Dealing With Concept Drifts in Process Mining | IEEE Journals & Magazine | IEEE Xplore

Abstract:

Although most business processes change over time, contemporary process mining techniques tend to analyze these processes as if they are in a steady state. Processes may ...Show More

Abstract:

Although most business processes change over time, contemporary process mining techniques tend to analyze these processes as if they are in a steady state. Processes may change suddenly or gradually. The drift may be periodic (e.g., because of seasonal influences) or one-of-a-kind (e.g., the effects of new legislation). For the process management, it is crucial to discover and understand such concept drifts in processes. This paper presents a generic framework and specific techniques to detect when a process changes and to localize the parts of the process that have changed. Different features are proposed to characterize relationships among activities. These features are used to discover differences between successive populations. The approach has been implemented as a plug-in of the ProM process mining framework and has been evaluated using both simulated event data exhibiting controlled concept drifts and real-life event data from a Dutch municipality.
Published in: IEEE Transactions on Neural Networks and Learning Systems ( Volume: 25, Issue: 1, January 2014)
Page(s): 154 - 171
Date of Publication: 16 October 2013

ISSN Information:

PubMed ID: 24806651

References

References is not available for this document.