
Newcastle University ePrints

Andras P. Function Approximation Using Combined Unsupervised and

Supervised Learning.

IEEE Transactions on Neural Networks and Learning Systems 2014, 25(3), 495-

505.

Copyright:

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting/republishing this material for advertising

or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works

DOI link to article: http://dx.doi.org/10.1109/TNNLS.2013.2276044

Date deposited: 21st May 2014

Version of file: Author final

ePrints – Newcastle University ePrints

http://eprint.ncl.ac.uk

TNNLS-2013-P-1473.R1

1

Abstract—Function approximation is one of the core tasks that

are solved using neural networks in the context of many

engineering problems. However, good approximation results need

good sampling of the data space, which usually requires

exponentially increasing volume of data as the dimensionality of

the data increases. At the same time, often the high dimensional

data is arranged around a much lower dimensional manifold.

Here we propose the breaking of the function approximation task

for high dimensional data into two steps: first the mapping of the

high dimensional data onto a lower dimensional space

corresponding to the manifold on which the data resides; second

the approximation of the function using the mapped lower

dimensional data. We use over-complete self-organizing maps for

the mapping through unsupervised learning, and single hidden

layer neural networks for the function approximation through

supervised learning. We also extend the two step procedure by

considering support vector machines and Bayesian self-

organizing maps for the determination of the best parameters for

the nonlinear neurons in the hidden layer of the neural networks

used for the function approximation. We compare the

approximation performance of the proposed neural networks

using a set of functions and show that indeed the neural networks

using combined unsupervised and supervised learning outperform

in most cases the neural networks that learn the function

approximation using the original high dimensional data.

Index Terms—Function approximation, Learning, Neural

network, Self-organizing map

I. INTRODUCTION

UNCTION approximation is a core task in many

engineering, economic, and computational problems [1-4].

In general, many kinds of learning tasks (e.g. classification,

pattern recognition, prediction) can be formulated as a

function approximation task [1, 5]. There are many approaches

to function approximation including relatively simple methods,

e.g. least squares linear approximation, and many more

complex methods, e.g. approximation with splines or neural

networks [1, 6-8].

Function approximation with neural networks has strong

theoretical foundations. It is well established that neural

Manuscript received April 28, 2012. (Write the date on which you

submitted your paper for review.)

P. Andras is with the School of Computing Science of Newcastle

University, Newcastle upon Tyne, NE1 7RU, UK (corresponding author

phone: +44-191-2227946; fax: +44-191-2228232; e-mail:

peter.andras@ncl.ac.uk).

networks with a single hidden layer can be seen as linear

combinations of nonlinear basis functions, and for a wide

range of basis function classes (e.g. sigmoidal functions,

Gaussian functions) it has been shown that linear combinations

of such functions can approximate continuous functions

arbitrarily correctly [1, 8-10]. The same result can be extended

easily to functions that can be approximated by continuous

functions (e.g. step functions, classification functions).

Considering the practical side, the theoretical results do not

guarantee the finding of small size neural networks with

arbitrary correctness. In some cases the number of neurons in

the hidden layer has to be large to achieve good approximation

of a given function [11-13]. However, often, a relatively small

size neural network can work sufficiently well especially in the

case of functions defined on a low dimensional input space

(e.g. functions defined over the one or two dimensional real

space or some subset of these) [1].

The practical problems with neural network approximation

in many cases are caused by the sparseness of the data that is

used to learn the approximation of the target function [14-17].

Especially if the input data is high dimensional (e.g. 5 or 10 or

even more), a good sample of the data space has to be very

large (e.g. millions, billions or more data points). If this is not

the case, the generalization ability of the trained neural

network (i.e. the ability to approximate sufficiently correctly

the target function for input data that has not been seen) will

remain poor. In addition to issues caused by the high

dimensionality and sparseness of the data sample another

common practical problem is due to the uneven distribution of

the data sample in the data space [14]. If the available data

samples densely a part of the data space but it is very sparse

elsewhere, the function learned by the neural network will

approximate well the target function only over the subset of

the data space that is densely sampled, and its generalization

ability over the part of the data space that is sparsely sampled

will stay poor.

Often, high dimensional data is arranged around a lower

dimensional manifold that is embedded in the high

dimensional space [1, 14]. In principle, if the lower

dimensional manifold is known the approximation of a

function defined on a high dimensional space can be reduced

to the approximation of a function on a much lower

dimensional space and combination of this with the function

that transforms this lower dimensional space into the manifold

embedded into the higher dimensional space [18]. However, in

Function Approximation Using Combined

Unsupervised and Supervised Learning

Peter Andras, Senior Member, IEEE

F

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

2

general the analytical form of the manifold on which the data

resides is not known.

Here we propose to use a combination of unsupervised and

supervised learning to improve function approximation

performance in the case of functions defined on data that can

be expected to reside on a low dimensional manifold

embedded into a high dimensional space. To deal with the lack

of information about the analytical form of the manifold, we

use an over-complete self-organizing map (SOM) [19-24] to

learn the topographic structure of the unknown manifold. Then

we learn the approximation of a function defined over the node

space of the SOM. The combined unsupervised and supervised

learning allows to improve significantly the approximation of

functions defined over high dimensional spaces. We

demonstrate this through a selection of example applications.

We note that similar approaches of combined application of

supervised and unsupervised learning have been already

proposed to address various data analysis problems, e.g.

dimension reduction using combined support vector machines

and independent component analysis [25], setting the basis

function parameters for RBF neural networks [26], data

mining applications [27], however to the best of our

knowledge none of these addresses the issue that we

formulated above.

II. BACKGROUND

A. Unsupervised Learning with Self-Organizing Maps

There are many variants of learning the organization of the

data in the data space. Manifold learning algorithms aim to

learn the structure or the characteristics of the manifold around

which the data resides [14, 28]. Often these characteristics

describe the manifold in a local sense and the learning leads to

the generation of a patchwork of local models of the manifold

[29, 30]. Such learning algorithms are usually classified as

unsupervised learning [1, 14] as there is no a priori

information about what is the right local model or right set of

characteristics of the manifold that is aimed to be learned.

SOMs are one of the alternatives to learn the distribution of

the data in the data space [19-21]. The key idea of the SOM is

that the data is projected from one space into another such that

an appropriate topographic organization of the data is

maintained. It is assumed that the projection space corresponds

to the manifold around which the data is assumed to reside.

The maintenance of the topographic organization of the data

means that topological neighborhoods in the projected space

defined by the distance metric of this space correspond to

topological neighborhoods in the data space. Since the data is

assumed to reside around a manifold that has a lower

dimension than its embedding space, parts of the manifold may

be close in the data space, but distant in the space of the

manifold. Thus closeness in the data space does not

necessarily imply closeness in the transform space. In

accordance, a topological neighborhood in the data space is

not necessarily projected into a topological neighborhood in

the projected space.

The classic SOM [21] is defined by a set of nodes arranged

in a grid according to their position vectors set in the

projection space, each node having an associated prototype

vector from the data space. When a data point is presented, the

SOM nodes compete for the data and the winning node is the

one which has its prototype vector closest to the data point.

Then the data point is projected onto the position vector of the

winning node. In the learning phase, the prototype vector of

the winning node, and of the nodes within a local

neighborhood of it in the projection space, get moved closer to

the data point for which the winning node was chosen.

Assuming that there are N nodes in the SOM, each node

being defined as

NjPzDznode jjjjj ,...,1,,),(: =ÎÎqq (1)

where jq is the prototype vector and jz is the position vector

of node j , the learning rules are

),(minarg
,...,1

jD
Nj

xdi q
=

= (2)

r

gqgq

<

×+×-=

),(

)1(

ijP

jj

zzdthatsuchjfor

x
 (3)

where x is the data point, g is the learning rate, and r is the

radius of the projection space neighborhood of the winning

node. This radius is gradually decreased towards zero as the

training progresses.

The learning by the SOM can be interpreted as learning of

the distribution of the data in the data space. The data

distribution is learned as a linear combination of normal

distributions centered at the prototype vectors of the nodes of

the SOM [19-21]

å
=

×=Q
N

j

jj xprxpr
1

)|()Pr()|(qq (4)

where)Pr(jq is the probability that the distribution centered

around jq is the correct distribution of the data and

)|(jxpr q is the basis distribution centered at jq . Assuming

normal basis distributions they take the form of

)()(
2

1

2

1

2

1

||)2(

1
)|(

jj
T

j xCx

j

dj e

C

xpr
qq

p
q

--×- -

×= (5)

where jC is the covariance matrix of the distribution

associated with node j .

The learning rules for the distribution learning, i.e. learning

)Pr(, jjC q and g can be derived by minimizing the Kullback-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

3

Leibler distance between the approximating distribution

(equation (4)) and the actual distribution estimated as a sum of

Dirac δ distributions centered at the data points [19-21].

In certain cases SOMs are build such that they provide an

over-complete representation of the projected data by having

more nodes than projected data points [22-24]. In such cases

the SOM nodes that do not attract data points from the training

data act as interpolator approximations of points expected to

be in the data space that were not included into the training

data [24]. Such SOMs are often used for visualization of the

data [22-24].

B. Supervised Learning of Function Approximation with

Single Hidden Layer Neural Networks

It has been shown that neural networks with a single hidden

layer containing nonlinear neurons can, at least in principle,

approximate a very wide range of functional relationships

arbitrarily correctly [1, 9, 10]. In general the formal proofs of

this property of neural networks are based on showing that the

set of linear combinations of functions of some generic form

(basis functions) is dense within the set of continuous

functions, i.e., for any continuous function f there is an

infinite series of functions ng within the chosen set of

functions such that 0),(lim =
¥®

n
n

gfd for an appropriate

metric d on the space of continuous functions [9, 10] . The

result also extends to non-continuous functions (e.g. step

function) that can be approximated by continuous functions.

This implies that a neural network with neurons in the

hidden layer implementing such basis functions and a linear

summation output neuron, in principle can approximate any

continuous and many discontinuous functions defined on the

input space of the hidden neurons. The approximation theory

results typically imply a relatively high minimal number of

neurons for the worst case scenario approximation [31-35].

Some of these results show that the number of required

neurons in many cases grows exponentially or polinomially

with the dimensionality of the data [18, 32, 35-37]. However if

the parameters of the basis functions represented by the

neurons are allowed to vary, for certain classes of

approximated functions and appropriate basis functions, the

required number of neurons may not be required to grow so

quickly or at all with the dimensionality of the data [36-38].

Usually the number and internal parameters of the basis

functions of the neurons are fixed and the aim is to learn the

linear summation weights of the output neuron. This is done by

optimizing these weights through supervised learning and

considering the squared error as the objective that is

optimized. In principle it is also possible to learn the internal

parameters of the basis functions by optimizing the objective

with respect to these parameters as well, however, this may

complicate very much the learning process in computational

terms (see for example [39]).

Often heuristics are used to set the number and internal

parameters of hidden neurons on the basis of the size of the

data set, the dimensionality of the input data, prior knowledge

about the nature of the data, and performance sensitivity to

removal of neurons [2-4, 33, 40]. In practice usually a small

number of hidden nonlinear neurons give a good

approximation of most target functions following parameter

learning [1]. More principled approaches suggest to use some

form of model selection method based on some model

complexity criterion [14].

A principled and generic solution to the problem of the

setting the number of hidden neurons and their internal

parameters is provided by the support vector machine

approach [41]. This approach aims to find the minimal number

of support vectors, i.e. data points, which are necessary to

approximate the target function with a given level of precision

[14, 41, 42]. To include nonlinear basis functions, the support

vector machines assume a transformation of the original data

into another space (usually a function space) where the

corresponding function that has to be approximated is a linear

function. Normally this other space is infinite dimensional,

however the dealing with infinite dimensional data is avoided

through the use of the ‘kernel trick’, which allows the internal

product of vectors in the transformed space to be calculated

using a nonlinear kernel function that is defined over the

original data space. In effect the calculated approximation of

the target function is a linear combination of nonlinear kernel

functions having one of their argument fixed at one of the

support vector data points.

In general, key problems of nonlinear function

approximation with neural networks remain that the reliable

approximation of functions defined on high dimensional inputs

often requires very large data volumes that grow exponentially

with the dimensionality of the data [18, 36, 37, 43], and

finding simple models of the data with good generalization

ability, in the form of neurons networks is very difficult. Often

the volume of the available data is very small if the

dimensionality of the data is taken into account, i.e. the

coverage of the data space is too sparse. On the other side, if

the available data amount is sufficiently large, it may be quite

difficult to find a neural network with small number of hidden

neurons that has good generalized approximation ability.

III. COMBINED UNSUPERVISED AND SUPERVISED LEARNING

OF FUNCTION APPROXIMATION

Let us assume that the task is to learn the approximation of a

function defined on multi-dimensional data using a neural

network with a fixed set of basis functions, and that the data

resides around a lower dimensional manifold embedded into

the original data space. The reason for the data not being

exactly on this manifold is the possibility of measurement

error. Given that the data resides around a low dimensional

manifold it is possible that a data sample that is sufficiently

dense on the supporting manifold is quite sparse in the context

of the embedding original data space. Thus the direct

approximation of the function defined on the original data

space may suffer from the apparent sparseness of the data.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

4

Figure 1. The proposed combination of unsupervised and

supervised learning for function approximation. On the left

the segmented line boxes show the original learning task,

the key assumption and the transformed learning task. On

the right the solid thick line boxes show the proposed

actual learning tasks.

To avoid the problem of apparent data sparseness, first we

may map the data onto a space corresponding to the supporting

manifold of the data and then learn the approximation of a

function defined on this mapping space. The original function

that has to be approximated can be then recovered by

composing the mapping of the data onto the lower dimensional

mapping space and the learned approximation of the function

defined on this mapping space.

It has been shown [18] for a wide range of functions defined

on m -dimensional that if the function value depends only on

mm <' dimensions of the data then the approximation error of

a neural network with fixed basis functions that approximates

such functions is proportional to '/ mm . Thus if the

approximation is performed following the mapping of the data

onto the 'm -dimensional space, the expected error is reduced.

At the same time the constants involved in the estimates of the

approximation error for neural networks often depend

exponentially or polinomially on the dimensionality of the data

[18, 32, 35-37]. Thus by using lower dimensional data

following the mapping of the original data into the lower

dimensional space, it can be expected that the error of the

approximation is reduced.

In formal terms, the original task is to learn the

approximation of the function defined by

DxyxfDf ttt Î=® ,)(,: (6)

where D is the original high dimensional data space

(
m

D Í), tx are the sample data points and ty are the

function values for these data points. We assume that

DMxt ÌÎ and that there exists a bijective mapping

mmMMM m <Í® ',',': 'm . (7)

Then, if we know the mapping ': MM ®m we can learn the

function f by learning the function g defined as

')(,)(,': MxzyzgMg tttt Î==® m (8)

and composing the learned function with the mapping m , i.e.

Mxxgxf Î=)),(()(m (9)

and)(xf for Mx Ï being defined by using a continuous

extension of the definition of)(xf over M such that this

converges relatively quickly to zero in all directions. In fact,

strictly speaking, for points Mx Ï the function is not defined,

but in order to handle the noise in the measurement of input

data it makes practical sense to use a continuous extension of

the function defined by equation (9). The speed of

convergence to zero of the continuous extension part of the

function is defined by the expected range of measurement

errors of the data points, e.g. if the errors follow a distribution

with zero mean and standard deviation equal to s, then the

continuous extension part of the function should converge

quickly to zero for points beyond the +/-2s size neighborhood

of M in all directions.

In accordance with [18], in the case of approximation with a

fixed set of basis functions, and for certain classes of

approximated functions, the neural network approximation

error for))((xg m is bounded from below by

'/1

1'
2

1

'16

m

m
nme

C
c ÷

ø

ö
ç
è

æ×= -pp
 (10)

where n is the number of neurons used in the neural network,

and C is a constant related to the class of functions to be

approximated. The lower bound for the approximation error

for neural networks with a fixed set of basis functions

approximating)(xf directly in the data space is

m

m
nme

C
c

/1

1 2

1

16
÷
ø

ö
ç
è

æ×= -pp
 (11)

where n is the number of neurons, and C is a constant as

above. As we noted the constant C often depends

exponentially on the dimensionality of the data [32, 36, 37].

Assuming that
m

bC = , we have that ××)/1(m
m

b

m
n

/1
)2/1(is increasing if

))2ln(4/(1 n
eb > , implying that we

have that mm cc <' if b satisfies the latter condition, which is

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

5

very likely, given that 1.1
))2ln(4/(1 <n

e already for moderate

n . This means that the neural network approximation error for

))((xg m is likely to be lower than the neural network

approximation error for)(xf , considering in both cases small

size neural networks with fixed sets of basis functions.

In general it is very hard to find the bijective mapping

': MM ®m since we do not know the analytical form of M .

However, the effective dimensionality of M , and thus the

dimensionality of 'M , i.e. 'm , can be determined by

analyzing the data points tx (e.g. by using principal

component analysis, multi-dimensional scaling, correlation

dimension determination, or box-counting Hausdorff

dimension determination [44]) . Having this information in

principle we can search for an approximation of a bijective

mapping of M onto
'm
. Note that the mapping

'
:'

m
M ®m , which approximates ': MM ®m is not

necessarily a bijective (and not even an injective) mapping. A

such approximate mapping of M onto
'm
 can be constructed

using an over-complete SOM for which the position vectors

are in
'm
 and the prototype vectors are in M . Being an

over-complete SOM means that the number of the nodes of the

SOM is much larger than the number of data points that are

considered [22-24].

Using an over-complete SOM implies that in principle it is

possible that each data point maps onto a SOM node, such that

no other data point maps onto the same SOM node. Thus, at

least in principle, using an over-complete SOM makes possible

to have an injective approximate mapping
'

:'
m

M ®m .

However in practice it may be possible that more than one data

points map onto a single SOM node in the case of some (most

likely few) SOM nodes.

Let us assume that the projection SOM is such that each

input data maps onto a unique SOM node. Given that there are

many more SOM nodes than input vectors, we can assume that

between any two SOM nodes that attract an input vector there

are other SOM nods that do not attract input vectors. Thus we

can assume that for a given input x there is neighborhood

radius xr such that there is only one other input 'x such that

the node 'i that attracts 'x is within the xr radius

neighborhood of the node i that attracts x . We further

assume that the neighborhood radius is decreasing in each step

by a factor b (i.e. currentnext rbr ×=). We can also assume

without loss of generality that the node 'i is not in the

neighborhood radius for any other nodes attracting an input

vector. According to our assumptions the further training of

the projection SOM from the perspective of the nodes

attracting x and 'x is equivalent with the alternate training

with only these two inputs. After k2 turns of training the

prototype vectors of the two nodes are

'))1(

)1(1()1())1(

)1(1()1(

22

22

2022

x

x

k

k

i

kk

i

×-+

+-+×-×+×-+

+-+×+×-=

-g

gggg

ggqgq

K

K

 (14)

'))1(

)1(1()1())1(

)1(1()1(

22

22

20

'

22

'

x

x

k

k

i

kk

i

×-+

+-+×-×+×-+

+-+×+×-=

-g

gggg

ggqgq

K

K

 (15)

where
0

iq and
0

'iq are the prototype vectors of the two nodes

at the time point when our assumptions become valid. Thus the

two prototype vectors become increasingly similar with the

training and at one moment it is possible that another node

becomes the attractor of one of the input vectors, let say 'x .

Let us assume that the node ''i is outside of the

neighborhood radius for the node i after 02k turns of

training, but stays within the neighborhood radius of 'i . The

prototype vector for this node after k2 turns of training will

be

'.))1(

)1(1('))1(

)1(1()1())1(

)1(1()1(

0

0

0

22

22

22

20

''

22

''

x

x

x

kk

k

k

i

kk

i

×-+

+-+×+×-+

+-+×-×+×-+

+-+×+×-=

-

-

g

ggg

gggg

ggqgq

K

K

K

 (16)

This node takes over the attraction of the data vector 'x

from the node 'i , if

|'||'| 2

'

2

''

k

i

k

i xx qq -<- . (17)

Given that 11 <- g we can ignore the
02

)1(qg ×- k

components for large k , and following algebraic

manipulations we find that the above inequality is equivalent

to

()

() .')1(
2

1

2

)1(1

')1()2()1(1
2

1

2

)1(1

2
22

222

22

00

0

xx

x

x

k
k

kkk

k

×--×
-
-

+×
-
--

<×-×----×
-
-

+×
-

--

+

-

+

gg
g
g

g
g

ggg
g
g

g
g

 (18)

Solving this inequality for 0k and k gives

|)'ln(|)(0 xxrk -×= g . (19)

This implies that the distance between the position vectors

of nodes i and ''i is proportional to |'| xx - , i.e.

xx

k
xx rarbr ×-×=×= |'|0

0
. (20)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

6

This shows that the distances in the projection space

between the nodes to which data vectors project are

proportional to the distances of these data vectors in the data

space. Note that xr depends in a similar manner on distances

between data points projected in the neighborhood of node i .

This means that the proportional distance preservation in the

projection space may change in terms of proportionality

multipliers between separately mapped topological

neighborhoods, but it will be valid within these

neighborhoods. Thus the over-complete projection SOM in the

optimal case realizes a mapping that locally preserves

proportional distances of the data vectors. The projection

SOM increasingly preserves the proportional distances

between the data points as the number of nodes is increased in

the projection SOM.

The use of the SOM guarantees that the topographic

structure of M is preserved through the mapping
'

:'
m

M ®m , and in fact the mapping will map M onto a

finite
'

''
m

M Í that is an 'm -dimensional brick. In general

we can assume that ''' MM Í . Since the topological

organization of M does not necessarily match that of a brick,

it is likely that the mapping will use only some of the nodes of

the over-complete SOM, and some (possibly many) nodes of

the SOM will not attract any data points. At the same time, due

to the fact that all prototype vectors of the SOM nodes

converge towards the input vectors used to train the SOM, the

prototype vectors of unused SOM nodes will represent points

of the data manifold that were not included into the data

sample. Thus the mapping onto the over-complete SOM can

be expected to generalize in a faithful manner to points in the

data space that were not used for the training of the SOM – i.e.

the topology of the data manifold through the mapping

'':' MM ®m will be maintained for previously unseen points

from the data space (see equation (1)). Effectively the SOM

mapping of the data will approximate 'M with a finite 'm -

dimensional brick lattice.

Having the mapping '':' MM ®m the function

approximation learning task is reduced to the learning of

®': Mg expanded to ''M , i.e. ®'':' Mg . Given our

assumptions about the arrangement of the data the sampling of

''M is much denser than the sampling of D and thus the

approximation of ®'':' Mg is likely to be more precise

than the direct approximation of ®Df : .

To approximate ®'':' Mg we use a single hidden layer

neural network with a sufficiently high number of nonlinear

hidden layer neurons with fixed internal parameters. For

example, we may use an RBF neural network with fixed

Gaussian basis functions as activation functions of the neurons

in the hidden layer.

By increasing the number of SOM nodes we get a finer

brick lattice representation of ''M by the SOM. More SOM

nodes increase the number of SOM nodes which have a single

data vector associated with them. This implies the increasing

preservation of proportional distances of data points within the

mapped topological neighborhoods. We assume that more

proportional distance preservation within mapped

neighborhoods means more faithful projection of the data

manifold into the projection space. Improving the faithfulness

of the projection of the data manifold onto the projection space

means that a neural network approximation of ®'':' Mg

will get closer to the theoretically possible best approximation

of the target function in the 'm -dimensional space.

The approximation of ®'':' Mg is learned using the

training data tt yx),('m . As the injectivity of '':' MM ®m is

not fully guaranteed, it is possible that utxx ut ¹=),(')(' mm ,

i.e. two (and possibly more) different data points project to the

same SOM node. Thus there will be at least two potentially

different y values (i.e. ut yy ,) associated with this SOM node

and its position vector ut zz = . In effect the neural network

will most likely learn the mean value of the y values

associated with such SOM nodes and their position vector.

Different x and y values may be the result of noisy

measurement of the actual data. In such cases the noisy

measurements of the data vectors may map onto the same

SOM node with position vector z , thus effectively filtering the

impact of the noise on the measurement of data vectors.

In summary, it is proposed to learn the approximation of

functions defined on high dimensional data spaces by first

projecting the data using an over-complete SOM onto a lower

dimensional projection space and then learning the

approximation of a function defined on this lower dimensional

space. The advantage of this approach is that sparse high

dimensional data is projected into a low dimensional space

where the data set is much less sparse due to the lower

dimensionality of the space. The approximation of the function

is likely to be more precise through the proposed combined

neural network approach than the direct neural network

approximation of the function defined over the original data

space (in both cases the neural networks use a fixed set of

basis functions). The underlying key assumption of the

proposed approach is that the data lies around a low

dimensional manifold that is embedded into the high

dimensional data space. If this key assumption is not satisfied,

it is likely that the proposed combined neural network

approach to function approximation will not lead to improved

results compared to the direct neural network approximation of

the function over the original data space.

IV. SUPPORT VECTOR MACHINE EXTENSION

The combined unsupervised and supervised learning of

function approximation proposed in the previous section

means that the direct approximation of the function in the high

dimensional original data space is replaced by a mapping of

the data onto a low dimensional space and the learning of the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

7

approximation in this low dimensional space. The use of the

over-complete SOM implies that the difference in the

complexity and difficulty of the approximation of the target

function between the high and the low dimensional

approximation is traded for the maintenance of the over-

complete SOM that implements the mapping from the high to

the low dimensional space.

Since we use an over-complete SOM in general a SOM

node is expected to attract a single data point, so we do not

expect a compression of the data by this mapping. Thus, the

number of separate data points is retained following the

mapping onto the lower dimensional space, leaving the

complexity of the selection of the size of the approximating

neural network unchanged.

The use of the support vector machine approach provides a

principled way to choose the number of hidden nodes and the

values of the basis function parameters for the approximating

neural network. The support vector machine has the form of

å
=

×-=
N

t

ttt xxKxG
1

*))(),(()()(mmaa (21)

where the calculation of)(xm is performed using the SOM

mapping of an arbitrary data point x onto the over-complete

SOM and 0
* =- tt aa if)(txm is not a support vector.

We note however, that the support vector machine approach

may overestimate the minimum number of hidden neurons

needed for sufficiently good approximation of the target

function. To overcome this problem we may use additional

sensitivity analysis to prune the neural network further.

V. BAYESIAN SOM APPROACH

An alternative approach to set the internal parameters for

the basis functions while keeping the number of neurons low is

to use a Bayesian re-mapping of the SOM. This finds an

approximation of the distribution of the low dimensional

mapped data as a linear combination of a small set of normal

distributions. The SOM nodes that are the centers of these

normal distributions are then used to define the internal

parameters of hidden neurons of the neural network. The

Bayesian SOM is set up with a number of nodes that is much

smaller than the number of nodes of the projection SOM. If

'':' MM ®m is the projection SOM mapping, and the nodes

of the projection SOM are defined as

MxMzKkxz kkkk ÎÎ= ,'',,...,1),,((22)

then the Bayesian SOM is defined as

KLMzMqLlzq llll <<ÎÎ= ,'','',,...,1),,((23)

such that the position vectors of the nodes of the projection

SOM (kz) are mapped onto the Bayesian SOM nodes. The

Bayesian SOM nodes also have the attached parameters lC

and)Pr(lq that are the covariance matrix and prior

probability associated with the node),(ll zq .

The parameters of the Bayesian SOM (lll zqC),Pr(,) are

calculated using the equations (2), (3) and the Bayesian SOM

learning rules [19-21]. The resulting Bayesian SOM will

provide an approximation of the probability density function

of the distribution of the position vectors of the projection

SOM onto which the original data points are projected. The

learned position vectors lz will be used then as the fixed

parameters for the hidden neurons of the neural network built

for function approximation.

Consequently, the function represented by the neural

network will be

å
=

×=
L

l

lll zxgwxG
1

));('()(m (24)

having randomly chosen initial weights. These weights are

then modified through neural network learning.

The advantage of the Bayesian SOM approach is that it

provides a small set of fixed internal parameters for the hidden

neurons of the approximating neural network, calculated in a

principled optimal manner, i.e. they define a good

approximation of the probability density function of the

distribution of the projections of the data points.

The number of nodes in the Bayesian SOM (L) is not

determined in any principled manner, i.e. any number L that

seems reasonable may be picked. To deal with the arbitrariness

of the picking of L , we may consider a series of L values and

pick the one that is optimal in the sense that L is sufficiently

small and at the same time the approximation error of the

function)(xG is sufficiently small as well. The Bayesian

SOM approach combined with the search for the optimal L

value deals with the problem of finding the minimal

complexity for a sufficiently good approximation of the target

function by starting from the low end, i.e. by considering first

approximations with potentially too low structural complexity.

VI. APPLICATION EXAMPLES AND STATISTICAL

PERFORMANCE COMPARISON

We evaluate the proposed combined unsupervised and

supervised learning methods for learning the approximation of

functions by considering a set of target functions and a

selection of neural networks. The original data in all cases is in

a 6 dimensional space and it is always situated on a 2

dimensional manifold. The relationship between the 6

dimensional data points),...,(61 xxx = and their

corresponding 2 dimensional position),(21 yyy = defines a

double Swiss roll in 6 dimensions, and is given by the

following equations for)0,0(¹y :

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

8

)cos(

)sin(

)cos(

224

113

22

111

yyl

yyl
yl

yyl

××=

××=

×=

××=

x

x

x

x

 (25)

÷÷
ø

ö
çç
è

æ
-

+
×

+×
=

××=

×=

--
1

1

2

5

10

)sin(

2
2

2
12

2

2

1

226

15

yyyy
l

yyl

yl

e

x

x

for)0,0(=y the corresponding 6 dimensional position is

)0,...,0(=x .

For the learning phase we consider 1000 randomly selected

training data points and for testing phase we use 200 randomly

selected test data points. The 2 dimensional points,

),(21 yyy = , were selected from the]10,10[]10,10[-´-

square. The error measure in all cases is the mean squared

error (see equation (13)).

The unsupervised neural network in all cases is an over-

complete projection SOM with 10,000 nodes that projects the

original data points into a 2 dimensional space. For learning

the projection SOM we use 1000 epochs of training with all

training data. For learning the SOM mapping we use equations

(2) and (3) with 1.0=g , | || |max1.0
,

1

ji

ji
xx -×=r , and

rr rr ×=+ 99.01 .

The neural networks with fixed basis functions that we

consider are as follows:

1) radial basis function (RBF) neural network with 20

hidden neurons with randomly set fixed internal

parameters, trained on the original data – we name

this neural network: RBF;

2) radial basis function (RBF) neural network with 20

hidden neurons with randomly set fixed internal

parameters, trained on the data mapped using the

projection SOM – we name this neural network:

SOM-RBF;

3) radial basis function (RBF) neural network with

basis function parameters set using the support

vector machine approach and pruned to have the 20

most important neurons resulting from the support

vector machine solution, considering the data

mapped using the projection SOM – we name this

neural network: SVM-RBF;

4) radial basis function (RBF) neural network with

basis function parameters set using the Bayesian

SOM approach with 20 nodes in the Bayesian SOM,

considering the data mapped using the projection

SOM, the Bayesian SOM is trained with the same

SOM parameters (rg ,) that we use for the training

of the projection SOM and the initial prior

probabilities ()(lqP) are set to be equal – we name

this neural network: BSOM-RBF.

The training of all neural networks involves the change of

the weights on the outputs of the nonlinear neurons, but no

internal parameters of the neurons are modified through

learning, i.e. we use fixed basis functions in all cases. Note

that for the SVM-RBF and BSOM-RBF neural networks the

location of the centre and the width of the Gaussian are

necessarily fixed due to method of setting up of these

networks.

We consider 10 functions for the purpose of testing the

approximation performance of these neural networks. These

functions are as follows:

1) Squared modulus:),(21 yyy =

2

2

2

1)(yy +=zf (26)

2) Polynomial:),(21 yyy =

()2

212

3

1

4

1 234
500

1
)(yyyyy ++×=zf (27)

3) Exponential square sum:),(21 yyy =

50/50/ 2
2

2
1)(

yy
eezf += (28)

4) Exponential-sinusoid sum:),(21 yyy =

)cos()sin()(1

50/

2

50/ 2
2

2
1 yy yy ×+×= eezf (29)

5) Polynomial-sinusoid sum:),(21 yyy =

())2cos()sin(
100

1
)(2

3

21

2

1 yyyy ×+××=zf (30)

6) Inverse exponential square sum:),(21 yyy =

25/25/ 2
2

2
1

10
)(

yy
ee

zf
+

= (31)

7) Sigmoidal:),(21 yyy =

5/)(211

10
)(yy +-+

=
e

zf (32)

8) Gaussian:),(21 yyy =

100/)(2
2

2
110)(

yy +-×= ezf (33)

9) Linear:),(21 yyy =

21 2)(yy +=zf (34)

10) Constant:),(21 yyy =

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

9

1)(=yf . (35)

The functions are set such that their values are in similar

ranges over the domain from which the inputs are selected (

]10,10[]10,10[-´-Îy). Each function approximation

learning task was executed 20 times following random

initialization of the parameters.

To evaluate the performance of the considered function

approximation approaches, first we calculated the

approximation performance of a uniformly zero approximation

(i.e. the approximation of the function value is zero

everywhere) as a benchmark. The uniformly zero

approximation corresponds to the default neural network with

all weights being set to zero. Then we calculated the empirical

mean and standard deviation of the difference between the

approximation error of the uniform zero approximation and the

neural network approximation for each kind of neural

networks. Thus the test set specific performance metric is

defined as follows:

)200,,1;(

)200,,1;()200,,1;(0

K

KK

=

-===

txE

txEtx

tNN

ttNNh
 (36)

where

å
=

-×==
200

1

2))((
200

1
)200,,1;(

t

tNNttNN xGytxE K (37)

å
=

-×==
200

1

2

0)0(
200

1
)200,,1;(

t

tt ytxE K . (38)

The empirical mean and empirical standard deviation of the

test set specific performance metric are

å
=

==×=
20

1

)20,1,200,,1;(
20

1

k

k

tNNNN ktx KKhh (39)

å
=

-=×=
20

1

2))200,,1;((
20

1

k
NN NN

tk
t

x
NN

hhhs
K . (40)

We used the z-test to test whether the mean differences were

significantly different from zero, thus the overall direct

performance metric is defined as:

sh
h

h
NN

NNz

NN ×= 20 . (41)

We calculated as final performance metric the z-test p-value

corresponding to
z

NNh for each neural network type that we

considered.

A positive mean difference that is statistically significant at

the level of a p-value p<0.05 indicates that the respective

neural network approximation is better than the uniform zero

approximation for the target function. The empirical mean

values, empirical standard deviations and the results of the z-

test significance level calculations are presented in Table I.

The approximation performance of a neural network is better if

the reported empirical mean value for the network is more

positive and more statistically significant.

The results show that the RBF neural networks approximate

the target functions better than the uniform zero approximation

with the exception of polynomial, exponential sinusoid sum,

polynomial sinusoid sum and inverse exponential square sum

functions. The SOM-RBF neural networks are better than the

uniform zero approximation for all considered functions with

exception of the polynomial, exponential sinusoid sum, and

polynomial sinusoid sum functions. The SVM-RBF and

BSOM-RBF neural networks are better than the uniform zero

approximation for all considered functions with the exception

of the exponential sinusoid sum function. In the case of the

exponential sinusoid sum function none of the neural network

approximations works statistically significantly differently

from the uniform zero approximation. This confirms that in

TABLE I

THE DIFFERENCE BETWEEN THE APPROXIMATION PERFORMANCE OF NEURAL

NETWORKS AND THAT OF THE UNIFORM ZERO APPROXIMATION

MEAN VALUE (STANDARD DEVIATION) [Z-TEST P-VALUE], * INDICATES

SIGNIFICANCE, I.E. BELOW 0.05 P-VALUE

Function RBF SOM-RBF SVM-RBF
BSOM-

RBF

Squared

modulus

1519.84

(1404.62)

[6.52E-7*]

3000.73

(547.31)

[0*]

3872.61

(573.84)

[0*]

3353.81

(964.04)

[0*]

Polynomial – 183.55

(260.47)

[0.00081*]

– 49.553

(106.468)

[0.01869*]

105.33

(73.82)

[8.81E-11*]

177.69

(63.57)

[0*]

Exponential

square sum

14.734

(3.175)

[0*]

18.821

(1.519)

[0*]

20.517

(1.408)

[0*]

19.215

(2.856)

[0*]

Exponential-

sinusoid sum

– 0.1443

(1.0173)

[0.26281]

– 0.0764

(0.4752)

[0.23600]

– 0.04511

(0.3336)

[0.27269]

0.0166

(0.1626)

[0.32364]

Polynomial-

sinusoid sum

– 0.3219

(1.6303)

[0.18856]

0.2777

(0.9503)

[0.09558]

0.3294

(0.6562)

[0.01237*]

0.1925

(0.3519)

[0.00721*]

Inverse

exponential

square sum

– 0.7642

(1.1273)

[0.00121*]

0.3318

(0.8327)

[0.03739*]

1.3571

(0.7420)

[1.11E-16*]

2.0276

(0.5878)

[0*]

Sigmoidal 25.026

(5.562)

[0*]

29.543

(2.231)

[0*]

29.082

(2.346)

[0*]

18.621

(6.755)

[0*]

Gaussian 23.384

(2.998)

[0*]

26.016

(3.023)

[0*]

28.594

(2.499)

[0*]

24.649

(5.712)

[0*]

Linear

65.483

(38.979)

[2.8E-14*]

88.973

(16.334)

[0*]

83.392

(20.621)

[0*]

25.056

(22.418)

[2.89E-7*]

Constant 0.9827

(0.0185)

[0*]

0.9976

(0.0031)

[0*]

0.9987

(0.0006)

[0*]

0.9258

(0.0878)

[0*]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

10

almost all considered cases of function approximation tasks

the neural networks that we used can learn the approximation

of the target function.

Next we compared performance of the RBF neural networks

with the performance of the neural networks based on

combined unsupervised and supervised learning. For this, we

calculated the differences of approximation errors and used the

z-test to check whether the mean differences are significantly

different from zero or not. A positive difference that is

statistically significant indicates that the RBF neural networks

are less good at approximating the target function than the

neural networks that use combined learning. The values of

empirical mean differences, the corresponding empirical

standard deviations, and the corresponding calculated

significance levels for the z-test are shown in Table II.

The results show that the SOM-RBF and SVM-RBF neural

networks approximate the target function significantly better

than the RBF neural networks in the case of all functions for

which the neural network approximations are better than the

uniform zero approximation. The results also show that the

RBF neural networks approximate the sigmoidal, linear and

constant functions statistically significantly better than the

BSOM-RBF neural networks. These results confirm that the

neural networks using the combined unsupervised and

supervised learning outperform in most cases the neural

networks that learn the function approximation through

supervised learning applied directly in the original data space.

Finally we compared the performance of the RBF-SOM

neural networks with the performance of the RBF-SVM and

RBF-BSOM neural networks in a similar manner as in the

previous comparison. Positive values that are statistically

significant indicate that the SVM-RBF and BSOM-RBF neural

networks are better than the SOM-RBF neural networks for the

respective approximation task. The comparison results are

shown in Table III.

These results show that the SVM-RBF neural networks are

significantly better than the SOM-RBF neural networks for the

approximation of the considered squared modulus,

polynomial, exponential square sum, inverse exponential

square sum and Gaussian functions. The SOM-RBF neural

networks are significantly better than the SVM-RBF neural

networks for the considered sigmoidal and linear functions,

while for the other functions the approximation performances

are not significantly different for the two kinds of neural

networks. The BSOM-RBF neural networks are significantly

better than the SOM-RBF neural networks for the considered

polynomial and inverse exponential square sum functions. For

the sigmoidal, linear and constant functions the reverse

performance relationship is statistically significant, while for

the remaining functions the approximation performances are

not significantly different. These results show that in particular

for simpler target functions trying to set the internal

parameters of the nonlinear neurons in some optimal way may

be somewhat misleading and comparable or better

performance can be achieved by simply random setting of

these parameters.

VII. DISCUSSION AND CONCLUSIONS

The paper proposes the use of neural networks trained with

combined unsupervised and supervised learning for function

approximation tasks. The key idea is that sparse data in a high

dimensional space may be mapped into a lower dimensional

space that corresponds to the lower dimensional manifold

around which the data resides. This can improve the sampling

density of the data space and lead to a trained neural network

with inputs from the lower dimensional space such that the

approximation performance of this neural network is better

than the performance of a similar neural network trained on the

original high dimensional data. To perform the high dimension

to low dimension mapping we propose the use of over-

complete self-organizing maps that can approximate an

injective mapping. The experimental data presented in the

paper confirms that in all considered cases the combined

learning neural networks (SOM-RBF networks) have better

TABLE II

THE DIFFERENCE BETWEEN THE APPROXIMATION PERFORMANCE OF

COMBINED LEARNING NEURAL NETWORKS AND THAT OF THE RBF NEURAL

NETWORKS; MEAN VALUE (STANDARD DEVIATION) [Z-TEST P-VALUE], *

INDICATES SIGNIFICANCE, BELOW 0.05 P-VALUE

Function SOM-RBF SVM-RBF BSOM-RBF

Squared

modulus

1480.89

(1343.14)

[4.09E-7*]

2352.77

(1576.94)

[1.26E-11*]

1833.97

(1780.76)

[2.05E-6*]

Polynomial

134.00

(316.78)

[0.02926*]

288.88

(263.47)

[4.71E-7*]

361.24

(280.55)

[4.24E-9*]

Exponential

square sum

4.0868

(3.2636)

[1.07E-8*]

5.7829

(3.3816)

[1.02E-14*]

4.4811

(4.1574)

[7.17E-7*]

Exponential-

sinusoid sum

0.0679

(1.1606)

[0.39672]

0.0992

(1.0290)

[0.33307]

0.1610

(0.9831)

[0.23194]

Polynomial-

sinusoid sum

0.5997

(1.4523)

[0.03238*]

0.6514

(1.4549)

[0.02261*]

0.5145

(1.6339)

[0.07952]

Inverse

exponential

square sum

1.0960

(1.2442)

[4.08E-5*]

2.1214

(1.0439)

[0*]

2.7919

(0.9415)

[0*]

Sigmoidal

4.5167

(5.1484)

[4.36E-5*]

4.0564

(5.0697)

[0.00017*]

– 6.4053

(7.5654)

[7.64E-5*]

Gaussian

2.6314

(1.7863)

[2.23E-11*]

5.2090

(1.5073)

[0*]

1.2641

(5.8834)

[0.16829]

Linear

23.490

(37.151)

[0.00234*]

17.909

(40.089)

[0.02286*]

– 40.426

(45.517)

[3.56E-5*]

Constant

0.0149

(0.0187)

[0.00018*]

0.0160

(0.0185)

[5.37E-5*]

– 0.0568

(0.0927)

[0.00307*]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

11

approximation performance than the neural networks trained

with the original high dimensional data (RBF networks).

We also propose the use of support vector machines (SVM-

RBF networks) and Bayesian self-organizing maps (BSOM-

RBF networks) to find good settings for the fixed parameters

of the nonlinear neurons in the neural networks. The

experimental results show that the use of such methods to find

good parameters for the nonlinear neurons is useful in some

cases, but not always. The results indicate that the SVM-RBF

networks are more likely to perform better than the SOM-RBF

networks than the BSOM-RBF networks. In the case of the

SVM-RBF neural networks the determination of the

parameters for the neural network basis functions is influenced

by the function that is approximated and the distribution of the

data. In the case of the BSOM-RBF networks the setting of the

parameters is driven purely by the distribution of the

projections of the original data into the low dimensional space.

This difference in the drivers of the setting of the parameters is

likely to be the reason for the difference in the performance of

these networks relative to the performance of the SOM-RBF

neural networks.

The theoretical arguments for the proposed combined

learning neural networks show that it is very important to find

a good '':' MM ®m SOM mapping in the sense that the

dimensionality of the low dimensional space is close to the

true dimensionality of the manifold around which the original

data is placed and that appropriate parts of the manifold are

mapped onto appropriate parts of the low dimensional space in

terms of topographic arrangement. If this is not the case, the

®'': Mg function that is approximated over the low

dimensional space might become more variable over

sufficiently large regions of the projection space than the

original target function of the approximation task,

®Df : . Thus the approximation of ®'': Mg

potentially may become even more complicated and more

error prone than the approximation of ®Df : . Our

experimental results show that for the data that we considered

the SOM mapping into the lower dimensional space was

appropriate. This of course was made easier by the fact that we

mapped the high dimensional data into two dimensions which

was the correct dimensionality of the manifold of the high

dimensional data that we considered.

The experimental results show that the nature of the

approximated function is important for achieving improved

approximation by neural networks trained on the projected low

dimensional data. The considered exponential sinusoidal sum

function was equally badly approximated by all neural

networks that we built. This indicates that if the variability of

the target function is high (i.e. its values change considerably

over relatively small regions of the space on which the

function is defined) the approximation of the function is not

significantly improved by mapping the original data onto a

lower dimensional space. Of course, the approximation

performance also depends on the complexity of the

approximating neural network, and increasing the number of

hidden neurons is likely to be more effective in improving the

approximation performance using the low dimensional

projected data than the original high dimensional data.

Naturally the proposed combined learning neural networks

can work using other kinds of high dimension – low dimension

mapping algorithms as well. For example, the mapping

between the original and the projection data space could be

achieved using multi-dimensional scaling (MDS) [14],

principal component analysis (PCA) [1], isometric feature

mapping (ISOMAP) [28], or locally linear embedding (LLE)

[30]. Any of these methods could be used to generate the

projected data that is used to learn the function approximation

in the lower dimensional space. However, an advantage of our

choice of using over-complete self-organizing maps is the

computational simplicity and the guaranteed topography

preservation of the mapping.

TABLE III

COMPARISON OF THE APPROXIMATION PERFORMANCE RESULTS OF SVM-

RBF, BSOM-RBF, AND SOM-RBF NEURAL NETWORKS

MEAN VALUE (STANDARD DEVIATION) [Z-TEST P-VALUE], * INDICATES

SIGNIFICANCE, BELOW 0.05 P-VALUE

Function
SVM-RBF vs

SOM-RBF

BSOM-RBF

vs SOM-RBF

Squared

modulus

871.885

(631.894)

[3.40E-10*]

 353.083

(1139.46)

[0.08290]

Polynomial

154.884

(127.669)

[2.89E-8*]

 227.247

(127.848)

[8.88E-16*]

Exponential

square sum

1.6960

(1.2974)

[2.51E-9*]

 0.3942

(2.9925)

[0.27787]

Exponential-

sinusoid sum

0.0313

(0.4045)

[0.36546]

 0.0930

(0.5027)

[0.20387]

Polynomial-

sinusoid sum

0.0517

(0.6327)

[0.35739]

 – 0.0852

(0.9050)

[0.33683]

Inverse

exponential

square sum

1.0253

(0.6184)

[6.08E-14]

 1.6958

(0.6984)

[0*]

Sigmoidal

– 0.4603

(0.6202)

[0.00045*]

 – 10.922

(7.5645)

[5.33E-11]

Gaussian

2.5776

(1.3589)

[0*]

 – 1.3672

(6.2453)

[0.16377]

Linear

 – 5.5805

(12.933)

[0.02682*]

 – 63.916

(23.963)

[0*]

Constant 0.0010

(0.0033)

[0.07360]

 – 0.0717

(0.0879)

[0.00013*]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TNNLS-2013-P-1473.R1

12

REFERENCES

[1] S. Haykin, Neural Networks and Learning Machines, Prentice Hall,

2008.

[2] H.-G. Han, Q.-L.Chen, J.-F.Qiao, “An efficient self-organizing RBF

neural network for water quality prediction”, Neural Networks, vol.24,

pp.717-725, 2011.

[3] R.C.J. Minnett, A.T. Smith, W.C. Lennon, R. Hecht-Nielsen, “Neural

network tomopgraphy: network replication from output surface

geometry”, Neural Networks, vol.24, pp.484-492, 2011.

[4] A.-M. Zhou, K.D. Kumar, Z.-G. Hou, X. Liu, “Finite-time altitude

tracking control for spacecraft using terminal sliding mode and

Chebyshev neural network”, IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol.41, pp.950-963, 2011.

[5] A.Y. Chervonenkis, “Problems of machine learning”, LNCS 6744,

pp.21-23, 2011

[6] A. Kryzak and T. Linder, “Radial basis function networks and

complexity regularization in function learning”, IEEE Transactions on

Neural Networks, vol.9, pp.247-256, 1998.

[7] G.-B. Huang, P. Saratchandran, N. Sundararajan, “A generalized

growing and pruning RBF (GGAP-RBF) neural network for function

approximation, IEEE Transactions on Neural Networks, vol. 16, pp.57-

67, 2005.

[8] G.A. Anastassiou, “Multivariate sigmoidal neural network

approximation”, Neural Networks, vol.24, pp.378-386, 2011.

[9] K. Hornik, “Multilayer feedforward networks are universal

approximators”, Neural Networks, vol.2, pp.183-192, 1989.

[10] M.B. Stinchcombe, “Neural networks approximation of continuous

functional and continuous functions on compactifications”, Neural

Networks, vol.12, pp.467-477, 1999.

[11] V. Kurkova, “Kolmogorov’s theorem and multilayer neural networks”,

neural Networks, vol.5, pp.501-506, 1992.

[12] D.A. Sprecher, “A numerical implementation of Kolmogorov’s

superpositions I”, Neural Networks, vol.9, pp.765-772, 1997.

[13] D.A. Sprecher, “A numerical implementation of Kolmogorov’s

superpositions II”, Neural Networks, vol.10, pp.447-458, 1998.

[14] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, Springer, 2009.

[15] I.M. Johnstone and D.M. Titterington, “Statistical challenges of high-

dimensional data”, Philosophical Transactions of The Royal Society A,

vol.367, pp.4237-4253, 2009.

[16] J.H. Friedman, “An overview of predictive learning and function

approximation”, NATO ASI Series F Computer and System Science

136, 1994.

[17] J.H. Friedman, “On bias, variance, 0/1 – loss and the curse-of-

dimensionality”, Data Mining and Knowledge Discovery, vol.1, pp.55-

77, 1997.

[18] G. Gnecco, “A comparison between fixed-basis and variable-basis

schemes for function approximation and functional optimization”,

Journal of Applied Mathematics, article ID 806945, 2012.

[19] H. Yin, “The self-organizing maps: background, theories, extensions

andapplications”, Studies in Computational Intelligence, vol. 115,

pp.715-762, 2008.

[20] M.M. Van Hulle, “Self-organizing maps”, In: G. Rozenberg, T. Baeck,

J. Kok (eds.) Handbook of Natural Computing: Theory, Experiments,

and Applications, Springer, pp.1-45, 2010.

[21] T. Kohonen, Self-Organizing Maps, Springer, 2001.

[22] H. Yin, “On multidimensional scaling and the embedding of the self-

organising maps”, Neural Networks, vol.21, pp.160-169, 2008.

[23] H. Yin, “Data visualization and manifold mapping using the ViSOM”,

Neural Networks, vol.15, pp.1005-1016, 2002.

[24] N. Manukyan, M.J. Eppstein, D.M. Rizzo, “Data-driven cluster

reinforcement and visualisation in sparsely-matched self-organising

maps”, IEEE Transactions on Neural networks and Learning Systems,

vol.23, pp.846-853, 2012.

[25] S. Moon, H. Qi, “Hybrid dimensionality reduction method based on

support vector machine and independent component analysis”, IEEE

Transactions on Neural networks and Learning Systems, vol.23, pp.749-

761, 2012.

[26] N.B. Karayiannis, G.W. Mi, “Growing radial basis neural networks:

merging supervised and unsupervised learning with network growth

techniques”, IEEE Transactions on Neural Networks, vol.8, pp.1492-

1506.

[27] Z. Yao, A.H. Holmborn, T. Eklund, B. Back, “Combining unsupervised

and supervised data mining techniques for conducting customer

portfolio analysis”, LNAI 6171, pp.292-307, 2010.

[28] J. Tenenbaum, V. De Silva, J. Langford, “A global geometric framework

for nonlinear dimensionality reduction”, Science, vol.290, pp.2319-

2323, 2000.

[29] T. Lin and H. Zha, “Riemannian manifold learning”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol.30, pp.796-809,

2008.

[30] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally

linear embedding”, Science, vol.290, pp.2323-2326, 2000.

[31] A.R. Barron, “Approximation and estimation bounds for artificial neural

networks”, Machine Learning, vol.14, pp.115-133, 1991.

[32] A.R. Barron, “Universal approximation bounds for superpositions of a

sigmoidal function”, IEEE Transactions on Information Theory, vol.39,

pp.930-945, 1993.

[33] A.R. Barron, A. Cohen, W. Dahmen, R.A. DeVore, “Approximation and

learning by greedy algorithms”, The Annals of Statistics, vol.36, pp.64-

94, 2008.

[34] G. Gnecco, M. Sanguineti, “On a variational norm tailored to variable-

basis approximation schemes”, IEEE Transactions on Information

Theory, vol.57, pp.549-558, 2011.

[35] K. Hornik, M. Stinchcombe, H. White, P. Auer, “Degree of

approximation results for feedforward networks approximating

unknown mappings and their derivatives”, Neural Computation, vol.6,

pp.1262-1275, 1994.

[36] G. Gnecco, V. Kurkova, M. Sanguineti, “Some comparisons of

complexity in dictionary-based and linear computational models”,

Neural Networks, vol.24, pp.171-182, 2011.

[37] P.C. Kainen, V. Kurkova, M. Sanguineti, “Dependence of

Computational Models on Input Dimension: Tractability of

Approximation and Optimization Tasks”, IEEE Transactions on

Information Theory, vol.58, pp.1203-1214, 2012.

[38] G. Gnecco, V. Kurkova, M. Sanguineti, “Can dictionary-based

computational models outperform the best linear ones?”, Neural

Networks, vol.24, pp.881-887, 2011.

[39] W. Yao, X. Chen, Y. Zhao, M. van Tooren, “”Concurrent subspace

width optimization method for RBF neural network modelling”, IEEE

Transactions on Neural Networks, vol.23, pp.247-259, 2012.

[40] R. Reed, “Pruning algorithms – a survey”, IEEE Transactions on Neural

Networks, vol.4, pp.740-747, 1993.

[41] V. Vapnik, The nature of Statistical Learning Theory, Springer, 2010.

[42] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector

machines, Regularization, Optimization and Beyond, MIT Press, 2001.

[43] T. Gerstner, M. Griebel, “Dimension – adaptive tensor – product

quadrature”, Computing, vol.71, pp.65-87, 2003.

[44] F. Camastra, “Data dimensionality estimation methods: a survey”,

Pattern Recognition, vol.36, pp.2945-2954, 2003.

Peter Andras (M’95–SM’10) has a BSc in computer science (1995), an MSc

in artificial intelligence (1996) and a PhD in mathematical analysis of neural

networks (2000), all from the Babes-Bolyai University, Cluj, Romania.

 He is a Reader (Associate Professor) in the School of Computing Science,

Newcastle University, UK. He has published 2 books and over 100 papers. He

works in the areas of complex systems, computational intelligence and

computational neuroscience.

 Dr. Andras is member of the International Neural Network Society, of the

Society for Artificial Intelligence and Simulation of Behaviour, and fellow of

the Society of Biology.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available athttp://dx.doi.org/10.1109/TNNLS.2013.2276044

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

