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Abstract—Function approximation is one of the core tasks that 

are solved using neural networks in the context of many 

engineering problems. However, good approximation results need 

good sampling of the data space, which usually requires 

exponentially increasing volume of data as the dimensionality of 

the data increases. At the same time, often the high dimensional 

data is arranged around a much lower dimensional manifold. 

Here we propose the breaking of the function approximation task 

for high dimensional data into two steps: first the mapping of the 

high dimensional data onto a lower dimensional space 

corresponding to the manifold on which the data resides; second 

the approximation of the function using the mapped lower 

dimensional data. We use over-complete self-organizing maps for 

the mapping through unsupervised learning, and single hidden 

layer neural networks for the function approximation through 

supervised learning. We also extend the two step procedure by 

considering support vector machines and Bayesian self-

organizing maps for the determination of the best parameters for 

the nonlinear neurons in the hidden layer of the neural networks 

used for the function approximation. We compare the 

approximation performance of the proposed neural networks 

using a set of functions and show that indeed the neural networks 

using combined unsupervised and supervised learning outperform 

in most cases the neural networks that learn the function 

approximation using the original high dimensional data. 

 
Index Terms—Function approximation, Learning, Neural 

network, Self-organizing map  

 

I. INTRODUCTION 

UNCTION approximation is a core task in many 

engineering, economic, and computational problems [1-4]. 

In general, many kinds of learning tasks (e.g. classification, 

pattern recognition, prediction) can be formulated as a 

function approximation task [1, 5]. There are many approaches 

to function approximation including relatively simple methods, 

e.g. least squares linear approximation, and many more 

complex methods, e.g. approximation with splines or neural 

networks [1, 6-8]. 

Function approximation with neural networks has strong 

theoretical foundations. It is well established that neural 
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networks with a single hidden layer can be seen as linear 

combinations of nonlinear basis functions, and for a wide 

range of basis function classes (e.g. sigmoidal functions, 

Gaussian functions) it has been shown that linear combinations 

of such functions can approximate continuous functions 

arbitrarily correctly [1, 8-10]. The same result can be extended 

easily to functions that can be approximated by continuous 

functions (e.g. step functions, classification functions). 

Considering the practical side, the theoretical results do not 

guarantee the finding of small size neural networks with 

arbitrary correctness. In some cases the number of neurons in 

the hidden layer has to be large to achieve good approximation 

of a given function [11-13]. However, often, a relatively small 

size neural network can work sufficiently well especially in the 

case of functions defined on a low dimensional input space 

(e.g. functions defined over the one or two dimensional real 

space or some subset of these) [1]. 

The practical problems with neural network approximation 

in many cases are caused by the sparseness of the data that is 

used to learn the approximation of the target function [14-17]. 

Especially if the input data is high dimensional (e.g. 5 or 10 or 

even more), a good sample of the data space has to be very 

large (e.g. millions, billions or more data points). If this is not 

the case, the generalization ability of the trained neural 

network (i.e. the ability to approximate sufficiently correctly 

the target function for input data that has not been seen) will 

remain poor. In addition to issues caused by the high 

dimensionality and sparseness of the data sample another 

common practical problem is due to the uneven distribution of 

the data sample in the data space [14]. If the available data 

samples densely a part of the data space but it is very sparse 

elsewhere, the function learned by the neural network will 

approximate well the target function only over the subset of 

the data space that is densely sampled, and its generalization 

ability over the part of the data space that is sparsely sampled 

will stay poor. 

Often, high dimensional data is arranged around a lower 

dimensional manifold that is embedded in the high 

dimensional space [1, 14]. In principle, if the lower 

dimensional manifold is known the approximation of a 

function defined on a high dimensional space can be reduced 

to the approximation of a function on a much lower 

dimensional space and combination of this with the function 

that transforms this lower dimensional space into the manifold 

embedded into the higher dimensional space [18]. However, in 
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general the analytical form of the manifold on which the data 

resides is not known. 

Here we propose to use a combination of unsupervised and 

supervised learning to improve function approximation 

performance in the case of functions defined on data that can 

be expected to reside on a low dimensional manifold 

embedded into a high dimensional space. To deal with the lack 

of information about the analytical form of the manifold, we 

use an over-complete self-organizing map (SOM) [19-24] to 

learn the topographic structure of the unknown manifold. Then 

we learn the approximation of a function defined over the node 

space of the SOM. The combined unsupervised and supervised 

learning allows to improve significantly the approximation of 

functions defined over high dimensional spaces. We 

demonstrate this through a selection of example applications. 

We note that similar approaches of combined application of 

supervised and unsupervised learning have been already 

proposed to address various data analysis problems, e.g. 

dimension reduction using combined support vector machines 

and independent component analysis [25], setting the basis 

function parameters for RBF neural networks [26], data 

mining applications [27], however to the best of our 

knowledge none of these addresses the issue that we 

formulated above. 

II. BACKGROUND 

A. Unsupervised Learning with Self-Organizing Maps 

There are many variants of learning the organization of the 

data in the data space. Manifold learning algorithms aim to 

learn the structure or the characteristics of the manifold around 

which the data resides [14, 28]. Often these characteristics 

describe the manifold in a local sense and the learning leads to 

the generation of a patchwork of local models of the manifold 

[29, 30]. Such learning algorithms are usually classified as 

unsupervised learning [1, 14] as there is no a priori 

information about what is the right local model or right set of 

characteristics of the manifold that is aimed to be learned. 

SOMs are one of the alternatives to learn the distribution of 

the data in the data space [19-21]. The key idea of the SOM is 

that the data is projected from one space into another such that 

an appropriate topographic organization of the data is 

maintained. It is assumed that the projection space corresponds 

to the manifold around which the data is assumed to reside. 

The maintenance of the topographic organization of the data 

means that topological neighborhoods in the projected space 

defined by the distance metric of this space correspond to 

topological neighborhoods in the data space. Since the data is 

assumed to reside around a manifold that has a lower 

dimension than its embedding space, parts of the manifold may 

be close in the data space, but distant in the space of the 

manifold. Thus closeness in the data space does not 

necessarily imply closeness in the transform space. In 

accordance, a topological neighborhood in the data space is 

not necessarily projected into a topological neighborhood in 

the projected space.  

The classic SOM [21] is defined by a set of nodes arranged 

in a grid according to their position vectors set in the 

projection space, each node having an associated prototype 

vector from the data space. When a data point is presented, the 

SOM nodes compete for the data and the winning node is the 

one which has its prototype vector closest to the data point. 

Then the data point is projected onto the position vector of the 

winning node. In the learning phase, the prototype vector of 

the winning node, and of the nodes within a local 

neighborhood of it in the projection space, get moved closer to 

the data point for which the winning node was chosen. 

Assuming that there are N nodes in the SOM, each node 

being defined as 

 

NjPzDznode jjjjj ,...,1,,),(: =ÎÎqq  (1) 

 

where jq  is the prototype vector and jz  is the position vector 

of node j , the learning rules are 
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where x  is the data point, g  is the learning rate, and r  is the 

radius of the projection space neighborhood of the winning 

node. This radius is gradually decreased towards zero as the 

training progresses.  

The learning by the SOM can be interpreted as learning of 

the distribution of the data in the data space. The data 

distribution is learned as a linear combination of normal 

distributions centered at the prototype vectors of the nodes of 

the SOM [19-21] 
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where )Pr( jq  is the probability that the distribution centered 

around jq  is the correct distribution of the data and 

)|( jxpr q is the basis distribution centered at jq . Assuming 

normal basis distributions they take the form of 
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where jC  is the covariance matrix of the distribution 

associated with node j . 

The learning rules for the distribution learning, i.e. learning 

)Pr(, jjC q and g  can be derived by minimizing the Kullback-
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Leibler distance between the approximating distribution 

(equation (4)) and the actual distribution estimated as a sum of 

Dirac δ distributions centered at the data points [19-21].  

In certain cases SOMs are build such that they provide an 

over-complete representation of the projected data by having 

more nodes than projected data points [22-24]. In such cases 

the SOM nodes that do not attract data points from the training 

data act as interpolator approximations of points expected to 

be in the data space that were not included into the training 

data [24]. Such SOMs are often used for visualization of the 

data [22-24]. 

B. Supervised Learning of Function Approximation with 

Single Hidden Layer Neural Networks 

It has been shown that neural networks with a single hidden 

layer containing nonlinear neurons can, at least in principle, 

approximate a very wide range of functional relationships 

arbitrarily correctly [1, 9, 10]. In general the formal proofs of 

this property of neural networks are based on showing that the 

set of linear combinations of functions of some generic form 

(basis functions) is dense within the set of continuous 

functions, i.e., for any continuous function f  there is an 

infinite series of  functions ng  within the chosen set of 

functions such that 0),(lim =
¥®

n
n

gfd  for an appropriate 

metric d  on the space of continuous functions [9, 10] . The 

result also extends to non-continuous functions (e.g. step 

function) that can be approximated by continuous functions.  

This implies that a neural network with neurons in the 

hidden layer implementing such basis functions and a linear 

summation output neuron, in principle can approximate any 

continuous and many discontinuous functions defined on the 

input space of the hidden neurons. The approximation theory 

results typically imply a relatively high minimal number of 

neurons for the worst case scenario approximation [31-35]. 

Some of these results show that the number of required 

neurons in many cases grows exponentially or polinomially 

with the dimensionality of the data [18, 32, 35-37]. However if 

the parameters of the basis functions represented by the 

neurons are allowed to vary, for certain classes of 

approximated functions and appropriate basis functions, the 

required number of neurons may not be required to grow so 

quickly or at all with the dimensionality of the data [36-38]. 

Usually the number and internal parameters of the basis 

functions of the neurons are fixed and the aim is to learn the 

linear summation weights of the output neuron. This is done by 

optimizing these weights through supervised learning and 

considering the squared error as the objective that is 

optimized. In principle it is also possible to learn the internal 

parameters of the basis functions by optimizing the objective 

with respect to these parameters as well, however, this may 

complicate very much the learning process in computational 

terms (see for example [39]). 

Often heuristics are used to set the number and internal 

parameters of hidden neurons on the basis of the size of the 

data set, the dimensionality of the input data, prior knowledge 

about the nature of the data, and performance sensitivity to 

removal of neurons [2-4, 33, 40]. In practice usually a small 

number of hidden nonlinear neurons give a good 

approximation of most target functions following parameter 

learning [1]. More principled approaches suggest to use some 

form of model selection method based on some model 

complexity criterion [14].  

A principled and generic solution to the problem of the 

setting the number of hidden neurons and their internal 

parameters is provided by the support vector machine 

approach [41]. This approach aims to find the minimal number 

of support vectors, i.e. data points, which are necessary to 

approximate the target function with a given level of precision 

[14, 41, 42]. To include nonlinear basis functions, the support 

vector machines assume a transformation of the original data 

into another space (usually a function space) where the 

corresponding function that has to be approximated is a linear 

function. Normally this other space is infinite dimensional, 

however the dealing with infinite dimensional data is avoided 

through the use of the ‘kernel trick’, which allows the internal 

product of vectors in the transformed space to be calculated 

using a nonlinear kernel function that is defined over the 

original data space. In effect the calculated approximation of 

the target function is a linear combination of nonlinear kernel 

functions having one of their argument fixed at one of the 

support vector data points.  

In general, key problems of nonlinear function 

approximation with neural networks remain that the reliable 

approximation of functions defined on high dimensional inputs 

often requires very large data volumes that grow exponentially 

with the dimensionality of the data [18, 36, 37, 43], and 

finding simple models of the data with good generalization 

ability, in the form of neurons networks is very difficult. Often 

the volume of the available data is very small if the 

dimensionality of the data is taken into account, i.e. the 

coverage of the data space is too sparse. On the other side, if 

the available data amount is sufficiently large, it may be quite 

difficult to find a neural network with small number of hidden 

neurons that has good generalized approximation ability. 

III. COMBINED UNSUPERVISED AND SUPERVISED LEARNING 

OF FUNCTION APPROXIMATION 

Let us assume that the task is to learn the approximation of a 

function defined on multi-dimensional data using a neural 

network with a fixed set of basis functions, and that the data 

resides around a lower dimensional manifold embedded into 

the original data space. The reason for the data not being 

exactly on this manifold is the possibility of measurement 

error. Given that the data resides around a low dimensional 

manifold it is possible that a data sample that is sufficiently 

dense on the supporting manifold is quite sparse in the context 

of the embedding original data space. Thus the direct 

approximation of the function defined on the original data 

space may suffer from the apparent sparseness of the data. 
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Figure 1. The proposed combination of unsupervised and 

supervised learning for function approximation. On the left 

the segmented line boxes show the original learning task, 

the key assumption and the transformed learning task. On 

the right the solid thick line boxes show the proposed 

actual learning tasks. 

To avoid the problem of apparent data sparseness, first we 

may map the data onto a space corresponding to the supporting 

manifold of the data and then learn the approximation of a 

function defined on this mapping space. The original function 

that has to be approximated can be then recovered by 

composing the mapping of the data onto the lower dimensional 

mapping space and the learned approximation of the function 

defined on this mapping space.  

It has been shown [18] for a wide range of functions defined 

on m -dimensional that if the function value depends only on 

mm <' dimensions of the data then the approximation error of 

a neural network with fixed basis functions that approximates 

such functions is proportional to '/ mm . Thus if the 

approximation is performed following the mapping of the data 

onto the 'm -dimensional space, the expected error is reduced. 

At the same time the constants involved in the estimates of the 

approximation error for neural networks often depend 

exponentially or polinomially on the dimensionality of the data 

[18, 32, 35-37]. Thus by using lower dimensional data 

following the mapping of the original data into the lower 

dimensional space, it can be expected that the error of the 

approximation is reduced. 

In formal terms, the original task is to learn the 

approximation of the function defined by 
 

DxyxfDf ttt Î=® ,)(,:  (6) 

 

where D  is the original high dimensional data space 

(
m

D Í ), tx  are the sample data points and ty  are the 

function values for these data points. We assume that 

DMxt ÌÎ  and that there exists a bijective mapping 

  

mmMMM m <Í® ',',': 'm . (7) 

 

Then, if we know the mapping ': MM ®m  we can learn the 

function f  by learning the function g  defined as 

 

')(,)(,': MxzyzgMg tttt Î==® m  (8) 

 

and composing the learned function with the mapping m , i.e. 

 

Mxxgxf Î= )),(()( m  (9) 

 

and )(xf for Mx Ï  being defined by using a continuous 

extension of the definition of )(xf  over M such that this 

converges relatively quickly to zero in all directions. In fact, 

strictly speaking, for points Mx Ï  the function is not defined, 

but in order to handle the noise in the measurement of input 

data it makes practical sense to use a continuous extension of 

the function defined by equation (9). The speed of 

convergence to zero of the continuous extension part of the 

function is defined by the expected range of measurement 

errors of the data points, e.g. if the errors follow a distribution 

with zero mean and standard deviation equal to s, then the 

continuous extension part of the function should converge 

quickly to zero for points beyond the +/-2s size neighborhood 

of M  in all directions. 

In accordance with [18], in the case of approximation with a 

fixed set of basis functions, and for certain classes of 

approximated functions, the neural network approximation 

error for ))(( xg m is bounded from below by 
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where n is the number of neurons used in the neural network, 

and C  is a constant related to the class of functions to be 

approximated. The lower bound for the approximation error 

for neural networks with a fixed set of basis functions 

approximating )(xf directly in the data space is 
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where n is the number of neurons, and C  is a constant as 

above. As we noted the constant C  often depends 

exponentially on the dimensionality of the data [32, 36, 37]. 

Assuming that 
m

bC = , we have that ×× )/1( m
m

b  

m
n

/1
)2/1( is increasing if 

))2ln(4/(1 n
eb > , implying that we 

have that mm cc <'  if b  satisfies the latter condition, which is 
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very likely, given that 1.1
))2ln(4/(1 <n

e  already for moderate 

n . This means that the neural network approximation error for 

))(( xg m  is likely to be lower than the neural network 

approximation error for )(xf , considering in both cases small 

size neural networks with fixed sets of basis functions.  

In general it is very hard to find the bijective mapping 

': MM ®m  since we do not know the analytical form of M . 

However, the effective dimensionality of M , and thus the 

dimensionality of 'M , i.e. 'm , can be determined by 

analyzing the data points tx  (e.g. by using principal 

component analysis, multi-dimensional scaling,  correlation 

dimension determination, or box-counting Hausdorff 

dimension determination [44]) . Having this information in 

principle we can search for an approximation of a bijective 

mapping of M onto 
'm
. Note that the mapping 

'
:'

m
M ®m , which approximates ': MM ®m  is not 

necessarily a bijective (and not even an injective) mapping. A 

such approximate mapping of M onto 
'm
 can be constructed 

using an over-complete SOM for which the position vectors 

are in 
'm
 and the prototype vectors are in M . Being an 

over-complete SOM means that the number of the nodes of the 

SOM is much larger than the number of data points that are 

considered [22-24].  

Using an over-complete SOM implies that in principle it is 

possible that each data point maps onto a SOM node, such that 

no other data point maps onto the same SOM node. Thus, at 

least in principle, using an over-complete SOM makes possible 

to have an injective approximate mapping 
'

:'
m

M ®m . 

However in practice it may be possible that more than one data 

points map onto a single SOM node in the case of some (most 

likely few) SOM nodes. 

Let us assume that the projection SOM is such that each 

input data maps onto a unique SOM node. Given that there are 

many more SOM nodes than input vectors, we can assume that 

between any two SOM nodes that attract an input vector there 

are other SOM nods that do not attract input vectors. Thus we 

can assume that for a given input x  there is neighborhood 

radius xr  such that there is only one other input 'x  such that 

the node 'i  that attracts 'x  is within the xr   radius 

neighborhood of the node i  that attracts x . We further 

assume that the neighborhood radius is decreasing in each step 

by a factor b  (i.e. currentnext rbr ×= ). We can also assume 

without loss of generality that the node 'i  is not in the 

neighborhood radius for any other nodes attracting an input 

vector. According to our assumptions the further training of 

the projection SOM from the perspective of the nodes 

attracting x  and 'x  is equivalent with the alternate training 

with only these two inputs.  After k2  turns of training the 

prototype vectors of the two nodes are 
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where 
0

iq  and 
0

'iq  are the prototype vectors of the two nodes 

at the time point when our assumptions become valid. Thus the 

two prototype vectors become increasingly similar with the 

training and at one moment it is possible that another node 

becomes the attractor of one of the input vectors, let say 'x . 

Let us assume that the node ''i  is outside of the 

neighborhood radius for the node i  after 02k  turns of 

training, but stays within the neighborhood radius of 'i . The 

prototype vector for this node after k2  turns of training will 

be  
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This node takes over the attraction of the data vector 'x  

from the node 'i , if 
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Given that 11 <- g  we can ignore the 
02

)1( qg ×- k
 

components for large k , and following algebraic 

manipulations we find that the above inequality is equivalent 

to 
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Solving this inequality for 0k and k  gives  

 

|)'ln(|)(0 xxrk -×= g . (19) 

 

This implies that the distance between the position vectors 

of nodes i  and ''i  is proportional to |'| xx - , i.e. 

 

xx

k
xx rarbr ×-×=×= |'|0

0
. (20) 
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This shows that the distances in the projection space 

between the nodes to which data vectors project are 

proportional to the distances of these data vectors in the data 

space. Note that xr  depends in a similar manner on distances 

between data points projected in the neighborhood of node i . 

This means that the proportional distance preservation in the 

projection space may change in terms of proportionality 

multipliers between separately mapped topological 

neighborhoods, but it will be valid within these 

neighborhoods. Thus the over-complete projection SOM in the 

optimal case realizes a mapping that locally preserves 

proportional distances of the data vectors. The projection 

SOM increasingly preserves the proportional distances 

between the data points as the number of nodes is increased in 

the projection SOM. 

The use of the SOM guarantees that the topographic 

structure of M  is preserved through the mapping 
'

:'
m

M ®m , and in fact the mapping will map M  onto a 

finite 
'

''
m

M Í  that is an 'm -dimensional brick. In general 

we can assume that ''' MM Í . Since the topological 

organization of M  does not necessarily match that of a brick, 

it is likely that the mapping will use only some of the nodes of 

the over-complete SOM, and some (possibly many) nodes of 

the SOM will not attract any data points. At the same time, due 

to the fact that all prototype vectors of the SOM nodes 

converge towards the input vectors used to train the SOM, the 

prototype vectors of unused SOM nodes will represent points 

of the data manifold that were not included into the data 

sample. Thus the mapping onto the over-complete SOM can 

be expected to generalize in a faithful manner to points in the 

data space that were not used for the training of the SOM – i.e. 

the topology of the data manifold through the mapping 

'':' MM ®m  will be maintained for previously unseen points 

from the data space (see equation (1)). Effectively the SOM 

mapping of the data will approximate 'M with a finite 'm -

dimensional brick lattice.  

Having the mapping '':' MM ®m  the function 

approximation learning task is reduced to the learning of 

®': Mg  expanded to ''M , i.e. ®'':' Mg . Given our 

assumptions about the arrangement of the data the sampling of 

''M  is much denser than the sampling of D  and thus the 

approximation of ®'':' Mg  is likely to be more precise 

than the direct approximation of ®Df : . 

To approximate  ®'':' Mg  we use a single hidden layer 

neural network with a sufficiently high number of nonlinear 

hidden layer neurons with fixed internal parameters. For 

example, we may use an RBF neural network with fixed 

Gaussian basis functions as activation functions of the neurons 

in the hidden layer.  

By increasing the number of SOM nodes we get a finer 

brick lattice representation of ''M  by the SOM. More SOM 

nodes increase the number of SOM nodes which have a single 

data vector associated with them. This implies the increasing 

preservation of proportional distances of data points within the 

mapped topological neighborhoods. We assume that more 

proportional distance preservation within mapped 

neighborhoods means more faithful projection of the data 

manifold into the projection space. Improving the faithfulness 

of the projection of the data manifold onto the projection space 

means that a neural network approximation of  ®'':' Mg  

will get closer to the theoretically possible best approximation 

of the target function in the 'm -dimensional space.  

The approximation of ®'':' Mg  is learned using the 

training data tt yx ),('m . As the injectivity of '':' MM ®m  is 

not fully guaranteed, it is possible that  utxx ut ¹= ),(')(' mm , 

i.e. two (and possibly more) different data points project to the 

same SOM node. Thus there will be at least two potentially 

different y  values (i.e. ut yy , ) associated with this SOM node 

and its position vector ut zz = . In effect the neural network 

will most likely learn the mean value of the y  values 

associated with such SOM nodes and their position vector. 

Different x  and y  values may be the result of noisy 

measurement of the actual data. In such cases the noisy 

measurements of the data vectors may map onto the same 

SOM node with position vector z , thus effectively filtering the 

impact of the noise on the measurement of data vectors.  

In summary, it is proposed to learn the approximation of 

functions defined on high dimensional data spaces by first 

projecting the data using an over-complete SOM onto a lower 

dimensional projection space and then learning the 

approximation of a function defined on this lower dimensional 

space. The advantage of this approach is that sparse high 

dimensional data is projected into a low dimensional space 

where the data set is much less sparse due to the lower 

dimensionality of the space. The approximation of the function 

is likely to be more precise through the proposed combined 

neural network approach than the direct neural network 

approximation of the function defined over the original data 

space (in both cases the neural networks use a fixed set of 

basis functions). The underlying key assumption of the 

proposed approach is that the data lies around a low 

dimensional manifold that is embedded into the high 

dimensional data space. If this key assumption is not satisfied, 

it is likely that the proposed combined neural network 

approach to function approximation will not lead to improved 

results compared to the direct neural network approximation of 

the function over the original data space. 

IV. SUPPORT VECTOR MACHINE EXTENSION 

The combined unsupervised and supervised learning of 

function approximation proposed in the previous section 

means that the direct approximation of the function in the high 

dimensional original data space is replaced by a mapping of 

the data onto a low dimensional space and the learning of the 
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approximation in this low dimensional space. The use of the 

over-complete SOM implies that the difference in the 

complexity and difficulty of the approximation of the target 

function between the high and the low dimensional 

approximation is traded for the maintenance of the over-

complete SOM that implements the mapping from the high to 

the low dimensional space.  

Since we use an over-complete SOM in general a SOM 

node is expected to attract a single data point, so we do not 

expect a compression of the data by this mapping. Thus, the 

number of separate data points is retained following the 

mapping onto the lower dimensional space, leaving the 

complexity of the selection of the size of the approximating 

neural network unchanged. 

The use of the support vector machine approach provides a 

principled way to choose the number of hidden nodes and the 

values of the basis function parameters for the approximating 

neural network. The support vector machine has the form of 
 

å
=

×-=
N

t

ttt xxKxG
1

* ))(),(()()( mmaa  (21) 

 

where the calculation of )(xm  is performed using the SOM 

mapping of an arbitrary data point x  onto the over-complete 

SOM and 0
* =- tt aa  if )( txm  is not a support vector.  

We note however, that the support vector machine approach 

may overestimate the minimum number of hidden neurons 

needed for sufficiently good approximation of the target 

function. To overcome this problem we may use additional 

sensitivity analysis to prune the neural network further. 

V. BAYESIAN SOM APPROACH 

An alternative approach to set the internal parameters for 

the basis functions while keeping the number of neurons low is 

to use a Bayesian re-mapping of the SOM. This finds an 

approximation of the distribution of the low dimensional 

mapped data as a linear combination of a small set of normal 

distributions. The SOM nodes that are the centers of these 

normal distributions are then used to define the internal 

parameters of hidden neurons of the neural network. The 

Bayesian SOM is set up with a number of nodes that is much 

smaller than the number of nodes of the projection SOM. If 

'':' MM ®m  is the projection SOM mapping, and the nodes 

of the projection SOM are defined as  
 

MxMzKkxz kkkk ÎÎ= ,'',,...,1),,(  (22) 

 

then the Bayesian SOM is defined as  
 

KLMzMqLlzq llll <<ÎÎ= ,'','',,...,1),,(  (23) 

 

such that the position vectors of the nodes of the projection 

SOM ( kz ) are mapped onto the Bayesian SOM nodes. The 

Bayesian SOM nodes also have the attached parameters lC  

and )Pr( lq  that are the covariance matrix and prior 

probability associated with the node ),( ll zq . 

The parameters of the Bayesian SOM ( lll zqC ),Pr(, ) are 

calculated using the equations (2), (3) and the Bayesian SOM 

learning rules [19-21]. The resulting Bayesian SOM will 

provide an approximation of the probability density function 

of the distribution of the position vectors of the projection 

SOM onto which the original data points are projected. The 

learned position vectors lz  will be used then as the fixed 

parameters for the hidden neurons of the neural network built 

for function approximation.  

Consequently, the function represented by the neural 

network will be  
 

å
=

×=
L

l

lll zxgwxG
1

));('()( m  (24) 

 

having randomly chosen initial weights. These weights are 

then modified through neural network learning. 

The advantage of the Bayesian SOM approach is that it 

provides a small set of fixed internal parameters for the hidden 

neurons of the approximating neural network, calculated in a 

principled optimal manner, i.e. they define a good 

approximation of the probability density function of the 

distribution of the projections of the data points. 

The number of nodes in the Bayesian SOM ( L ) is not 

determined in any principled manner, i.e. any number L  that 

seems reasonable may be picked. To deal with the arbitrariness 

of the picking of L , we may consider a series of L  values and 

pick the one that is optimal in the sense that L  is sufficiently 

small and at the same time the approximation error of the 

function )(xG  is sufficiently small as well. The Bayesian 

SOM approach combined with the search for the optimal L  

value deals with the problem of finding the minimal 

complexity for a sufficiently good approximation of the target 

function by starting from the low end, i.e. by considering first 

approximations with potentially too low structural complexity.  

VI. APPLICATION EXAMPLES AND STATISTICAL 

PERFORMANCE COMPARISON 

We evaluate the proposed combined unsupervised and 

supervised learning methods for learning the approximation of 

functions by considering a set of target functions and a 

selection of neural networks. The original data in all cases is in 

a 6 dimensional space and it is always situated on a 2 

dimensional manifold. The relationship between the 6 

dimensional data points ),...,( 61 xxx =  and their 

corresponding 2 dimensional position ),( 21 yyy =  defines a 

double Swiss roll in 6 dimensions, and is given by the 

following equations for )0,0(¹y : 
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226
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l

yyl
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e

x

x
  

 

for )0,0(=y  the corresponding 6 dimensional position is 

)0,...,0(=x .  

For the learning phase we consider 1000 randomly selected 

training data points and for testing phase we use 200 randomly 

selected test data points. The 2 dimensional points, 

),( 21 yyy = , were selected from the ]10,10[]10,10[ -´-  

square. The error measure in all cases is the mean squared 

error (see equation (13)). 

The unsupervised neural network in all cases is an over-

complete projection SOM with 10,000 nodes that projects the 

original data points into a 2 dimensional space. For learning 

the projection SOM we use 1000 epochs of training with all 

training data. For learning the SOM mapping we use equations 

(2) and (3) with 1.0=g , | || |max1.0
,

1

ji

ji
xx -×=r , and 

rr rr ×=+ 99.01 . 

The neural networks with fixed basis functions that we 

consider are as follows: 

1) radial basis function (RBF) neural network with 20 

hidden neurons with randomly set fixed internal 

parameters, trained on the original data – we name 

this neural network: RBF; 

2) radial basis function (RBF) neural network with 20 

hidden neurons with randomly set fixed internal 

parameters, trained on the data mapped using the 

projection SOM – we name this neural network: 

SOM-RBF; 

3) radial basis function (RBF) neural network with 

basis function parameters set using the support 

vector machine approach and pruned to have the 20 

most important neurons resulting from the support 

vector machine solution, considering the data 

mapped using the projection SOM – we name this 

neural network: SVM-RBF;  

4) radial basis function (RBF) neural network with 

basis function parameters set using the Bayesian 

SOM approach with 20 nodes in the Bayesian SOM, 

considering the data mapped using the projection 

SOM, the Bayesian SOM is trained with the same 

SOM parameters ( rg , ) that we use for the training 

of the projection SOM and the initial prior 

probabilities ( )( lqP ) are set to be equal – we name 

this neural network: BSOM-RBF. 

The training of all neural networks involves the change of 

the weights on the outputs of the nonlinear neurons, but no 

internal parameters of the neurons are modified through 

learning, i.e. we use fixed basis functions in all cases. Note 

that for the SVM-RBF and BSOM-RBF neural networks the 

location of the centre and the width of the Gaussian are 

necessarily fixed due to method of setting up of these 

networks. 

We consider 10 functions for the purpose of testing the 

approximation performance of these neural networks. These 

functions are as follows: 

1) Squared modulus: ),( 21 yyy =  

 
2

2

2

1)( yy +=zf  (26) 

 

2) Polynomial: ),( 21 yyy =  

 

( )2

212

3

1

4

1 234
500

1
)( yyyyy ++×=zf  (27) 

 

3) Exponential square sum: ),( 21 yyy =  

 

50/50/ 2
2

2
1)(

yy
eezf +=  (28) 

 

4) Exponential-sinusoid sum: ),( 21 yyy =  

 

)cos()sin()( 1

50/

2

50/ 2
2

2
1 yy yy ×+×= eezf  (29) 

 

5) Polynomial-sinusoid sum: ),( 21 yyy =  

 

( ))2cos()sin(
100

1
)( 2

3

21

2

1 yyyy ×+××=zf  (30) 

 

6) Inverse exponential square sum: ),( 21 yyy =  

 

25/25/ 2
2

2
1

10
)(

yy
ee

zf
+

=  (31) 

 

7) Sigmoidal: ),( 21 yyy =  

 

5/)( 211

10
)( yy +-+

=
e

zf  (32) 

 

8) Gaussian: ),( 21 yyy =  

 

100/)( 2
2

2
110)(

yy +-×= ezf  (33) 

 

9) Linear: ),( 21 yyy =  

 

21 2)( yy +=zf  (34) 

 

10) Constant: ),( 21 yyy =  
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1)( =yf . (35) 

 

The functions are set such that their values are in similar 

ranges over the domain from which the inputs are selected ( 

]10,10[]10,10[ -´-Îy ). Each function approximation 

learning task was executed 20 times following random 

initialization of the parameters.  

To evaluate the performance of the considered function 

approximation approaches, first we calculated the 

approximation performance of a uniformly zero approximation 

(i.e. the approximation of the function value is zero 

everywhere) as a benchmark. The uniformly zero 

approximation corresponds to the default neural network with 

all weights being set to zero. Then we calculated the empirical 

mean and standard deviation of the difference between the 

approximation error of the uniform zero approximation and the 

neural network approximation for each kind of neural 

networks. Thus the test set specific performance metric is 

defined as follows: 

 

)200,,1;(

)200,,1;()200,,1;( 0

K

KK

=

-===

txE

txEtx

tNN

ttNNh
 (36) 

 

where 
 

å
=

-×==
200

1

2))((
200

1
)200,,1;(

t

tNNttNN xGytxE K  (37) 

 

å
=

-×==
200

1

2

0 )0(
200

1
)200,,1;(

t

tt ytxE K . (38) 

 

The empirical mean and empirical standard deviation of the 

test set specific performance metric are  
 

å
=

==×=
20

1

)20,1,200,,1;(
20

1

k

k

tNNNN ktx KKhh  (39) 

 

å
=

-=×=
20

1

2))200,,1;((
20

1

k
NN NN

tk
t

x
NN

hhhs
K . (40) 

 

We used the z-test to test whether the mean differences were 

significantly different from zero, thus the overall direct 

performance metric is defined as:  
 

sh
h

h
NN

NNz

NN ×= 20 . (41) 

 

We calculated as final performance metric the z-test p-value 

corresponding to 
z

NNh  for each neural network type that we 

considered.  

A positive mean difference that is statistically significant at 

the level of a p-value p<0.05 indicates that the respective 

neural network approximation is better than the uniform zero 

approximation for the target function. The empirical mean 

values, empirical standard deviations and the results of the z-

test significance level calculations are presented in Table I. 

The approximation performance of a neural network is better if 

the reported empirical mean value for the network is more 

positive and more statistically significant. 

The results show that the RBF neural networks approximate 

the target functions better than the uniform zero approximation 

with the exception of polynomial, exponential sinusoid sum, 

polynomial sinusoid sum and inverse exponential square sum 

functions. The SOM-RBF neural networks are better than the 

uniform zero approximation for all considered functions with 

exception of the polynomial, exponential sinusoid sum, and 

polynomial sinusoid sum functions. The SVM-RBF and 

BSOM-RBF neural networks are better than the uniform zero 

approximation for all considered functions with the exception 

of the exponential sinusoid sum function. In the case of the 

exponential sinusoid sum function none of the neural network 

approximations works statistically significantly differently 

from the uniform zero approximation. This confirms that in 

TABLE I 

THE DIFFERENCE BETWEEN THE APPROXIMATION PERFORMANCE OF NEURAL 

NETWORKS AND THAT OF THE UNIFORM ZERO APPROXIMATION 

MEAN VALUE (STANDARD DEVIATION) [Z-TEST P-VALUE], * INDICATES 

SIGNIFICANCE, I.E. BELOW 0.05 P-VALUE 

Function RBF  SOM-RBF SVM-RBF 
BSOM-

RBF 

Squared 

modulus 

1519.84 

(1404.62) 

[6.52E-7*] 

 

3000.73 

(547.31) 

[0*] 

3872.61 

(573.84) 

[0*] 

3353.81 

(964.04) 

[0*] 

Polynomial – 183.55 

(260.47) 

[0.00081*] 

 

– 49.553 

(106.468) 

[0.01869*] 

105.33 

(73.82) 

[8.81E-11*] 

177.69 

(63.57) 

[0*] 

Exponential 

square sum 

14.734 

(3.175) 

[0*] 

 

18.821 

(1.519) 

[0*] 

20.517 

(1.408) 

[0*] 

19.215 

(2.856) 

[0*] 

Exponential-

sinusoid sum 

– 0.1443 

(1.0173) 

[0.26281] 

 

– 0.0764 

(0.4752) 

[0.23600] 

– 0.04511 

(0.3336) 

[0.27269] 

0.0166 

(0.1626) 

[0.32364] 

Polynomial-

sinusoid sum 

– 0.3219 

(1.6303) 

[0.18856] 

 

0.2777 

(0.9503) 

[0.09558] 

0.3294 

(0.6562) 

[0.01237*] 

0.1925 

(0.3519) 

[0.00721*] 

Inverse 

exponential 

square sum 

 

– 0.7642 

(1.1273) 

[0.00121*] 

0.3318 

(0.8327) 

[0.03739*] 

1.3571 

(0.7420) 

[1.11E-16*] 

2.0276 

(0.5878) 

[0*] 

Sigmoidal 25.026 

(5.562) 

[0*] 

 

29.543 

(2.231) 

[0*] 

29.082 

(2.346) 

[0*] 

18.621 

(6.755) 

[0*] 

Gaussian 23.384 

(2.998) 

[0*] 

 

26.016 

(3.023) 

[0*] 

28.594 

(2.499) 

[0*] 

24.649 

(5.712) 

[0*] 

Linear 

 

 

65.483 

(38.979) 

[2.8E-14*] 

 

88.973 

(16.334) 

[0*] 

83.392 

(20.621) 

[0*] 

25.056 

(22.418) 

[2.89E-7*] 

Constant 0.9827 

(0.0185) 

[0*] 

 

0.9976 

(0.0031) 

[0*] 

0.9987 

(0.0006) 

[0*] 

0.9258 

(0.0878) 

[0*] 
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almost all considered cases of function approximation tasks 

the neural networks that we used can learn the approximation 

of the target function. 

Next we compared performance of the RBF neural networks 

with the performance of the neural networks based on 

combined unsupervised and supervised learning. For this, we 

calculated the differences of approximation errors and used the 

z-test to check whether the mean differences are significantly 

different from zero or not. A positive difference that is 

statistically significant indicates that the RBF neural networks 

are less good at approximating the target function than the 

neural networks that use combined learning. The values of 

empirical mean differences, the corresponding empirical 

standard deviations, and the corresponding calculated 

significance levels for the z-test are shown in Table II. 

The results show that the SOM-RBF and SVM-RBF neural 

networks approximate the target function significantly better 

than the RBF neural networks in the case of all functions for 

which the neural network approximations are better than the 

uniform zero approximation. The results also show that the 

RBF neural networks approximate the sigmoidal, linear and 

constant functions statistically significantly better than the 

BSOM-RBF neural networks.  These results confirm that the 

neural networks using the combined unsupervised and 

supervised learning outperform in most cases the neural 

networks that learn the function approximation through 

supervised learning applied directly in the original data space.  

Finally we compared the performance of the RBF-SOM 

neural networks with the performance of the RBF-SVM and 

RBF-BSOM neural networks in a similar manner as in the 

previous comparison. Positive values that are statistically 

significant indicate that the SVM-RBF and BSOM-RBF neural 

networks are better than the SOM-RBF neural networks for the 

respective approximation task. The comparison results are 

shown in Table III.  

These results show that the SVM-RBF neural networks are 

significantly better than the SOM-RBF neural networks for the 

approximation of the considered squared modulus, 

polynomial, exponential square sum, inverse exponential 

square sum and Gaussian functions. The SOM-RBF neural 

networks are significantly better than the SVM-RBF neural 

networks for the considered sigmoidal and linear functions, 

while for the other functions the approximation performances 

are not significantly different for the two kinds of neural 

networks. The BSOM-RBF neural networks are significantly 

better than the SOM-RBF neural networks for the considered 

polynomial and inverse exponential square sum functions. For 

the sigmoidal, linear and constant functions the reverse 

performance relationship is statistically significant, while for 

the remaining functions the approximation performances are 

not significantly different. These results show that in particular 

for simpler target functions trying to set the internal 

parameters of the nonlinear neurons in some optimal way may 

be somewhat misleading and comparable or better 

performance can be achieved by simply random setting of 

these parameters. 

VII. DISCUSSION AND CONCLUSIONS 

The paper proposes the use of neural networks trained with 

combined unsupervised and supervised learning for function 

approximation tasks. The key idea is that sparse data in a high 

dimensional space may be mapped into a lower dimensional 

space that corresponds to the lower dimensional manifold 

around which the data resides. This can improve the sampling 

density of the data space and lead to a trained neural network 

with inputs from the lower dimensional space such that the 

approximation performance of this neural network is better 

than the performance of a similar neural network trained on the 

original high dimensional data. To perform the high dimension 

to low dimension mapping we propose the use of over-

complete self-organizing maps that can approximate an 

injective mapping. The experimental data presented in the 

paper confirms that in all considered cases the combined 

learning neural networks (SOM-RBF networks) have better 

TABLE II 

THE DIFFERENCE BETWEEN THE APPROXIMATION PERFORMANCE OF 

COMBINED LEARNING NEURAL NETWORKS AND THAT OF THE RBF NEURAL 

NETWORKS; MEAN VALUE (STANDARD DEVIATION) [Z-TEST P-VALUE], * 

INDICATES SIGNIFICANCE, BELOW 0.05 P-VALUE 

Function  SOM-RBF SVM-RBF BSOM-RBF 

Squared 

modulus 

 

 

 

1480.89 

(1343.14) 

[4.09E-7*] 

 

2352.77 

(1576.94) 

[1.26E-11*] 

1833.97 

(1780.76) 

[2.05E-6*] 

Polynomial  

 

 

134.00 

(316.78) 

[0.02926*] 

 

288.88 

(263.47) 

[4.71E-7*] 

361.24 

(280.55) 

[4.24E-9*] 

Exponential 

square sum 

 

 

 

4.0868 

(3.2636) 

[1.07E-8*] 

 

5.7829 

(3.3816) 

[1.02E-14*] 

4.4811 

(4.1574) 

[7.17E-7*] 

Exponential-

sinusoid sum 

 

 

 

0.0679 

(1.1606) 

[0.39672] 

 

0.0992 

(1.0290) 

[0.33307] 

0.1610 

(0.9831) 

[0.23194] 

Polynomial-

sinusoid sum 

 

 

 

0.5997 

(1.4523) 

[0.03238*] 

 

0.6514 

(1.4549) 

[0.02261*] 

0.5145 

(1.6339) 

[0.07952] 

Inverse 

exponential 

square sum 

 

 

 

 

1.0960 

(1.2442) 

[4.08E-5*] 

 

2.1214 

(1.0439) 

[0*] 

2.7919 

(0.9415) 

[0*] 

Sigmoidal  

 

 

4.5167 

(5.1484) 

[4.36E-5*] 

 

4.0564 

(5.0697) 

[0.00017*] 

– 6.4053 

(7.5654) 

[7.64E-5*] 

Gaussian  

 

 

2.6314 

(1.7863) 

[2.23E-11*] 

 

5.2090 

(1.5073) 

[0*] 

1.2641 

(5.8834) 

[0.16829] 

Linear 

 

 

 

 

23.490 

(37.151) 

[0.00234*] 

 

17.909 

(40.089) 

[0.02286*] 

– 40.426 

(45.517) 

[3.56E-5*] 

Constant  

 

0.0149 

(0.0187) 

[0.00018*] 

 

0.0160 

(0.0185) 

[5.37E-5*] 

– 0.0568 

(0.0927) 

[0.00307*] 
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approximation performance than the neural networks trained 

with the original high dimensional data (RBF networks). 

We also propose the use of support vector machines (SVM-

RBF networks) and Bayesian self-organizing maps (BSOM-

RBF networks) to find good settings for the fixed parameters 

of the nonlinear neurons in the neural networks. The 

experimental results show that the use of such methods to find 

good parameters for the nonlinear neurons is useful in some 

cases, but not always. The results indicate that the SVM-RBF 

networks are more likely to perform better than the SOM-RBF 

networks than the BSOM-RBF networks. In the case of the 

SVM-RBF neural networks the determination of the 

parameters for the neural network basis functions is influenced 

by the function that is approximated and the distribution of the 

data. In the case of the BSOM-RBF networks the setting of the 

parameters is driven purely by the distribution of the 

projections of the original data into the low dimensional space. 

This difference in the drivers of the setting of the parameters is 

likely to be the reason for the difference in the performance of 

these networks relative to the performance of the SOM-RBF 

neural networks. 

The theoretical arguments for the proposed combined 

learning neural networks show that it is very important to find 

a good '':' MM ®m  SOM mapping in the sense that the 

dimensionality of the low dimensional space is close to the 

true dimensionality of the manifold around which the original 

data is placed and that appropriate parts of the manifold are 

mapped onto appropriate parts of the low dimensional space in 

terms of topographic arrangement. If this is not the case, the 

®'': Mg  function that is approximated over the low 

dimensional space might become more variable over 

sufficiently large regions of the projection space than the 

original target function of the approximation task, 

®Df : . Thus the approximation of ®'': Mg  

potentially may become even more complicated and more 

error prone than the approximation of ®Df : . Our 

experimental results show that for the data that we considered 

the SOM mapping into the lower dimensional space was 

appropriate. This of course was made easier by the fact that we 

mapped the high dimensional data into two dimensions which 

was the correct dimensionality of the manifold of the high 

dimensional data that we considered. 

The experimental results show that the nature of the 

approximated function is important for achieving improved 

approximation by neural networks trained on the projected low 

dimensional data. The considered exponential sinusoidal sum 

function was equally badly approximated by all neural 

networks that we built. This indicates that if the variability of 

the target function is high (i.e. its values change considerably 

over relatively small regions of the space on which the 

function is defined) the approximation of the function is not 

significantly improved by mapping the original data onto a 

lower dimensional space. Of course, the approximation 

performance also depends on the complexity of the 

approximating neural network, and increasing the number of 

hidden neurons is likely to be more effective in improving the 

approximation performance using the low dimensional 

projected data than the original high dimensional data. 

Naturally the proposed combined learning neural networks 

can work using other kinds of high dimension – low dimension 

mapping algorithms as well. For example, the mapping 

between the original and the projection data space could be 

achieved using multi-dimensional scaling (MDS) [14], 

principal component analysis (PCA) [1], isometric feature 

mapping (ISOMAP) [28], or locally linear embedding (LLE) 

[30]. Any of these methods could be used to generate the 

projected data that is used to learn the function approximation 

in the lower dimensional space. However, an advantage of our 

choice of using over-complete self-organizing maps is the 

computational simplicity and the guaranteed topography 

preservation of the mapping.  

TABLE III 

COMPARISON OF THE APPROXIMATION PERFORMANCE RESULTS OF SVM-

RBF, BSOM-RBF, AND SOM-RBF NEURAL NETWORKS 

MEAN VALUE (STANDARD DEVIATION) [Z-TEST P-VALUE], * INDICATES 

SIGNIFICANCE, BELOW 0.05 P-VALUE 

Function  
SVM-RBF vs 

SOM-RBF 
 

BSOM-RBF 

vs SOM-RBF 

Squared 

modulus 

 

 

 

871.885 

(631.894) 

[3.40E-10*] 

 

 353.083 

(1139.46) 

[0.08290] 

Polynomial  

 

154.884 

(127.669) 

[2.89E-8*] 

 

 227.247 

(127.848) 

[8.88E-16*] 

 

Exponential 

square sum 

 

 

 

1.6960 

(1.2974) 

[2.51E-9*] 

 

 0.3942 

(2.9925) 

[0.27787] 

Exponential-

sinusoid sum 

 
 

 

0.0313 

(0.4045) 

[0.36546] 

 

 0.0930 

(0.5027) 

[0.20387] 

Polynomial-

sinusoid sum 

 

 

 

0.0517 

(0.6327) 

[0.35739] 

 

 – 0.0852 

(0.9050) 

[0.33683] 

Inverse 

exponential 

square sum 

 

 

 

 

1.0253 

(0.6184) 

[6.08E-14] 

 

 1.6958 

(0.6984) 

[0*] 

Sigmoidal  

 

 

– 0.4603 

(0.6202) 

[0.00045*] 

 

 – 10.922 

(7.5645) 

[5.33E-11] 

Gaussian  

 

2.5776 

(1.3589) 

[0*] 

 

 – 1.3672 

(6.2453) 

[0.16377] 

 

Linear 

 

 – 5.5805 

(12.933) 

[0.02682*] 

 

 – 63.916 

(23.963) 

[0*] 

 

Constant  0.0010 

(0.0033) 

[0.07360] 

 

 – 0.0717 

(0.0879) 

[0.00013*] 
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