biomass misclassified.
The expected result will be that our approach should
provide better predictions for the plankton biomass
estimation problem, while previous methods [6]
should perform better for the abundance problem.

Support Vector Machines (SVM) [7], [8] was
originally designed to solve binary classification
tasks. Following such formulation, new methods
have been proposed to build multiclass SVMs.
Mainly, there are two types of approaches. The first
one decomposes the multiclass task into a set of
binary problems; this approach includes algorithms
such as one-vs-all (OVA) [8], one-vs-one (OVO)
[9], or those using decision trees [10]. The second
alternative considers all data in a single optimization
problem [11]. This paper applies several SVMs to
the plankton biomass estimation problem. In fact,
the main contribution of this work is the develop-
ment of a new multiclass CS SVM. The proposed
method is the extension of Crammer & Singer
formulation [11] to a CS setting with example-
dependent costs. This new algorithm is efficient
enough for the application at hand. The second
contribution, from a learning perspective, is the
comparison in a real problem between non-CS and
CS SVM variants, and also between decomposition
and single optimization strategies. The conclusion
of our study is that, in this case, it is better to apply a
CS algorithm using a single optimization approach.

II. COST-SENSITIVE LEARNING

Being X the input space and Y = {1, . . . , k} a fi-
nite set of classes, a CS multiclass task is defined by
a training set S = {(x1, y1, c1), . . . , (xn, yn, cn)},
obtained from an unknown probability distribution
Pr(X ,Y ,R+). In terms of CS learning, the value
ci > 0 associated with each example xi represents
the penalty of misclassifying it. In our problem ci
stands for the biomass of organism xi.

The aim of the learning task defined by S is
to find a hypothesis h from the input space to the
output space; in symbols h : X −→ Y , optimizing
the expected prediction performance (or risk) on
samples S ′ independently and identically distributed
(i.i.d.) according to the distribution Pr(X ,Y ,R+):

RδCS(h) =

∫
δCS(h(x), y, c) d(Pr(x, y, c)), (1)

in which δCS(h(x), y, c) is a CS loss function that
measures the penalty due to the prediction h(x)
when the real class of object x is y and the misclas-
sification cost is c. The straightforward definition for
δCS in our setting is

δCS(h(x), y, c) = c[[h(x) 6= y]], (2)

where [[π]] is 1 when the predicate π is true and
0 otherwise. This definition implies that δCS is the
extension of zero-one loss function, δ0/1(h(x), y) =
[[h(x) 6= y]], to the CS case. Notice that correct
decisions of h involving examples with a higher
cost are favored. Some kind of average is usually
performed in order to measure the cost over a set
of examples. The most common one is the loss
function that returns the average cost per example,

∆AC(h,S ′) =
1

n

∑
xi∈S′

δCS(h(xi), yi, ci), (3)

being n the number of examples in the testing set
S ′. In this paper, we prefer a more informative loss
function for our target application:

∆PMC(h,S ′) =
1∑

xi∈S′
ci

∑
xi∈S′

δCS(h(xi), yi, ci), (4)

that is, the proportion of misclassified costs. For
instance, in our application, the idea is to measure
the proportion of biomass that is misclassified. Ob-
viously, both metrics are closely connected: the only
difference between them is that, given a concrete
testing set, they use a different constant in the
denominator. The learning method presented in this
paper is able to optimize both loss functions.
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III. LEARNING METHODS

A. Multiclass classification algorithms
As we stated before, there are two groups of

approaches to build multiclass SVM: decomposition
and single optimization strategies. One method of
each kind has been applied in this study: OVO
[9], because it obtains better performance [12], and
Crammer & Singer method [11], for being more
efficient than others.

OVO approach defines k(k − 1)/2 binary prob-
lems, where the l-vs-m problem implies subsets Sl
and Sm which contain examples of classes l and m
respectively. Using soft-margin binary SVMs, OVO
solves the following kind of optimization problems1:

min
wlm,ξlm

1

2
〈wlm,wlm〉+ C

∑
yi∈{l,m}

ξlmi , (5)

s.t. 〈wlm,xi〉 ≥+1− ξlmi , if xi∈Sl,
〈wlm,xi〉 ≤−1 + ξlmi , if xi∈Sm,
ξlmi ≥ 0, ∀xi ∈ Sl ∪ Sm,

where factor C allows to control the amount of
regularization and ξi are the slack variables used
to avoid overfitting and to cope with non-separable
cases. For an example xi, the output of each model
wlm is counted as one vote for the predicted class l
or m. The final decision is the highest-voted class.

In Crammer & Singer method, a model wl is
induced for each class l following the one-vs-rest
approach. The key difference is that all of them,
W = {wl : l ∈ {1, . . . , k}}, are learned together:

min
W ,ξ

1

2

k∑
l=1

〈wl,wl〉+ C
n∑
i=1

ξi, (6)

s.t. (〈wyi ,xi〉 − 〈wr,xi〉) ≥ eri − ξi,
∀i = 1, . . . , n ∀r ∈ {1, . . . , k},

where eri is 1 when r 6= yi and 0 otherwise. Notice
that the number of constrains might be large, espe-
cially for those problems with many classes. Still,
efficiency is achieved since most of the constraints
are inactive, due to the fact that the set of constraints
of each example xi shares one single slack variable
ξi. The class predicted by the algorithm will be
determined following the winners-takes-all rule:

h(xi) = argmax
l∈{1,...,k}

〈wl,xi〉. (7)

1For ease of reading, bias term will be always omitted. It could be
included by adding a feature of constant value to each xi

The main advantage of this approach over the previ-
ous one is that a specific loss function can be opti-
mized. In this formulation, obtained by softening the
constraints using the continuous hinge loss function,
the zero-one loss function is optimized for the whole
multiclass classifier. This is particularly interesting
for our purposes, since we can modify this method
for optimizing a CS loss function, like ∆PMC (4).

B. Cost-sensitive algorithms
The learning methods described before can be

modified to work within the CS learning paradigm.
As we shall prove, the obtained CS algorithms are
as efficient as their non-CS counterparts.

The CS version of OVO approach is based on the
CS binary classifier presented in [13], in which the
authors additionally provides some nice theoretical
results, establishing a risk bound for such binary
CS learner. The optimization problem is almost
identical to that of (5), with the same number of
constraints but including the cost ci of misclassify-
ing each example xi:

min
wlm,ξlm

1

2
〈wlm,wlm〉+ C

∑
yi∈{l,m}

ciξ
lm
i , (8)

s.t. 〈wlm,xi〉 ≥+1− ξlmi , if xi∈Sl,
〈wlm,xi〉 ≤−1 + ξlmi , if xi∈Sm,
ξlmi ≥ 0, ∀xi ∈ Sl ∪ Sm.

Interestingly, fuzzy SVM [14] leads to this op-
timization problem too. The difference is that ci
stands for the fuzzy membership associated with xi.

The disadvantage of CS OVO is that the global
model learned, formed by a set of binary classifiers,
has not been induced optimizing any loss function.
Next, our extension of the method by Crammer &
Singer is presented, allowing for the optimization of
CS loss functions, like (3) and (4). To the best of our
knowledge, this method has never been presented
before. The formulation is based on adding the cost
ci of each example xi to the objective function,

min
W ,ξ

1

2

k∑
l=1

〈wl,wl〉+ C
n∑
i=1

ciξi, (9)

s.t. (〈wyi ,xi〉 − 〈wr,xi〉) ≥ eryi − ξi,
∀i = 1, . . . , n ∀r ∈ {1, . . . , k}.

The most important consequence is that the cost
produced by the misclassified examples can be con-
trolled during the learning process. What is more, as
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it shall be proved, the second term of the objective
function constitutes an upper bound of ∆PMC (4).

Theorem 1: At the solution W ∗, ξ∗ of the opti-
mization problem in (9) on the training dataset S,
the value of

∑n
i=1 ciξ

∗
i defines an upper bound of the

total cost associated with misclassified examples.
Proof: In order to prove the theorem we must

verify that,
∑n

i=1 ciξ
∗
i ≥

∑n
i=1 ci[[h(xi) 6= yi]], in

which h(xi) is the prediction made for xi by the
set of models W ∗ when (7) is used as the decision
rule. And this is trivial because the slack variables
ξi in (9) are defined according to the hinge loss
function. That is, ξ∗i ≥ 1 whenever the example xi
is misclassified, and 0 ≤ ξ∗i < 1 if the true class of
xi is predicted. Thus, ξ∗i ≥ [[h(xi) 6= yi]] is always
true, and so is the expression above.

Therefore, if we define C = C ′/
∑n

i=1 ci then the
second term of (9) is an upper bound of our target
loss function ∆PMC (4). This allows our learner
(through C ′) to trade-off between the complexity of
the model and the misclassification cost. In order to
obtain an upper bound for ∆AC , just let C = C ′/n.

These two CS methods were implemented2 ex-
tending the code of [12]. Our proposal is a kind
of Sequential Minimal Optimization algorithm [15],
but instead of optimizing a pair of dual variables on
each step, as happens in binary SVM, the set of dual
variables of an example is optimized together.

IV. PLANKTON BIOMASS ESTIMATION DATASET

The plankton samples from the Cantabrian Sea
were processed using the FlowCam [16]. This is a
device capable of analyzing and capturing an image
of each organism (Figure 1) in a continuous flow.
Then, our dataset of 5145 examples were classified
by a taxonomist into 5 classes: Ciliata, Diatoms,
Crustacea, Flagelata and a category named ”Other”,
comprising rare taxa and unidentifiable objects.

Each example is described by 170 attributes,
formed by different groups of characteristics. The
performance of studied classifiers significantly de-
grade if we remove any of these groups. There are
26 morphological features calculated by the Flow-
Cam, some of those are the particle perimeter, its
area, the mean distance to perimeter from the centre,
etc. The rest of the attributes were obtained applying
several image analysis techniques to represent the
texture and the shape of the individuals.

2Downloadable from http://www.aic.uniovi.es/˜juanjo/csbsvm.zip

Fig. 1. Sample plankton images from five classes (a) Ciliata; (b)
Diatoms; (c) Crustacea; (d) Flagelata; (e) Others

In order to describe the shape, firstly, we used
Elliptic Fourier Descriptors (EFD) [17] to obtain
a closed 2D contour. After some experiments, we
chose 15 harmonics. Secondly, we added Hu mo-
ments [18] because they are translation, rotation and
scaling invariant. This means that two organisms
with the same shape but different size, and placed in
different position or orientation, will have equivalent
Hu moments. We also calculated 49 Zernike mo-
ments [19] using the centroid of the organism. They
have interesting properties in terms of noise sensitiv-
ity, information redundancy and reconstruction ca-
pability. Finally, 8 granulometric features [20] were
included. Previous works in plankton recognition
[21] found that these features were crucial.

On the other hand, we employed Haralick fea-
tures [22] and wavelets to represent the texture.
Haralick attributes are metrics computed from gray-
level co-occurrence matrices, in which element [i, j]
is the number of times pixels of values i and j are
adjacent. Wavelets are a type of multi-resolution
and multi-scale functions that allow hierarchical
decomposition of a signal. Four-order Daubechies
was chosen as the mother wavelet function and we
analyzed 4 scales, with 3 detail sub-bands each.
Energy firm, Em

n = 1
N×N

∑N
i,j=1 (smn (i, j))2, was

computed for each band, where smn is the detail sub-
band m, with scale n, and size N ×N .

Finally, we calculated the biomass (ci) of each
organism xi. In [23], the carbon biomass/volume
relationship was studied and three ways of estimat-
ing the biomass were presented. They depend on the
volume vi (approximated from the particle diameter
measured by the FlowCam) and the class of xi:
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log10 ci =



−0.665 + 0.939 log10 vi
if xi /∈ Diatoms & vi > 3000um3

−0.933 + 0.881 log10 vi
if xi ∈ Diatoms & vi > 3000um3

−0.583 + 0.86 log10 vi
if vi < 3000um3.

V. EXPERIMENTAL RESULTS

The goal of the experiments was to study the
performance of OVO (5), C&S (6), cs-OVO (8)
and cs-C&S (9) over the plankton biomass esti-
mation dataset. The linear and the gaussian kernel,
k(xi,xj) = exp(−γ ‖ xi − xj ‖2), were tested
for each algorithm. To select the most appropriate
values for parameters C and γ a search divided into
two phases was made. The first one used C values in
[10−3..102] and γ values in [10−3..101]; in the second
phase a finer search was carried out using ten val-
ues evenly distributed between those preceding and
those following the best value obtained in the first
phase. In this parameter searching process, non-CS
algorithms selected the values that minimize zero-
one error (∆0/1(h,S ′) = 1

n

∑
xi∈S′ [[h(xi) 6= yi]]) ,

while CS methods optimize ∆PMC . All the estima-
tions for this parameter adjustment were made using
a 3x2CV (2-fold cross validation repeated 3 times).

Table I shows the results obtained in a 2x5CV.
Overall, decomposition algorithms achieve better
results using the linear kernel, both in terms of ∆0/1

(OVO) and ∆PMC (cs-OVO). It should also be noted
that CS algorithms make a higher ∆0/1 error than
their counterpart non-CS versions. Their differences
are statistically significant in a Wilcoxon signed-
ranks test with p < 0.01. However, CS versions
present a lower ∆PMC error, as it was expected.
Noticeably, cs-C&S is significantly better than C&S
(p < 0.01), but if we compare CS methods, cs-OVO
is significantly better than cs-C&S (p < 0.06).

Nevertheless, previous results can be improved
using the gaussian kernel. The best algorithm to
optimize ∆0/1 is again OVO, but now C&S obtains
almost the same score. Moreover, it seems that the
differences between non-CS and CS are smaller, but
still statistically significant: with p < 0.01 in the
case of OVO vs cs-OVO and with p < 0.04 for
C&S vs cs-C&S. Analyzing the scores for ∆PMC ,
best results are those corresponding to cs-C&S.
Interestingly, the difference between cs-C&S and

TABLE I
ERROR RESULTS (∆0/1 AND ∆PMC ) FOR THE

NON-COST-SENSITIVE (OVO AND C&S) AND COST-SENSITIVE
(CS-OVO AND CS-C&S) ALGORITHMS

Kernel Algorithm ∆0/1 ∆PMC

Linear

OVO 0.1093±0.0054 0.0922±0.0174
cs-OVO 0.1778±0.0287 0.0861±0.0181
C&S 0.1142±0.0057 0.1168±0.0398
cs-C&S 0.1791±0.0154 0.1005±0.0381

Gauss.

OVO 0.0640±0.0062 0.0937±0.0438
cs-OVO 0.1084±0.0165 0.0804±0.0409
C&S 0.0653±0.0048 0.0646±0.0280
cs-C&S 0.0696±0.0049 0.0585±0.0181

TABLE II
BIOMASS CONFUSION MATRIX FOR CS-C&S USING THE

GAUSSIAN KERNEL (ALL QUANTITIES ARE IN THOUSANDS)

Class Other Cili. Crust. Flag. Diat. Prec.(%)
Other 13,949 136 178 105 67 96.63%
Ciliata 194 1,197 0 51 18 82.02%
Crustea 532 37 14,902 37 3 96.07%
Flagelata 88 61 0 2,646 30 93.65%
Diatoms 422 62 34 209 3,927 84.36%
Rec.(%) 91.9 80.2 98.6 86.8 97.1

OVO in ∆PMC error is quite big; cs-C&S reduces
the error of OVO in more than 37%. As it happened
before, CS versions outperform their counterpart
non-CS algorithms for ∆PMC , in a higher degree
in the case of cs-OVO, but the only statistically
significant difference is between cs-C&S and C&S
(p < 0.10). Notice that the differences among all
C&S versions are now smaller, due to the fact
that fairly low errors are always obtained. Finally,
comparing CS algorithms, cs-C&S is significantly
better than cs-OVO (p < 0.06). The main conclusion
drawn from these results is that a CS algorithm
using single optimization provides the best solution.

Table II shows the biomass confusion matrix
using cs-C&S with the gaussian kernel. Each entry
represents the amount of biomass of those examples
of the class in the column predicted as the class in
the row (

∑
xi∈Scol

ci[[h(xi)=row]]). The last column
and row, respectively, present the biomass percent-
age predicted by cs-C&S which truly belongs to that
class (named as precision in information retrieval
tasks), and the percentage of the real biomass of
that class predicted by cs-C&S (recall), e.g. 98.6%
of the total biomass corresponding to crustacea class
has been correctly labelled, while 96.07% of the
biomass that cs-C&S assigns to crustacea class,
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actually belongs to this class. The greater difficulties
lie in ciliata class in which both precision and recall
are around 80%, and in the precision of diatoms.

VI. CONCLUSIONS

This study presents an interesting application that
allows for the automatic biomass estimation of 5
plankton species. A new multiclass cost-sensitive
method has been developed in order to improve such
estimation. This algorithm is theoretically well-
founded and is designed to optimize cost-sensitive
loss functions. In practice, our method ameliorates
the biomass prediction in comparison to the tradi-
tional multiclass classification approaches that opti-
mize the accuracy. The proposed algorithm can be
useful in other multiclass cost-sensitive applications.
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